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One of the most important questions in matroid optimization is to find disjoint common 
bases of two matroids. The significance of the problem is well-illustrated by the long list 
of conjectures that can be formulated as special cases. Bérczi and Schwarcz showed that 
the problem is hard in general, therefore identifying the borderline between tractable and 
intractable instances is of interest.
In the present paper, we study the special case when one of the matroids is a partition 
matroid while the other one is a graphic matroid. This setting is equivalent to the 
problem of packing rainbow spanning trees, an extension of the problem of packing 
arborescences in directed graphs which was answered by Edmonds’ seminal result on 
disjoint arborescences. We complement his result by showing that it is NP-complete to 
decide whether an edge-colored graph contains two disjoint rainbow spanning trees. Our 
complexity result holds even for the very special case when the graph is the union of two 
spanning trees and each color class contains exactly two edges. As a corollary, we give 
a negative answer to a question on the decomposition of oriented k-partition-connected 
digraphs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let M = (E, r) be a matroid over ground set E with rank function r. The covering number of M , denoted by β(M), is 
the minimum number of independent sets needed to cover its ground set. The matroid partition theorem of Edmonds 
and Fulkerson [12] implies that β(M) = max{�|X |/r(X)� : ∅ �= X ⊆ E}. Analogously, given two matroids M1 = (E, r1) and 
M2 = (E, r2), the covering number β(M1, M2) of their intersection is the minimum number of common independent sets 
needed to cover E . It is not difficult to see that β(M1, M2) ≤ β(M1) · β(M2) holds, but this gives a very weak upper bound 
on the covering number of the intersection. Thus, a central problem of matroid theory is to find upper bounds on β(M1, M2)

in terms of β(M1) and β(M2).
By replacing one of the matroids by a general simplicial complex, Aharoni and Berger [1] provided a generalization of 

Edmonds’ matroid intersection theorem. As an application, they showed that β(M1, M2) ≤ 2 max{β(M1), β(M2)}, that is, the 
covering number of the intersection is at most twice the maximum of the covering numbers of the matroids. Establishing 
a constant multiplicative gap between the lower and the upper bounds on the covering number of the intersection of 
matroids was a significant milestone. Nevertheless, no example is known for which the true value would be even close to 
the upper bound. In fact, Aharoni and Berger conjectured that if M1 and M2 are loopless matroids on the same ground set, 
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then β(M1, M2) ≤ max{β(M1), β(M2)} + 1. The conjecture was shown to be true when max{β(M1), β(M2)} ≤ 2 [2], and no 
counterexample is known even for the stronger statement β(M1, M2) ≤ max{β(M1), β(M2) + 1}.

A packing counterpart of the problem of covering by independent sets is to find disjoint common bases of two matroids. 
The packing number of a matroid M , denoted by γ (M), is the maximum number of its pairwise disjoint bases. The matroid 
partition theorem of Edmonds and Fulkerson [12] implies γ (M) = min{	|E − X |/(r(E) − r(X))
 : X ⊆ E, r(X) < r(E)}. Given 
two matroids M1 = (E, r1) and M2 = (E, r2), the packing number γ (M1, M2) of their intersection is the maximum number 
of pairwise disjoint common bases. An easy upper bound for the packing number of the intersection is γ (M1, M2) ≤
min{γ (M1), γ (M2)}. However, unlike in the case of the covering number, no good bounds are known from the opposite 
direction, and giving lower bounds for γ (M1, M2) in terms of γ (M1) and γ (M2) is an intriguing open problem. To be more 
precise, it might easily happen that the two matroids have no common bases at all; an easy example is when each element 
is a loop in at least one of them. Therefore, it is common to concentrate on instances where the ground set partitions into 
bases in both matroids.

