
Vol.:(0123456789)

SN Computer Science (2022) 3:218
https://doi.org/10.1007/s42979-022-01090-4

SN Computer Science

ORIGINAL RESEARCH

Flexible Example‑Based Program Synthesis on Tree‑Structured
Function Compositions

Bálint Mucsányi1 · Bálint Gyarmathy1 · Ádám Czapp1 · Balázs Pintér1

Received: 17 May 2021 / Accepted: 11 March 2022 / Published online: 10 April 2022
© The Author(s) 2022

Abstract
We introduce a flexible program synthesis system whose task is to predict function compositions that transform given inputs
to their corresponding given outputs. We process input lists in a sequential manner, allowing the system to generalize to
a wide range of input lengths. We separate the operator and the operand in the lambda functions of the used higher order
functions to achieve significantly wider numeric parameter ranges compared to the previous works. The evaluations show
that this approach is competitive with state-of-the-art systems, while it is much more flexible in terms of the input length,
the parameters of the lambda functions, and the integer range of the inputs and outputs. We extend the system to handle tree-
structured function compositions by introducing two additional functions (zip_with, copy) and the ability to represent
unfinished function compositions during the synthesis process. The extended system achieves state-of-the-art results while
synthesizing complex function compositions with multiple forks. We believe that flexibility in these aspects is an important
step towards solving real-world problems with example-based program synthesis.

Keywords Program synthesis · Programming by examples · Beam search · Recurrent neural network · Gated recurrent
unit · Tree-structured composition

Introduction

Program synthesis aims to generate a program expressed
in a formal language that meets some constraints posed by
the user, where the constraints are not necessarily provided
in a formal fashion. Some researchers consider this broad
problem to be “the holy grail of Computer Science” [11],
and understandably so: in the future, systems capable of

tackling such tasks may provide explainable solutions to
problems that are either difficult to algorithmize or even
deemed unsolvable today.

There are two main branches of program synthesis [11].
Deductive program synthesis aims to produce a demonstra-
bly correct program that conforms to a formal, rule-based
specification that connects the possible inputs of the pro-
gram with their outputs [1]. Such specifications, however,
can prove to be even harder to provide than solving the prob-
lem at hand. In the case of inductive program synthesis, the
desired program’s expected operation is demonstrated with
examples, or a textual representation [6].

Programming by Examples (PbE) is a demonstrational
approach to program synthesis to specify the desired behav-
ior of a program. The examples are composed of one or more
inputs and their associated expected output [9]. Because they
do not require formal specifications, PbE systems could be
suitable for applications which target end-users without for-
mal computer science training. A good example of this is
Flash Fill in Microsoft Excel, which synthesizes and applies
programs that transform strings based on examples provided
by the user [10].

This article is part of the topical collection “Pattern Recognition
Applications and Methods” guest edited by Ana Fred, Maria De
Marsico and Gabriella Sanniti di Baja.

 * Bálint Mucsányi
 jlv5ae@inf.elte.hu

 Bálint Gyarmathy
 mzobld@inf.elte.hu

 Ádám Czapp
 plg78q@inf.elte.hu

 Balázs Pintér
 pinter@inf.elte.hu

1 Faculty of Informatics, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, Budapest 1117, Hungary

http://orcid.org/0000-0002-7075-9018
http://orcid.org/0000-0002-1818-611X
http://orcid.org/0000-0001-9576-2080
http://orcid.org/0000-0003-3431-0667
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01090-4&domain=pdf

 SN Computer Science (2022) 3:218218 Page 2 of 15

SN Computer Science

The two main targets of PbE systems are string transfor-
mations [10, 14, 17, 19] and list manipulations [2, 8, 24].
We address PbE systems that target list manipulations in
this paper.

To deal with the combinatorial complexity of the search
in the space of programs that possibly satisfy the provided
specification, early program synthesis systems used theorem-
proving algorithms and carefully hand-crafted heuristics to
prune the search space [18, 21]. Utilizing the advances of
deep learning, the field of program synthesis experienced
great breakthroughs regarding both accuracy and speed [2].
One of the most eminent approaches in integrating machine
learning algorithms into the synthesis process was to aug-
ment popular heuristics used in the search with the predic-
tions of such algorithms [14, 17].

The seminal work in the field is DeepCoder [2], which
serves as a baseline for several more recent papers [8, 14,
17, 24]. PCCoder [24] greatly advanced the performance
of the synthesis process on the Domain-Specific Language
(DSL) defined by DeepCoder, reducing the time needed by
the search by orders of magnitude while achieving remark-
ably better results.

In spite of these great advances, there have not yet
been numerous examples of successful applications of
example-based program synthesis systems in real-world
environments.

We think that the causes are mainly limitations of these
systems, such as (i) the limitation of static or upper bounded
input vector sizes, (ii) the agglutination of tokens of the
used formal language, such as handling operators and their
integer parameters jointly in lambda expressions of higher
order functions [e.g., (+1) and (∗ 2)], (iii) the limited inte-
ger parameter ranges of the lambda operators, and (iv) the
limited integer ranges of inputs, intermediate values, and
outputs.

As a consequence of (ii), the number of lambda functions
required is a product of the number of supported lambda
operators and their possible parameters. For example, a sep-
arate lambda function is required for each (+1) , (+2) , ...(+n) .
Thus, the number of possible function combinations to be
used in systems following this strategy is greatly reduced.
Poor generalization performance to input lengths beyond a
constant maximum length L is the effect of (i).

In this paper, we would like to resolve these limitations.
We implement a DSL with similar functions to the ones used
by DeepCoder using a function-composition-based system,
in which we treat lambda operators and their parameters
separately. This enables us to reduce the number of lambda
functions required from the product of the number of lambda
operators and their parameters to the sum of them (consider-
ing the parameters as nullary functions), and so broaden the
range of possible lambda expressions: we expand the range
of the allowed numerical values from [−1, 4] to [−8, 8].

We also extend the range of the possible integers in the
outputs and intermediate values fourfold from [−256, 256]
to [−1024, 1024] . These ranges might be extended further if
needed as we do not embed the integers so we do not impose
restrictions on the range of inputs and outputs.

Similarly to DeepCoder and PCCoder, we use a deep
neural network to assist our search algorithm. The neural
network accepts input–output pairs of any length and pre-
dicts the next function to incorporate into the composition
that solves the problem. Thus, the network acts as a heuristic
for our search algorithm based on beam search, which uses
predefined, optimized beam sizes on each level.

The main limitation of our initial system [12] is that it
synthesizes function compositions where functions take only
a single list as an input in addition to their fixed parameters,
and the predicted next function is applied to the list output
of the previous function; hence, the generated compositions
are flat chains of functions.

We lift this limitation by extending our system to syn-
thesize tree-structured function compositions. We introduce
two additional functions called zip_with and copy; these
allow forks in the composition. We also introduce state
tuples, which are tuples that contain unmerged branches of
function compositions. The state tuples make representing
unevaluable compositions possible and allow the system to
build each branch of the composition separately.

