
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

8-15-2021 

Differential classification of states of consciousness using Differential classification of states of consciousness using 

envelope- and phase-based functional connectivity envelope- and phase-based functional connectivity 

Catherine Duclos 

Michael S Avidan 

et al. 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=


NeuroImage 237 (2021) 118171 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Differential classification of states of consciousness using envelope- and 

phase-based functional connectivity 

Catherine Duclos a , b , Charlotte Maschke 

a , c , Yacine Mahdid 

a , c , Kathleen Berkun 

d , 

Jason da Silva Castanheira 

b , c , Vijay Tarnal e , Paul Picton 

e , Giancarlo Vanini e , 

Goodarz Golmirzaie 

e , Ellen Janke 

e , Michael S. Avidan 

f , Max B. Kelz g , Lucrezia Liuzzi h , 

Matthew J. Brookes i , George A. Mashour e , Stefanie Blain-Moraes a , b , ∗ 

a Montreal General Hospital, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC, Canada 
b School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler Montreal, Quebec H3G 1Y5, Canada 
c Integrated Program in Neuroscience, McGill University, 3801 University Street, Montreal Quebec H3A 2B4, Canada 
d Section on Behavioral Neuroscience, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 United States 
e Center for Consciousness Science and Department of Anesthesiology, 1301 Catherine Street, 4102 Medical Science 1, University of Michigan Medical School, Ann 

Arbor, MI 48109 United States 
f Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110 United States 
g Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 United States 
h Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, 

Bethesda, MD 20892 United States 
i Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD United Kingdom 

a r t i c l e i n f o 

Keywords: 

Electroencephalography 

Consciousness 

Connectivity 

Network 

Anesthesia 

Machine learning 

a b s t r a c t 

The development of sophisticated computational tools to quantify changes in the brain’s oscillatory dynamics 

across states of consciousness have included both envelope- and phase-based measures of functional connectivity 

(FC), but there are very few direct comparisons of these techniques using the same dataset. The goal of this study 

was to compare an envelope-based (i.e. Amplitude Envelope Correlation, AEC) and a phase-based (i.e. weighted 

Phase Lag Index, wPLI) measure of FC in their classification of states of consciousness. Nine healthy participants 

underwent a three-hour experimental anesthetic protocol with propofol induction and isoflurane maintenance, in 

which five minutes of 128-channel electroencephalography were recorded before, during, and after anesthetic- 

induced unconsciousness, at the following time points: Baseline; light sedation with propofol ( Light Sedation); deep 

unconsciousness following three hours of surgical levels of anesthesia with isoflurane (Unconscious); five minutes 

prior to the recovery of consciousness (Pre-ROC) ; and three hours following the recovery of consciousness (Re- 

covery) . Support vector machine classification was applied to the source-localized EEG in the alpha (8–13 Hz) 

frequency band in order to investigate the ability of AEC and wPLI (separately and together) to discriminate i) the 

four states from Baseline ; ii) Unconscious ( “deep ” unconsciousness) vs. Pre-ROC ( “light ” unconsciousness); and iii) 

responsiveness ( Baseline, Light Sedation, Recovery) vs. unresponsiveness ( Unconscious, Pre-ROC) . AEC and wPLI 

yielded different patterns of global connectivity across states of consciousness, with AEC showing the strongest 

network connectivity during the Unconscious epoch, and wPLI showing the strongest connectivity during full 

consciousness (i.e., Baseline and Recovery ). Both measures also demonstrated differential predictive contributions 

across participants and used different brain regions for classification. AEC showed higher classification accuracy 

overall, particularly for distinguishing anesthetic-induced unconsciousness from Baseline (83.7 ± 0.8%). AEC also 

Abbreviations: AEC, amplitude envelope correlation; AAL, Automated Anatomical Labeling; dwPLI, debiased weighted phase lag index; FC, functional connec- 

tivity; LDA, linear discriminant analysis; LOSO, leave-one-subject-out; LRTC, long-range temporal correlations; MCS, minimally conscious state; ROC, recovery of 

consciousness; ROI, region of interest; SVM, support vector machine; UWS, unresponsive wakefulness syndrome; wPLI, weighted phase lag index. 
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showed stronger classification accuracy than wPLI when distinguishing Unconscious from Pre-ROC (i.e., “deep ”

from “light ” unconsciousness) (AEC: 66.3 ± 1.2%; wPLI: 56.2 ± 1.3%), and when distinguishing between respon- 

siveness and unresponsiveness (AEC: 76.0 ± 1.3%; wPLI: 63.6 ± 1.8%). Classification accuracy was not improved 

compared to AEC when both AEC and wPLI were combined. This analysis of source-localized EEG data demon- 

strates that envelope- and phase-based FC provide different information about states of consciousness but that, 

on a group level, AEC is better able to detect relative alterations in brain FC across levels of anesthetic-induced 

unconsciousness compared to wPLI. 

1. Introduction 

The application of network neuroscience to non-invasive brain imag- 

ing techniques has broadened our understanding of the anatomical and 

functional brain architecture that underpins conscious experience. A 

large sub-domain of these advances has been driven by functional con- 

nectivity (FC) and graph theory measures applied to functional neu- 

roimaging (e.g. fMRI) and neurophysiological datasets (e.g. EEG, MEG). 

As opposed to fMRI-based connectome studies, which assess the statis- 

tical dependency of signal amplitudes, studies reconstructing the brain 

connectome using neurophysiological data have used two modes of in- 

trinsic coupling: envelope coupling (also referred to as amplitude cou- 

pling), which probes the temporal relationship between the frequency 

envelope of two signals, and phase coupling, which measures the phase 

coherence between two signals ( Engel et al., 2013 ; Sadaghiani and 

Wirsich, 2020 ). These distinct coupling modes seem to differ in their 

spectral and spatial signatures, dynamics, mechanisms, and functions 

( Engel et al., 2013 ). 

