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A B S T R A C T   

In this contribution, the phenomenon of work hardening is studied as a function of the nature of dislocation 
evolution with change in the level of deformation for commercially available 1050 Al alloy. To investigate the 
nature of dislocations in the cold-rolled aluminum alloy, total dislocation density was calculated using the 
indentation technique as well as by implementing two numerical approaches. For estimation of a statistically 
representative value of geometrically necessary dislocations (GND), electron backscattering diffraction mea
surements were performed over a large area (~ 0.5 mm2). The GND density of deformed samples was quantified 
by the implementation of a modified kernel average misorientation technique as well as by using Nye's dislo
cation density tensor for corresponding lattice curvature. The values of statistically stored dislocations (SSD) are 
obtained based on the assessment of the total dislocation density and GND values after different straining levels. 
The study provides both qualitative and quantitative illustrations of the mechanism of dislocation multiplication 
as thickness reduction increases, thereby, increasing the hardness of the samples. The results obtained reveal that 
the hardening of rolled materials is majorly governed by the SSD density at lower deformation. However, as the 
deformation level approaches the value of ~0.4, the density of GNDs rises and its contribution becomes 
significantly accountable for the strain hardening of the material. On the other hand, it has been observed that at 
lower straining levels the generated GNDs are trapped at grain boundaries and have a high contribution towards 
forest dislocations but with an increase of strain, the GNDs have a tendency to contribute nearly equally to 
mobile and forest dislocations. The estimated stored energies for samples subjected to rolling reduction ranging 
between 5.3 and 76% tend to change between the 5.6 kJ/m3 and 343.3 kJ/m3.   

1. Introduction 

The phenomenon of plastic deformation in metals is dominated by 
the complex mechanism of dislocation glide over the slip planes. On the 
microscopic level, the generation, motion, subsequent trapping, and 
deposition of dislocations play an important role in the work hardening 
of the metal alloys [1,2]. This results in a high scientific demand for 
escalation of dislocation density in material to study the state of defor
mation [3]. Hence, to have a better understanding of the phenomenon of 
work hardening it is important to analyze the evolution of dislocation 
structure for the material under consideration [1–3]. 

There are various direct and indirect techniques to assess the total 
dislocation density (ρ), such as transmission electron microscopy (TEM) 
[4], X-ray line profile analysis (XPLA) [3], indentation technique [5], 

and Electron Backscattering diffraction (EBSD) [6]. Several modelling 
approaches allowing estimation of ρ, for example, Kubin- Estrin (K-E) 
[7] and simplified K-E [8,9] models claim to approximate the dislocation 
density efficiently. It has been shown [5] that the indentation technique 
is an effective approach allowing the evaluation of dislocation density 
over a large area. The estimated dislocation density values are compa
rable to ones obtained by the XPLA under the range of experimental 
error. The microindentation is found to be a quantitively more effective 
tool to estimate the amount of dislocations as compared to other tech
niques, as well as proficient in terms of time and expenses. In this 
methodology the dislocation density is estimated using the following 
relationship [5]: 
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(1)  

where, HV is Vickers hardness, M is the Taylor factor, G is the shear 
modulus and α is the geometric constant [5,10,11], and b is a Burgers 
vector. 

In Eq. (1), the value of ρ is estimated as a function of the hardness 
response of the material, while in numerical models of Kubin- Estrin (K- 
E) [7] or modified K-E [8,9], the dislocation density is calculated as a 
direct function of applied strain (e). The K-E model estimates dislocation 
density as the sum of mobile (ρm) and forest (ρf, immobile) counterparts 
i.e. ρ = ρm + ρf [7]. The frame of the K-E approach is expressed as 
follows: 

dρm

de
= C1 − C2ρm − C3ρ

1
2
f (2a)  

dρf

de
= C2ρm +C3ρ

1
2
f − C4ρf (2b) 

Where, Ci are material constants. 
The density of both dislocation types is responsible for the charac

teristic features of plastic behavior and has a strong relationship with the 
hardness impartment in the material [12]. In Eqs. (2a) and (2b), the 
parameters Ci take accountability for various fundamental microscopic 
processes that occur in the course of plastic deformation. For example, 
coefficients C1 and C2 represent the effect of the multiplication of mobile 
dislocations and their significant trapping, whereas the response of 
immobilization via interaction with the forest dislocations is taken into 
account by the C3 parameter. The phenomenon of dynamic recovery is 
governed by the C4 model parameter [7,12]. The K-E model is further 
simplified by Csanádi et al. [8,9], where the total dislocation density is 
calculated as the sum of its mobile and forest counterparts. It was found 
that the model parameters C1 and C2 are nearly identical for various 
metals, subjected to different thermomechanical processing, and hence, 
the simplified K-E model was formulated as following [8,9]: 

ρ(e) = 2C1

C4
−

(
2C1

C4
− ρ0

)(

1+
C4e

2

)

exp( − C4e) (3) 

The generation of dislocations follows a convoluted path by the 
formation of Geometrically Necessary Dislocations and Statistically 
Stored Dislocations. In case of polycrystalline or multiphase alloys, 
deformation gradient forms due to inhomogeneous plastic deformation 
throughout the matter, which is stored in the system in form of GNDs 
[13]. In other words, Geometrically Necessary Boundaries (GNBs) 
evolve, because of different magnitudes of plastic slip of corresponding 
slip systems among neighboring regions of the grains, which induce the 
process of grain subdivision into cell blocks. To accommodate lattice 
misorientation near GNBs, geometrically necessary dislocations emerge 
thereby aligning themselves at the boundaries [13,14]. On the other 
hand, the evolution of SSDs is not ruled by any geometric factor; rather 
they pile up due to statistical trapping of dislocations during the inelastic 
slip. This is the major reason behind the random distribution of SSDs in a 
heterogeneous mosaic pattern at the microscale, consisting of other 
substructures [13–15]. It can be summarized here that GNDs are 
steaming from the heterogeneity in the process of deformation, while 
SSDs are associated with homogeneous deformation. However, as it was 
highlighted elsewhere [16,17] there is no qualitative difference between 
the SSDs and GNDs, the variety can be described only in terms of for
mation mechanism and distributional parameters. It has also been re
ported that it might be challenging to obtain a scalable analysis of SSDs, 
which is described in terms of starting from the quantity of data among a 
large number of grains to setting up other parameters like time of scan 
and isolation of GNDs and SSDs in Transmission Electron Microscopy 
(TEM) [18]. However, it is well known that the quantity of GNDs can be 
credibly accounted by using the EBSD technique, and subtracting them 
from the total dislocation density makes possible the quantification of 