The zip_with function can merge two of these
branches into a fork, while the copy function copies one
of the branches, so it can be used at multiple places in the
composition tree. At the end of a successful program synthe-
sis process, the branches are all merged into one, producing
the solution to the posed problem in the form of a function
composition.

Our contributions are:

– We introduce a recurrent neural network architecture that
generalizes well to different input lengths.

– We treat the operators in lambda functions separately
from their parameters. This allows us to significantly
extend the range of their parameters.

– Our architecture does not pose artificial limits on the
range of integers acceptable as inputs, intermediate
results, or outputs. We extend the range of intermediate
results and outputs fourfold compared to previous works.

– We propose an extension to the system which can gener-
ate tree-structured compositions and obtains state-of-the-
art results while synthesizing complex compositions (i.e.,
compositions with multiple forks).

The contributions serve to increase the flexibility of the
method to take a step towards real-world tasks. We named
our method FlexCoder, and refer to its presented extension
as the extended FlexCoder.

SN Computer Science (2022) 3:218 Page 3 of 15 218

SN Computer Science

Related Work

As the seminal paper in the field, DeepCoder serves as a
baseline for several systems in neural program synthesis.
Its neural network predicts which of their supported func-
tions are present in the program, and therefore helps guide
the search algorithm. However, their network is not used
step by step throughout the search, only at the beginning
of it.

To tackle the combinatorial nature of predicting all
functions present in the solution program, PCCoder
implemented a step-wise search which uses the current
state at each step to predict only the next statement of
the program, including both the function (operator) and
parameters (operands). They use Complete Anytime Beam
Search (CAB) [23] and cut the runtime by two orders of
magnitude compared to DeepCoder.

As the neural networks used by DeepCoder and
PCCoder do not process the input sequentially, they can
only handle inputs with maximum length L (or shorter,
owing to the use of padding), which is a possible short-
coming that has been mentioned in the DeepCoder paper.
The default maximum length is L = 20 for both systems.
FlexCoder solves this problem using GRU [5] layers to
process the inputs, so it can work with a large range of
input sizes without harming the trainability of the neural
network.

Both DeepCoder and PCCoder embed the integers in
the input–output lists, narrowing down the range of possi-
ble integer values considerably. FlexCoder does not embed
the elements of the lists; its integer ranges are wider and
more extensible.

We separate the lambda function parameters of our
higher order functions into operators and numeric param-
eters to significantly widen the operand range compared
to DeepCoder and PCCoder. This approach resolves the
bound nature of their parameter functions, where they only
have a few predefined functions with the given operator
and operand (eg. (+1) , (∗ 2)).

Similarly to PCCoder, FlexCoder also uses the neural
network in each step of the search process; thus, the net-
work’s task is to predict only the next function in the solv-
ing composition, given an input state and an output state.

Feng et al. [8] provide an example of successfully
using function compositions to represent synthesized pro-
grams. Their conflict-driven learning-based method can
learn a knowledge base consisting of lemmas to gradually
decrease the program space to be searched. They outper-
form a reimplementation of DeepCoder using the same
Domain-Specific Language (DSL).

The work of Kalyan et al. [14] introduces real-world
input–output examples for their neural-guided deductive

search, combining heuristics (symbolic approach) with
neural networks (statistical approach) in the synthesiz-
ing process. Their ranking function serves the same role
as our network in their approach to synthesize string
transformations.

Ellis et al. [7] use a Sequential Monte Carlo method to
explore the program spaces their context-free grammars
define. Their set of partial programs denoted by pp allows
them to represent incomplete programs and was the main
motivation of our use of state tuples.

Methods

In this section, we introduce our approach to neural-guided
program synthesis based on beam search with optimized
beam sizes for every level. Each step of the beam search is
guided by the predictions of the neural network. The DSL
of function compositions is built of well-known (possibly
higher order) functions from functional programming. The
two main parts of FlexCoder are the beam search algorithm,
and the neural network. Another important part is the con-
text-free grammar which defines the DSL.

Figure 1 shows an overview of FlexCoder. In each step,
an input–output pair is passed to the neural network, which
predicts the next function of the sequential composition.
This predicted function is applied to the input of the current
iteration, producing the new input for the next iteration of
the algorithm. This is continued until either a solution is
found or the iteration limit is reached.

Figure 2 illustrates how the extended FlexCoder con-
structs a solution to PbE problems. It uses the same iterative
approach as FlexCoder, but the basis of the synthesis process
is different and two new functions are introduced.

Example Generation and Grammar

We represent the function compositions using context-free
grammars (CFGs) [4]. The clear-cut structure makes the
grammar easily extensible with new functions and more
parameters. We implemented the context-free grammar
using the Natural Language Toolkit [3]. The whole grammar
with short descriptions of each function can be seen in Fig. 3
for FlexCoder, and in Fig. 4 for the extended FlexCoder.

The numeric parameters are taken from the [−8, 8] inter-
val in both DSLs. This range is larger than the one used by
PCCoder as they use a range of [−1, 4] . The elements in
the intermediate values and output lists are taken from the
[−1024, 1024] range ([−256, 256] in PCCoder), while the
input lists are from the [−256, 256] range. The input range is
the same as for PCCoder for the sake of comparability in our
evaluations, it could easily be increased to the [−1024, 1024]
range for example.

 SN Computer Science (2022) 3:218218 Page 4 of 15

SN Computer Science

We did not include the search function in the DSL of
extended FlexCoder, because we realized that it is not a
useful component of the compositions. Search can only be
applied to function compositions as the last transforma-
tion, where the range of possible integer values in the lists
is [−1024, 1024] . In contrast, the search function can only
be parameterized from the [−8, 8] range, which is a small
fraction, 17

2049
 th of the range of the outputs. Consequently,

the list contains the number search is looking for only in
a very small fraction of the cases.

The copy function is not present in the extended Flex-
Coder’s DSL, as it is a helper function used exclusively
during the synthesis process, so it is not present in the
synthesized compositions. It copies branches of func-
tion compositions built from the functions in the DSL.
Regarding the extended FlexCoder, we refer to the func-
tions present in the DSL as regular functions, and we use
the term synthesis function when we also include copy. In
FlexCoder, the two terms have the same meaning, and can
be used interchangeably.

The lambda functions are divided into two categories
based on their return type: Boolean lambda functions used
by filter and numeric lambda functions used by map in
FlexCoder. In the extended FlexCoder, there are also binary
lambda functions (i.e., operators like +, –, *, etc.) which
are used by the zip_with function. We define rules for the
lambda functions to avoid errors or identity functions, such
as dividing by 0, or the (+0) and the (∗ 1) functions. In the
extended FlexCoder, we also remove (∕(−1)) , as it is equiva-
lent to (∗ (−1)).

