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A B S T R A C T

Aims: Although metformin has been reported to affect the gut microbiome, the mecha-

nism has not been fully determined. We explained the potential underlying mechanisms

of metformin through a multiomics approach.

Methods: An open-label and single-arm clinical trial involving 20 healthy Korean was con-

ducted. Serum glucose and insulin concentrations were measured, and stool samples were

collected to analyze the microbiome. Untargeted metabolomic profiling of plasma, urine,

and stool samples was performed by GC-TOF-MS. Network analysis was applied to infer

the mechanism of the hypoglycemic effect of metformin.

Results: The relative abundances of Escherichia, Romboutsia, Intestinibacter, and Clostridium

were changed by metformin treatment. Additionally, the relative abundances of metabo-

lites, including carbohydrates, amino acids, and fatty acids, were changed. These changes

were correlated with energy metabolism, gluconeogenesis, and branched-chain amino acid

metabolism, which are major metabolic pathways related to the hypoglycemic effect.

Conclusions: We observed that specific changes in metabolites may affect hypoglycemic

effects through both pathways related to AMPK activation and microbial changes. Energy

metabolism was mainly related to hypoglycemic effects. In particular, branched-chain

amino acid metabolism and gluconeogenesis were related to microbial metabolites. Our

results will help uncover the potential underlying mechanisms of metformin through

AMPK and the microbiome.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access articleunder theCCBY-
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1. Introduction

Metformin is the most widely used antidiabetic drug for treat-

ing individuals with type 2 diabetes (T2D) and is recom-

mended as a first-line therapy because of its distinct

hypoglycemic effect, relative safety, and low cost [1,2]. Met-

formin is known to increase glucose utilization and decrease

gluconeogenesis through the activation of AMP-mediated

protein kinase (AMPK) in the liver by entering hepatocytes

through organic cation transporter 1 (OCT1) [3,4]. As a result

of AMPK activation by metformin, the activity of enzymes

involved in the biosynthesis of fatty acids is reduced, and glu-

cose production is inhibited [4].

Metformin is an orally administered drug that is absorbed

in the small intestine. The absolute oral bioavailability of met-

formin is approximately 40–60% [5]. In addition, the concen-

tration of metformin in the human intestine is typically 30–

300 times higher than that in plasma [6], and a study using

[11C]metformin positron emission tomography (PET) showed

that the concentration of orally administered metformin

was high in the intestines [3]. A previous study showed that

metformin administered intravenously to rats and humans

had fewer hypoglycemic effects than that administered orally

[7,8]. Thus, the possibility cannot be excluded that the human

intestine is a crucial organ involved in the effect of metformin

to improve hyperglycemia.

The intestines play a number of roles in regulating blood

glucose levels, such as secreting glucagon-like peptide 1 and

peptide YY, regulating bile acid metabolism, and affecting

the growth and composition of the gut microbiome [9,10].

Some studies have shown that metformin can change the

gut microbial composition [1,2,11] and have suggested that

the microbiota contributes to the hypoglycemic effect of met-

formin. Nevertheless, the mechanism of metformin’s effect

on the gut microbiome has not been fully determined.

To explain the underlying potential mechanism of the

hypoglycemic effect, we applied a global metabolomic

approach as a tool for biomarker discovery through the use

of biofluids, cells, and tissues. The global metabolomic

approach has made it possible to understand the systemic

effects of metabolites, thereby affording new insight into

their possible underlying mechanisms under various physio-

logical conditions and in various diseases [12]. In this study,

we conducted a clinical study in healthy individuals to deter-

mine the hypoglycemic effect of metformin and attempted to

demonstrate the underlying potential mechanism of the

effect through metagenomic and global metabolomic

approaches.

2. Methods

2.1. Subjects

This study was performed according to Korean Good Clinical

Practices (KGCPs) and the ethical guidelines of the Declara-

tion of Helsinki. The study was conducted after receiving

approval from the institutional review board of Seoul National

University Bundang Hospital (B-1809-492-003) and the Korean

Ministry of Food and Drug Safety (ClinicalTrials.gov Identifier:

NCT03809260).