It is worth mentioning that, by a result of Harvey, Király, and Lau [16], one of the matroids can be assumed to be 
a partition matroid, and Edmonds’ matroid intersection theorem [10] implies that γ (M1, M2) ≥ 1. Showing the existence 
of two common bases is already challenging, and it requires non-trivial ideas even in special cases such as proper edge-
colorings of complete graphs [6] or Rota’s basis conjecture [14]. An analogous finding for three common bases would 
be a landmark result towards answering Woodall’s conjecture [33]. In [1], Aharoni and Berger considered a relaxation of 
the problem in which disjoint common spanning sets are required instead of bases, and showed that there always exist 
	min{γ (M1), γ (M2)}/2
 pairwise disjoint common spanning sets of M1 and M2.

Previous work Bérczi and Schwarcz [4] proved that there is no algorithm which decides if the ground set of two matroids 
can be partitioned into common bases by using a polynomial number of independence queries. Their result implies that 
determining the exact values of β(M1, M2) and γ (M1, M2) for two matroids is hard under the rank oracle model. Never-
theless, the hardness of the abstract problem has no implications on the complexity of its special cases.

A particularly well-investigated special case of packing common bases is the intersection of the graphic matroid of a 
complete graph Kn on n vertices and a partition matroid. By thinking of the partition classes as color classes, this problem 
can also be interpreted as finding disjoint rainbow spanning trees of an edge-colored complete graph. Here, a spanning tree 
is called rainbow colored if no two of its elements have the same color. Brualdi and Hollingsworth [6] conjectured that 
if k ≥ 3 and each color class forms a perfect matching, then the edge set of the complete graph K2k can be partitioned 
into rainbow spanning trees. A strengthening was proposed by Kaneko, Kano, and Suzuki [21], stating that for any proper 
edge-coloring of Kn with n ≥ 5, there exists 	n/2
 disjoint rainbow spanning trees. Constantine [8] suggested that the 
spanning trees in the Brualdi-Hollingsworth conjecture can be chosen to be isomorphic to each other. Recently, Glock, 
Kühn, Montgomery, and Osthus [15] verified the conjecture as well as its strengthening by Constantine for large enough 
values of k.

The existence of disjoint rainbow spanning trees was also considered for not necessarily proper edge-colorings. Akbari 
and Alipour [3] showed that each Kn that is edge-colored such that no color appears more than n/2 times contains at least 
two disjoint rainbow spanning trees. Under the same assumption, Carraher, Hartke, and Horn [7] verified the existence of 
�(n/ log n) disjoint rainbow spanning trees.

In contrast to the extensive list of results on complete graphs, not much is known for general graphs. In the past years, 
arborescence packing problems have seen renewed interest due to the fact that branchings form the common independent 
sets of a graphic matroid and a partition matroid, hence all positive results characterize algorithmically tractable instances 
of the problem of packing common bases. A milestone result of this area is Edmonds’ arborescences theorem [11], char-
acterizing the existence of k pairwise disjoint arborescences in a directed graph. Bérczi and Schwarcz [5] studied rainbow 
circuit-free colorings of binary matroids in general, and showed that if an n-element rank r binary matroid M is colored 
with exactly r colors, then M either contains a rainbow colored circuit or a monochromatic cocircuit. Such a coloring can 
be identified with a so-called reduction to a partition matroid, which is closely related to the problem of packing rainbow 
spanning trees. For further details on recent developments, see e.g. [13,17,18,25,29].

Our results Despite impressive achievements, the complexity of finding disjoint rainbow spanning trees remained an in-
triguing open question that was raised by many, see e.g. [5,24].

Packing Rainbow Spanning Trees

Input: Edge-colored graph G = (V , E) and positive integer k ∈Z+ .
Goal: Find k pairwise disjoint rainbow spanning trees.

Our first main result is a proof showing that Packing Rainbow Spanning Trees is NP-complete even when k = 2, the graph 
is the union of two spanning trees, and each color class contains exactly two edges.1 Therefore, determining β(M1, M2) and 
γ (M1, M2) is hard even when M1 is a graphic matroid and M2 is a partition matroid.

