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Abstract
We introduce a flexible program synthesis system whose task is to predict function compositions that transform given inputs 
to their corresponding given outputs. We process input lists in a sequential manner, allowing the system to generalize to 
a wide range of input lengths. We separate the operator and the operand in the lambda functions of the used higher order 
functions to achieve significantly wider numeric parameter ranges compared to the previous works. The evaluations show 
that this approach is competitive with state-of-the-art systems, while it is much more flexible in terms of the input length, 
the parameters of the lambda functions, and the integer range of the inputs and outputs. We extend the system to handle tree-
structured function compositions by introducing two additional functions (zip_with, copy) and the ability to represent 
unfinished function compositions during the synthesis process. The extended system achieves state-of-the-art results while 
synthesizing complex function compositions with multiple forks. We believe that flexibility in these aspects is an important 
step towards solving real-world problems with example-based program synthesis.

Keywords Program synthesis · Programming by examples · Beam search · Recurrent neural network · Gated recurrent 
unit · Tree-structured composition

Introduction

Program synthesis aims to generate a program expressed 
in a formal language that meets some constraints posed by 
the user, where the constraints are not necessarily provided 
in a formal fashion. Some researchers consider this broad 
problem to be “the holy grail of Computer Science” [11], 
and understandably so: in the future, systems capable of 

tackling such tasks may provide explainable solutions to 
problems that are either difficult to algorithmize or even 
deemed unsolvable today.

There are two main branches of program synthesis [11]. 
Deductive program synthesis aims to produce a demonstra-
bly correct program that conforms to a formal, rule-based 
specification that connects the possible inputs of the pro-
gram with their outputs [1]. Such specifications, however, 
can prove to be even harder to provide than solving the prob-
lem at hand. In the case of inductive program synthesis, the 
desired program’s expected operation is demonstrated with 
examples, or a textual representation [6].

Programming by Examples (PbE) is a demonstrational 
approach to program synthesis to specify the desired behav-
ior of a program. The examples are composed of one or more 
inputs and their associated expected output [9]. Because they 
do not require formal specifications, PbE systems could be 
suitable for applications which target end-users without for-
mal computer science training. A good example of this is 
Flash Fill in Microsoft Excel, which synthesizes and applies 
programs that transform strings based on examples provided 
by the user [10].
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The two main targets of PbE systems are string transfor-
mations [10, 14, 17, 19] and list manipulations [2, 8, 24]. 
We address PbE systems that target list manipulations in 
this paper.

To deal with the combinatorial complexity of the search 
in the space of programs that possibly satisfy the provided 
specification, early program synthesis systems used theorem-
proving algorithms and carefully hand-crafted heuristics to 
prune the search space [18, 21]. Utilizing the advances of 
deep learning, the field of program synthesis experienced 
great breakthroughs regarding both accuracy and speed [2]. 
One of the most eminent approaches in integrating machine 
learning algorithms into the synthesis process was to aug-
ment popular heuristics used in the search with the predic-
tions of such algorithms [14, 17].

The seminal work in the field is DeepCoder [2], which 
serves as a baseline for several more recent papers [8, 14, 
17, 24]. PCCoder [24] greatly advanced the performance 
of the synthesis process on the Domain-Specific Language 
(DSL) defined by DeepCoder, reducing the time needed by 
the search by orders of magnitude while achieving remark-
ably better results.

In spite of these great advances, there have not yet 
been numerous examples of successful applications of 
example-based program synthesis systems in real-world 
environments.

We think that the causes are mainly limitations of these 
systems, such as (i) the limitation of static or upper bounded 
input vector sizes, (ii) the agglutination of tokens of the 
used formal language, such as handling operators and their 
integer parameters jointly in lambda expressions of higher 
order functions [e.g., (+1) and (∗ 2) ], (iii) the limited inte-
ger parameter ranges of the lambda operators, and (iv) the 
limited integer ranges of inputs, intermediate values, and 
outputs.

As a consequence of (ii), the number of lambda functions 
required is a product of the number of supported lambda 
operators and their possible parameters. For example, a sep-
arate lambda function is required for each (+1) , (+2) , ...(+n) . 
Thus, the number of possible function combinations to be 
used in systems following this strategy is greatly reduced. 
Poor generalization performance to input lengths beyond a 
constant maximum length L is the effect of (i).

In this paper, we would like to resolve these limitations. 
We implement a DSL with similar functions to the ones used 
by DeepCoder using a function-composition-based system, 
in which we treat lambda operators and their parameters 
separately. This enables us to reduce the number of lambda 
functions required from the product of the number of lambda 
operators and their parameters to the sum of them (consider-
ing the parameters as nullary functions), and so broaden the 
range of possible lambda expressions: we expand the range 
of the allowed numerical values from [−1, 4] to [−8, 8].

We also extend the range of the possible integers in the 
outputs and intermediate values fourfold from [−256, 256] 
to [−1024, 1024] . These ranges might be extended further if 
needed as we do not embed the integers so we do not impose 
restrictions on the range of inputs and outputs.

Similarly to DeepCoder and PCCoder, we use a deep 
neural network to assist our search algorithm. The neural 
network accepts input–output pairs of any length and pre-
dicts the next function to incorporate into the composition 
that solves the problem. Thus, the network acts as a heuristic 
for our search algorithm based on beam search, which uses 
predefined, optimized beam sizes on each level.

The main limitation of our initial system [12] is that it 
synthesizes function compositions where functions take only 
a single list as an input in addition to their fixed parameters, 
and the predicted next function is applied to the list output 
of the previous function; hence, the generated compositions 
are flat chains of functions.

We lift this limitation by extending our system to syn-
thesize tree-structured function compositions. We introduce 
two additional functions called zip_with and copy; these 
allow forks in the composition. We also introduce state 
tuples, which are tuples that contain unmerged branches of 
function compositions. The state tuples make representing 
unevaluable compositions possible and allow the system to 
build each branch of the composition separately.