We recruited and included 20 healthy adult male subjects

who were 19–33 years old and had a body mass index (BMI) of

23.66 ± 2.72 kg/m2 (data are mean ± s.d.) during the screening

visit. Subjects with active or a history of clinically significant

diseases of the kidney or the digestive, nervous, endocrine, or

immune systems were excluded from the study. In addition,

subjects with a history of gastrointestinal disorders or surgery

that could affect the absorption of metformin were also

excluded. Subjects with defecation less than five times a week

or more than three times a day or who had excessively hard

or soft stools were excluded from the study. Subjects whose

blood aspartate aminotransferase (AST) and alanine amino-

transferase (ALT) values exceeded 1.5 times the upper limit

of the normal range during the screening visit or whose esti-

mated glomerular filtration rate (eGFR) calculated by the Mod-

ification of Diet in Renal Disease (MDRD) was less than 80 mL/

min/1.73 m2 were also excluded.

2.2. Study design

This was an open-label, single-arm study (Supplementary

Fig. 1). The subjects received the first dose of 500 mg of oral

metformin on day 1 at 9 a.m. for the safety of the subjects,

and then they received 1000 mg twice daily from day 1 (1 d,

1:30 p.m.) to day 4 (4 d) in the morning. Plasma samples for

the pharmacodynamic evaluation of metformin were col-

lected before the first metformin dose (baseline) and on day

4 after the last metformin dose (postmetformin). Stool sam-

ples for metagenomics were collected on the morning of

day 1 before the first metformin dose and on day 4 after the

last metformin dose. The sample used for analysis was from

the first stool in the morning. Urine samples were collected

on day �1 and day 4. Additionally, plasma, stool, and urine

samples were used for untargeted metabolomic analysis.

We provided a normal diet, not a high-fat, high-fiber diet,

that met the recommended daily caloric intake of approxi-

mately 2700 kcal for adult men, and we limited the intake of

foods containing lactic acid bacteria, grapefruit, and caffeine.

In addition, we asked the participants to eat the full meal dur-

ing hospitalization, and any meals other than the provided

meals were prohibited.

2.3. Pharmacodynamic (PD) assessments of metformin

For pharmacodynamic (PD) evaluation of metformin, an oral

glucose tolerance test (OGTT) was performed, and the serum

insulin concentration was measured at baseline (before the

first dose of metformin) and postmetformin (2 h after the last

dose of metformin) (Supplementary Fig. 1). In brief, a solution

containing 75 g glucose was administered to the subjects on

an empty stomach, and samples for determining the serum

glucose concentration were collected at 0 (before administra-

tion of the solution containing 75 g glucose), 0.25, 0.5, 0.75, 1,

1.5, and 2 h. The serum insulin concentration was measured

only at 0 h (before administration of the solution containing

75 g glucose).
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To evaluate glucose parameters, the maximum serum glu-

cose concentration (Gmax) was presented as the actual

observed value, and the area under the glucose curve (AUGC)

was calculated by the linear-linear trapezoidal method.

Homeostatic model assessment of insulin resistance

(HOMA-IR) was calculated as (glucose�insulin)/405.
The baseline corrected PD parameters, including DGmax,

DAUGC, and DHOMA-IR, after the last metformin administra-

tion were defined by subtracting the baseline values from the

postmetformin values (i.e., Gmax at postmetformin – Gmax at

baseline). Smaller DAUGC, DGmax, and DHOMA-IR values,

i.e., larger absolute values of the parameters, were interpreted

as stronger effects of metformin treatment. For comparison

of the PD parameters, we confirmed whether the data had a

normal distribution through a normality test. Then, the

paired t test was used for Gmax and AUGC, and the Wilcoxon

signed rank test was used for HOMA-IR, with significance

determined at the level of 0.05. Statistical analysis was per-

formed using GraphPad Prism 7 (GraphPad Software, Inc.,

San Diego, CA, USA).

2.4. Analysis of the gut microbiome

Stool samples were collected from all the recruited subjects

for metagenomic sequencing. The samples were mixed using

a 3 M sample mixer, dispensed into Eppendorf tubes and fro-

zen at �70 �C until analysis.