Assessing the amplitude envelope of brain signals has been used to 

probe long-range temporal correlations (LRTC) in the brains of healthy 

individuals across various frequency bands ( Linkenkaer-Hansen et al., 

2004 ; Nikulin and Brismar, 2004 , 2005 ; Berthouze et al., 2010 ; 

Fedele et al., 2016 ), but has also shown pathological alterations of LRTC 

in psychiatric disorders, Alzheimer’s disease, and epilepsy ( Linkenkaer- 

Hansen et al., 2005 ; Monto et al., 2007 ; Slezin et al., 2007 ; Montez et al., 

2009 ; Bornas et al., 2015 ). In the context of consciousness research, a 

recent study found that sevoflurane-induced unconsciousness was as- 

sociated with increased LRTC in the beta bandwidth in frontocentral 

regions ( Thiery et al., 2018 ). Combining beta LRTC with alpha ampli- 

tude over occipital electrodes classified the state of consciousness versus 

unconsciousness with an accuracy of 80%. 

Phase-coupling modes have also been used to characterize dif- 

ferent states of consciousness, or predict recovery. Chennu and col- 

leagues characterized the changes in the alpha-band network con- 

structed with the debiased weighted phase lag index (dwPLI) in unre- 

sponsive wakefulness syndrome (UWS) and minimally conscious state 

(MCS), when compared to healthy subjects ( Chennu et al., 2014 ), and 

highlighted the diagnostic value of dwPLI for distinguishing UWS from 

MCS ( Chennu et al., 2017 ). Recently, Kustermann et al. (2020) showed 

that in the first 24 h following coma due to cardiac arrest, graph theoret- 

ical properties (i.e., clustering coefficient, modularity and path length) 

of the functional network constructed using the dwPLI are associated 

with long-term outcome. Other studies have showed changes in con- 

nectivity induced by pharmacological sedatives ( Blain-Moraes et al., 

2016, 2017; Li et al., 2019; Ranft et al., 2016; Sripad et al., 2020; Vli- 

sides et al., 2019 ). Studies comparing sleep to wakefulness or anesthe- 

sia have also shown that phase-based coupling can detect region- and 

frequency-specific changes in connectivity across consciousness states, 

and may deepen our understanding of the neural correlates of conscious- 

ness ( Mikulan et al., 2018 ; Imperatori et al., 2019 ; Banks et al., 2020 ; 

Imperatori et al., 2020 ). 

Although patterns of FC across the brain may provide powerful in- 

sight into the neural correlates of consciousness, envelope- and phase- 

coupling modes have been studied– for the most part – in a mutually 

exclusive way. Furthermore, task-based connectivity studies have relied 

heavily on phase-coupling measures, while resting state connectivity 

studies have used envelope-coupling with increasing prevalence, creat- 

ing a disconnect in the scientific literature bearing on neurophysiologi- 

cal FC ( Sadaghiani and Wirsich, 2020 ). As a result, a lack of consensus 

persists around which coupling mode is best suited for identifying the 

neural correlates of consciousness. Therefore, this study aims to com- 

pare two commonly-used FC metrics – an envelope-based measure (i.e. 

amplitude envelope correlation, or AEC) and a phase-based measure (i.e. 

wPLI) – in their classification of different states of consciousness derived 

from the same set of source-localized data across anesthetic-induced 

alterations of consciousness. Since envelope- and phase-coupling are 

thought to potentially correspond to distinct modes of information inte- 

gration within the brain ( Engel et al., 2013 ), we hypothesized that these 

metrics would draw from different brain regions in their classification 

of consciousness, and would perform differently in the classification of 

1) different consciousness states before, during and after anesthesia, 2) 

varying depths of anesthetic-induced unconsciousness (light vs. deep), 

and 3) responsive and unresponsive states. 

2. Material and methods 

This study is a subset of the Reconstructing Consciousness and Cogni- 

tion (ReCCognition) study (NCT01911195), conducted at the University 

of Michigan Medical School and approved by the Institutional Review 

Board (HUM0071578). All participants provided written informed con- 

sent prior to the onset of the experiment. The full protocol can be found 

in a previous publication ( Maier et al., 2017 ). 

2.1. Study population 

This study included 9 healthy volunteers (5 men; 24.4 ± 1.0 years 

old), a subset of the ReCCognition study ( Maier et al., 2017 ) recruited 

at the University of Michigan. All participants were considered class 1 

or 2 physical status by the American Society of Anesthesiologists, had a 

body mass index below 30, an airway classification of a Mallampati 1 

or 2, and no other factors predictive of difficult airways for anesthetic 

administration. The following criteria excluded volunteers from partici- 

pating: pregnancy, reactive airway disease, gastroesophageal reflux, car- 

diac conduction abnormalities, asthma, epilepsy, a history of obstructive 

sleep apnea, neurologic or psychiatric disorders, family history of issues 

with anesthesia, and any current or past use of psychotropic medica- 

tions. Urine and blood samples confirmed that all participants were not 

currently pregnant and/or using illicit drugs. 

2.2. Anesthetic protocol 

At least two fully trained anesthesiologists were present through- 

out the anesthetic protocol. Participants were pre-oxygenated with a 

face mask and received intravenous infusions of propofol in increas- 

ing amounts over three 5-minute periods for slow anesthetic induction 

(100 𝜇g/kg/min, 200 𝜇g/kg/min, and 300 𝜇g/kg/min, respectively). 

After the 15-minute administration of propofol, participants were ad- 

ministered isoflurane at age-adjusted 1.3 minimum alveolar concentra- 

tion via laryngeal mask inhalation for 3 h. To maintain arterial pressure, 

phenylephrine was titrated as needed. Thirty-minutes prior to ceasing 

isoflurane, 4 mg of ondansetron was administered to prevent nausea. 