SSDs [13,19]. 
It is possible to calculate GNDs from the EBSD data either by esti

mating the lattice curvature or curl of the orientation field associated 
with Nye's tensor component fields employing orientation maps or by 
computing Kernel Average Misorientation (KAM) [5,20]. In the case of 
EBSD scans, choosing a compatible Burgers circuit plays a key role as the 
Burgers circuit is related to the step size under consideration. A larger 
size of Burgers circuit can arise a situation where most of the disloca
tions within the circuit will interact with dislocations of opposite signs, 
forming dislocation dipoles or multipoles which capture no net geo
metric consequences [13,17,18]. On the other hand, if the Burgers cir
cuit or step size is small enough it can separate these poles and ensure a 
high accuracy by capturing a significant fraction of GNDs from the total 
dislocation density [17,18,21]. It has been reported that the appropriate 
step size for GND scan should be comparable to the length scale of the 
dislocation cell structure or even smaller. In this way, the better 
countability of most of the dislocation networks can be captured 
[21,22]. Special care should be taken while choosing the appropriate 
neighbor rank (step size/kernel radius) on the scan as the distortion 
gradient is a direct function of the selected rank of the neighbor. In the 
case of calculating GNDs from the misorientation angle calculated for 
neighboring rank, the failure in choosing the appropriate kernel radius 
can lead to overestimation of GND density by taking noise under 
consideration [16,22,23]. In the current work, the GND density is 
calculated using both Nye's tensor components corresponding to the 
orientation field and KAM angle. The comparative analysis of both 
techniques in calculating GND will guide towards choosing efficient 
parameters. While calculating GNDs from KAM, to avoid-above 
mentioned shortcomings such as the effect of noise and high de
pendency on step size, the data has been processed as per Kamaya's 
approach [24,25]. 

The misorientation angle obtained from KAM represents the average 
misorientation angle of a point of reference to its neighbors in the EBSD 
map, which is the quantification of the local misorientation level, i.e., 
GND. [24–26]. The simplified model of calculating GND density from 
misorientation angle was proposed by Read and Shockley [26], which is 
given as follows: 

ρGND =
k < θ >

bs
(4) 

In Eq. (4), k is a constant that depends on the type of dislocation and s 
is the distance between the two points for which the kernel average 
misorientation angle (θ) has been calculated, i.e., step size [24–26]. 

In the present study, the quantitative understanding of the total 
dislocation density and the respective constitutes of ρ is employed to 
explain the evolution of work hardening in the cold-rolled 1050 Al alloy. 
Both, total dislocation density and the GNDs have been derived using 
microindentation and EBSD techniques. The strain hardening of cold 
deformed sheets were investigated because of (i) industrial importance 
and (ii) due to the limitations of tensile test, which is not capable of 
providing information on hardening phenomena at high strains (1 or 
even higher) due to restricted maximum elongation of samples (typi
cally, the total elongation reached in tension is ~50%). 

2. Materials and method 

The investigated 1050 Al alloy is a commercially available material 
with Al-0.3 wt% Fe, providing minimum solute content and making it 
one of the most fundamental Al systems. The initial material (Sample A) 
was subjected to full recrystallization by annealing at 550 ◦C and fol
lowed by symmetric cold rolling with thickness reductions of 5.3% 
(sample B), 15.8% (sample C), 21.1% (sample D), 28.9% (sample E), 
40% (Sample F), 46.8% (sample G), 60% (sample H) and 76% (sample 
I). The rolling experiments were performed in a single pass with an 
absence of lubricant using a laboratory rolling machine with a roll 
diameter of 150 mm. 
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To study the evolution of dislocation density from respective hard
ness values of the annealed and deformed samples, indentation mea
surements were performed using the Zwick/Roell® ZHVμ-type Vickers 
microhardness tester. Prior to the test, the samples were subjected to the 
standard sample preparation procedure, which includes mechanical 
grinding and mechanical polishing. The mechanical polishing of the 
samples was performed using Struers®-type DiaDuo suspensions of 3 μm 
and 1 μm diamond particles. After mechanical polishing, the investi
gated samples were soap cleaned under running water and dried. The 
Vickers hardness test was conducted for loads under the range of 100gf 
to 500gf by initiating diamond-shaped indents on the Normal Direction 
(ND) plane through the sub-surface of the samples. The applied load 
range was chosen to avoid the indentation size effect (ISE) [27]. 

For the assessment of GND density as well as texture measurements 
and other microstructural investigations, samples A-I were exposed to 
EBSD scans across the thickness. During the EBSD experiments, the 
electron beam scanned the investigated area and recorded a quantitative 
measure of the quality of Kikuchi patterns obtained from each point 
[28]. The EBSD maps were captured using the Hikari-type® detector 
attached to a high-resolution scanning electron microscope with a FEG 
filament. The mechanically grinded and polished samples were elec
tropolished prior to EBSD scans. The electrolytic polishing of the sam
ples was performed using cooled (0–5 ◦C) Struers® A2 electrolyte at a 
voltage ranging from 20 V to 30 V for 45–60 s. The EBSD scanning was 
performed in two slots for each deformed sample, one for the texture 
measurement and another for GND assessment. The GND scans were 
performed with a step size of ⁓ 0.30 μm on average for all deformed 
samples with a slow data acquisition rate of around ⁓ 10 frames per 
second (fpc) or even lower. The EBSD patterns for texture measurements 
were acquired at a coarser step size, as compared to the GND scans, and 
acquisition speed of ⁓20 fpc. The orientation imaging maps were 
captured along the Transverse Direction (TD) plane of the samples. The 
Orientation Imaging Microscopy (OIM) data were captured at an 
accelerating voltage of 20 kV for sample A (virgin sample) however in 
the case of deformed samples a lower accelerating voltage of ⁓17–19 kV 
was maintained to capture patterns efficiently. The maintained tilting in 
the SEM chamber was 70◦ with respect to the EBSD detector. The OIM 
data were post-processed by the commercial OIM-TSL-8® software. 