The CFGs are used to generate the functions with every
possible parameterization, which are then combined into
compositions. In FlexCoder, each composition is generated
iteratively by choosing a function and sequentially adding it
to the already generated composition. This process continues
until the needed number of compositions are generated.

As the extended FlexCoder introduces zip_with, the
compositions are no longer sequential (an example of a
tree-structured composition can be seen in Fig. 5). The sys-
tem can generate compositions where the programs expect

Fig. 1 The process of program synthesis. The task is to find a pro-
gram that conforms to a specification. FlexCoder synthesizes a func-
tion composition which transforms the input list into the output list or
output integer value. The input and output serve as the specification.
In this case, the input is [2, – 2, 4, 3, 1] and the output is [2, 6, 8].
The figure depicts how at each step of the synthesis process, the neu-
ral network’s predicted function is applied to the input, and then, the
result is fed back into the neural network in the next step. The reverse
function returns a new list that contains the same elements as the

input list but in reversed order. The map function applies the lambda
expression consisting of the given operator and numeric parameter (in
this example ‘ ∗ ’ and ‘2’, respectively) to every element of its input
list, resulting in a new list. The take function takes some elements
(in this case ‘3’) from the front of the input list and returns these in
a new list. After executing these functions in the right order on the
input list, we can see that the current input list equals the output list,
which means we found a solution: map(∗ 2, take(3, reverse(input)))

Fig. 2 The iterative construction of a function composition in the
extended FlexCoder. An important difference between this exam-
ple and the one in Fig. 1 is having two input lists instead of one
and using two new functions (copy and zip_with). During the syn-
thesis process, a state tuple is updated in each step, which con-
sists of unmerged branches of function compositions. It con-
tains the provided inputs in the beginning. The zip_with function
takes two input lists and creates a new one whose i-th element is

the result of the given operator applied to the input lists’ i-th ele-
ments. The copy function is only used internally in the synthesis
process. This copies one branch of the state tuple to save it before
applying additional functions to it. At the end of the process, the
zip_with(+, zip_with(∗, map(∗ 2, [2,−4, 9, 6]), map(%3, [6, 2, 3])))
function composition is constructed, which is a solution to the posed
problem

SN Computer Science (2022) 3:218 Page 5 of 15 218

SN Computer Science

a given number of inputs, and contain a given number of
forks. This also determines the number of branches and the
number of copies. The number of branches is always one
more than the number of forks, because each fork (i.e., each
zip_with) connects exactly two branches, and all branches
have to be connected to the tree eventually. The number of
copies is the difference between the number of inputs (i.e.,
the initial branches), and the number of branches (i.e., the
total number of branches required in the composition).

The generation process is based on dynamic program-
ming. First, each possible composition of length one is
generated.1 After generating some compositions of length
(n − 1) , the compositions of length n are generated by sam-
pling a function which serves the role of the root function,
and choosing subcompositions from the previous levels that
are used as children of the root function, where the length of
the resulting composition must be equal to n.

The number of branches (and thus, forks) in the composi-
tions has to be less than or equal to the number requested
by the user on the intermediate levels. On the last level (i.e.,
for the final compositions, when the length of the currently
generated compositions match the length desired by the
user), the number of branches has to be strictly equal to the

Fig. 3 The grammar used in FlexCoder in CFG notation. This gram-
mar is used to generate all functions with every possible parameteri-
zations. These are then combined to generate function compositions.
The functions do not modify the input array; they return new arrays.
The sort function sorts the elements of array in ascending order. Take
keeps, drop discards the first POS elements of array. The reverse
function reverses the elements of the input. Map and filter are the two
higher order functions used in this grammar. Map applies the NUM_
LAMBDA function on each element of its parameter. Filter only
keeps the elements of array for which the BOOL_LAMBDA function
returns true. The min and max functions return the smallest and the
largest element of array. The sum function returns the sum of, count
returns the number of elements of array. Search returns the index of
the element of array which is equal to NUM. In the generated exam-
ples, we only accept cases where the NUM is present in array

Fig. 4 The grammar used in the extended FlexCoder. In this gram-
mar, we introduce a new function to be used in the function composi-
tions: the higher order zip_with. This function accepts two input lists
and returns a new one whose i-th element is the result of the given
operator applied to the input lists’ i-th elements. The search func-
tion is taken out from the set of used functions, as the function only
searches for elements in the [– 8, 8] range, which does not scale well
with the extension of input, intermediate, and output integer ranges.
The copy function is not present in our DSL, as it is used solely in
the synthesis process, and copies branches of function compositions
built from the functions in the DSL. The count function is renamed
to length to better capture its functionality. The remaining differences
between this and Fig. 3 are only minor optimizations, such as disal-
lowing the lambda expression (/(– 1)), as it is equivalent to (*(– 1))

1 The length of a function composition is the number of functions it
contains.

 SN Computer Science (2022) 3:218218 Page 6 of 15

SN Computer Science

requested number, as the generated compositions have to
satisfy the user-provided parameters.

If the number of inputs is less than the number of
branches, the system then enumerates all the possible struc-
tures of compositions that conform to the parameters of the
generation (e.g., the number of inputs and branches), and
generates compositions with the needed number of copies,
using the previously generated copyless compositions as
building blocks.

This is done as follows. First, the system selects an exten-
sible copyless composition from the previously generated
compositions. A composition is extensible if its number of
branches and number of contained functions allow it to be
extended further by copies to create a composition with the
length, number of branches, and number of inputs specified
by the user. Then, the system determines its leaves where
subcompositions (or inputs, as they can also be copied) and
their copies should be placed. The subcompositions are also
selected from the set of previously generated compositions.
A composition can contain multiple copied branches.

The number of compositions of each length is controlled
by a hyperparameter called branching factor. This deter-
mines the number of new compositions that are created from
previously generated compositions by adding a new function
as the root. It is the exponential base of the function provid-
ing the number of generated compositions of length n.

As the functions in the grammar have a different number
of possible parameterizations, we have to ensure that each
type of function occurs approximately the same number of

times in the generated dataset. To tackle this problem, the
compositions are generated by a two-step sampling process
from the 151 possible functions in FlexCoder, and from the
138 possible functions in the extended FlexCoder.

In the first step, a function type is chosen uniformly at
random (e.g. map), then in the second step, a fully param-
eterized function is chosen uniformly at random out of the
possible parameterizations of the picked function type (e.g.,
map(* 2, array)). A notable exception to this in the extended
FlexCoder is the generation of compositions of length one:
each possible function is enumerated in that case to supply
an exhaustive base for the compositions.

We use several filters on the generated functions to
remove or fix redundant functions and suboptimal param-
eterizations. This is needed to create a well-trainable prob-
lem for the neural network and to reduce the ambiguity of
the dataset. The optimizations happen during the generation
of the compositions.

We distinguish between structural optimizations that can
be optimized regardless of the input(s) of the composition,
and example-based optimizations that can only be done for
the exact input(s) provided for the composition at hand.
Unless otherwise stated, the showcased optimization tech-
niques are used in both FlexCoder and the extended Flex-
Coder in the same way.