Throughout the experiment, participants’ motor responsiveness was 

assessed with an auditory loop instructing them to squeeze their 
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Fig. 1. Experimental design 

Timeline of anesthetic protocol and EEG data epochs. Rectangles represent the five 5-min EEG epochs from which functional networks were constructed using an 

envelope- and a phase-based measure of functional connectivity. Blue rectangles represent epochs of responsiveness, while orange rectangles represent epochs of 

unresponsiveness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

left/right hand twice, every 30 s, with the right and left command ran- 

domized, as in previous studies ( Purdon et al., 2013 ; Blain-Moraes et al., 

2015 , 2017 ; Vlisides et al., 2017 ; Kim et al., 2018 ; Thiery et al., 2018 ; 

Nadin et al., 2020 ; Duclos et al., 2021 ). Loss of consciousness (LOC) 

was estimated through loss of responsiveness, which was defined as 

the first time that a subject failed to respond to two consecutive com- 

mands. Recovery of consciousness (ROC) was estimated through re- 

turn of responsiveness, which was defined as the earliest instance in 

which participants correctly responded to two consecutive audio loop 

commands. 

2.3. Data acquisition and preprocessing 

EEG data were acquired at 500 Hz with gel-based electrodes using 

a 128-channel amplifier from Electrical Geodesics, Inc. (Eugene, OR) 

during the entire duration of the anesthetic protocol. All channels were 

referenced to the vertex (Cz). Immediately prior to the start of EEG data 

collection, electrode impedances were reduced to below 50 k Ω. 

Upon completion, data were preprocessed in EEGlab. The signal was 

average referenced, down-sampled to 250 Hz, and visually inspected to 

manually reject noisy channels and signal sections containing large ar- 

tifacts. Some subjects and experimental states were therefore left with 

cleaned data segments slightly shorter than 5 min. When data seg- 

ments were removed, data were re-joined (i.e., concatenated) at the 

boundary (see Supplementary Materials for a complete list of the du- 

ration of cleaned data segments and number of boundaries, per partici- 

pant and experimental state). Previous studies have shown evidence for 

changes in the alpha bandwidth under anesthetic-induced unconscious- 

ness ( Ching et al., 2010 ; Lee et al., 2013 a, 2013 b; Purdon et al., 2013 ; 

Blain-Moraes et al., 2014, 2017 ; Mukamel et al., 2014 ). Based on this 

evidence, we decided to investigate the alpha frequency band in the 

recent study and bandpass-filtered the signal in from 8 to 13 Hz. 

During the experiment, five minutes of continuous EEG was recorded 

in five experimental states, some of which reflect transitions in and out 

of anesthetic-induced consciousness ( Fig. 1 ). The (1) Baseline record- 

ing took place prior to any anesthetic administration; (2) Light Sedation: 

the first 5 min of propofol administration at a steady infusion rate of 

100 𝜇g/kg/min, during which participants were behaviorally respon- 

sive; (3) Unconscious: the first 5 min after the discontinuation of all 

anesthetics (i.e., the end of the 3-hour period of anesthesia at surgi- 

cal level), during which all participants remained unresponsive but the 

brain was beginning its transition toward the recovery of consciousness; 

(4) Pre-ROC: the last 5-minute period of unresponsiveness, immediately 

prior to the ROC, reflecting the end of the brain’s transition toward the 

recovery of consciousness; and the (5) Recovery recording, which took 

place 180 min following ROC. During all experimental states, partic- 

ipants were instructed to remain still with their eyes closed. For the 

purpose of this study, we selected the first five minutes of continuous 

EEG data from each state. 

2.4. Electroencephalography analysis 

2.4.1. Source estimation 

Preprocessed EEG data were imported into the Brainstorm analy- 

sis software for source estimation ( Tadel et al., 2011 ). The brain vol- 

ume current source-density mapping was calculated with a distributed 

model containing 45,000 dipoles (oriented in 3 directions across 15,000 

vertices), with the dipole orientations unconstrained. The brain model 

of the Montreal Neurological Institute served as the brain anatomy for 

all participants. This brain model was then warped to the geometry 

of our sensor net (GSN HydroCel 128). The forward model, computed 

with a Symmetric Boundary Element Method, was computed in Brain- 

storm using the open-source software OpenMEEG ( Gramfort et al., 2010 ; 

Kybic et al., 2005 ). All analysis epochs were used to generate a data 

covariance matrix, while the identity matrix was used as the noise co- 

variance matrix. 

Linearly constrained minimum variance (LCMV) beamformers were 

used to estimate the source activity, Pseudo Neural Activity Index 

(PNAI), at each defined location within Brainstorm ( Tadel et al., 2011 ). 

The median eigenvalue was used to regularize the data covariance ma- 

trix. Finally, the mean source activity at each ROI (i.e., the mean of all 

voxels within each ROI), as defined by the Automated Anatomical La- 

beling (AAL) Atlas, was extracted to generate a single time series for 82 

defined cortical ROIs across all participants. 

The confound of signal leakage (i.e., the non-independence of vox- 

els in source space) was mitigated using pairwise orthogonalization, a 

multivariate approach that assesses power-power interaction between 

oscillations extracted for spatially separate ROIs ( Brookes et al., 2012 ), 

applied to each 10-second window. In this technique, signal leakage be- 

tween voxels is expected to affect all frequency components equally. Sig- 

nal leakage between X and Y was removed by reshaping these matrices 

into vectors x and y, from which a univariate projection was estimated: 

𝛽𝑈𝑉 = 𝐱 + 𝐲 

where x + denotes the pseudo-inverse of x. The estimate of y based on 

vector x is removed thus: 

𝐲 𝐑 = 𝐲 − 𝐱 𝛽𝑈𝑉 

where y R is the component of y that is orthogonal to x. As such, any 

linear interaction between x and y was removed. 
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2.4.2. Envelope-based connectivity: amplitude envelope correlation 

Amplitude envelopes were generated via a Hilbert transform of the 

source-localized EEG in 10-second epochs, across all participants and 

experimental states. Pearson correlations were then computed between 

all amplitude envelopes across all combinations of ROI pairs, resulting 

in an 82 × 82 Amplitude Envelope Correlation (AEC) for each 10-second 

epoch. To calculate the AEC over each experimental state, the 10-second 

window was shifted over the whole signal with a step size of one sec- 

ond. To visualize the AEC matrix for each experimental state, the AEC 

was averaged over all individuals and states. Global connectivity of AEC 

was calculated as the mean connectivity of each ROI to the rest of the 

brain regions defined in the AAL atlas, and was calculated for each ex- 

perimental state. 