The EBSD scans were performed on hexagonal grids. The recorded 
Orientation Distribution Functions (ODFs) are presented for sections of 
φ2 = 45◦, φ2 = 65◦ and φ2 = 90◦, respectively. These three sections of the 
ODF reveal the important texture components and corresponding fibers, 
which tend to evolve during the thermo-mechanical history of Al alloys. 

3. Results and discussion 

3.1. Strain hardening 

The phenomenon of strain hardening in the investigated samples A-I 
was analyzed by means of Vickers microindentation. The average 
hardness values were collected from the saturation zone of the ISE curve 
shown in Fig. 1 (see the dependence of hardness Hv over indentation 
depth h). The Hv = f(h) dependence was investigated for each sample as 
the material response of the samples initiated by diamond-shaped in
dents (see the dependence of Hv over applied strain e in Fig. 1). In Fig. 1, 
the average hardness values are plotted against equivalent strain (e), 
which was calculated by the flow line modelling [29,30] in order to take 
accountability of localized shear components in total e for the sub- 
surface under investigation. 

The hardness values from the indentation load of 10gf, 25gf, 50gf, 
100gf, 200gf, 300 gf, and 500gf have been plotted with respect to 
indentation depth h of the corresponding load for sample B (see Fig. 1). 
Other deformed samples reveal qualitatively similar Hv = f(h) de
pendencies. Fig. 1 shows that for lower loads the Vickers hardness 
associated with the diamond-shaped indent is high, however, the Hv 
values tend to saturate from the load of 100gf. The characteristic 

behavior in microhardness with applied load is known as the indenta
tion size effect [27,31]. To eliminate the jump in measured data due to 
the ISE effect, the Hv values were taken from the range of 100gf to 500gf 
in the current work. In Fig. 1, the average hardness values from 100gf to 
500gf are likewise represented as a function of strain for the investigated 
samples A-I. This dependence gives straightforward evidence of an in
crease in hardness in the samples from the virgin state of the material 
(Sample A) to the sample imparting the highest deformation level of 
76% (Sample I). The steep change in hardness, in this case, can be 
correlated to the phenomenon of work hardening since one can notice a 
steady increase in the equivalent strain for deformed samples. To esca
late numerous factors, responsible for work hardening, further experi
mental investigation has been performed and described below. 

3.2. Orientation imaging microscopy (OIM) materials characterization 

To capture the morphology of microstructural changes, orientation 
imaging contrast microscopy has been adopted, which reveals not only 
the change in grain structure but also the development of orientation 
gradients with the increase in deformation level. The latter can verify 
the evolution of the dislocation substructure. Figs. 2 and 3 show the 
KAM and Image Quality (IQ) maps superimposed with the Inverse Pole 
Figure (IPF) maps for the deformed samples B–I. The measurements 
were recorded with an average step size of 0.3 μm and a very slow 
scanning rate, which lasted from 12 to18 hours per sample to collect 
relevant information efficiently. The KAM maps are represented for the 
misorientation angle 0◦ ≤ θ ≤ 5◦. The misorientations exceeding this 
range are dropped to avoid any artificial impact from the neighboring 
Grain Boundaries (GB), which makes it coherent for qualitative analysis 
of the dislocation density [32]. 

Figs. 2 and 3 show the change in the distribution of misorientation 
angle around High Angle Grain Boundaries (HAGB), as well as depict the 
phenomenon of grain fragmentation and formation of dislocation sub
structure in the samples as the straining level increases. In Fig. 2, sample 
B (5.3% deformed) shows localization of orientation gradients at the 
HAGB which is indicative of accumulation of GNDs. On the other hand, 
for sample C (15.8% deformed) the distribution of misorientation is 
found to be relatively homogeneous throughout the GB, accounting for 
uniform dislocation statistics, although regions of the lower density of 
geometrically necessary defects at the grain interior can be noticed. In 
some grains of sample C, a dislocation substructure (in the form of cells) 

Fig. 1. Change in average microhardness as a function of indentation depth h 
for sample B (blue round-shaped symbols) and equivalent strain for samples A-I 
(black square-shaped symbols). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. KAM and IQ + IPF maps for deformed materials A-E: a) Sample B, b) Sample C, c) Sample D and d) Sample E. The KAM maps were calculated for the 1st 
neighbor and 5◦ upper threshold. 
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has been recorded to evolve at a region of dislocation accumulation. 
Similarly, for sample D (21.1% deformed) overall increase in average 
misorientation from the kernel can be identified within the grain but a 
minimum value of θ at the grain boundary has been observed. In samples 

B–D the formation of cells is not prominent although the GNDs tend to 
arrange themselves in the vicinity of the HAGBs. However, for samples F 
–I (Fig. 3) the evolution of complex dislocation structure is assisted by 
numerous dislocation subboundaries. 

Fig. 3. KAM and IQ + IPF maps of deformed materials F-I: a) Sample F, b) Sample G, c) Sample H, d) Sample I. The KAM maps were calculated for the 1st neighbor 
and 5◦ upper threshold. 
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As indicated in literature sources [1,33,34], The process of grain 
subdivision can be considered as an indicator of an increase in disloca
tion density as the result of a higher straining level (as well as work 
hardening). In the present case, the IQ+ IPF maps of Figs. 2 and 3 reveal 
the formation of dislocation sub-structure with the formation of dislo
cation cells in the samples (marked by a yellow arrow). The comparison 
between the KAM and IQ+ IPF maps for samples indicates that for the 
zones of dense dislocation accumulation, the process of dislocation cell 
formation is intensive. 

The evolution of dislocations is characterized by dislocation hot 
zones (regions of high dislocation concentration) for the reduction levels 
above 29%. In the case of sample H (60% deformed), the combined 
image quality-IPF map reveals the existence of particles, when the 
respective KAM shows an accumulation of dislocations around the 
particles (marked with a black box). The result of grain refinement is 
found to be quite intense in the case of sample I (76% deformed) while 
the size of dislocation cells also observed to be reduced strongly with an 
increase of straining level. The dislocations are found to be localized 
around the fine dislocation cells in sample I, which makes it difficult to 
capture a visible accountability of KAM misorientation. The recorded 
data provide evidence for the fact that the work hardening, phenomenon 
of grain refinement, and the evolution of dislocation structure with 

straining level are tightly interconnected processes. To observe the effect 
of the above-mentioned factors on crystallographic texture, EBSD scans 
for texture measurement were performed for the respective samples. 