The zip_with  function can merge two of these 
branches into a fork, while the copy function copies one 
of the branches, so it can be used at multiple places in the 
composition tree. At the end of a successful program synthe-
sis process, the branches are all merged into one, producing 
the solution to the posed problem in the form of a function 
composition.

Our contributions are:

– We introduce a recurrent neural network architecture that 
generalizes well to different input lengths.

– We treat the operators in lambda functions separately 
from their parameters. This allows us to significantly 
extend the range of their parameters.

– Our architecture does not pose artificial limits on the 
range of integers acceptable as inputs, intermediate 
results, or outputs. We extend the range of intermediate 
results and outputs fourfold compared to previous works.

– We propose an extension to the system which can gener-
ate tree-structured compositions and obtains state-of-the-
art results while synthesizing complex compositions (i.e., 
compositions with multiple forks).

The contributions serve to increase the flexibility of the 
method to take a step towards real-world tasks. We named 
our method FlexCoder, and refer to its presented extension 
as the extended FlexCoder.
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Related Work

As the seminal paper in the field, DeepCoder serves as a 
baseline for several systems in neural program synthesis. 
Its neural network predicts which of their supported func-
tions are present in the program, and therefore helps guide 
the search algorithm. However, their network is not used 
step by step throughout the search, only at the beginning 
of it.

To tackle the combinatorial nature of predicting all 
functions present in the solution program, PCCoder 
implemented a step-wise search which uses the current 
state at each step to predict only the next statement of 
the program, including both the function (operator) and 
parameters (operands). They use Complete Anytime Beam 
Search (CAB) [23] and cut the runtime by two orders of 
magnitude compared to DeepCoder.

As the neural networks used by DeepCoder and 
PCCoder do not process the input sequentially, they can 
only handle inputs with maximum length L (or shorter, 
owing to the use of padding), which is a possible short-
coming that has been mentioned in the DeepCoder paper. 
The default maximum length is L = 20 for both systems. 
FlexCoder solves this problem using GRU [5] layers to 
process the inputs, so it can work with a large range of 
input sizes without harming the trainability of the neural 
network.

Both DeepCoder and PCCoder embed the integers in 
the input–output lists, narrowing down the range of possi-
ble integer values considerably. FlexCoder does not embed 
the elements of the lists; its integer ranges are wider and 
more extensible.

We separate the lambda function parameters of our 
higher order functions into operators and numeric param-
eters to significantly widen the operand range compared 
to DeepCoder and PCCoder. This approach resolves the 
bound nature of their parameter functions, where they only 
have a few predefined functions with the given operator 
and operand (eg. (+1) , (∗ 2)).

Similarly to PCCoder, FlexCoder also uses the neural 
network in each step of the search process; thus, the net-
work’s task is to predict only the next function in the solv-
ing composition, given an input state and an output state.

Feng et  al. [8] provide an example of successfully 
using function compositions to represent synthesized pro-
grams. Their conflict-driven learning-based method can 
learn a knowledge base consisting of lemmas to gradually 
decrease the program space to be searched. They outper-
form a reimplementation of DeepCoder using the same 
Domain-Specific Language (DSL).

The work of  Kalyan et al. [14] introduces real-world 
input–output examples for their neural-guided deductive 

search, combining heuristics (symbolic approach) with 
neural networks (statistical approach) in the synthesiz-
ing process. Their ranking function serves the same role 
as our network in their approach to synthesize string 
transformations.

Ellis et al. [7] use a Sequential Monte Carlo method to 
explore the program spaces their context-free grammars 
define. Their set of partial programs denoted by pp allows 
them to represent incomplete programs and was the main 
motivation of our use of state tuples.

Methods

In this section, we introduce our approach to neural-guided 
program synthesis based on beam search with optimized 
beam sizes for every level. Each step of the beam search is 
guided by the predictions of the neural network. The DSL 
of function compositions is built of well-known (possibly 
higher order) functions from functional programming. The 
two main parts of FlexCoder are the beam search algorithm, 
and the neural network. Another important part is the con-
text-free grammar which defines the DSL.

Figure 1 shows an overview of FlexCoder. In each step, 
an input–output pair is passed to the neural network, which 
predicts the next function of the sequential composition. 
This predicted function is applied to the input of the current 
iteration, producing the new input for the next iteration of 
the algorithm. This is continued until either a solution is 
found or the iteration limit is reached.

Figure 2 illustrates how the extended FlexCoder con-
structs a solution to PbE problems. It uses the same iterative 
approach as FlexCoder, but the basis of the synthesis process 
is different and two new functions are introduced.

Example Generation and Grammar

We represent the function compositions using context-free 
grammars (CFGs) [4]. The clear-cut structure makes the 
grammar easily extensible with new functions and more 
parameters. We implemented the context-free grammar 
using the Natural Language Toolkit [3]. The whole grammar 
with short descriptions of each function can be seen in Fig. 3 
for FlexCoder, and in Fig. 4 for the extended FlexCoder.

The numeric parameters are taken from the [−8, 8] inter-
val in both DSLs. This range is larger than the one used by 
PCCoder as they use a range of [−1, 4] . The elements in 
the intermediate values and output lists are taken from the 
[−1024, 1024] range ( [−256, 256] in PCCoder), while the 
input lists are from the [−256, 256] range. The input range is 
the same as for PCCoder for the sake of comparability in our 
evaluations, it could easily be increased to the [−1024, 1024] 
range for example.
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We did not include the search function in the DSL of 
extended FlexCoder, because we realized that it is not a 
useful component of the compositions. Search can only be 
applied to function compositions as the last transforma-
tion, where the range of possible integer values in the lists 
is [−1024, 1024] . In contrast, the search function can only 
be parameterized from the [−8, 8] range, which is a small 
fraction, 17

2049
 th of the range of the outputs. Consequently, 

the list contains the number search is looking for only in 
a very small fraction of the cases.

The copy function is not present in the extended Flex-
Coder’s DSL, as it is a helper function used exclusively 
during the synthesis process, so it is not present in the 
synthesized compositions. It copies branches of func-
tion compositions built from the functions in the DSL. 
Regarding the extended FlexCoder, we refer to the func-
tions present in the DSL as regular functions, and we use 
the term synthesis function when we also include copy. In 
FlexCoder, the two terms have the same meaning, and can 
be used interchangeably.