2.4.3. Phase-based connectivity: weighted phase lag index 

The wPLI ( Vinck et al., 2011 ) is defined by the phase difference be- 

tween two signals 𝑠 𝑖 and 𝑠 𝑗 , weighted by the magnitude of the imagi- 

nary component of the cross-spectrum  ( 𝐶 𝑖𝑗 ) and was calculated using 

the following function: 

𝑤𝑃 𝐿 𝐼 𝑖𝑗 = 

|||𝐸 

{
 
(
𝐶 𝑖𝑗 

)}|||
𝐸 

{ ||| 
(
𝐶 𝑖𝑗 

)|||
} 

= 

||||𝐸 

{ ||| 
(
𝐶 𝑖𝑗 

)|||𝑠𝑔𝑛 
(
 
(
𝐶 𝑖𝑗 

))} ||||
𝐸 

{ ||| 
(
𝐶 𝑖𝑗 

)|||
} 

where E{.} denotes the expected value operator and sgn(.) refers to the 

sign function ( Vinck et al., 2011 ). The wPLI takes on values of 0 ≤ wPLI 

≤ 1, with 1 indicating a strong functional coupling relationship and 0 

indicating no connectivity. Similar to AEC, wPLI was calculated in 10- 

second epochs with a step size of one second across each 5-minute state, 

resulting in one time-series of FC matrices for each experimental state. 

Global connectivity of wPLI was calculated as the mean connectivity of 

each ROI to the rest of the brain regions defined in the AAL atlas, and 

was calculated for each experimental state. 

2.5. Machine learning analysis 

We implemented a machine learning (ML) framework for epoch-by- 

epoch classification of the five states of consciousness (i.e., Baseline, Light 

Sedation, Unconscious, Pre-ROC, Recovery ) using features of the AEC and 

wPLI FC matrices. The complete machine learning pipeline was imple- 

mented using scikit-learn. 

2.5.1. Feature extraction 

Each experimental state in this study consisted of a FC time-series, 

with each epoch containing the AEC or wPLI connectivity over a 10- 

second window. To provide meaningful features to the machine learn- 

ing models, each epoch was characterized by the overall connectivity of 

all ROIs to the whole brain (i.e., the mean and standard deviation across 

all columns of the AEC and wPLI connectivity matrices). The features of 

each epoch (i.e., mean and standard deviation for each ROI) were nor- 

malized across all participants using a min-max feature scaling normal- 

ization. Across all experimental states, this formed an observation space 

(i.e. total number of 10-second epochs on which FC was calculated) 

of n = 12,816 ( Baseline = 2472 epochs; Light Sedation = 2603 epochs; 

Unconscious = 2619 epochs; Pre-ROC = 2603 epochs; Recovery = 2523 

epochs) (see Supplementary Materials for a detailed list of the obser- 

vation space per participant and experimental state). Given that AEC 

and wPLI were calculated on the same data, the observation space was 

identical for both metrics. 

2.5.2. Model selection 

To identify the machine learning model which best distinguished be- 

tween Baseline and pharmacologically induced unconsciousness, we im- 

plemented two different binary classifiers independently targeting Base- 

line vs. Unconscious and Pre-ROC . Several classification techniques were 

initially tested for the binary classifiers, including linear-discriminant 

analysis (LDA), linear kernel support vector machine (SVM linear ) and ra- 

dial basis function kernel support vector machine (SVM radial ). For both 

support vector machines, we conducted a parameter sweep of regular- 

ization parameter C . To account for the high degree of correlation be- 

tween epochs collected from a single participant, each binary classifier 

was implemented using a leave-one-subject-out (LOSO) cross-validation, 

completely excluding the participant being tested from the training set. 

Each binary classifier was trained on three sets of data: 1) AEC features 

alone; 2) wPLI features alone; and 3) wPLI and AEC features combined. 

Each model’s overall accuracy was determined by the average accuracy 

over all 9 LOSO repetitions. For the remainder of the analysis, we se- 

lected the model which achieved the highest accuracy to distinguish 

Baseline from Unconscious and Pre-ROC over the different sets of data. 

2.5.3. Classification 

To investigate the contribution of AEC and wPLI FC for distinguish- 

ing Baseline and other experimental states (i.e. Light Sedation, Uncon- 

scious, Pre-ROC and Recovery ), four different classifiers were imple- 

mented with the previously selected parameters. We trained two addi- 

tional classification models: one for distinguishing between Unconscious 

( “deep ” unconsciousness) and Pre-ROC ( “light ” unconsciousness); an- 

other for distinguishing between responsiveness ( Baseline, Light Seda- 

tion , and Recovery ) and unresponsiveness ( Unconscious and Pre-ROC ). 

All six classifiers were trained individually on three sets of data: 1) 

AEC features alone; 2) wPLI features alone; and 3) wPLI and AEC fea- 

tures combined. Additionally, all models were implemented using LOSO 

cross-validation. Each model’s performance was evaluated by the aver- 

age over all 9 LOSO repetitions. 

The contribution of each feature towards classifier performance was 

assessed according to their relative weights in the fully trained linear 

SVM. The absolute value of the weights was then min-max normalized 

to obtain a relative feature importance per classifier. We then generated 

a brain map highlighting the participation of ROIs in the classification, 

according to feature mean, standard deviation or both. 