The ODFs presented in Figs. 4 and 5, reveal the evolution of crys
tallographic texture in the investigated materials A-I. For sample A, the 
overall texture is dominated by the Cube component {001} 〈100〉, 
demonstrating the annealed state of the material, while the traces of 
Brass orientation can also be found. The {011} 〈112〉 component typi
cally appears in cold rolled Al alloys [35], but in the current case the 
material was fully recrystallized, and this orientation can be considered 
as a retained rolling texture component. From sample B onwards, the 
rotation of the recrystallization texture components towards the rolling 
texture components is observed. For sample F, the evolution of β- fiber is 
recorded, which connects the Copper {112} 〈111〉, Brass {011} <112>
and S-component {123} <9 15 11 > in Euler space, characterizing 
enhancement of deformation textures [35,36]. However, the existence 
of recrystallization texture component i.e., Cube component and weak 
Goss in case of samples E and G; can be observed in ODF maps till 60% 
rolling reduction of the material. On the other hand, sample I shows only 
rolling texture components, i.e., the β- fiber. The intensity of ODF has 
been found to drop as the straining level increases and this is due to the 
fact that the volume fraction of the initially strong cube component 

Fig. 4. Three section ODF map for sample: a) annealed undeformed sample A, b) 5.3% deformed, ODFmax = 13.15; c) 15.8% deformed, ODFmax = 12.12; d) 21.1% 
deformed, ODFmax = 8.73. 
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tends to decrease with the increase of rolling reduction. It is obvious 
from Figs. 4 and 5 that the intensity of rolling texture components tends 
to intensify with the rise of strain. 

From the OIM scans, other important microstructural parameters 
such as grain size and Taylor factor (M) were calculated. While calcu
lating the respective value of M for the samples, the components of the 
strain velocity gradient tensor were calculated using flow line modelling 
[29,30] to capture the effect of different strain profiles that might arise 
during the process of cold rolling [37]. Table 1 shows continuous grain 
fragmentation with the increase of equivalent strain, while the values of 
Taylor factor reveal a tendency towards the increase since the values of 
M are higher for the deformation texture components as compared to 
recrystallization counterparts such as Cube or {011} <100> Goss 

Fig. 5. Three section ODF map for sample: a) 28.9% deformed, ODFmax = 10.23; b) 40% deformed, ODFmax = 8.48; c) 46.8% deformed sample, ODFmax = 6.41; d) 
60% deformed, ODFmax = 6.86; e) 76% deformed, ODFmax = 8.22. 

Table 1 
Values of strain e, the average value of grain size, Taylor factor (M) and 
approximated cell size for samples A-I based on data reported in Ref. [36].  

Sample e Grain size (μm) Taylor factor, M Cell size (μm) 

A 0 74.8 3.146 – 
B 0.06 70 3.097 ~2 or larger 
C 0.20 67.865 3.113 ~1.1 or larger 
D 0.27 63.305 3.057 0.98 
E 0.40 58.07 3.117 0.86 
F 0.59 50.83 3.117 0.76 
G 0.74 54.66 3.143 0.70 
H 1.09 29.20 3.162 0.597 
I 1.69 25.1 3.216 0.49  
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orientations. 
The calculated values of M in Table 1 are used for the computation of 

dislocation density by Eq. (1). The subcell sizes for all deformed samples 
were approximated from the experimental data, reported in Ref. [38] to 
obtain a better accountability of quantitative assessment of dislocation 
density [39]. It should be noted here that the cell sizes for the straining 
levels (below 0.27) are rather indicative since the approximation of the 
exact subcell sizes from the experimental evidence [38] is complicated 
by the fact that the cell size tends to approach infinity in size (large) at 
low strains. In practice, this means that the subcells are either not 
formed after the small reductions or their sizes are relatively large, 
implying that dislocations can travel distances comparable to the 
average grain size. 

Fig. 6 shows an increase in KAM angle with the equivalent strain 
calculated by the Flow Line Model for the subsurface regions of 
deformed samples B–I. It is obvious that the extent of increment in KAM 
tends to slow down after e ⁓ 0.74. The KAM angle is a measure of the 
local plastic strain in grains and the increase in KAM value suggests both 
the existence of strained grains and a greater concentration of geomet
rically necessary dislocations. In case of sample I, as it coexists with the 
highest straining level and experiences intense grain fragmentation out 
of all the samples, the KAM map reveals the highest kernel average 
misorientation angle. 

3.3. Evolution of dislocations 

3.3.1. Assessment of dislocation density in deformed materials 
To further extend the investigation of the deformation mechanism 

and the evolution of work hardening in Al 1050, dislocation density (ρ) 
for the samples B–I were calculated using Eq. (1) with the Taylor factors 
listed in Table 1. The Burgers vector b and shear modulus G are known 
for Aluminum: b = 0.2863 nm, and G = 26.5 GPa. The value of geo
metric constant α for the population of edge and screw dislocations can 
be calculated using the formula given below [1]: 

α ≅
(1 − 0.5ν)
4π(1 − ν) ln

(
Λ
b

)

(5) 

Where, Λ is the mean free path of dislocations, which is inversely 
proportional to the dislocation density (can be computed by Eq. (3) for 
various strain increments; the dependence of α over equivalent strain is 
well elaborated elsewhere [5]), ν is a Poisson ratio (ν = 0.35 for Al). 

Along with the above-mentioned factors, considering the micro
hardness values (HV) obtained from the Vickers microhardness test, the 

dislocation density for all deformed samples was estimated by employ
ing Eq. (1). The values of ρ for samples B–I are presented in Table 2 as 
well as in Fig. 7. As follows from Fig. 7, the dislocation density of the 
material increases with the increase in deformation level. The minimum 
value of ρ = 4.08 × 1013 m− 2 corresponds to sample B, while the highest 
value of dislocation density 2.94 × 1014 m− 2 is observed in sample I, 
which imparts the highest deformation and hardness value out of all of 
samples under investigation. The trend of increase in ρ values can be 
correlated to the evolution of work hardening (see Fig. 1). 