1 Just before the submission of the present paper, Hörsch, Kaiser, and Kriesell [19] published an independent work that considers analogous problems.
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As a corollary, we give a negative answer to a problem that appeared in [26]. A graph G = (V , E) is called k-partition-
connected if for every partition P of V there are at least k(|P| − 1) edges in E that connect different classes of P . Tutte [31]
showed that this is equivalent to the property that G can be decomposed into k connected spanning subgraphs.

Decomposition of k-partition-connected Digraphs

Input: Digraph D = (V , A) whose underlying graph is k-partition-connected in which all but one vertex have in-degree 
at least k, the remaining vertex r ∈ V has in-degree 0.
Goal: Find k weakly connected spanning subgraphs of D so that every vertex v ∈ V − r has positive in-degree in each 
of them.

The problem can be rephrased using matroid terminology as follows. Let M1 be the graphic matroid of the underlying 
undirected graph of D , and let M2 be the partition matroid where each class consists of the set of edges of D entering 
a given vertex v ∈ V − r. Is it true that if both M1 and M2 contain k disjoint spanning sets, then there are k disjoint 
common spanning sets? When the degree of each vertex except r is exactly k, then D is in fact rooted k-edge-connected, 
and the existence of k weakly connected spanning subgraphs follows from Edmonds’ disjoint arborescences theorem [11]. 
Unfortunately, this seems to be the only tractable case, as we show that deciding the existence of k subgraphs satisfying the 
conditions of the problem is NP-complete.

Given a matroid M = (E, I) whose ground set is partitioned into two-element subsets called pairs, a set X ⊆ E is called 
a parity set if it is the union of pairs. The matroid parity problem, introduced by Lawler [22], asks for a parity independent 
set of maximum size. Though matroid parity cannot be solved efficiently in general matroids [20,23], Lovász [23] developed 
a polynomial time algorithm for linear matroids that is applicable if a linear representation is available. The graphic matroid 
of a graph is linear whose representation is easy to construct, therefore the following arises naturally.

Packing Parity Spanning Trees

Input: Graph G = (V , E) whose edges are partitioned into pairs and positive integer k ∈Z+ .
Goal: Find k pairwise disjoint parity spanning trees.

We prove hardness of Packing Parity Spanning Trees by reduction from Packing Rainbow Spanning Trees. Interestingly, 
the direction of the reduction between the two problems is just the opposite of the one appearing in [4] where the hardness 
of packing disjoint common bases was proved by reduction from packing parity bases.

Paper organization The rest of the paper is organized as follows. Basic definitions and notation are given in Section 2. The 
complexity of Packing Rainbow Spanning Trees is discussed in Section 3. Finally, we prove hardness of Decomposition of 
k-partition-connected digraphs in Section 4.1 and of Packing Parity Spanning Trees in Section 4.2.

2. Preliminaries

General notation We denote the set of positive integers by Z+ . For a positive integer k, we use [k] to denote the set 
{1, . . . , k}. Given a ground set E together with subsets X, Y ⊆ E , the difference of X and Y is denoted by X − Y . If Y consists 
of a single element y, then X −{y} and X ∪{y} are abbreviated as X − y and X + y, respectively. A directed graph G = (V , E)

is weakly connected if its underlying undirected graph is connected.

Matroids Although the results are presented using graph terminology, we give a brief introduction into matroid theory; for 
further details, the interested reader is referred to [28]. Matroids were introduced independently by Whitney [32] and by 
Nakasawa [27]. A matroid M = (E, I) is defined by its ground set E and its family of independent sets I ⊆ 2E that satisfies 
the independence axioms: (I1) ∅ ∈ I , (I2) X ⊆ Y , Y ∈ I implies X ∈ I , and (I3) X, Y ∈ I, |X | < |Y | implies that there exists 
e ∈ Y − X such that X + e ∈ I . The maximal independent subsets of E are called bases. A set Z ⊆ E is a spanning set of M if 
it contains a basis of the matroid.