2.5.4. Statistical analysis 

The statistical significance of the classifier performance was assessed 

using permutation testing. Within the permutation testing, classifier per- 

formance was evaluated using a LOSO cross-validation. The labels of the 

training and test data were randomly permuted and classification accu- 

racy was assessed with the permuted dataset. This process was repeated 

10,000 times to create a null distribution of random accuracy. Accuracy 

of the true classifier was deemed significant at p < 0.001 if it was greater 

than all 10,000 permutation accuracies. 

2.5.5. Comparison between classifiers 

The relative discriminatory information of states of consciousness 

provided by AEC vs. wPLI connectivity was assessed by generating boot- 

strap confidence intervals for each classifier. The bootstrap dataset was 

created by sampling with replacement from the original dataset until a 

new dataset (containing duplicate samples) of the same size was gener- 

ated. The bootstrap dataset was separated into training and test sets, and 

used to characterize the performance of the SVM linear . This process was 

repeated 10,000 times, creating a distribution of the classifier perfor- 

mance. Lower and upper bounds for the bootstrap confidence interval 

were set at the 2.5th and 97.5th percentile, corresponding to p ≤ 0.05. 

Two classifiers were considered to have statistically different levels of 

performance if their confidence interval did not overlap with a bootstrap 

resampling of 500. 

3. Results 

3.1. Envelope- and phase-based connectivity measures yield different 

patterns of global connectivity across states of consciousness 

Connectivity patterns, and the brain regions involved in global con- 

nectivity, varied between envelope- and phase-based measures of FC 

4 
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Fig. 2. Average connectivity matrixes in the alpha band between the 82 cortical 

regions of interest across states of consciousness 

Connectivity matrices averaged over all participants, for each experimental state 

and for each measure (i.e. Amplitude Envelope Correlation (AEC) and weighted 

Phase Lag Index (wPLI)). Red represents higher strength in connectivity, while 

blue represents lower strength in connectivity. Both right (R) and left (L) hemi- 

spheres are depicted in each matrix. 

( Fig. 2 , Fig. 3 ). While AEC yielded the strongest network connectivity 

during the Unconscious epoch, wPLI connectivity was strongest during 

full consciousness (i.e. Baseline and Recovery ). 

AEC: During full consciousness (i.e. Baseline and Recovery ), AEC 

showed weak connectivity overall, with the strongest connectivity lo- 

cated in the central and temporal regions. Light Sedation was marked by 

a pronounced increase in connectivity in parietal and occipital regions, 

which was then further amplified during the Unconscious state, show- 

ing increased connectivity across the brain. Pre-ROC was characterized 

by an overall decrease in connectivity, most prominent in the parietal, 

temporal and occipital regions. 

wPLI: During full consciousness (i.e. Baseline and Recovery ), wPLI 

showed the strongest connectivity in the temporal, parietal and occip- 

ital regions. During Light Sedation , there was a slight global decrease 

in connectivity, with the occipital regions remaining most strongly con- 

Fig. 3. Topographic maps of source-localized global connectivity in the alpha 

band between the 82 cortical regions of interest across states of consciousness. 

To compare and contrast the patterns of connectivity captured by Amplitude 

Envelope Correlation (AEC) and weighted Phase Lag Index (wPLI) across var- 

ious states of consciousness, the group-level means of AEC and wPLI for each 

5-minute epoch were displayed on 82 regions of a brain parcellated according to 

the AAL atlas. For each time point and for each measure, the same topographic 

map is depicted in 2 different views: axial top view (left), and mid-sagittal view 

of the left hemisphere (right). The average connectivity of each ROI to the rest 

of the brain regions defined in the AAL atlas is depicted by a color: red repre- 

sents higher strength in connectivity, while blue represents lower strength in 

connectivity. 

nected. The Unconscious epoch was marked by an increase in frontal and 

central connectivity in the left hemisphere and along the midline and 

inferior temporal gyrus. Of all experimental states, Pre-ROC showed the 

weakest connectivity in all ROIs. 

Inter-hemispheric differences in ROI connectivity strength were 

present across all states, for both AEC and wPLI. 

3.2. AEC shows superior classification accuracy to wPLI across states of 

anesthetic-induced unconsciousness 

The SVM linear with C = 0.1 yielded the highest classifier performance 

and was therefore used for all analyses in this study. 

3.2.1. Differences in classification accuracy across states of consciousness 

Globally, AEC performed better than wPLI in the classification of 

the different states of consciousness, when comparing these states to 

Baseline ( Fig. 3 A). Highest accuracy for AEC was found in the classifi- 

cation of the Unconscious state (83.7 ± 0.8% [95% CI: 82.0–85.5%]), 

followed by Pre-ROC (68.5 ± 1.0% [95% CI: 66.6–70.4%]), Light Seda- 

tion (54.0 ± 1.4% [95% CI: 50.9–56.5%]), and Recovery (52.8 ± 1.4% 

[95% CI: 49.9–55.3%]). Though the classification accuracies of Light Se- 

dation and Recovery were close to chance, permutation analysis revealed 

that all classification accuracies were statistically higher than chance in 

distinguishing them from Baseline ( p < 0.001) . 
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Fig. 4. AEC vs. wPLI classification of states of consciousness 

Machine learning results comparing classification accuracy across connectivity measures (A) and individuals (B, C): A) Classification accuracies of Amplitude Envelope 

Correlation (AEC) and weighted Phase Lag Index (wPLI) for the Light Sedation, Unconscious, Pre-ROC and Recovery epochs; B) Individual classification accuracies for 

the Unconscious epoch, for both AEC (light blue) and wPLI (dark blue); C) Individual classification accuracies for the Pre-ROC epoch, for both AEC (light blue) and 

wPLI (dark blue); D) Implication of the various cortical regions of interest in the classification of the Unconscious and Pre-ROC epochs by AEC (red) and wPLI (blue), 

according to feature mean (top) and standard deviation (bottom). The axial top view and mid-sagittal view of the left hemisphere are depicted. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