Structural Optimizations

The first filter merges functions inside the composition, if
possible:

– map(+ 1 , map(+ 2 , [1, 2])) → map(+ 3 , [1, 2])
– take(3, take(4, [– 4, 2, 9, 3, 0])) → take(3, [– 4, 2, 9, 3, 0])
– drop(1, drop(2, [4, 5, – 4, – 1, 0])) → drop(3, [4, 5, – 4,

– 1, 0]).

The next two filters are only present in the extended
FlexCoder.

The second filter switches the order of take, drop, and
map, if needed:

– drop(3, map(∗ 2 , [2, – 3, 5, 10])) → map(∗ 2 , drop(3, [2,
– 3, 5, 10])).

This is a minor efficiency optimization in evaluating the
compositions. The functions do not have to be next to each
other in this case, all cases are covered where this alteration
can mean an improvement.

The third filter eliminates redundant applications of sort
or reverse

– reverse(reverse(take(3, [3, 0, 5]))) → take(3, [3, 0, 5])

Fig. 5 A tree-structured function composition from the DSL
of the extended FlexCoder. In the synthesis process, the two
map(∗ 2, take(3, [1, 5,−3, 0, 6])) subcompositions have to be built
only once, and then, the copy function can be used to copy this sub-
composition once. The composition has two (unique) inputs, three
branches, two forks, and one copy

SN Computer Science (2022) 3:218 Page 7 of 15 218

SN Computer Science

– sort(map(∗ 3 , sort([4, – 3, 4]))) → map(∗ 3 , sort([4, – 3,
4])).

This technique can also be applied to functions that are not
adjacent, provided that the intermediate functions are not
order-altering.

Example‑Based Optimizations

The first filter optimizes the parameters of functions

– filter(> 2 , [1, 6, 7]) → filter(> 5 , [1, 6, 7]).

In the presented example, (> i) (i ∈ {2, 3, 4, 5}) would all
mean semantically different compositions, but these all pro-
duce the same output for the provided input list. Having all
of these in the generated dataset would induce ambiguity.

The second filter removes the identity functions on the
concrete input–output pairs:

– sum(filter(> 5 , [6, 7, 8])) → sum([6, 7, 8]).

Identity functions cannot surface during structural optimiza-
tions, as these are prohibited by the grammars. An example
for this is map(+0, [2, 3, 5]).

The third filter handles compositions resulting in empty
lists:

– filter(< 1 , [2, 3, 4]) → []
– drop(4, [1, 2, 3]) → [].

In this case, FlexCoder simply discards the example. The
extended FlexCoder, however, traverses the tree-structured
function composition in a postorder way and optimizes the
parameters of functions that return an empty list for the con-
crete inputs provided. Consequently, this optimization is not
an equivalent transformation.

The fourth filter removes the examples which contain
integers outside the allowed range of [−1024, 1024]:

– map(∗ 8 , [1, 2, 255]) → [8, 16, 2040].

Beam Search

As previously mentioned, we formulate the problem of pro-
gram synthesis as searching for an optimal function compo-
sition. We build compositions applying one synthesis func-
tion at a time. It is important to remark that the proposed
copy function in the extended FlexCoder makes it possible
to incorporate several functions at once into the composition
being built.

The main difference between FlexCoder and its extension
is the states used in the search algorithm, and consequently,

the predictions of the neural network. FlexCoder’s synthe-
sized programs are sequential; thus, there is no need to rep-
resent partial programs. The states in this case are single
sequential function compositions.

In the extended FlexCoder, we use state tuples to repre-
sent the states. State tuples contain branches of the func-
tion composition which are not yet merged together, so a
state tuple represents a whole unmerged composition. Such
a composition cannot be evaluated as a whole, but their
branches can be and are evaluated. In fact, the state tuple
contains only the results of the evaluation of these branches,
because beam search keeps track of the concrete functions
each branch is composed of (Fig. 6). A state tuple becomes
a finished program when all the branches are merged, that
is, in contains a single branch which is the tree of the whole
function composition.

The branches in a state tuple are built up separately from
more and more functions. The copy function can be used to
create new branches by copying existing ones in the state
tuple. The maximum length of the state tuple is 3, so we can
have at most 3 branches at once.

The beam search (Fig. 7) is implemented based on Com-
plete Anytime Beam Search (CAB), which involves the
introduction of a time limit in the search.

The algorithm builds a directed tree of node objects in
both systems. Each node has three fields: a function, the
result of that function applied to the output of its parent
node, and its rank. The parent node is also stored to recur-
sively gather the solution once it has been found. In the
extended FlexCoder, an indices field is added to indicate
which branches in the state tuple the chosen transformation
should be applied on.

For each node of the tree, the neural network uses the
current state of the program input stored in the parent node

Fig. 6 This figure shows how state tuples can facilitate the represen-
tation of unfinished programs in the form of function compositions.
During the synthesis process, only the evaluated form is stored, as
the search algorithm keeps track of the functions applied at each step.
Therefore, the figure merely serves as a visualization of the partial
programs (branches) the state tuples represent

 SN Computer Science (2022) 3:218218 Page 8 of 15

SN Computer Science

and the program’s expected output to determine the ranks of
the next possible functions of the synthesized composition.
If there are multiple input–output examples, we pass them
in a batch to the network, then we take the geometric mean
of the predictions.

On each level of the search algorithm, we sort all pos-
sible parameterized functions in descending order based on
their rank.

After generating all the child nodes, we keep the first
�i ∈ ℕ (i ∈ 1..�) nodes (where �i denotes the beam size on
the current level and � is the depth limit) from the sorted list
of the nodes and fill their result fields by evaluating them.
We repeat this step until either a solution is found or the
algorithm reaches the iteration limit (or optionally the time
limit) provided. If a solution is found, the parent pointers are
followed recursively until the root of the tree is reached to
get the synthesized composition. When the depth limit � is
reached without finding a solution, each �i value is doubled
and the search is restarted. Since the network is called mul-
tiple times during the search, a caching method is used to
save the ranks for every unique input–*output pair to speed
up the process. This is possible, because the network is a
pure function. Algorithm 1 uses previously optimized beam sizes for

each depth. We optimized the beam sizes based on experi-
mental runs on the validation set: we approximated the
minimum beam size ∈ {�1, �2,… , �n} on each level that
contains the next function of the solving composition. This
gives a higher chance to find the solution in the first or
early iterations. We chose the beam size or each level that
included the original solution 90% of the time during the
benchmarking process. This seems to be an ideal trade-off
between accuracy and speed. In the extended FlexCoder,
a lower limit of 150 has also been set for beam sizes, and

Fig. 7 A successful beam search in FlexCoder, in which we
are looking for a function composition that produces the out-
put sequence [2, 6, 8] when given the input [2,−2, 4, 3, 1] . Each
node has three fields: a function, the result of that function applied

to the output of its parent node, and its rank. The gray rectangles
are the nodes considered; these are selected based on their rank
marked by R. The highlighted and bolded ones show the result
take(3,map(∗ 2, reverse(input)))

SN Computer Science (2022) 3:218 Page 9 of 15 218

SN Computer Science

the optimized values were used when they were larger than
150.