DNA was extracted from the stool samples using the

PowerSoil� DNA Isolation Kit, and amplification of the

16S rRNA gene was conducted using the 16S V3-V4 pri-

mers. Normalization and pooling of the final product were

performed using PicoGreen. The size of the libraries was

verified using TapeStation DNA ScreenTape D1000 (Agilent),

and sequencing was performed using the MiSeqTM platform

(Illumina, San Diego, USA) [13]. Taxonomic profiling was

performed using a module of MicrobiomeAnalyst for mar-

ker data profiling [14].

The alpha diversity (within-sample diversity) is presented

as the Shannon index, and the Kruskal-Wallis test was per-

formed for comparisons between periods. The beta diversity

(between-sample diversity) is presented on a principal coordi-

nate analysis (PCoA) plot, and Bray-Curtis dissimilarity was

evaluated by permutational multivariate analysis of variance

(PERMANOVA). Significantly different genera between periods

were identified by linear discriminant analysis (LDA) effect

size (LEfSe) analysis, and the data were subjected to total

sum normalization. This treatment yielded a relative propor-

tional value for each feature by dividing each count of each

feature by the size of the total library, which eliminated bias

related to different sequencing depths. The cutoffs for the

false discovery rate (FDR)-adjusted p-value and log LDA scores

were 0.05 and 2.0, respectively. The change induced in the gut

microbiome by metformin administration was identified

through comparison between baseline and postmetformin

periods.

2.5. Chemicals

The fatty acid methyl ester mixture (FAME) used for the rela-

tive retention time index and the authentic standards used

for the identification of significant metabolic markers were

purchased from Sigma-Aldrich (St. Louis, MO, USA). The

extraction solvents used for sample preparation, such as iso-

propanol, acetonitrile, and water (HPLC grade), were obtained

from J.T. Baker Chemical Co. (Phillipsburg, NJ, USA). Pyridine,

methoxamine hydrochloride (MeOX), and N-methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) were used for

derivatization and purchased from Sigma-Aldrich.

2.6. Sample preparation for untargeted metabolomics

All the samples were prepared using a protocol from a previ-

ous study with minor modifications [15]. Frozen plasma,

urine, and stool samples were thawed on ice, and quality con-

trol (QC) samples, made by pooling equal volumes (100 µL of

the 1st extracted solution) of each sample, were used to vali-

date the stability of the analytical performance and perform

data filtering. For preparation of the plasma and urine sam-

ples, a 50 µL sample was extracted using 1 mL of N2-

degassed 1st extraction solution (3:3:2, acetonitrile:iso-

propanol:H2O). For preparation of the stool sample, the 1st

extraction solution was spiked into the stool sample at a sam-

ple mass to solution volume ratio of 50 mg of stool sample to

1 mL of the 1st extraction solution. Then, the samples were

mixed for 15 min and centrifuged for 10 min at 18,945 RCF

and 4 �C. Four hundred microliters of the supernatant was

dried using a SpeedVac for 6 h at 45 �C and 5.1 vacuum pres-

sure. The dried samples were re-extracted with 400 µL of N2-

degassed 2nd extraction solution (1:1, acetonitrile: H2O).

Then, the extracted samples were redried using a SpeedVac

for 8 h under the same conditions used in the first extraction

step. The dried samples were derivatized with methoxyamine

(20 mg/mL in pyridine) at 30 �C for 90 min and subsequently

trimethylsilylated with a mixture of fatty acid methyl ester

(used for the retention time index) in N-methyl-N-(trimethylsi

lyl)-trifluoroacetamide at 70 �C for 45 min. Finally, 1 µL of the

prepared samples was split-injected into an Agilent 7890 ser-

ies gas chromatography system (Agilent, Santa Clara, CA)

coupled to a time-of-flight mass spectrometer (LecoCorp.,

St. Joseph, MI, USA) (GC-TOFMS) for untargeted metabolomics

analysis.