For wPLI, the classification accuracy of the Unconscious state was sta- 

tistically lower than that of AEC, while other classification accuracies 

did not differ statistically from that of AEC. Specifically, wPLI classifi- 

cation accuracies were highest for the Unconscious state (69.4 ± 1.1% 

[95% CI: 67.3–71.7%]), followed by Pre-ROC (68.1 ± 1.1% [95% CI: 

65.9–70.1%]), Light Sedation (50.6 ± 1.6% [95% CI: 47.3–54.0%]), and 

Recovery (49.8 ± 1.4% [95% CI: 47.1–52.4%]). Permutation analysis re- 

vealed that wPLI accuracies were no higher than chance at both Light 

Sedation and Recovery , which are both states where responsiveness is 

present. 

Though AEC had significantly higher classification accuracy for Un- 

consciousness than for Pre-ROC ( p < 0.05), wPLI did not show a signifi- 

cant difference in classification accuracies between these states. When 

combining both AEC and wPLI, classification accuracies were not statis- 

tically improved for any time point, when compared to AEC classifica- 

tion accuracies: Unconscious (84.1 ± 0.9% [95% CI: 82.5–85.8%]), Pre- 

ROC (69.8 ± 1.0% [95% CI: 67.8–71.7%]), Light Sedation (52.6 ± 1.3% 

[95% CI: 50.0–55.0%]), and Recovery (54.6 ± 1.4% [95% CI: 51.8–

57.4%]). This suggests that AEC independently performed as well as 

AEC combined with wPLI. 

3.2.2. Inter-individual differences in the classification accuracy of states of 

consciousness 

As shown in Figs. 4 B and 4 C, there were high inter- and intra- 

individual differences in the classification accuracies of AEC and 

wPLI. For the Unconscious state, inter-individual classification accu- 

racies for AEC ranged from 71.6% to 96.4%, while they varied be- 

tween 45.1% and 89.7% for wPLI. For Pre-ROC, classification ac- 

curacy values ranged from 36.8% to 88.7% for AEC and between 

47.7% and 87.6% for wPLI. Intra-individual differences in classifica- 

tion accuracies were also highly variable. Within a single individual, 

the difference in the classification accuracy between wPLI and AEC 

reached up to 26.2% for the Unconscious state, and up to 10.9% for 

Pre-ROC. 

3.2.3. Differences in the brain regions contributing to classification 

accuracy of consciousness states 

The brain regions most involved in the classification of Unconscious 

and Pre-ROC varied between AEC and wPLI ( Fig. 5 B). Both the nor- 

malized means and standard deviations contributed to the classification 

of consciousness states. During Unconscious , the brain regions most in- 

volved in classification with AEC were fairly dispersed throughout the 

brain, while those implicated in the classification with wPLI connectiv- 

ity were mainly located posteriorly when they contributed with their 

mean, or anteriorly when they contributed with their standard devia- 

tion. During Pre-ROC , the ROIs most involved in the classification with 

AEC were also dispersed throughout the brain. Conversely, those impli- 

cated in the classification with wPLI were mainly located in posterior 

regions when they contributed with their mean, or in the frontal, tem- 

poral and parietal regions when they contributed to the classification 

with their standard deviation. In both cases, there were important inter- 

hemispheric differences in the weight of each ROI’s contribution to the 

classification. This was particularly apparent for AEC, whose classifica- 

tion accuracy depended more heavily on the right hemisphere, particu- 

larly for frontal and central ROIs. Although both metrics predicted the 

same state, using the same signal, these results suggest that they draw 

from different regions of the brain in the classification of states of con- 

sciousness. 

3.3. AEC is better able to distinguish different depths of unconsciousness 

than wPLI 

In the classification model aiming to distinguish Unconscious ( “deep ”

unconsciousness) from Pre-ROC ( “light ” unconsciousness), AEC was bet- 

ter able to distinguish different depths of unconsciousness than wPLI 

( Fig. 5 A). More specifically, the model aiming to distinguish Uncon- 

scious from Pre-ROC yielded a classification accuracy of 66.3 ± 1.2% 

[95% CI: 64.1–68.8%] for AEC, which was statistically higher than the 

56.2 ± 1.3% [95% CI: 53.8–58.8%] accuracy attained with wPLI ( p < 

0.05). Combing both AEC and wPLI did not further improve classifi- 

cation accuracy when compared to AEC alone, as the model combin- 
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Fig. 5. AEC vs. wPLI classification of “deep ” vs. “light ” unconsciousness 

A: Classification accuracies of Amplitude Envelope Correlation (AEC) and weighted Phase Lag Index (wPLI) in a model that distinguishes Unconscious ( “deep ”

unconsciousness) from Pre-ROC ( “light ” unconsciousness). B: Degree of implication of the various cortical regions of interest in the classification of the Unconscious 

and Pre-ROC epochs by AEC (red) and wPLI (blue), according to feature mean (top), standard deviation (bottom). The axial top view and mid-sagittal view of the 

left hemisphere are depicted. 
∗ p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. AEC vs. wPLI classification of responsiveness vs. unresponsiveness 

A: Classification accuracies of Amplitude Envelope Correlation (AEC) and weighted Phase Lag Index (wPLI) in a model that distinguishes responsiveness (i.e. Baseline, 

Light Sedation, Recovery ) from unresponsiveness (i.e. Unconscious, Pre-ROC ). B: Degree of implication of the various cortical regions of interest in the classification 

of responsiveness and unresponsiveness, by AEC (red) and wPLI (blue), according to feature mean (top) and standard deviation (bottom). The axial top view and 

mid-sagittal view of the left hemisphere are depicted. 
∗ p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ing AEC and wPLI yielded an accuracy of 66.4 ± 1.2% [95% CI: 64.2–

68.8%]. 