The lambda functions are divided into two categories 
based on their return type: Boolean lambda functions used 
by filter and numeric lambda functions used by map in 
FlexCoder. In the extended FlexCoder, there are also binary 
lambda functions (i.e., operators like +, –, *, etc.) which 
are used by the zip_with function. We define rules for the 
lambda functions to avoid errors or identity functions, such 
as dividing by 0, or the (+0) and the (∗ 1) functions. In the 
extended FlexCoder, we also remove (∕(−1)) , as it is equiva-
lent to (∗ (−1)).

The CFGs are used to generate the functions with every 
possible parameterization, which are then combined into 
compositions. In FlexCoder, each composition is generated 
iteratively by choosing a function and sequentially adding it 
to the already generated composition. This process continues 
until the needed number of compositions are generated.

As the extended FlexCoder introduces zip_with, the 
compositions are no longer sequential (an example of a 
tree-structured composition can be seen in Fig. 5). The sys-
tem can generate compositions where the programs expect 

Fig. 1  The process of program synthesis. The task is to find a pro-
gram that conforms to a specification. FlexCoder synthesizes a func-
tion composition which transforms the input list into the output list or 
output integer value. The input and output serve as the specification. 
In this case, the input is [2, – 2, 4, 3, 1] and the output is [2, 6, 8]. 
The figure depicts how at each step of the synthesis process, the neu-
ral network’s predicted function is applied to the input, and then, the 
result is fed back into the neural network in the next step. The reverse 
function returns a new list that contains the same elements as the 

input list but in reversed order. The map function applies the lambda 
expression consisting of the given operator and numeric parameter (in 
this example ‘ ∗ ’ and ‘2’, respectively) to every element of its input 
list, resulting in a new list. The take function takes some elements 
(in this case ‘3’) from the front of the input list and returns these in 
a new list. After executing these functions in the right order on the 
input list, we can see that the current input list equals the output list, 
which means we found a solution: map(∗ 2, take(3, reverse(input)))

Fig. 2  The iterative construction of a function composition in the 
extended FlexCoder. An important difference between this exam-
ple and the one in Fig.  1 is having two input lists instead of one 
and using two new functions (copy and zip_with). During the syn-
thesis process, a state tuple is updated in each step, which con-
sists of unmerged branches of function compositions. It con-
tains the provided inputs in the beginning. The zip_with function 
takes two input lists and creates a new one whose i-th element is 

the result of the given operator applied to the input lists’ i-th ele-
ments. The copy function is only used internally in the synthesis 
process. This copies one branch of the state tuple to save it before 
applying additional functions to it. At the end of the process, the 
zip_with(+, zip_with(∗, map(∗ 2, [2,−4, 9, 6]), map(%3, [6, 2, 3]))) 
function composition is constructed, which is a solution to the posed 
problem
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a given number of inputs, and contain a given number of 
forks. This also determines the number of branches and the 
number of copies. The number of branches is always one 
more than the number of forks, because each fork (i.e., each 
zip_with) connects exactly two branches, and all branches 
have to be connected to the tree eventually. The number of 
copies is the difference between the number of inputs (i.e., 
the initial branches), and the number of branches (i.e., the 
total number of branches required in the composition).

The generation process is based on dynamic program-
ming. First, each possible composition of length one is 
generated.1 After generating some compositions of length 
(n − 1) , the compositions of length n are generated by sam-
pling a function which serves the role of the root function, 
and choosing subcompositions from the previous levels that 
are used as children of the root function, where the length of 
the resulting composition must be equal to n.

The number of branches (and thus, forks) in the composi-
tions has to be less than or equal to the number requested 
by the user on the intermediate levels. On the last level (i.e., 
for the final compositions, when the length of the currently 
generated compositions match the length desired by the 
user), the number of branches has to be strictly equal to the 

Fig. 3  The grammar used in FlexCoder in CFG notation. This gram-
mar is used to generate all functions with every possible parameteri-
zations. These are then combined to generate function compositions. 
The functions do not modify the input array; they return new arrays. 
The sort function sorts the elements of array in ascending order. Take 
keeps, drop discards the first POS elements of array. The reverse 
function reverses the elements of the input. Map and filter are the two 
higher order functions used in this grammar. Map applies the NUM_
LAMBDA function on each element of its parameter. Filter only 
keeps the elements of array for which the BOOL_LAMBDA function 
returns true. The min and max functions return the smallest and the 
largest element of array. The sum function returns the sum of, count 
returns the number of elements of array. Search returns the index of 
the element of array which is equal to NUM. In the generated exam-
ples, we only accept cases where the NUM is present in array 

Fig. 4  The grammar used in the extended FlexCoder. In this gram-
mar, we introduce a new function to be used in the function composi-
tions: the higher order zip_with. This function accepts two input lists 
and returns a new one whose i-th element is the result of the given 
operator applied to the input lists’ i-th elements. The search func-
tion is taken out from the set of used functions, as the function only 
searches for elements in the [– 8, 8] range, which does not scale well 
with the extension of input, intermediate, and output integer ranges. 
The copy function is not present in our DSL, as it is used solely in 
the synthesis process, and copies branches of function compositions 
built from the functions in the DSL. The count function is renamed 
to length to better capture its functionality. The remaining differences 
between this and Fig. 3 are only minor optimizations, such as disal-
lowing the lambda expression (/(– 1)), as it is equivalent to (*(– 1))

1 The length of a function composition is the number of functions it 
contains.
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requested number, as the generated compositions have to 
satisfy the user-provided parameters.

If the number of inputs is less than the number of 
branches, the system then enumerates all the possible struc-
tures of compositions that conform to the parameters of the 
generation (e.g., the number of inputs and branches), and 
generates compositions with the needed number of copies, 
using the previously generated copyless compositions as 
building blocks.