A partition matroid is a matroid N = (E, J ) such that J = {X ⊆ E : |X ∩ Ei | ≤ 1 for i ∈ [q]} for some partition E = E1 ∪
· · ·∪ Eq .2 For a graph G = (V , E), the graphic matroid M = (E, I) of G is defined as I = {F ⊆ E : F does not contain a cycle}, 
that is, a subset F ⊆ E is independent in M precisely if it is a forest in G .

Rainbow spanning trees Let G = (V , E) be an edge-colored graph. A subset F ⊆ E of edges is rainbow colored if no two edges 
share the same color. For short, we call a rainbow colored spanning tree of G a rainbow spanning tree. Let M1 denote the 
graphic matroid of G and let M2 be the partition matroid defined by the color classes of the coloring. Then the rainbow 

2 In general, the upper bounds might be different for the different partition classes. As all the partition matroids used in the paper have all-ones upper 
bounds, we make this restriction without explicitly mentioning it.
3
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Fig. 1. An illustration of the proof of Theorem 1. Clause C� contains variables xi , x j and xk . Relevant color classes are represented by numbers. Thick and 
thin edges correspond to rainbow spanning trees T1 and T2, respectively, when the value of xi is set to true and the values of x j and xk are set to false.

forests correspond to the common independent sets of M1 and M2. Therefore, the existence of a single rainbow spanning 
tree is characterized by Edmonds’ matroid intersection theorem [10], which gives the following: there exists a rainbow 
spanning tree in G if and only if for any partition P of V , the edges going between the classes of P use at least |P| − 1
colors.

3. Packing rainbow spanning trees

This section is devoted to the proof of the main result of the paper, the hardness of Packing Rainbow Spanning Trees. 
The proof is by reduction from Monotone Not-All-Equal 3-Sat in which each variable appears exactly four times. In such 
a problem, we are given a CNF formula in which no negated variable appears, all clauses contain exactly three distinct 
variables, and each variable appears exactly four times, and the goal is to decide whether there is a truth assignment such 
that for each clause at least one literal evaluates to true and at least one to false, respectively. This problem is known to be 
NP-complete, see e.g. [9,30].

Theorem 1. Packing Rainbow Spanning Trees is NP-complete even when k = 2, the graph is the union of two spanning trees, and 
each color class contains exactly two edges.

Proof. Let � = (U , C) be an instance of Monotone Not-All-Equal 3-Sat where U = {x1, . . . , xn} is the set of variables and 
C = {C1, . . . , Cm} is the set of clauses, and each variable xi is contained in exactly four members of C . We construct an 
instance of Packing Rainbow Spanning Trees as follows.

For each variable xi , we add a complete graph on vertices {ui
p , vi

p, wi
p, zi

p} to G for p ∈ [4], that is, for each variable four 
complete graphs on four vertices are added. For each clause C� , we add a triangle on vertices {c�

1, c
�
2, c

�
3}. Assume that C�

contains variables xi1 , xi2 and xi3 . If xiq is the jth occurrence of the variable xiq with respect to the ordering of the clauses, 
then we add an edge between z

iq

j and c�
q for q ∈ [3]. Finally, we add an extra vertex r and connect it to ui

j with two parallel 
edges for i ∈ [n], j ∈ [4]; see Fig. 1 for an example. Let G = (V , E) denote the graph thus arising. Note that the number of 
vertices is |V | = 16 · n + 3 · m + 1, while the number of edges is |E| = 32 · n + 6 · m. It is not difficult to check that the edge 
set of G can be decomposed into two spanning trees.

Now we define an edge-coloring of G in which each color class consists of exactly two edges. The pairs of parallel 
edges leaving r form distinct color classes. Consider a variable xi , and let C�1 , C�2 , C�3 and C�4 be the clauses containing 
xi . Furthermore, let c

�p
qp be the neighbor of zi

p in the triangle corresponding to clause C�p for p ∈ [4]. Then the coloring 

contains the pairs {wi
p zi

p, zi
pc

�p
qp }, {vi

p zi
p, ui

p+1 vi
p+1}, {ui

p zi
p, vi

p wi
p} and {ui

p wi
p, c�p

qp c
�p
qp+1} as color classes, where indices are 

meant in a cyclic order. It is worth mentioning that among these, only the first two pairs play a role in the reduction, and 
the remaining two are added only to ensure that each color class has size exactly two.