The brain regions most involved in the classification of Unconscious 

vs. Pre-ROC varied between AEC and wPLI ( Fig. 5 B). For this model, 

the brain regions involved in the classification with AEC were fairly dis- 

persed throughout the brain and had marked differences between hemi- 

spheres. While the ROIs implicated in the classification with wPLI also 

showed hemispheric differences, ROIs contributing to the classification 

with their mean were mainly located centrally and posteriorly, and those 

contributing with their standard deviation were primarily anterior. 

3.4. AEC is better able to distinguish responsive from unresponsive states 

than wPLI 

In the classification model aiming to distinguish responsive (i.e. Base- 

line, Light Sedation, Recovery ) from unresponsive states ( Unconscious, Pre- 

ROC ), AEC was better able to distinguish responsiveness from unrespon- 

siveness than wPLI ( Fig. 6 A). More specifically, this model yielded a 

statistically higher classification accuracy for AEC (76.0 ± 1.3% [95% 

CI: 73.5–78.2%]) than for wPLI (63.6 ± 1.8% [95% CI: 59.7–66.7%]) 

( p < 0.05). Combing both AEC and wPLI did not further improve classi- 

fication accuracy when compared to AEC alone, as the model combin- 

ing AEC and wPLI yielded an accuracy of 73.6 ± 1.4% [95% CI: 70.9–

76.1%]. 

The brain regions most involved in the classification of responsive 

vs. unresponsive states also varied between AEC and wPLI ( Fig. 6 B). The 

brain regions most involved in classification with AEC were fairly dis- 

persed throughout the brain, while those implicated in the classification 

with wPLI were mainly located posteriorly when they contributed with 

their mean, or anteriorly when they contributed with their standard de- 

viation, though not exclusively so. 

4. Discussion 

In this study, we directly compared source-localized brain networks 

constructed from envelope-based and phase-based FC metrics, the AEC 

and wPLI, using the same EEG dataset collected across multiple states 

of anesthetic-induced unconsciousness. We found that global alpha con- 

nectivity patterns associated with various states of consciousness were 

distinct when constructed with AEC or wPLI. These two FC metrics had 

varying degrees of predictive power in different states of unconscious- 

ness, yielded important inter-individual differences in predictive power, 

and drew from different brain regions in their classification of states of 

consciousness. Importantly, on the group level, AEC had higher classi- 
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fication accuracy than wPLI across states of consciousness, in distin- 

guishing deep from light unconsciousness ( Unconscious vs. Pre-ROC) , 

and in distinguishing responsive from unresponsive epochs. Our results 

suggest that AEC and wPLI construct distinct functional networks and 

differentially characterize the brain’s functional reorganization across 

changes in states of consciousness. However, the envelope-based metric 

AEC emerges as the superior metric of the two in contrasting changes in 

states of consciousness and responsiveness. 

The results of our study are concordant with the handful of stud- 

ies published to-date that contrast envelope- and phase-based coupling 

in the brain. In support of our findings, a few such studies have also 

concluded that AEC is more robust than various phase-based measures. 

Colclough et al. (2016) compared the repeatability and reproducibil- 

ity of various envelope- and phase-coupling measures using MEG, and 

concluded that AEC was the most consistent and reproducible, while 

poor test-retest reliability was found in PLI (phase-based) and the imag- 

inary part of coherency (envelope-based). Another study also confirmed 

the higher reproducibility of AEC in Alzheimer’s disease for alpha- 

band connectivity, when compared to phase-based measured includ- 

ing PLI ( Briels et al., 2020 ). While our study is the first to compare 

these metrics across states of consciousness, other studies have also 

shown that the two classes of connectivity differentially characterize 

brain function, as they most likely underpin distinct cortical processes. 

Helfrich et al. (2016) investigated the processing of visual sensory in- 

put using both envelope- and phase-coupling in the gamma frequency 

band. Globally, they concluded that the two coupling modes sustained 

different cortical processes involved in conscious perception of a mov- 

ing stimulus. Guggisberg et al. (2015) came to a similar conclusion when 

they compared AEC and lagged phase synchronization of resting-state 

alpha and beta frequencies. The authors found a significant interaction 

between coupling mode and frequency, as well as between coupling 

mode and spatial interaction pattern. More specifically, they found that 

their phase-based measure was associated with global network interac- 

tions, while their envelope-based measure was associated with local and 

intra-hemispheric connections, leading them to conclude that phase- 

and envelope-coupling provide complementary information about brain 

function. The complementary roles of phase- and envelope-based cou- 

pling have also been demonstrated in intracranial EEG, where they have 

been shown to exhibit divergent properties in their time-varying re- 

sponse to an external stimulus ( Mostame et al., 2019 ). 

It is worth highlighting that while the overall classification results 

were higher for AEC, there are significant individual differences in the 

predictive power of each type of FC metric. For some (e.g. participant 

4), networks constructed from wPLI are more predictive of both states of 

unconsciousness. While this variability may be explained by the inter- 

individual systematic differences in whole-brain resting FC ( Finn et al., 

2015 ), we posit that both types of connectivity may play a functional 

role in maintaining a state of criticality in brain networks. The crit- 

icality phenomenon in neuronal networks implies that the system is 

at a metastable state with a delicate balance between excitation and 

inhibition ( Shew and Plenz, 2013 ). Phase-based measures have been 

able to distinguish the distance from criticality in both pharmacolog- 

ically and pathologically disturbed states of consciousness ( Lee et al., 

2018 ). Similarly, envelope-based measures such as LRTC have shown 

changes in states of consciousness associated with imbalance between 

excitation and inhibition in neuronal networks, resulting in a loss of 

dynamic range ( Shew et al., 2009 ), information transfer and informa- 

tion capacity ( Larremore et al., 2011 ). The networks with the greatest 

predictive power for conscious state for any given individual are likely 

to be constructed from the class of FC that best reflects the distance 

of that individual’s brain from critical dynamics. As the classifiers in 

the present study were not designed for individual classification of con- 

sciousness states, future consciousness studies assessing FC on a single- 

subject level should consider investigating multiple coupling modes to 

determine which metric is best suited to identify consciousness alter- 

ations within the individual. 