This is done as follows. First, the system selects an exten-
sible copyless composition from the previously generated 
compositions. A composition is extensible if its number of 
branches and number of contained functions allow it to be 
extended further by copies to create a composition with the 
length, number of branches, and number of inputs specified 
by the user. Then, the system determines its leaves where 
subcompositions (or inputs, as they can also be copied) and 
their copies should be placed. The subcompositions are also 
selected from the set of previously generated compositions. 
A composition can contain multiple copied branches.

The number of compositions of each length is controlled 
by a hyperparameter called branching factor. This deter-
mines the number of new compositions that are created from 
previously generated compositions by adding a new function 
as the root. It is the exponential base of the function provid-
ing the number of generated compositions of length n.

As the functions in the grammar have a different number 
of possible parameterizations, we have to ensure that each 
type of function occurs approximately the same number of 

times in the generated dataset. To tackle this problem, the 
compositions are generated by a two-step sampling process 
from the 151 possible functions in FlexCoder, and from the 
138 possible functions in the extended FlexCoder.

In the first step, a function type is chosen uniformly at 
random (e.g. map), then in the second step, a fully param-
eterized function is chosen uniformly at random out of the 
possible parameterizations of the picked function type (e.g., 
map(* 2, array)). A notable exception to this in the extended 
FlexCoder is the generation of compositions of length one: 
each possible function is enumerated in that case to supply 
an exhaustive base for the compositions.

We use several filters on the generated functions to 
remove or fix redundant functions and suboptimal param-
eterizations. This is needed to create a well-trainable prob-
lem for the neural network and to reduce the ambiguity of 
the dataset. The optimizations happen during the generation 
of the compositions.

We distinguish between structural optimizations that can 
be optimized regardless of the input(s) of the composition, 
and example-based optimizations that can only be done for 
the exact input(s) provided for the composition at hand. 
Unless otherwise stated, the showcased optimization tech-
niques are used in both FlexCoder and the extended Flex-
Coder in the same way.

Structural Optimizations

The first filter merges functions inside the composition, if 
possible:

– map(+ 1 , map(+ 2 , [1, 2])) → map(+ 3 , [1, 2])
– take(3, take(4, [– 4, 2, 9, 3, 0])) → take(3, [– 4, 2, 9, 3, 0])
– drop(1, drop(2, [4, 5, – 4, – 1, 0])) → drop(3, [4, 5, – 4, 

– 1, 0]).

The next two filters are only present in the extended 
FlexCoder.

The second filter switches the order of take, drop, and 
map, if needed:

– drop(3, map(∗ 2 , [2, – 3, 5, 10])) → map(∗ 2 , drop(3, [2, 
– 3, 5, 10])).

This is a minor efficiency optimization in evaluating the 
compositions. The functions do not have to be next to each 
other in this case, all cases are covered where this alteration 
can mean an improvement.

The third filter eliminates redundant applications of sort 
or reverse

– reverse(reverse(take(3, [3, 0, 5]))) → take(3, [3, 0, 5])

Fig. 5  A tree-structured function composition from the DSL 
of the extended FlexCoder. In the synthesis process, the two 
map(∗ 2, take(3, [1, 5,−3, 0, 6])) subcompositions have to be built 
only once, and then, the copy function can be used to copy this sub-
composition once. The composition has two (unique) inputs, three 
branches, two forks, and one copy
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– sort(map(∗ 3 , sort([4, – 3, 4]))) → map(∗ 3 , sort([4, – 3, 
4])).

This technique can also be applied to functions that are not 
adjacent, provided that the intermediate functions are not 
order-altering.

Example‑Based Optimizations

The first filter optimizes the parameters of functions

– filter(> 2 , [1, 6, 7]) → filter(> 5 , [1, 6, 7]).

In the presented example, (> i) (i ∈ {2, 3, 4, 5} ) would all 
mean semantically different compositions, but these all pro-
duce the same output for the provided input list. Having all 
of these in the generated dataset would induce ambiguity.

The second filter removes the identity functions on the 
concrete input–output pairs:

– sum(filter(> 5 , [6, 7, 8])) → sum([6, 7, 8]).

Identity functions cannot surface during structural optimiza-
tions, as these are prohibited by the grammars. An example 
for this is map(+0, [2, 3, 5]).

The third filter handles compositions resulting in empty 
lists:

– filter(< 1 , [2, 3, 4]) → [ ]
– drop(4, [1, 2, 3]) → [ ].

In this case, FlexCoder simply discards the example. The 
extended FlexCoder, however, traverses the tree-structured 
function composition in a postorder way and optimizes the 
parameters of functions that return an empty list for the con-
crete inputs provided. Consequently, this optimization is not 
an equivalent transformation.

The fourth filter removes the examples which contain 
integers outside the allowed range of [−1024, 1024]:

– map(∗ 8 , [1, 2, 255]) → [8, 16, 2040].

Beam Search

As previously mentioned, we formulate the problem of pro-
gram synthesis as searching for an optimal function compo-
sition. We build compositions applying one synthesis func-
tion at a time. It is important to remark that the proposed 
copy function in the extended FlexCoder makes it possible 
to incorporate several functions at once into the composition 
being built.

The main difference between FlexCoder and its extension 
is the states used in the search algorithm, and consequently, 

the predictions of the neural network. FlexCoder’s synthe-
sized programs are sequential; thus, there is no need to rep-
resent partial programs. The states in this case are single 
sequential function compositions.

In the extended FlexCoder, we use state tuples to repre-
sent the states. State tuples contain branches of the func-
tion composition which are not yet merged together, so a 
state tuple represents a whole unmerged composition. Such 
a composition cannot be evaluated as a whole, but their 
branches can be and are evaluated. In fact, the state tuple 
contains only the results of the evaluation of these branches, 
because beam search keeps track of the concrete functions 
each branch is composed of (Fig. 6). A state tuple becomes 
a finished program when all the branches are merged, that 
is, in contains a single branch which is the tree of the whole 
function composition.

The branches in a state tuple are built up separately from 
more and more functions. The copy function can be used to 
create new branches by copying existing ones in the state 
tuple. The maximum length of the state tuple is 3, so we can 
have at most 3 branches at once.