We claim that � has a not-all-equal truth assignment if and only if the edge-set of G can be partitioned into two 
rainbow spanning trees. To see this, we prove the two directions separately.

Claim 2. If � has a not-all-equal truth assignment, then the edge-set of G can be partitioned into two rainbow spanning trees.

Proof. Take an assignment of truth values to the variables such that each clause contains at least one true and one false 
variable. We construct two spanning trees T1 and T2 of G as follows.
4
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Firstly, for each pair of parallel edges leaving r, we add one of them to T1. Let xi be a variable, C�1 , C�2 , C�3 and C�4 be 
the clauses containing xi , and c

�p
qp be the neighbor of zi

p in the triangle corresponding to clause C�p for p ∈ [4]. If xi is a 

true variable, then we add the edges ui
p wi

p , ui
p zi

p , vi
p zi

p and zi
pc

�p
qp to T1 for p ∈ [4]. If xi is a false variable, then we add the 

edges ui
p vi

p , vi
p wi

p , wi
p zi

p , and c�p
qp c

�p
qp+1 to T1 for p ∈ [4]. Finally, define T2 := E − T1.

Observe that both T1 and T2 are rainbow colored by definition, hence it remains to show that both T1 and T2 are 
spanning trees. As each clause of � contains three variables and each variable is contained in exactly four clauses, we have 
4 · n = 3 · m. Since |Ti | = 20 · n = 16 · n + 3 · m = |V | − 1, it suffices to show that Ti forms a connected graph on V for 
i ∈ {1, 2}, or equivalently, for any vertex v ∈ V , there exists a v − r path in Ti . We show this for T1; the proof for T2 goes 
similarly.

The statement clearly holds for vertices of the K4 subgraphs corresponding to the variables. Let C� be a clause and, for 
q ∈ [3], let xiq be the variable in C� such that c�

q has a neighbor in one of the complete graphs on four vertices corresponding 

to variable xiq , denoted by z
iq
pq . If xiq is a true variable, then the edge z

iq
pq c�

q is in T1, hence c�
q can reach r in T1. If xiq is a 

false variable, then the edge c�
qc�

q+1 is in T1. Now if xiq+1 is a true variable, then the edge z
iq+1
pq+1 c�

q+1 is in T1, hence c�
q can 

reach r in T1 through c�
q+1. Otherwise, the edge c�

q+1c�
q+2 is in T1. As each clause contains at least one true variable, xiq+2

necessarily has true value, and so the edge z
iq+2
pq+2 c�

q+2 is in T1, hence c�
q can reach r in T1 through c�

q+1 and then c�
q+2. This 

concludes the proof of the claim. �
Claim 3. If the edge-set of G can be partitioned into two rainbow spanning trees, then � has a not-all-equal truth assignment.

Proof. Take a partitioning of the edge-set of G into two rainbow spanning trees T1 and T2. Let xi be a variable, C�1 , C�2 , C�3

and C�4 be the clauses containing xi , and c�p
qp be the neighbor of zi

p in the triangle corresponding to clause C�p for p ∈ [4].
We claim that the edges zi

pc
�p
qp are all contained in the same spanning tree T1 or T2; the truth assignment will be 

based on this distinction. Without loss of generality, let us assume that zi
1c�1

q1 is in T1. By the definition of the color classes, 
this implies that wi

1zi
1 is in T2. Since ui

1z1
1 and vi

1 wi
1 have the same color, they are contained in different spanning trees. 