Apart from experimental evidence, the dislocation density of 
deformed samples was likewise approximated by the K-E and simplified 
K-E models (see Eqs. 2(a), 2(b), and 3). For the calculation of mobile and 
forest dislocations by the Kubin-Estrin numerical approach, the model 
parameters C1, C2, C3, and C4 are determined for pure aluminum 
deformed at room temperature and given as follows: C1 = 2.33 × 1014 

m− 2, C2 = 1.1, C3 = 4 × 105 m− 1, C4 = 1.2 [9]. The K–E technique re
quires defining the initial ρ, which corresponds to the unstrained ma
terial and was approximated by the ρ (ε =0) =1010 m− 2, while the 
fraction of the mobile and forest dislocations was defined as ρm = ρf =

ρ(ε = 0)/2 [8,9]. On the other hand, for the simplified K- E method, the 
associated model parameters for pure Al are given by C1 = 2.33 × 1014 

m− 2 and C4 = 1.15 [9]. The dislocation density calculated by both nu
merical models is presented in Fig. 7, along with ρ values obtained from 
the indentation technique for all deformed samples. It is obvious that the 
dislocation density values obtained by numerical models employed are 
in good agreement with the experimental results obtained from the 
indentation. It has been observed that at lower straining levels (up to 
~0.5) the numerical methods seem to underestimate the dislocation 
density, but it should be mentioned that the indentation might induce 
the development of additional dislocations in the vicinity of the indent 
and therefore can locally increase the dislocation density. This effect will 
be more prominent for the sheets deformed to a lower extent, i.e., when 
the material contains only a limited number of dislocations. Moreover, 
evaluation of dislocation density in the deformation-free material A 
provides a value of ~1013 m− 2, which is evidently a significantly 
overestimated value of ρ for the fully recrystallized material. Given this, 
the assessment of dislocation density by Eq. (1) for very low strains (or 
fully recrystallized materials) should be treated with particular care. 

3.3.2. GND assessment from the OIM 
It is important to understand the contribution of dislocation density 

components (geometrical and statistical) in increasing hardness values 
for respective deformed state. For the calculation of GND density, the 
modified KAM technique has been considered which is also known as 
Kamaya's technique [24,25] and employs Eq. (4) in the following 
modified form: 

ρGND =
k
b
×

dθ
ds

(6) 

As compared to Eq. (4), the value of < θ >/s has been replaced by its 
gradient (dθ

ds) to reduce the noise parameters and the effect of step size in 
the calculation of GND density [24]. The value of constant k is defined 
separately for the substructures built of arrays of edge and screw 

Fig. 6. Variation of KAM misorientation angle with equivalent strain e.  

Table 2 
Assessment of GND and SSD in total dislocation density with the change of e.  

Sample Total dislocation 
density (ρ)(m− 2) 

ρGND (Method 2, 
Experimental) density (m− 2) 

ρSSD density 
(m− 2) 

B 4.08 × 1013 1.28 × 1013 2.80 × 1013 

C 7.00 × 1013 2.43 × 1013 4.57 × 1013 

D 9.07 × 1013 4.21 × 1013 4.86 × 1013 

E 1.11 × 1014 5.32 × 1013 5.79 × 1013 

F 1.37 × 1014 6.92 × 1013 6.76 × 1013 

G 1.47 × 1014 7.46 × 1013 7.26 × 1013 

H 2.39 × 1014 9.89 × 1013 1.40 × 1014 

I 2.94 × 1014 1.35 × 1014 1.58 × 1014  
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dislocations: k(edge) = 1 and k(screw) = 2. In the present study, k₌1.5 has 
been chosen in view of the fact that the overall dislocation structure is a 
combined effect of both edge and screw dislocations [40]. 

Fig. 8 depicts a linear dependency of kernel average misorientation 
angle over the step size (kernel radius). The GND calculated by the 
simplified method of Eq. (4) shows a strong dependency of ρGND on 
kernel radius as the amount of GND tends to decrease sharply with the 
increase of step size. On the other hand, it must be noted that the error 
associated with misorientation estimation in 2-D EBSD technique is θ <
2◦ [41]. To avoid this noise, as well as a strong kernel radius dependency 
and uncertainty in choosing the GND value corresponding to a particular 
neighbor rank of the kernel, Kamaya's method [24,25] of GND calcu
lation from KAM angle has been chosen for this study. According to this 
technique, the value of the dθ/ds was derived from the dependence of 
the KAM angle on kernel radius, which enabled the calculation of GND 
density using Eq. (6). The GND values estimated are authentic, not only 

for the reason that the data were collected with a confidence index 
higher than 0.1 but also because the GND scans were performed over 
areas as large as ⁓ 0.5 mm2 for all deformed samples. The maximum 
misorientation was set to 5◦ in order to avoid the effect of orientation 
error near the grain boundary [23]. The GND densities calculated by Eq. 
(6) are presented in Fig. 10. A sharp rise in the GND density is recorded 
with an increase in plastic strain from 0 to 0.5 (sample B, 3.04 × 1012 

m− 2 to sample D, 5.01 × 1013 m− 2), and afterward, the amount of GNDs 
tends to level off, reaching the highest value of 1.54 × 1014 m− 2 (sample 
I). This trend can be correlated with the qualitative observations of KAM 
evolution, presented in Figs. 2 and 3. 

Alternatively, to the above-presented method, the amount of GNDs 
can be calculated by the method developed by Field et al. [42] (imple
mented in the TSL OIM software). This algorithm involves the compu
tation of misorientation between the neighboring points and the 
assessment of Nye's tensor [20] components. The dislocation density 
tensor of Nye consists of the tensor �ij that correlates the effect of dis
locations in the lattice with Burger's vector i and the dislocation line 
vector j. The tensor �ij consists of 9 components of lattice curvature 
terms that quantify the net dislocation flux through a unit area 
[20,21,42]. In the current investigation, we have performed computa
tions based on the algorithm, embedded in the TSL OIM-8 software that 
calculates the GND using Nye's dislocation tensor by taking into account 
the presence of both pure edge and pure screw dislocations [42]. While 
calculating the GNDs, the maximum possible GND value was set in a way 
that it was equal to the total dislocation density (can be estimated either 
experimentally or by Eq. (3)), as GND cannot exceed the total amount of 
ρ. On the other hand, to understand the dependency of GND values on 
the step size, two different procedures of GND calculations were 
employed: i) calculation of GND density with a fixed step size of 0.6 μm, 
independently of the degree of straining, ii) estimation of GNDs with a 
step size comparable to the sub-cell size, which tend to evolve during 
deformation (see Table 1 and Figs. 9 and 10 for details). In both cases, 
the calculation was carried out for the maximum misorientation of 5◦. 
The GND values obtained for a fixed step size of 0.6 μm are represented 
in Fig. 10. While calculating the amount of GNDs by employing the al
gorithm (ii), it has been observed that the cells are not formed at small 
strains (5%, sample B) and the dislocations are trapped by the grain 
boundaries (see Fig. 2). At higher strains (15–21%, samples C and D), the 

Fig. 7. Evolution of dislocation density in samples B–I as computed from the 
indentation measurements and two numerical models employed [5,7–11]. 