The first step of the algorithm is to remove programs
that violate the range constraints of the evaluated output
list mentioned in “Example Generation and Grammar” or
a length constraint. The length constraint in the case of
list outputs ensures that we only keep nodes where the
state contains lists (or a singular list in FlexCoder) that
have as many as or more elements than the original output
list, as the used DSLs do not make it possible to extend
lists. After this filtering step, a rank is assigned to all the
remaining programs by the neural network.

The programs are also executed to check whether they
satisfy the solution criteria in each step. If a solution is
found, the algorithm stops and returns it. Otherwise, the
first beam_size states with the highest rank are selected
and are further transformed with a new synthesis function
on the next iteration of the inner loop. If the inner loop
finishes, the beam sizes are doubled, but the previously
computed ranks are not computed again due to the caching
method mentioned previously.

Neural Network

The architecture of FlexCoder’s neural network is shown in
Fig. 8. The input to the network is one input–output example
of a single program. The outputs are 6 vectors that contain
the ranks for each function, parameter, and lambda function.
The extended FlexCoder also uses an output head for the
indices of the state tuple the predicted function should be
applied to. The rank of a parameterized function is deter-
mined by the geometric mean of the ranks of its components.

In FlexCoder, we define F as the set of synthesis func-
tions, every element of which is a tuple (fclass, farg) , where
fclass is the function name and farg is the list of its arguments.
Using this definition, the rank of a function is determined
using the formula

where n ∈ ℕ denotes the number of parameters.
In the extended FlexCoder, the indices of the state tuple

to which the function should be applied to, denoted by find
also have to be taken into consideration. Consequently, the
formula is modified as follows, using the notation introduced
previously:

where k denotes the number of lists in the state tuple.

(1)R(f) =
n+1

√

√

√

√R(fclass) ∗

n
∏

i=1

R(fargi),

(2)R(f) =
n+k+1

√

√

√

√

R(fclass) ∗

n
∏

i=1

R(fargi) ∗

k
∏

i=1

R(findi),

Architecture

The input to the networks is a state and the expected output.
In the case of FlexCoder, the state is a sequential composi-
tion’s evaluated form, which is a single list. The state in the
extended FlexCoder is a state tuple with maximal length
3. This is a tuple containing the evaluated forms of par-
tial programs in the form of tree-structured compositions
(branches).

Inputs and outputs are passed separately to two blocks of
recurrent layers, which makes using variable-size input pos-
sible. These blocks each consist of two layers of GRU cells,
each containing 256 neurons in both systems.

In FlexCoder, the GRU representations of the input and
the output are concatenated and then given to a dense block
consisting of seven layers with SELU [16] activation func-
tion, and 128, 256, 512, 1024, 512, 256, and 128 neurons
in order.

The extended FlexCoder creates a GRU representation for
each list in the state tuple separately, and then concatenates
these and the output GRU representation into a single ten-
sor. The main dense block this tensor is given to contains
nine layers with SELU activation function, and 1024, 1024,
1024, 1024, 1024, 1024, 512, 256, and 128 neurons in order.

With SELU activations, we experienced a faster conver-
gence while training the networks, due to the internal nor-
malization these functions provide

After this block, we have an output layer predicting the
probabilities of the possible next functions using sigmoid
activation for each function in FlexCoder, and softmax acti-
vation in the extended FlexCoder. This layer is also fed into
five smaller dense blocks. Each of these contains five layers
using the SELU activation function with 128, 256, 512, 256,
128 neurons in FlexCoder, and six layers of 512, 512, 512,
512, 256, 128 neurons in the extended FlexCoder.

These smaller dense blocks produce the remaining five
outputs of the model in FlexCoder, and six outputs in the
extended FlexCoder. They are vectors, each representing the
probabilities of parameters associated with the next param-
eterized function of the composition. These vectors are cor-
responding to (1) the bool lambda operator, (2) the numeric
lambda operator, (3) the numeric argument of the bool
lambda function, (4) the numeric argument of the numeric
lambda function, and (5) the parameter for non-higher order
functions with only one numeric argument, e.g., the value
used in take. The extended FlexCoder uses an additional
output for (6) the indices of the state tuple the predicted
function should be applied to. We use the sigmoid activation
function for each entry of all output vectors in FlexCoder,

(3)SELU(x) = 𝜆

{

x, if x > 0

𝛼(ex − 1), if x ≤ 0.

 SN Computer Science (2022) 3:218218 Page 10 of 15

SN Computer Science

whereas in the extended FlexCoder, the softmax activation is
used for all output vectors except the one responsible for the
indices, as its task is a multilabel classification. The smallest
output vector has three elements, whereas the largest one
has 17. The network’s loss (L) is the sum of all of the output
components’ loss values marked with Li , each denoting the
corresponding binary cross-entropy or cross-entropy loss
functions depending on the exact output head.

Thus, the loss is calculated as

where N is 6 in FlexCoder and 7 in the extended FlexCoder.

Training

Before training, we break down the compositions into func-
tions and turn each parameterized function into six or seven
separate one-hot vectors to obtain a single label used for
training the networks introduced.

Out of the generated examples, 98% is used as the training
set, and the remaining 2% serves the role of the validation
set. The test sets are generated on a per-experiment basis.

We use the Adam optimization algorithm [15] with the
default hyperparameters: �1 = 0.9 , �2 = 0.999 and � = 10−8 .
We trained the neural network on a computer with an Intel

(4)L(Y , Ŷ) =

N
∑

i=1

Li(Yi, Ŷi),

i5-7600k processor and an NVIDIA GTX 1070 GPU using
a standard early stopping method with a patience of five. We
trained the networks for a maximum of 30 epochs.

Experiments

The experiments for FlexCoder were run on a c2-stand-
ard-16 (Intel Cascade Lake) virtual machine on the Google
Cloud Platform with 16 vCores, 64 GB RAM, and no GPU.
In the experiments for the extended FlexCoder, we used a
PC with an AMD Ryzen 7 3700× processor, 16 GB RAM,
and no GPU. For these experiments, the neural network of
FlexCoder was trained on compositions of 7 functions, and
the length of the input array was between 15 and 20. We pro-
vided 1 input–output example for each program in the train-
ing process. In all of the experiments, we created the test
datasets by sampling the original program space uniformly
at random, with a sample size of 1000. The neural network
of the extended FlexCoder was trained on compositions with
a length of 6, while the other parameters remained the same.