Any partitioning of a complete graph on four vertices into two spanning trees consists of two paths of length three, hence 
necessarily ui

1 vi
1 is in T2 and vi

1zi
1 is in T1. The latter implies that ui

2 vi
2 is in T2 which, using similar arguments, shows 

that zi
2c�2

q2 and vi
2zi

2 are in T1. Continuing this, we get that ui
3 vi

3 is in T2, zi
3c�3

q3 and vi
3zi

3 are in T1, ui
4 vi

4 is in T2, and zi
4c�4

q4

and vi
4zi

4 are in T1. This proves that each of the edges zi
pc

�p
qp are all contained in the same spanning tree, namely T1 in this 

case.
We define a truth assignment as follows. If the edges zi

p c
�p
qp are contained in T1, then we set the value of xi to true, 

otherwise we set it to false. Let C� be a clause and for q ∈ [3], let xiq be the variable in C� such that c�
q has a neighbor in 

one of the complete graphs on four vertices corresponding to variable xiq , denoted by z
iq
pq . As both T1 and T2 are spanning 

trees, we have Ti ∩ {c�
1zi1

q1 , c
�
2zi2

q2 , c
�
3zi3

q3 } �= ∅ for i ∈ {1, 2}, meaning that each clause contains at least one true and at least 
one false variable as required. �

The theorem follows by Claims 2 and 3. �
4. Further results

As an application of Theorem 1, in this section we prove hardness of Decomposition of k-partition-connected Digraphs

and Packing Parity Spanning Trees.

4.1. Decomposition of k-partition-connected digraphs

In matroid terms, Decomposition of k-partition-connected Digraphs aims at finding pairwise disjoint common spanning 
sets of two matroids, one of them being a graphic matroid of some graph G = (V , E) while the other is a partition matroid. 
When the in-degree of each vertex v ∈ V − r is exactly k, then the existence of k pairwise disjoint arborescences rooted 
at r follows by Edmonds’ disjoint arborescences theorem [11], and these arborescences are actually common spanning sets 
of the underlying two matroids. However, we now show that deciding the existence of k disjoint common spanning sets is 
hard in general.

Theorem 4. Decomposition of k-partition-connected Digraphs is NP-complete even when k = 2.
5
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Fig. 2. An illustration of Theorem 4.

Proof. Consider an instance of Packing Rainbow Spanning Trees where the graph G = (V , E) is the union of two spanning 
trees, and each color class contains exactly two edges. For ease of discussion, we denote the set of colors by C . We construct 
an instance D = (U , F ) of Decomposition of 2-partition-connected Digraphs as follows.

Let r ∈ V be an arbitrary vertex of G . As E can be decomposed into two spanning trees, G admits an orientation in 
which each vertex has in-degree exactly two, except r having in-degree zero. Let 

−→
G = (V , 

−→
E ) denote the digraph obtained 

by taking such an orientation. We add a copy of r to U that, by abuse of notation, we denote also by r. For each vertex 
v ∈ V − r, we add three vertices vin

1 , vin
2 , vout to U and, for i ∈ {1, 2}, add two parallel arcs from vin

i to vout . Furthermore, if 
u1 v and u2 v are the two arcs entering v in 

−→
G , then we add the arcs uout

1 vin
1 and uout

2 vin
2 to F if u1, u2 �= r, while if one of 

them (or even both), say u1, is r then we add the arc rvin
1 instead. This way, each edge of G has a corresponding ‘image’ in 

D . Finally, if the edges uv, xy ∈ E formed a color class c ∈ C in G and the corresponding arcs in D are uout vin
p and xout yin

q

for some p, q ∈ [2], then we add a vertex wc to U together with arcs wc vin
p , wc yin

q and two loops on wc ; see Fig. 2 for an 
example.

We claim that the edge-set of G can be decomposed into two rainbow spanning trees if and only if D can be partitioned 
into two weakly connected spanning subgraphs such that every vertex u ∈ U − r has positive in-degree in both of them. To 
see this, we prove the two directions separately.