The beam search (Fig. 7) is implemented based on Com-
plete Anytime Beam Search (CAB), which involves the 
introduction of a time limit in the search.

The algorithm builds a directed tree of node objects in 
both systems. Each node has three fields: a function, the 
result of that function applied to the output of its parent 
node, and its rank. The parent node is also stored to recur-
sively gather the solution once it has been found. In the 
extended FlexCoder, an indices field is added to indicate 
which branches in the state tuple the chosen transformation 
should be applied on.

For each node of the tree, the neural network uses the 
current state of the program input stored in the parent node 

Fig. 6  This figure shows how state tuples can facilitate the represen-
tation of unfinished programs in the form of function compositions. 
During the synthesis process, only the evaluated form is stored, as 
the search algorithm keeps track of the functions applied at each step. 
Therefore, the figure merely serves as a visualization of the partial 
programs (branches) the state tuples represent
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and the program’s expected output to determine the ranks of 
the next possible functions of the synthesized composition. 
If there are multiple input–output examples, we pass them 
in a batch to the network, then we take the geometric mean 
of the predictions.

On each level of the search algorithm, we sort all pos-
sible parameterized functions in descending order based on 
their rank.

After generating all the child nodes, we keep the first 
�i ∈ ℕ (i ∈ 1..�) nodes (where �i denotes the beam size on 
the current level and � is the depth limit) from the sorted list 
of the nodes and fill their result fields by evaluating them. 
We repeat this step until either a solution is found or the 
algorithm reaches the iteration limit (or optionally the time 
limit) provided. If a solution is found, the parent pointers are 
followed recursively until the root of the tree is reached to 
get the synthesized composition. When the depth limit � is 
reached without finding a solution, each �i value is doubled 
and the search is restarted. Since the network is called mul-
tiple times during the search, a caching method is used to 
save the ranks for every unique input–*output pair to speed 
up the process. This is possible, because the network is a 
pure function. Algorithm 1 uses previously optimized beam sizes for 

each depth. We optimized the beam sizes based on experi-
mental runs on the validation set: we approximated the 
minimum beam size ∈ {�1, �2,… , �n} on each level that 
contains the next function of the solving composition. This 
gives a higher chance to find the solution in the first or 
early iterations. We chose the beam size or each level that 
included the original solution 90% of the time during the 
benchmarking process. This seems to be an ideal trade-off 
between accuracy and speed. In the extended FlexCoder, 
a lower limit of 150 has also been set for beam sizes, and 

Fig. 7  A successful beam search in FlexCoder, in which we 
are looking for a function composition that produces the out-
put sequence [2,  6,  8] when given the input [2,−2, 4, 3, 1] . Each 
node has three fields: a function, the result of that function applied 

to the output of its parent node, and its rank. The gray rectangles 
are the nodes considered; these are selected based on their rank 
marked by R. The highlighted and bolded ones show the result 
take(3,map(∗ 2, reverse(input)))
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the optimized values were used when they were larger than 
150.

The first step of the algorithm is to remove programs 
that violate the range constraints of the evaluated output 
list mentioned in “Example Generation and Grammar” or 
a length constraint. The length constraint in the case of 
list outputs ensures that we only keep nodes where the 
state contains lists (or a singular list in FlexCoder) that 
have as many as or more elements than the original output 
list, as the used DSLs do not make it possible to extend 
lists. After this filtering step, a rank is assigned to all the 
remaining programs by the neural network.

The programs are also executed to check whether they 
satisfy the solution criteria in each step. If a solution is 
found, the algorithm stops and returns it. Otherwise, the 
first beam_size states with the highest rank are selected 
and are further transformed with a new synthesis function 
on the next iteration of the inner loop. If the inner loop 
finishes, the beam sizes are doubled, but the previously 
computed ranks are not computed again due to the caching 
method mentioned previously.

Neural Network

The architecture of FlexCoder’s neural network is shown in 
Fig. 8. The input to the network is one input–output example 
of a single program. The outputs are 6 vectors that contain 
the ranks for each function, parameter, and lambda function. 
The extended FlexCoder also uses an output head for the 
indices of the state tuple the predicted function should be 
applied to. The rank of a parameterized function is deter-
mined by the geometric mean of the ranks of its components.

In FlexCoder, we define F as the set of synthesis func-
tions, every element of which is a tuple (fclass, farg) , where 
fclass is the function name and farg is the list of its arguments. 
Using this definition, the rank of a function is determined 
using the formula

where n ∈ ℕ denotes the number of parameters.
In the extended FlexCoder, the indices of the state tuple 

to which the function should be applied to, denoted by find 
also have to be taken into consideration. Consequently, the 
formula is modified as follows, using the notation introduced 
previously:

where k denotes the number of lists in the state tuple.

(1)R(f ) =
n+1

√

√

√

√R(fclass) ∗

n
∏

i=1

R(fargi),

(2)R(f ) =
n+k+1

√

√

√

√

R(fclass) ∗

n
∏

i=1

R(fargi ) ∗

k
∏

i=1

R(findi),

Architecture

The input to the networks is a state and the expected output. 
In the case of FlexCoder, the state is a sequential composi-
tion’s evaluated form, which is a single list. The state in the 
extended FlexCoder is a state tuple with maximal length 
3. This is a tuple containing the evaluated forms of par-
tial programs in the form of tree-structured compositions 
(branches).

Inputs and outputs are passed separately to two blocks of 
recurrent layers, which makes using variable-size input pos-
sible. These blocks each consist of two layers of GRU cells, 
each containing 256 neurons in both systems.

In FlexCoder, the GRU representations of the input and 
the output are concatenated and then given to a dense block 
consisting of seven layers with SELU [16] activation func-
tion, and 128, 256, 512, 1024, 512, 256, and 128 neurons 
in order.

The extended FlexCoder creates a GRU representation for 
each list in the state tuple separately, and then concatenates 
these and the output GRU representation into a single ten-
sor. The main dense block this tensor is given to contains 
nine layers with SELU activation function, and 1024, 1024, 
1024, 1024, 1024, 1024, 512, 256, and 128 neurons in order.