Fig. 8. GND and KAM evolution in 1050 Al alloy, deformed with 46.8% 
thickness reduction (sample G): a) average KAM angle in radians (blue square- 
shaped symbols) with a cut-off threshold of 5◦ as a function of kernel radius (1st 
to 10th neighbor). b) GND (red symbols), calculated from each KAM angle 
using Eq. (4), as a function of kernel radius. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 9. GND dislocation densities calculated for selected samples, subjected to 
low (samples B and D, e = 0.06 and e = 0.27), intermediate (sample G, e = 0.74) 
and high (sample I, e = 1.69) rolling reductions by TSL-IOM software as a 
function of step size. The algorithm of GND calculations implemented in the 
TSL-IOM software is based on the computation of Nye's tensor components and 
described in Refs. [42]. 

P. Chakravarty et al.                                                                                                                                                                                                                           



Materials Characterization 191 (2022) 112166

10

distribution of GNDs is more homogeneous within the grain, compared 
to sample B, but the formation of the cells is still not prominent. Hence, 
taking this event into account, the GND values for samples B and D were 
calculated for step sizes ranging between 0.3 and 6 μm (Fig. 9). Fig. 9 
shows a sharp exponential decay in GND values as the step size in
creases. The high value of GND at a lower step size (~ 0.5 μm) corre
sponds to the noise associated with a very small step size [22]. Taking 
into account the fact that there is no significant cell formation in samples 
B–D, the values of ρGND were collected from the saturation zones (see 
Fig. 9), observed for the step sizes exceeding 2 μm. In the same manner, 
the GND densities over a broad range of step sizes are plotted in Fig. 9 for 
samples subjected to higher deformation i.e., G and I. In these materials, 
the sub-cell formation was intense as per Fig. 3. The GND values of 
samples G and I tend to saturate earlier with respect to the step size, as 
compared to samples B and D (cf. Fig. 9). In the case of samples G and I 
(Fig. 9), the GND value corresponding to the sub-cell size belongs to the 
saturation zone of ρGND vs step size dependence. With the multiplication 
of dislocations after a reduction of 28.9%, the cell formation is observed 
in the majority of grains, hence, for samples E – I the step size compa
rable to the sub-cell size was considered in the corresponding GND 
calculations. 

The GND values (ρGND) calculated by Eq. (6) (method 1), and Nye's 
tensor with step size comparable to sub-cell size (TSL OIM software [42], 
method 2) are plotted in Fig. 10 as a variable function of forest and 
mobile dislocations calculated by Eqs. 2(a) and 2(b). It is obvious that 
while calculating the GNDs using Nye's tensor with a fixed step size of 
0.6 μm (TSL OIM software [42], method 3), the fraction of GND dislo
cations to the total ones (ρGND/ρtot) is significantly higher for less 
strained samples (sample B–D), compared to counterparts calculated 
with the Kamaya's method or step size s (method 2), comparable to the 
cell size (see Table 1). At the straining levels exceeding the value of 
~0.5, the fraction of ρGND/ρtot tends to provide comparable values for all 
three methods. 

4. Discussion 

Analyzing the mesoscopic changes in the investigated materials A-I 
(Figs. 2 and 3), it should be noted that the evolution of kernel average 
misorientation is attributed to the GND density (see Eq. (6)) as the 
maximum misorientation of 5◦ corresponds to dislocation structure 
evolution only in the mentioned range. These dislocations, 

accommodating geometric factors and associated with the lattice 
deformation, re-arrange themselves to minimize the total energy state 
forming dislocation cell structure bounded by Dense Dislocation Walls 
(DDW) [43]. As the strain increases, the dislocation cells form disloca
tion subboundaries, which eventually turn into high-angle grain 
boundaries, resulting in grain refinement/fragmentation. As reported in 
the literature [43], the refinement process continues within the new 
grains, but the fragmentation of the sub-grains will stop as the rate of 
dislocation annihilation became equal to the rate of dislocation multi
plication. It has been stated [44] that the formation of dislocation cells is 
initiated by easily intersecting glide planes which confine zones of very 
low dislocation density (can be seen in Fig. 3). The rearrangement of 
GNDs further increases the total amount of dislocations. This process 
continues as the deformation level increases imparting hardness to the 
material as a result of grain refinement as per Hall- Petch strengthening 
relation [45]. The latter initiates the pilling up of dislocations at the 
grain boundaries especially at the initial stage of the work hardening 
[44]. On the other hand, the increase in KAM angle with equivalent 
strain suggests that additional dislocation generation is required to 
maintain a structural homogeneity of the samples, due to strain in
compatibility in the grain assembly. This is satisfied by the formation of 
GNDs. The described effect becomes more prominent with a decrease in 
average grain size and this phenomenon can be correlated to Ashby's 
simplified grain boundary hardening model [13]. Hence, a combination 
of KAM maps and image quality IPF maps are effective tools enabling 
qualitative analysis of dislocation evolution. 