Filtering the Datasets

Filtering the datasets using the method described in “Exam-
ple Generation and Grammar” made the problem more
learnable for the neural network, resulting in improvements

Fig. 8 The general architecture of the neural network used in Flex-
Coder. The compositions in this system are sequential; thus, they only
have a single input. Each input–output example is passed separately
to the GRU block of the network, which generates a representation
that is passed through the dense block and then splits into six parts,
five of which pass through another dense block. In the extended Flex-
Coder, the compositions can be tree-structured, allowing them to have

multiple inputs. The input to the network in this case is a state tuple
containing the evaluated form of multiple partial programs (branches
of the tree). The architecture used in the extended FlexCoder intro-
duces an additional output head compared to the neural network used
in FlexCoder. This specifies the indices of the state tuple the pre-
dicted parameterized function is to be applied to

SN Computer Science (2022) 3:218 Page 11 of 15 218

SN Computer Science

in the case of each output head of the network of FlexCoder
(Fig. 9). In the extended FlexCoder, we kept these optimiza-
tions and introduced new ones, as well (“Example Genera-
tion and Grammar”).

This filtering is used on all datasets in all experiments.

Different Recurrent Layers

In this section, we compare the effect of different recurrent
layers on accuracy in FlexCoder. We ran experiments with
LSTM [13], bidirectional LSTM [20], GRU, and bidirec-
tional GRU cells in the first layer of the network.

In the first experiment, we looked at the accuracy of
the different layers as the composition length increased
(Fig. 10). The bidirectional layers proved to be suboptimal,
as these—somewhat surprisingly—did not make the system
more accurate for longer function compositions, but train-
ing and testing both took considerably more time. In the
case of both bidirectional models and the LSTM model, we
used a hidden state consisting of 200 neurons. For the GRU
model, we increased this amount to 256, as the GRU cells
require less computation. Despite the fact that the bidirec-
tional LSTM achieves better accuracy for shorter composi-
tions, its accuracy falls below regular LSTM and GRU cells
as the composition length increases. It is also the slowest of
the three in terms of execution time. The bidirectional GRU
model is the second slowest, and its accuracy is the worst of
the layers tested for longer compositions. Between the regu-
lar LSTM and GRU cells, GRU is preferred as it performs
well in terms of both execution time and accuracy.

In the second experiment, we analyzed how FlexCoder
scales based on the length of the input–output examples in
terms of accuracy. We generated program input–output vec-
tors with a length of 10–50 in increments of five for testing
purposes. Figure 11 shows that FlexCoder with GRU was
capable of generalizing well to longer inputs.

Similarly to the first experiment, GRU was the most accu-
rate while being the best in terms of execution time. Both
bidirectional models performed similarly, but the bidirec-
tional LSTM was markedly slower. The GRU model per-
formed consistently better than the LSTM-based network
on longer example lengths.

Based on the results of these two experiments, we elected
to use GRU as the recurrent layer of both architectures.

Accuracy and Execution Time

Tables 1 and 2 show the accuracy and the time needed
to find a solution in terms of the number of input–out-
put pairs and the composition length in FlexCoder. By
increasing the number of input–output pairs the problem
becomes more specific: finding a program that fits all the

pairs becomes a more complex task, because the set of
possible solutions narrows. Similarly, as we increase the
composition length, the space of possible programs of that
length also increases.

The accuracy achieved by FlexCoder is comparable to
that of PCCoder with the time limit replaced by the same
iteration limit as in FlexCoder. In terms of execution time,
FlexCoder sometimes falls behind, but the performance of
the two systems is generally similar.

bool lambda operator

bool lambda argument

numeric lambda operator

numeric lambda argument

function

numeric argument

71.28%

94.8%

88.02%

96.82%

87.62%

92.93%

97.94%

99.51%

98.03%

99.3%

95.42%

98.86%

Unfiltered
Filtered

Fig. 9 The improvements in the output accuracies of the neural net-
work used in FlexCoder after applying filtering to the training data.
After filtering, the problem is more learnable. The results were meas-
ured during the training of the GRU model. Each row shows the final
validation accuracy of the network’s outputs at the end of training

2 3 4 5
50

60

70

80

90

100

Composition length

A
cc
ur
ac
y
[%

]

Bidirectional GRU
Bidirectional LSTM

GRU
LSTM

Fig. 10 The accuracy of different recurrent layers in FlexCoder, in
relation to the number of functions used in the composition. Although
the bidirectional LSTM performs best with shorter compositions, its
performance decreases greatly as the composition length increases,
and it is also the slowest. Considering speed and accuracy the GRU
model is the most favorable. The extended FlexCoder also uses GRU
cells in its recurrent layers

 SN Computer Science (2022) 3:218218 Page 12 of 15

SN Computer Science

Comparison of FlexCoder with PCCoder

We compare both FlexCoder and the extended FlexCoder
to PCCoder, which has outperformed DeepCoder by orders
of magnitude [24].

Our approach to program synthesis is quite different from
the approach of PCCoder (see Sects. 1 and 3.1). We syn-
thesize a function composition, whereas they synthesize a
sequence of statements. The expressiveness of the gram-
mars is also different: On one hand, the grammar used in
FlexCoder is missing some functions like ZipWith or
Scan1l. On the other hand, this grammar is much more
expressive in terms of parameter values.

FlexCoder’s grammar is capable of expressing 151 differ-
ent functions, 130 of which can be anywhere in the sequence
and 21 can only appear as the outermost function as these
return a scalar value. The DSL used by PCCoder can express
105 different functions. The number of possible programs
with a length of five is about 43.13 billion for FlexCoder and
about 12.76 billion for PCCoder, resulting in our program
space being 3.38 times larger when considering programs
with a length of five.

To extend FlexCoder to tree-structured function compo-
sitions, we redesigned it to work with state tuples which
contain branches of the composition, and introduced the
copy and zip_with functions to the grammar of the extended
FlexCoder. The search function was taken out (see “Exam-
ple Generation and Grammar”). Because of these changes,
the extended FlexCoder’s grammar expresses 138 different
parameterized functions, with 4 of them to be only used as
the outermost function of a composition.

To make fair comparisons despite these differences, we
run experiments where both FlexCoder and PCCoder run
on their own dataset, and we also compare them by running
them on the dataset of the other system using programs of
length five in both cases. The extended FlexCoder is tested
against PCCoder on compositions with varying number
of forks (i.e., varying number of zip_with functions in the
ground-truth composition). In each of the experiments, the
systems were trained on their own datasets.

In the first experiment, we examine what we consider
a crucial aspect of any program synthesis tool: how well
it generalizes with respect to the length of the input–out-
put lists. We trained both PCCoder and FlexCoder on
input–output vectors of length 15 to 20 with program
length 7. For PCCoder, we set the maximum vector length
to 50. We tested the systems on input–output vectors with
a length of 10–50 in increments of 5, having 5 input–out-
put examples per program, each on their own dataset. The
results are shown in Fig. 12.