The results of this study should be interpreted within the context of 

several strengths. First, we used connectivity measures derived from a 

high-density EEG dataset recorded from a clinically-realistic anesthetic 

regimen. Second, we validated our source-localized resting state FC pat- 

terns against those generated in a MEG-based study ( Brookes et al., 

2011 ). Our ability to reproduce these baseline FC patterns lends credi- 

bility to our FC analysis. Third, our results are classifier agnostic. While 

we only report classification accuracy of the highest-performing clas- 

sifier (e.g. linear SVM), we obtain similar patterns with LDA and non- 

linear SVM classifiers, lending credibility to our ML analysis. Fourth, 

our results are robust across different brain atlases. While we only re- 

port FC and ML results generated from the AAL atlas, we reproduced our 

functional connectivity analyses using the Desikan-Killiany brain atlas 

and found similar connectivity patterns. Finally, our results acknowl- 

edge that while we have used responsiveness as a surrogate marker for 

consciousness, these states are not always equivalent ( Sanders et al., 

2012 ). We ran two independent analyses comparing the classification 

of AEC and wPLI across states of consciousness and states of responsive- 

ness. In both analyses, the classification accuracy of AEC was superior 

in comparison to wPLI and the combination of AEC and wPLI, fortifying 

our results against instances where the two states may be dissociated. 

The results also need to be interpreted in light of several limitations. 

First, the number of participants in the study is relatively low ( n = 9). 

We accounted for this limitation by applying a single-epoch machine 

learning approach, using all data segments segregated across all partici- 

pants ( n = 5076), and controlled for biases due to subject idiosyncrasies 

by applying a LOSO procedure, which ensured that the classifier did 

not train on the data it was subsequently classifying. Second, we use 

a single measure of phase-based connectivity (i.e., wPLI) and a single 

measure of envelope-based connectivity (i.e., AEC) to assess the per- 

formance of these classes of functional coupling in the classification of 

states of consciousness. There is a large selection of other metrics within 

both classes; our results may be biased by the selection of a metric in 

the FC class that is not optimal for assessing consciousness. Third, un- 

consciousness was induced by exposing participants to an anesthetic –

it is possible that the changes in connectivity that we observed are a 

result of the anesthetic drug, rather than the state of (un)consciousness 

itself. Moreover, different drugs were used for anesthesia induction and 

maintenance, and could have differing effects on the EEG. Our results 

need to be confirmed in future studies across varying altered states of 

consciousness, such as sleep, disorders of consciousness, or general anes- 

thesia with other agents. Fourth, the machine learning algorithms used 

in this study were selected primarily based on the interpretability of 

the trained weights; a more complex algorithm with a sufficiently large 

data set would perform better, however its decision boundary would be 

difficult to interpret. Fifth, classification accuracy was estimated based 

on the percentage of correctly labeled time steps within five experimen- 

tal states. This approach therefore does not account for the temporal 

variations within each state, which have been shown to reveal rich 

information about the FC dynamics in altered states of consciousness 

( Cavanna et al., 2018 ), including sleep ( El-Baba et al., 2019 ) and phar- 

macologically induced unconsciousness ( Li et al., 2019 ; Vlisides et al., 

2019 ; Zhang et al., 2019 ). Furthermore, the Light Sedation, Unconscious , 

and Pre-ROC states were likely periods during which effect site concen- 

trations of the anesthetic were gradually changing. Averaging FC met- 

rics over these 5-minute periods therefore prevents the identification of 

the granular FC changes within these epochs. Sixth, the features for the 

machine-learning pipeline were defined by the mean and standard devi- 

ation across all columns of the AEC and wPLI connectivity matrices (i.e., 

from one ROI to all other ROIs). Thus, the interpretation of our results is 

limited to assumptions about the connectivity of one ROI to the whole 

brain, rather than the connectivity between two distinct ROIs. Further 

research is needed to investigate FC on a more spatially fine-grained fea- 

ture space, containing all possible individual connections. Finally, our 

results apply to varying states of consciousness using source-localized 

data in the alpha bandwidth, and may not apply to other frequency 
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bands, paradigms, tasks or states. Future work should assess the rel- 

ative contribution of envelope- and phase-based FC to other types of 

brain analysis. 

5. Conclusion 

The consideration of the type of connectivity to be used in the con- 

struction of functional brain networks has significant implications for 

the study of consciousness. This is the first study to directly compare 

an envelope- and a phased-based measure of FC across states of con- 

sciousness. Using the same source-localized EEG dataset collected across 

multiple states of anesthetic-induced unconsciousness in healthy adults, 

this study shows that both AEC and wPLI in the alpha band are dis- 

tinct in their global connectivity, predictive power, and in the brain 

regions contributing the highest predictive power. In particular, we 

showed that AEC performed better than wPLI in the classification of dif- 

ferent states of consciousness, when distinguishing different depths of 

anesthetic-induced unconsciousness, and when distinguishing respon- 

sive from unresponsive states. AEC and wPLI showed dissimilar connec- 

tivity patterns across states and drew from different brain regions for 

classification. Overall, our study suggests that the class of connectiv- 

ity measure chosen to construct functional brain network may greatly 

influence what connectivity alterations are appraised across states of 

consciousness, and when these alterations are most apparent. Future FC 

studies should aim to bridge the methodological gap between envelope- 

and phase-based coupling modes, and consider expanding their analytic 

toolset to consider the multi-faceted analysis of waveforms, considering 

both the envelope and phase, in order optimize the characterization and 

interpretation of brain functional dynamics. 
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