Taking into account the crystallographic aspect of microstructure 
evolution, it should be noted that the polycrystalline aggregate consists 
of grains of various orientations (see Figs. 4 and 5) and therefore the 
macroscopic deformation is accommodated differently in individual 
crystals. The incompatibility of deformation in the grain assembly is 
caused by the variety of Schmid/Taylor factors which are responsible for 
the activation of corresponding slip systems in differently oriented 
grains. The heterogeneous nature of deformation at lower strains is 
compensated by the evolution of GNDs on the grain boundaries, which is 
well explained by the strain compatibility and stress equilibrium theory 
[45,46]. Considering strain compatibility and stress equilibrium at the 
GBs in the crystal plasticity approaches such as the advanced LAMEL 
model [47,48] leads to accurate prediction of texture evolution during 
plastic deformation [30,49,50]. At advanced stages of deformation, the 
efficient accommodation of deformation is accompanied by the sub
structure evolution and grain fragmentation [14–16,18]. The evolution 
of subcells with characteristic sizes (see Table 1) is a function of 
straining level, however, the lower bound for the subcell size is ~0.5 μm, 
and this size is characteristic for severe straining levels (e > 2). 

Since the fixed step size of EBSD measurements (0.6 μm) employed 
for GND calculation (see Fig. 10) provides an evolutionary pattern 
reverse to those provided by the other two methods employed (method 1 
and 2), it is important to clarify the nature of dislocation evolution. In 
view of this, the fraction of mobile and forest dislocations was calculated 
by the K-E model [7] (see Fig. 10). Assuming that the fraction of both 
counterparts was equal prior to deformation, one can clearly notice that 
the portion of mobile dislocations is dominating at the very early stages 
of deformation, whereas the number of forest dislocations tends to in
crease as the deformation proceeds. At larger reduction levels (e > 0.5), 
the fraction of mobile and forest dislocations seems to be equibalanced 
(see red dotted line in Fig. 10). As Figs. 2 and 3 suggest, the majority of 
dislocations are located in the close vicinity of grain boundaries (GBs) at 
low strains (e < 0.5), while at higher straining levels the dislocations are 
arranged in the form of dislocation walls in grain interior, accounting for 
orientation gradients. Since the GNDs in the neighborhood of GBs are 
blocked, they can be assimilated with the SSD counterparts. In fact, the 
amount of SSDs prevails over the GNDs since the local misorientations in 
the grain interior are rather low at small strains. The GNDs seem to 
contribute more to hardening at higher strains (see Fig. 3). The observed 
evolutionary pattern is consistent with the work of Hansen and Huang 

Fig. 10. Evolution of GND in 1050 Al alloy as defined by KAM and Nye's tensor 
[42] technique employed for different step sizes. The red dotted line reveals the 
GND trend. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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[51], where the substructures evolved in pure Al after different tensile 
deformations were analyzed by TEM. In this work [51], the contribution 
of the so-called crystallographic dislocation boundaries, defining cell 
blocks (associated with the GNDs), to the total dislocation density is 
lower compared to SSDs for the tensile deformations ranging between 
5% and 34%. In the present case, the evolution of GNDs as calculated by 
methods 1 and 2 provides a physically sound evolutionary trend, which 
is consistent with the results reported elsewhere [51]. 

Investigated the substructure evolution, Lehto [52] has reported the 
existence of misorientations 0.4◦ ≤ Ψ ≤ 1◦ between Dense Dislocation 
Walls. This concept enables rough estimation of the upper and lower 
limits of GND density only for materials subjected to higher deformation 
degree, i.e., when the formation of dislocation cells is highly probable. 
The rough approximation of the upper and lower limits for GND density 
can be done by using the following equation: 

ρGND =
1.5 × Ψ

bl
(7) 

Where, Ψ is 0.4◦ and 1◦ for the lower and upper bounds and l is a cell 
size. 

Eq. (7) has been reformulated using Eq. (4) by redefining s as 
approximate cell size [38], associated with corresponding strain e, and 
k₌1.5 [40]. Figs. 3 and 4 indicate that the distinct process of dislocation 
cell formation starts only after moderate straining, i.e., e ~ 0.4 (sample 
E). 

Let's consider three cases when the material is subjected to the 
moderate (e = 0.4), high (e = 1.7), and severe (e = 3) deformation: 

Case 1: e ≥ 0.4, the misorientation between DDWs is low, Ψ = 0.4◦. 
The approximated GND density by Eq. (7) is: ρGND = 4.25 × 1013 m− 2 

(cell size corresponding to e = 0.4 is ~0.86 μm, see Table 1). Since the 
ρtot(K-E) = 9 × 1013 m− 2 for this strain, ρGND/ρtot(K-E) = 0.47. 

Case 2: e ≥ 1.1, Ψ = 0.7◦. The approximated GND density by Eq. (7) 
is: ρGND = 1.07 × 1014 m− 2 (cell size corresponding to e = 1.1 is ~0.6 
μm, see Table 1). Since the ρtot(K-E) = 2.18 × 1014 m− 2 for this strain, 
ρGND/ρtot(K-E) = 0.49. 

Case 3: e ≥ 3, Ψ = 1◦. The approximated GND density by Eq. (7) is: 
ρGND = 1.83 × 1014 m− 2 (we must take into consideration the fact that 
the reduction in cell size tends to saturate at ~0.5 μm for highly 
deformed materials). Since the ρtot(K-E) = 3.68 × 1014 m− 2 for this 
strain, ρGND/ρtot(K-E) = 0.5. 

In all above cases ρGND/ρtot (K-E) ≈ 0.5, which follows the trend line 
of ρGND/ρtot obtained from the experimental values (red dotted line of 
Fig. 10). The present analysis provides experimental validity to the GND 
approximation approach, described by Eq. (7). Since the contribution of 
GNDs to the total dislocation density is ⁓ 50% for straining levels 
≥40%, it is possible to make the reverse calculations of workable step 
size for experimental estimation of GND by EBSD technique with the 
help of K-E model and approximation expressed by Eq. (7). 

The experimentally measured total dislocation density (ρ), ρGND 
assessed by TSL OIM software with step size comparable to sub-cell size 
(method 2) and corresponding SSD (ρSSD) are presented in Table 2. The 
amount of statistically stored dislocations was computed as a difference 
between the total dislocation density (estimated by Eq. (1)) and the 
corresponding amount of GNDs. The recorded data show that there is a 
rise in the amount of both GNDs and SSDs as the deformation level rises. 
On the other hand, it must be noted that the overall dislocation density is 
dominated by the accumulation of SSDs at lower straining levels. 