Claim 5. If the edge-set of G can be partitioned into two rainbow spanning trees, then D can be partitioned into two weakly connected 
spanning subgraphs such that every vertex u ∈ U − r has positive in-degree in both of them.

Proof. Take a partitioning of the edge-set of G into two rainbow spanning trees T1 and T2. For i ∈ {1, 2}, define Fi as 
follows. Take the arcs of D corresponding to the edges of Ti . Add one arc from each parallel pair going between vin

i and 
vout for i ∈ {1, 2}, v ∈ V − r. For each color class c ∈ C , add one of the loops on wc to Fi . Finally, since exactly one edge 
of c appeared in Ti , exactly one of the two neighbors of wc has in-degree zero in Fi so far; add the arc leaving wc that 
goes to this vertex. It is easy to check that Fi is a weakly connected spanning subgraph and each vertex U − r has positive 
in-degree in it, concluding the proof of the claim. �
Claim 6. If D can be partitioned into two weakly connected spanning subgraphs such that every vertex u ∈ U − r has positive in-degree 
in both of them, then the edge-set of G can be partitioned into two rainbow spanning trees.

Proof. Take a partitioning of D into two weakly connected spanning subgraphs F1 and F2 such that every vertex u ∈ U − r
has positive in-degree in both of them. For each color class c ∈ C , the vertex wc is connected to the rest of D through two 
outgoing arcs, hence one of them is contained in F1 while the other is contained in F2. This implies two things. Firstly, for 
i ∈ {1, 2}, the set of edges Ti ⊆ E of G whose images are contained in Fi form a connected subgraph of G . Secondly, for the 
two edges in color class c, the image of one is in F1 while the image of the other is in F2. Thus, one member of c is in T1
6
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Fig. 3. An illustration of Theorem 7.

while the other is in T2. As |E| = 2 · |V | − 2, T1 and T2 necessarily partitions the edge-set of G into rainbow spanning trees 
as required. �

The theorem follows by Theorem 1 and Claims 5 and 6. �
4.2. Packing parity spanning trees

In the parity base packing problem we are given a matroid M whose ground-set is partitioned into two-element subsets, 
and the goal is to find pairwise disjoint parity bases of M . The problem was shown to be hard in [4], which in turn implied 
the hardness of packing disjoint common bases of two matroids. However, the proof there did not settle the complexity of 
packing parity bases in graphic matroids, which remained an interesting open problem.

Now we close this gap by showing that the problem remains hard in graphic matroids. The reduction is from Packing 
Rainbow Spanning Trees; note that the two problems are orthogonal in the sense that the members of a pair should be 
contained in the same spanning tree in Packing Parity Spanning Trees, while in different spanning trees in Packing Rainbow 
Spanning Trees.

Theorem 7. Packing Parity Spanning Trees is NP-complete even when k = 2 and the graph is the union of two spanning trees.

Proof. Consider an instance of Packing Rainbow Spanning Trees where the graph G = (V , E) is the union of two spanning 
trees, and each color class contains exactly two edges. For ease of discussion, we denote the set of colors by C . We construct 
an instance G ′ = (V ′, E ′) of Packing Parity Spanning Trees as follows.

We extend G by adding a new vertex wc for each color class c ∈ C . Furthermore, if the color class c contains the edges 
e and f , then we add an edge ec between wc and one of the end vertices of e, and an edge fc between wc and one of 
the end vertices of f . Finally, we define the pairs of e and f to be ec and fc , respectively; see Fig. 3 for an example. Let 
G ′ = (V ′, E ′) denote the graph thus obtained. Note that V ⊆ V ′ and E ⊆ E ′ .

Note that since G is the union of two spanning trees, the same holds for G ′ . Furthermore, it is routine to check that T ′
1

and T ′
2 give a partitioning of the edge-set of G ′ into two parity spanning trees if and only if T1 := T ′

1 ∩ E and T2 := T ′
2 ∩ E

give a partitioning of the edge-set of E into two rainbow spanning trees, hence the theorem follows. �
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