With SELU activations, we experienced a faster conver-
gence while training the networks, due to the internal nor-
malization these functions provide

After this block, we have an output layer predicting the 
probabilities of the possible next functions using sigmoid 
activation for each function in FlexCoder, and softmax acti-
vation in the extended FlexCoder. This layer is also fed into 
five smaller dense blocks. Each of these contains five layers 
using the SELU activation function with 128, 256, 512, 256, 
128 neurons in FlexCoder, and six layers of 512, 512, 512, 
512, 256, 128 neurons in the extended FlexCoder.

These smaller dense blocks produce the remaining five 
outputs of the model in FlexCoder, and six outputs in the 
extended FlexCoder. They are vectors, each representing the 
probabilities of parameters associated with the next param-
eterized function of the composition. These vectors are cor-
responding to (1) the bool lambda operator, (2) the numeric 
lambda operator, (3) the numeric argument of the bool 
lambda function, (4) the numeric argument of the numeric 
lambda function, and (5) the parameter for non-higher order 
functions with only one numeric argument, e.g., the value 
used in take. The extended FlexCoder uses an additional 
output for (6) the indices of the state tuple the predicted 
function should be applied to. We use the sigmoid activation 
function for each entry of all output vectors in FlexCoder, 

(3)SELU(x) = 𝜆

{

x, if x > 0

𝛼(ex − 1), if x ≤ 0.
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whereas in the extended FlexCoder, the softmax activation is 
used for all output vectors except the one responsible for the 
indices, as its task is a multilabel classification. The smallest 
output vector has three elements, whereas the largest one 
has 17. The network’s loss (L) is the sum of all of the output 
components’ loss values marked with Li , each denoting the 
corresponding binary cross-entropy or cross-entropy loss 
functions depending on the exact output head.

Thus, the loss is calculated as

where N is 6 in FlexCoder and 7 in the extended FlexCoder.

Training

Before training, we break down the compositions into func-
tions and turn each parameterized function into six or seven 
separate one-hot vectors to obtain a single label used for 
training the networks introduced.

Out of the generated examples, 98% is used as the training 
set, and the remaining 2% serves the role of the validation 
set. The test sets are generated on a per-experiment basis.

We use the Adam optimization algorithm [15] with the 
default hyperparameters: �1 = 0.9 , �2 = 0.999 and � = 10−8 . 
We trained the neural network on a computer with an Intel 

(4)L(Y , Ŷ) =

N
∑

i=1

Li(Yi, Ŷi),

i5-7600k processor and an NVIDIA GTX 1070 GPU using 
a standard early stopping method with a patience of five. We 
trained the networks for a maximum of 30 epochs.

Experiments

The experiments for FlexCoder were run on a c2-stand-
ard-16 (Intel Cascade Lake) virtual machine on the Google 
Cloud Platform with 16 vCores, 64 GB RAM, and no GPU. 
In the experiments for the extended FlexCoder, we used a 
PC with an AMD Ryzen 7 3700× processor, 16 GB RAM, 
and no GPU. For these experiments, the neural network of 
FlexCoder was trained on compositions of 7 functions, and 
the length of the input array was between 15 and 20. We pro-
vided 1 input–output example for each program in the train-
ing process. In all of the experiments, we created the test 
datasets by sampling the original program space uniformly 
at random, with a sample size of 1000. The neural network 
of the extended FlexCoder was trained on compositions with 
a length of 6, while the other parameters remained the same.

Filtering the Datasets

Filtering the datasets using the method described in “Exam-
ple Generation and Grammar” made the problem more 
learnable for the neural network, resulting in improvements 

Fig. 8  The general architecture of the neural network used in Flex-
Coder. The compositions in this system are sequential; thus, they only 
have a single input. Each input–output example is passed separately 
to the GRU block of the network, which generates a representation 
that is passed through the dense block and then splits into six parts, 
five of which pass through another dense block. In the extended Flex-
Coder, the compositions can be tree-structured, allowing them to have 

multiple inputs. The input to the network in this case is a state tuple 
containing the evaluated form of multiple partial programs (branches 
of the tree). The architecture used in the extended FlexCoder intro-
duces an additional output head compared to the neural network used 
in FlexCoder. This specifies the indices of the state tuple the pre-
dicted parameterized function is to be applied to
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in the case of each output head of the network of FlexCoder 
(Fig. 9). In the extended FlexCoder, we kept these optimiza-
tions and introduced new ones, as well (“Example Genera-
tion and Grammar”).

This filtering is used on all datasets in all experiments.

Different Recurrent Layers

In this section, we compare the effect of different recurrent 
layers on accuracy in FlexCoder. We ran experiments with 
LSTM [13], bidirectional LSTM [20], GRU, and bidirec-
tional GRU cells in the first layer of the network.

In the first experiment, we looked at the accuracy of 
the different layers as the composition length increased 
(Fig. 10). The bidirectional layers proved to be suboptimal, 
as these—somewhat surprisingly—did not make the system 
more accurate for longer function compositions, but train-
ing and testing both took considerably more time. In the 
case of both bidirectional models and the LSTM model, we 
used a hidden state consisting of 200 neurons. For the GRU 
model, we increased this amount to 256, as the GRU cells 
require less computation. Despite the fact that the bidirec-
tional LSTM achieves better accuracy for shorter composi-
tions, its accuracy falls below regular LSTM and GRU cells 
as the composition length increases. It is also the slowest of 
the three in terms of execution time. The bidirectional GRU 
model is the second slowest, and its accuracy is the worst of 
the layers tested for longer compositions. Between the regu-
lar LSTM and GRU cells, GRU is preferred as it performs 
well in terms of both execution time and accuracy.

In the second experiment, we analyzed how FlexCoder 
scales based on the length of the input–output examples in 
terms of accuracy. We generated program input–output vec-
tors with a length of 10–50 in increments of five for testing 
purposes. Figure 11 shows that FlexCoder with GRU was 
capable of generalizing well to longer inputs.