Analysis of both Table 2 and Fig. 2 suggests that there is an abrupt 
increase in the overall dislocation density during the initial stages of 
straining and similar tendency has been observed in the case of gener
ation of GNDs. The mobile GNDs at very low strains are quickly trapped 
by the grain boundaries as the deformation proceeds, converting them to 
forest dislocations in the investigated 1050 Al alloy. The rate of increase 
in dislocation density seems to slow down on reaching a certain 
straining level of strain (e ~ 0.4). When the reduction level approaches 
30%, nearly 50% of the GNDs became mobile, while others are trapped 

by the dislocation walls or other obstacles. Further deformation of the 
investigated 1050 Al alloy shows a similar morphological tendency in 
the accumulation of GNDs. The increment in both GND and SSD density 
is recorded with an increase in e. This trend is supported by the in
vestigations [18,52,53], which report that the accumulation of SSDs 
rises by random trapping of other SSDs and GNDs as plastic strain in
creases. Our investigation leads to the conclusive remark that the overall 
dislocation density is dominated by the density of SSDs for less strained 
samples, suggesting that the SSDs are primarily responsible for hard
ening in materials with a high stacking fault energy such as 1050 Al. 
Both Fig. 10 and Table 2 depict that the fraction of GNDs and SSDs are 
nearly equal as the level of straining increases (e > 0.5) and hence both 
counterparts contribute almost proportionally to the strain hardening. 
As the dislocation density tends to saturate after the particular straining 
level, the majority of one-dimensional defects will become forest due to 
mutual interaction between the dislocations, directing the density of 
GNDs towards the saturation level. 

Estimation of dislocation density is important since the phenomenon 
of recovery, recrystallization and grain growth are driven by the amount 
of linear defects present in the deformed material [1]. The driving force 
for recrystallization is associated with the stored energy (ED) of the 
existing dislocations, which can be calculated as following [1]: 

ED = αρGb2 (8) 

In Eq. (8), the geometric constant α is calculated by Eq. (5), while the 
dislocation density is estimated either experimentally or by the nu
merical approaches mentioned above [7,8]. 

The calculated stored energies for experimentally obtained disloca
tion densities of materials B–I are presented in Fig. 11. The driving force 
of recrystallization tend to change between the 5.6 kJ/m3 and 343.3 kJ/ 
m3 for samples subjected to rolling reduction ranging between 5.3 and 
76%. It is obvious that with an increase of deformation level, the 
dislocation densities of investigated materials rise (see Fig. 7) and the ED 
values follow the same evolutionary pattern (see Figs. 7 and 11). The 
estimated stored energies by employing results of indentation or nu
merical approximations provide values comparable to ones reported 
elsewhere (ED ~ 104–105 J/m3) [10,54]. Taheri et al. [10] derived the 
deformation energy stored in a cold rolled Al by implementing various 
techniques such as TEM, EBSD, microindentation and Differential 
Scanning Calorimetry (DSC). The stored energy obtained by the DSC and 

Fig. 11. Variation of stored energies as a function of equivalent strain e in 1050 
Al alloy. The data for Al-0.05Si alloy are collected from elsewhere [54]. The red 
dotted line shows the trend of ED due to GNDs. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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microindentation showed a good agreement with each other, while the 
counterparts derived from EBSD and TEM were ~ 60% lower compared 
to the DSC/microhardness ED values. The difference was attributed to 
the fact that EBSD/TEM can only measure the GNDs [10]. In the current 
investigation, the amount of GNDs was ~50% of the total dislocation 
density, which is in a good agreement with the work of Taheri [10]. In 
addition to this, Huang and Humphreys [54] have estimated the stored 
energy from EBSD measurements, taking into account the evolution of 
both substructure and misorientation in Al-0.05Si alloy. The results 
obtained in this work [54] are in a good agreement with the ED values 
calculated exclusively for the GNDs of samples B–I (see Fig. 11). The 
dotted trendline of Fig. 11, which represents the change of stored energy 
with strain due the evolution of GNDs (estimated with a step size com
parable to the cell size), clearly demonstrates that a significant amount 
of SSDs contribute to stored energy even at lower straining levels. 

5. Conclusions 

The process of work hardening in cold rolled 1050 Al alloy was 
investigated by means of microindentation, orientation imaging mi
croscopy, and numerical approaches. The following conclusive remarks 
were withdrawn: 

The total dislocation density estimated by indentation is well 
correlated with the numerical results obtained by employing Kubin- 
Estrin (K-E) and a simplified version of this model. The K-E model fa
cilitates the estimation of mobile and forest dislocations, which enables 
understanding the partitioning of total dislocation density to geometri
cally necessary (GND) and statistically stored (SSD) counterparts. 

Orientation Imaging Microscopy is a powerful tool for the assessment 
of GNDs in deformed materials. Choosing the appropriate step size is of 
crucial importance since both noises associated with the very fine step 
size, or miscalculated misorientation due to a coarse-stepped measure
ment affect the results of GND calculation. Kamaya's technique seems to 
be an effective approach for the estimation of geometrically necessary 
dislocations while performing the assessment of GNDs with a fixed step 
size does not necessarily lead to a physically sound result. The step size 
of scans, used for the GND analysis, should be comparable to the size of 
the subcell structure, which tends to evolve during deformation. The 
numerical approach applied for a rough estimation of GND density was 
found to be reliable, compared to the experimental method. Hence, with 
the help of the simplified K-E method and formulated GND approxi
mation technique it is possible to study the deformed state of strained 
materials. These methods likewise enable determination of an appro
priate step size for EBSD scans. 

Results of our investigation suggest that the GNDs are trapped by 
grain boundaries and the total dislocation density is dominated by the 
density of SSDs at the early stages of deformation. As the strain exceeds 
the level of 0.5, the GNDs and SSDs nearly equally contribute to the 
strain hardening. 

The calculated stored energies for various straining levels clearly 
demonstrate that the indentation technique reflects the contribution of 
both SSDs and GNDs, while the EBSD reveals the contribution of GNDs 
only. 
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[5] J.J. Sidor, P. Chakravarty, J. Gy Bátorfi, P. Nagy, Q. Xie, J. Gubicza, Assessment of 
dislocation density by various techniques in cold rolled 1050 aluminum alloy, 
Metals 11 (10) (Sep. 2021) 1571, https://doi.org/10.3390/met11101571. 
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