In the second experiment, we compare the accuracy of
FlexCoder and PCCoder in a less realistic scenario when
PCCoder performs best: on the same input lengths, the
systems have been trained on. In this experiment, PCCoder
does not have to generalize to different input lengths. We
compare the systems both on their own dataset and on the
datasets of each other in Fig. 13.

10 20 30 40 50
50

60

70

80

90

100

Length of input examples

A
cc
ur
ac
y
[%

]

Bidirectional GRU
Bidirectional LSTM

GRU
LSTM

Fig. 11 The accuracy of FlexCoder using four different recurrent lay-
ers as a function of the length of the input. The datasets contained
compositions of length five. GRU generalizes best to longer input
lengths

Table 1 Relation between composition length, the number of input–
output pairs, and the accuracy

Increasing composition length or the number of pairs almost always
decreases the accuracy

#I/O pairs 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)
Comp. length

2 97 97 97 96 97
3 99 94 92 95 93
4 97 89 86 83 85
5 96 88 81 79 78

Table 2 Relation between composition length, the number of input–
output pairs, and the execution time in seconds

Increasing either composition length or the number of inputs almost
always also increases execution time

#I/O pairs 1 (s) 2 (s) 3 (s) 4 (s) 5 (s)
Comp. length

2 211 255 264 277 274
3 524 1082 1239 1141 1291
4 1224 2900 3250 3923 3620
5 1520 3445 4986 5537 5530

SN Computer Science (2022) 3:218 Page 13 of 15 218

SN Computer Science

FlexCoder defines an iteration limit or a time limit for the
search algorithm, while the search used by PCCoder only
has a time limit version. To make the experiment fair, we
also used the time limit, and chose a timeout of 60 s like
PCCoder. The use of a time limit in our search algorithm
makes our system’s accuracy go down by a couple of percent
compared to Fig. 11, so FlexCoder could perform even bet-
ter with the original iteration limit. The parameters in this
experiment are the same as in the first experiment, except
for the length of the input lists which is the same as for
training, and the number of input–output examples which
range from 1 to 5.

Comparison of the extended FlexCoder
with PCCoder

The goal of these comparisons is to measure how well the
extended FlexCoder and PCCoder can produce composi-
tions which are really tree-like, that is, they have a relatively
large number of forks. PCCoder is capable of producing such
programs using the zip_with function with two previously
defined variables.

For these comparisons, we generated new datasets using
our grammar with varying number of zip_with functions
in the program (i.e., varying number of forks in the com-
position tree). We measured how the accuracy depends on
the number of forks by fixing the number of inputs to the

program to 1, and varying the number of forks in the tree
from 0 to 3 (Fig. 14). The dependence of the accuracy on
the number of inputs to a single program was measured by
fixing the number of forks to 3 and varying the number of
inputs from 1 to 3 (Fig. 15).

PCCoder was retrained for every number of inputs tested,
whereas the extended FlexCoder was only trained once on a
dataset of compositions with two inputs and three forks (two
copies, and three zip_withs), and a length of 6. On average,
these compositions were broken down to 7.5 samples for
the neural network. To make a fair comparison, we trained
PCCoder with programs of length 8. The length of input
lists was 15–20 in both cases; thus, PCCoder does not have
to generalize to input lengths it was not trained on.

Discussion

FlexCoder generalized well with respect to the input length
in contrast to PCCoder. PCCoder only excelled on input
lengths it was trained on. PCCoder has an upper limit on
the length of the input–output vectors; we set the maximum
vector length of PCCoder to 50 to accommodate this exper-
iment. Applying PCCoder to longer inputs would require
retraining with a larger maximum vector length.

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Length of input vectors

A
cc
ur
ac
y
[%

]

FlexCoder on FlexCoder data
PCCoder on PCCoder data

Fig. 12 The accuracy of FlexCoder and PCCoder in relation to the
length of the input. Both systems were trained on input–output lists
of length 15–20 with composition length 7. For PCCoder, we set the
maximum list length to 50. We tested the systems on input–output
lists with a length of 10–50 in increments of 5, having 5 input–output
examples per program, each on their own dataset

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Number of I/O pairs

A
cc
ur
ac
y
[%

]

FlexCoder on FlexCoder data
PCCoder on FlexCoder data
FlexCoder on PCCoder data
PCCoder on PCCoder data

Fig. 13 The accuracy of FlexCoder and PCCoder on their own and
the other’s dataset. The parameters are the same as in the first experi-
ment, except that no generalization over the input length is needed:
the length of the input lists is the same as for training. The number of
input–output pairs range from 1 to 5

 SN Computer Science (2022) 3:218218 Page 14 of 15

SN Computer Science

We also compared the two systems when the inputs are
the same length for testing as for training; thus, PCCoder
does not need the generalize to different input lengths. In this
easier and less realistic scenario, both systems beat the other
on their own dataset. Also, both systems perform notably
worse on the DSL of the other system.

The comparison between the extended FlexCoder and
PCCoder on datasets where the ground-truth programs con-
tained multiple forks has shown that the extended FlexCoder
could synthesize function compositions with multiple forks
very well in the case of one or two inputs per program, but
less well for three inputs.

In contrast, the performance of PCCoder worsened as the
number of forks or the number of inputs of the programs
increased. PCCoder had to be retrained separately for the
different number of inputs.

To gain further insight into the performance of PCCoder,
we analyzed the programs it generates. We found that it gen-
erates mostly linear programs without too many zip_withs.
The average number of zip_withs in their one input, two
input, and three input datasets were 0.65, 0.69, and 0.82,
respectively. The extended FlexCoder was trained on pro-
grams which were generated to be more complex with three
zip_withs.

PCCoder did not have to generalize to different input
lengths in the comparison between the extended FlexCoder
and PCCoder. The difference in accuracy would be much

greater in favor of the extended FlexCoder in that more real-
istic scenario.

Conclusion

The DSL of DeepCoder is limited in terms of expressivity as
stated by the authors themselves in their seminal DeepCoder
paper. The main motivation of our paper is to extend it and
move towards real-world applications.

We presented FlexCoder, a program synthesis system that
generalizes well to different input lengths, separates lambda
operators from their parameters, and increases the range of
integers in the input–output pairs.

To increase the system’s expressivity and allow it to take
multiple inputs, we proposed an extension that can synthe-
size tree-structured compositions with multiple forks. This
was achieved by redesigning the system to work with state
tuples which can contain multiple unevaluated branches of
the composition, and by introducing two new functions com-
pared to FlexCoder, copy and zip_with.