Similarly to the first experiment, GRU was the most accu-
rate while being the best in terms of execution time. Both 
bidirectional models performed similarly, but the bidirec-
tional LSTM was markedly slower. The GRU model per-
formed consistently better than the LSTM-based network 
on longer example lengths.

Based on the results of these two experiments, we elected 
to use GRU as the recurrent layer of both architectures.

Accuracy and Execution Time

Tables 1 and 2 show the accuracy and the time needed 
to find a solution in terms of the number of input–out-
put pairs and the composition length in FlexCoder. By 
increasing the number of input–output pairs the problem 
becomes more specific: finding a program that fits all the 

pairs becomes a more complex task, because the set of 
possible solutions narrows. Similarly, as we increase the 
composition length, the space of possible programs of that 
length also increases. 

The accuracy achieved by FlexCoder is comparable to 
that of PCCoder with the time limit replaced by the same 
iteration limit as in FlexCoder. In terms of execution time, 
FlexCoder sometimes falls behind, but the performance of 
the two systems is generally similar.

bool lambda operator

bool lambda argument

numeric lambda operator

numeric lambda argument

function

numeric argument

71.28%

94.8%

88.02%

96.82%

87.62%

92.93%

97.94%

99.51%

98.03%

99.3%

95.42%

98.86%

Unfiltered
Filtered

Fig. 9  The improvements in the output accuracies of the neural net-
work used in FlexCoder after applying filtering to the training data. 
After filtering, the problem is more learnable. The results were meas-
ured during the training of the GRU model. Each row shows the final 
validation accuracy of the network’s outputs at the end of training
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Fig. 10  The accuracy of different recurrent layers in FlexCoder, in 
relation to the number of functions used in the composition. Although 
the bidirectional LSTM performs best with shorter compositions, its 
performance decreases greatly as the composition length increases, 
and it is also the slowest. Considering speed and accuracy the GRU 
model is the most favorable. The extended FlexCoder also uses GRU 
cells in its recurrent layers
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Comparison of FlexCoder with PCCoder

We compare both FlexCoder and the extended FlexCoder 
to PCCoder, which has outperformed DeepCoder by orders 
of magnitude [24].

Our approach to program synthesis is quite different from 
the approach of PCCoder (see Sects. 1 and 3.1). We syn-
thesize a function composition, whereas they synthesize a 
sequence of statements. The expressiveness of the gram-
mars is also different: On one hand, the grammar used in 
FlexCoder is missing some functions like ZipWith or 
Scan1l. On the other hand, this grammar is much more 
expressive in terms of parameter values.

FlexCoder’s grammar is capable of expressing 151 differ-
ent functions, 130 of which can be anywhere in the sequence 
and 21 can only appear as the outermost function as these 
return a scalar value. The DSL used by PCCoder can express 
105 different functions. The number of possible programs 
with a length of five is about 43.13 billion for FlexCoder and 
about 12.76 billion for PCCoder, resulting in our program 
space being 3.38 times larger when considering programs 
with a length of five.

To extend FlexCoder to tree-structured function compo-
sitions, we redesigned it to work with state tuples which 
contain branches of the composition, and introduced the 
copy and zip_with functions to the grammar of the extended 
FlexCoder. The search function was taken out (see “Exam-
ple Generation and Grammar”). Because of these changes, 
the extended FlexCoder’s grammar expresses 138 different 
parameterized functions, with 4 of them to be only used as 
the outermost function of a composition.

To make fair comparisons despite these differences, we 
run experiments where both FlexCoder and PCCoder run 
on their own dataset, and we also compare them by running 
them on the dataset of the other system using programs of 
length five in both cases. The extended FlexCoder is tested 
against PCCoder on compositions with varying number 
of forks (i.e., varying number of zip_with functions in the 
ground-truth composition). In each of the experiments, the 
systems were trained on their own datasets.

In the first experiment, we examine what we consider 
a crucial aspect of any program synthesis tool: how well 
it generalizes with respect to the length of the input–out-
put lists. We trained both PCCoder and FlexCoder on 
input–output vectors of length 15  to 20 with program 
length 7. For PCCoder, we set the maximum vector length 
to 50. We tested the systems on input–output vectors with 
a length of 10–50 in increments of 5, having 5 input–out-
put examples per program, each on their own dataset. The 
results are shown in Fig. 12.

In the second experiment, we compare the accuracy of 
FlexCoder and PCCoder in a less realistic scenario when 
PCCoder performs best: on the same input lengths, the 
systems have been trained on. In this experiment, PCCoder 
does not have to generalize to different input lengths. We 
compare the systems both on their own dataset and on the 
datasets of each other in Fig. 13.
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Fig. 11  The accuracy of FlexCoder using four different recurrent lay-
ers as a function of the length of the input. The datasets contained 
compositions of length five. GRU generalizes best to longer input 
lengths

Table 1  Relation between composition length, the number of input–
output pairs, and the accuracy

Increasing composition length or the number of pairs almost always 
decreases the accuracy

#I/O pairs 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)
Comp. length

2 97 97 97 96 97
3 99 94 92 95 93
4 97 89 86 83 85
5 96 88 81 79 78

Table 2  Relation between composition length, the number of input–
output pairs, and the execution time in seconds

Increasing either composition length or the number of inputs almost 
always also increases execution time

#I/O pairs 1 (s) 2 (s) 3 (s) 4 (s) 5 (s)
Comp. length

2 211 255  264  277  274 
3 524  1082  1239  1141  1291 
4 1224  2900  3250  3923  3620 
5 1520  3445  4986  5537  5530 
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FlexCoder defines an iteration limit or a time limit for the 
search algorithm, while the search used by PCCoder only 
has a time limit version. To make the experiment fair, we 
also used the time limit, and chose a timeout of 60 s like 
PCCoder. The use of a time limit in our search algorithm 
makes our system’s accuracy go down by a couple of percent 
compared to Fig. 11, so FlexCoder could perform even bet-
ter with the original iteration limit. The parameters in this 
experiment are the same as in the first experiment, except 
for the length of the input lists which is the same as for 
training, and the number of input–output examples which 
range from 1 to 5.

Comparison of the extended FlexCoder 
with PCCoder

The goal of these comparisons is to measure how well the 
extended FlexCoder and PCCoder can produce composi-
tions which are really tree-like, that is, they have a relatively 
large number of forks. PCCoder is capable of producing such 
programs using the zip_with function with two previously 
defined variables.

For these comparisons, we generated new datasets using 
our grammar with varying number of zip_with functions 
in the program (i.e., varying number of forks in the com-
position tree). We measured how the accuracy depends on 
the number of forks by fixing the number of inputs to the 

program to 1, and varying the number of forks in the tree 
from 0 to 3 (Fig. 14). The dependence of the accuracy on 
the number of inputs to a single program was measured by 
fixing the number of forks to 3 and varying the number of 
inputs from 1 to 3 (Fig. 15).

PCCoder was retrained for every number of inputs tested, 
whereas the extended FlexCoder was only trained once on a 
dataset of compositions with two inputs and three forks (two 
copies, and three zip_withs), and a length of 6. On average, 
these compositions were broken down to 7.5 samples for 
the neural network. To make a fair comparison, we trained 
PCCoder with programs of length 8. The length of input 
lists was 15–20 in both cases; thus, PCCoder does not have 
to generalize to input lengths it was not trained on.

Discussion

FlexCoder generalized well with respect to the input length 
in contrast to PCCoder. PCCoder only excelled on input 
lengths it was trained on. PCCoder has an upper limit on 
the length of the input–output vectors; we set the maximum 
vector length of PCCoder to 50 to accommodate this exper-
iment. Applying PCCoder to longer inputs would require 
retraining with a larger maximum vector length.
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Fig. 12  The accuracy of FlexCoder and PCCoder in relation to the 
length of the input. Both systems were trained on input–output lists 
of length 15–20 with composition length 7. For PCCoder, we set the 
maximum list length to 50. We tested the systems on input–output 
lists with a length of 10–50 in increments of 5, having 5 input–output 
examples per program, each on their own dataset
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Fig. 13  The accuracy of FlexCoder and PCCoder on their own and 
the other’s dataset. The parameters are the same as in the first experi-
ment, except that no generalization over the input length is needed: 
the length of the input lists is the same as for training. The number of 
input–output pairs range from 1 to 5
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We also compared the two systems when the inputs are 
the same length for testing as for training; thus, PCCoder 
does not need the generalize to different input lengths. In this 
easier and less realistic scenario, both systems beat the other 
on their own dataset. Also, both systems perform notably 
worse on the DSL of the other system.

The comparison between the extended FlexCoder and 
PCCoder on datasets where the ground-truth programs con-
tained multiple forks has shown that the extended FlexCoder 
could synthesize function compositions with multiple forks 
very well in the case of one or two inputs per program, but 
less well for three inputs.

In contrast, the performance of PCCoder worsened as the 
number of forks or the number of inputs of the programs 
increased. PCCoder had to be retrained separately for the 
different number of inputs.

To gain further insight into the performance of PCCoder, 
we analyzed the programs it generates. We found that it gen-
erates mostly linear programs without too many zip_withs. 
The average number of zip_withs in their one input, two 
input, and three input datasets were 0.65, 0.69, and 0.82, 
respectively. The extended FlexCoder was trained on pro-
grams which were generated to be more complex with three 
zip_withs.

PCCoder did not have to generalize to different input 
lengths in the comparison between the extended FlexCoder 
and PCCoder. The difference in accuracy would be much 

greater in favor of the extended FlexCoder in that more real-
istic scenario.

Conclusion

The DSL of DeepCoder is limited in terms of expressivity as 
stated by the authors themselves in their seminal DeepCoder 
paper. The main motivation of our paper is to extend it and 
move towards real-world applications.

We presented FlexCoder, a program synthesis system that 
generalizes well to different input lengths, separates lambda 
operators from their parameters, and increases the range of 
integers in the input–output pairs.

To increase the system’s expressivity and allow it to take 
multiple inputs, we proposed an extension that can synthe-
size tree-structured compositions with multiple forks. This 
was achieved by redesigning the system to work with state 
tuples which can contain multiple unevaluated branches of 
the composition, and by introducing two new functions com-
pared to FlexCoder, copy and zip_with.

In future work, the expressivity of the system could be 
increased further if any subcomposition that could be evalu-
ated to an integer value (that is, compositions that have the 
max, min, sum or the length function as their root function) 
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Fig. 14  The accuracy of the extended FlexCoder and PCCoder on 
programs which take one input as the number of forks varies from 
0 to 3. The figure shows that PCCoder did not manage to perform 
well on compositions with many forks. In contrast, the extended Flex-
Coder handles copies and zip_withs much better, and solved signifi-
cantly more problems
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Fig. 15  The accuracy of the extended FlexCoder and PCCoder on 
programs whose ground-truth compositions have three forks, where 
the number of inputs per program varies from 1 to 3. PCCoder could 
not synthesize programs with multiple inputs well, even though it was 
retrained for each different number of inputs. Extended FlexCoder 
performed best on the number of inputs it was trained on, adapted 
well to less inputs, but did not manage to generalize well to more 
inputs
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could be used as the numerical parameter of the func-
tions. This could, for example, allow compositions such as 
take(max(arr), arr).

Further experimenting with our neural network might 
also include changing the architecture of the used neural net-
work, and integrating an attention-based architecture, such 
as variants of the Transformer [22]. Such architectures may 
better capture the key features of the input and output states; 
thus, they could function more effectively as the encoder 
layer of the neural network used.

FlexCoder proved to be accurate and efficient even when 
generalizing to input vectors with a length of 50, with much 
wider parameter ranges than current systems. Its extension 
showed promising results when synthesizing function com-
positions with multiple forks, greatly surpassing the results 
of PCCoder. We hope that the proposed systems represent 
a step towards the wide application of program synthesis in 
real-world scenarios.
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