In future work, the expressivity of the system could be
increased further if any subcomposition that could be evalu-
ated to an integer value (that is, compositions that have the
max, min, sum or the length function as their root function)

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Number of forks in ground truth

A
cc
ur
ac
y
[%

]

Extended FlexCoder
PCCoder

Fig. 14 The accuracy of the extended FlexCoder and PCCoder on
programs which take one input as the number of forks varies from
0 to 3. The figure shows that PCCoder did not manage to perform
well on compositions with many forks. In contrast, the extended Flex-
Coder handles copies and zip_withs much better, and solved signifi-
cantly more problems

1 2 3
0

10

20

30

40

50

60

70

80

90

100

Number of inputs

A
cc
ur
ac
y
[%

]

Extended FlexCoder
PCCoder

Fig. 15 The accuracy of the extended FlexCoder and PCCoder on
programs whose ground-truth compositions have three forks, where
the number of inputs per program varies from 1 to 3. PCCoder could
not synthesize programs with multiple inputs well, even though it was
retrained for each different number of inputs. Extended FlexCoder
performed best on the number of inputs it was trained on, adapted
well to less inputs, but did not manage to generalize well to more
inputs

SN Computer Science (2022) 3:218 Page 15 of 15 218

SN Computer Science

could be used as the numerical parameter of the func-
tions. This could, for example, allow compositions such as
take(max(arr), arr).

Further experimenting with our neural network might
also include changing the architecture of the used neural net-
work, and integrating an attention-based architecture, such
as variants of the Transformer [22]. Such architectures may
better capture the key features of the input and output states;
thus, they could function more effectively as the encoder
layer of the neural network used.

FlexCoder proved to be accurate and efficient even when
generalizing to input vectors with a length of 50, with much
wider parameter ranges than current systems. Its extension
showed promising results when synthesizing function com-
positions with multiple forks, greatly surpassing the results
of PCCoder. We hope that the proposed systems represent
a step towards the wide application of program synthesis in
real-world scenarios.

Acknowledgements The authors would like to express their gratitude
to Zsolt Borsi, Tibor Gregorics, and Teréz A. Várkonyi for their valu-
able guidance. The materials were produced as part of EFOP−3.6.3-
VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle
Control Technologies. The Project is supported by the Hungarian Gov-
ernment and co-financed by the European Social Fund.

Funding Open access funding provided by Eötvös Loránd University.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alur R, Bodik R, Juniwal G, Martin MM, Raghothaman M, Seshia
SA, Singh R, Solar-Lezama A, Torlak E, Udupa A. Syntax-guided
synthesis. IEEE, 2013.

 2. Balog M, Gaunt AL, Brockschmidt M, Nowozin S, Tarlow D.
Deepcoder: learning to write programs. 2016. arXiv preprint
arXiv: 1611. 01989

 3. Bird S, Klein E, Loper E. Natural language processing with
Python: analyzing text with the natural language toolkit. “
O’Reilly Media, Inc.” 2009.

 4. Chomsky N, Schützenberger MP. The algebraic theory of context-
free languages. In: Studies in Logic and the Foundations of Math-
ematics, vol 26, Elsevier, 1959; pp. 118–61

 5. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H, Bengio Y. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. 2014. arXiv
preprint arXiv: 1406. 1078

 6. Desai A, Gulwani S, Hingorani V, Jain N, Karkare A, Marron M,
Roy S. Program synthesis using natural language. In: Proceedings
of the 38th International Conference on Software Engineering,
2016; pp. 345–56

 7. Ellis K, Nye M, Pu Y, Sosa F, Tenenbaum J, Solar-Lezama A.
Write, execute, assess: Program synthesis with a repl. 2019. arXiv
preprint arXiv: 1906. 04604

 8. Feng Y, Martins R, Bastani O, Dillig I. Program synthesis using
conflict-driven learning. SIGPLAN Not. 2018;53(4):420–35.
https:// doi. org/ 10. 1145/ 32969 79. 31923 82.

 9. Gulwani S. Programming by examples: applications, algorithms,
and ambiguity resolution. In: Olivetti N, Tiwari A, editors. Auto-
mated reasoning. Cham: Springer International Publishing; 2016.
p. 9–14.

 10. Gulwani S. Automating string processing in spreadsheets using
input-output examples, 2011.

 11. Gulwani S, Polozov O, Singh R. Program synthesis. Foundations
and TrendsⓇ in Programming Languages 2017;4(1-2):1–119.
https:// doi. org/ 10. 1561/ 25000 00010.

 12. Gyarmathy B, Mucsányi B, Ádám Czapp, Szilágyi D, Pintér B.
Flexcoder: Practical program synthesis with flexible input lengths
and expressive lambda functions. In: Proceedings of the 10th
International Conference on Pattern Recognition Applications and
Methods - Volume 1: ICPRAM, INSTICC, SciTePress, 2021; pp.
386–95. https:// doi. org/ 10. 5220/ 00102 37803 860395

 13. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80.

 14. Kalyan A, Mohta A, Polozov O, Batra D, Jain P, Gulwani S. Neu-
ral-guided deductive search for real-time program synthesis from
examples. 2018. arXiv preprint arXiv: 1804. 01186

 15. Kingma DP, Ba J. Adam: a method for stochastic optimization.
2014. arXiv preprint arXiv: 1412. 6980

 16. Klambauer G, Unterthiner T, Mayr A, Hochreiter S. Self-nor-
malizing neural networks. In: Advances in neural information
processing systems, 2017; pp. 971–980

 17. Lee W, Heo K, Alur R, Naik M. Accelerating search-based pro-
gram synthesis using learned probabilistic models. ACM SIG-
PLAN Notices. 2018;53(4):436–49.

 18. Manna Z, Waldinger R. Knowledge and reasoning in program
synthesis. Artif Intell. 1975;6(2):175–208.

 19. Parisotto E, rahman Mohamed A, Singh R, Li L, Zhou D, Kohli
P. Neuro-symbolic program synthesis. 2016. 1611.01855

 20. Schuster M, Paliwal KK. Bidirectional recurrent neural networks.
IEEE Trans Signal Process. 1997;45(11):2673–81.

 21. Shapiro EY. Algorithmic program debugging. ACM distinguished
dissertation, 1982.

 22. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I. Attention is all you need. 2017.
CoRR abs/1706.03762, arxiv: 1706. 03762

 23. Zhang W. Search techniques. In: Handbook of data mining and
knowledge discovery, 2002; pp. 169–184

 24. Zohar A, Wolf L. Automatic program synthesis of long programs
with a learned garbage collector. In: Advances in Neural Informa-
tion Processing Systems, 2018; pp. 2094–2103

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1906.04604
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1561/2500000010
https://doi.org/10.5220/0010237803860395
http://arxiv.org/abs/1804.01186
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.03762

	Flexible Example-Based Program Synthesis on Tree-Structured Function Compositions
	Abstract
	Introduction
	Related Work
	Methods
	Example Generation and Grammar
	Structural Optimizations
	Example-Based Optimizations

	Beam Search
	Neural Network
	Architecture
	Training

	Experiments
	Filtering the Datasets
	Different Recurrent Layers
	Accuracy and Execution Time
	Comparison of FlexCoder with PCCoder
	Comparison of the extended FlexCoder with PCCoder

	Discussion
	Conclusion
	Acknowledgements
	References