2.7. Metabolomic data analysis

Chroma TOF version 4.72 (LECO Corporation, MI, USA) was

used for peak extraction, peak alignment, peak deconvolu-

tion, and peak identification. Data processing and multi-

variate analysis were performed using MetaboAnalyst 4.0

[16]. Detected metabolic features with greater than 50%

missing values were removed, and then, the metabolic fea-

tures were filtered out according to a relative standard

deviation of greater than 30% in the QC samples. The fil-

tered metabolic features were normalized by sum, and Par-

eto scaling was applied for multivariate analysis. The

metabolic markers were selected using a t test with a p-

value cutoff value of less than 0.05. Pearson correlation

and Spearman correlation analyses were performed after

the normality test. Statistical analysis and correlation anal-

ysis were performed in GraphPad Prism 7 (GraphPad Soft-

ware, Inc., San Diego, CA, USA).
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2.8. Identification of metabolic markers

For metabolic marker identification, the online HMDB data-

base (https://hmdb.ca/) and three commercially available

libraries (NIST, LECO-Fiehn Rtx5, and Wiley 9) were used.

After matching the mass spectra of the markers with the

libraries, authentic standards were analyzed to compare the

spectra. Then, the retention times of the markers and the

standards were compared by calculating the relative retention

index [15]. A network diagram was generated by using Meta-

Mapp [17] and Cytoscape (version 3.5) [18].

2.9. Correlation analysis

Pearson correlation and Spearman correlation analyses were

performed after the normality test. Spearman correlation

analysis was performed between the relative abundance of

the microbiome and metabolic markers and between the

abundance of the microbiome and PD parameters (DGmax,

DAUGC, and DHOMA-IR). Pearson correlation analysis was

performed between the relative abundance of metabolic

markers and PD parameters. Correlation analyses were per-

formed using GraphPad Prism 7 (GraphPad Software, Inc.,

San Diego, CA, USA), and the p-value cutoff was 0.05. The

absolute values of the PD parameters were used in the corre-

lation analysis.

3. Results

3.1. Glucose parameters and PD parameters represented
the hypoglycemic effect of metformin

We evaluated the PD effects of metformin according to glu-

cose parameters, such as the values of Gmax, AUGC, and

HOMA-IR. The serum glucose concentrations after the OGTT

at baseline and postmetformin periods are presented in Sup-

plementary Fig. 2. The mean ± SD values of Gmax were 169.1

± 19.68 mg/dL at baseline and 138.1 ± 15.43 mg/dL during the

postmetformin period. The AUGC values of the baseline and

postmetformin periods were 287.2 ± 36.29 h∙mg/dL and

235.8 ± 26.17 h∙mg/dL, respectively. The Gmax and AUGC val-

ues were significantly decreased after metformin administra-

tion. However, the HOMA-IR value did not show a statistically

significant change (p-value = 2.71E-06 for Gmax; 4.74E-06 for

AUGC; 0.0539 for HOMA-IR) (Supplementary Table 1). The

absolute values of the PD parameters, including 4Gmax,

4AUGC, and 4HOMA-IR, are listed in Supplementary Table 1.

3.2. Administration of metformin changed the
composition of the gut microbiome

We analyzed the difference in the relative abundance of the

gut microbiome at the genus level between baseline (before

metformin administration) and postmetformin (after the last

metformin administration). The relative abundances were

changed after administration of metformin (Fig. 1a). The

alpha diversity, which represented the bacterial species diver-

sity in the samples, was significantly increased in the post-

metformin period (Kruskal-Wallis test, p-value = 0.043)

(Fig. 1b). A PCoA plot showed significantly higher beta diver-

sity at the postmetformin period than at baseline (PERMA-

NOVA, p-value < 0.004), indicating a more heterogeneous

species composition at the postmetformin period than at

baseline (Fig. 1c). LEfSe analysis, for determining both statis-

tical and biological relevance, was used for microbial biomar-

ker discovery (FDR-adjusted p-value < 0.05, linear

discriminant analysis (LDA) score greater than 2.0). As a

result, four bacterial genera were significantly changed

between the two periods. The relative abundances of Intestini-

bacter, Clostridium, and Romboutsia tended to decrease in the

postmetformin period compared to those at baseline,

whereas the abundance of Escherichia tended to increase in

the postmetformin period (Fig. 1d, Supplementary Table 2).

3.3. Hypoglycemic effect of metformin was related to gut
microbial changes

To confirm whether the hypoglycemic effect of metformin

was correlated with the microbiome, we investigated the cor-

relation between the PD parameters of metformin and the

microbiome (Supplementary Fig. 3). We found that Firmicutes

was negatively correlated with the 4Gmax and 4AUGC values.

Conversely, Proteobacteria was positively correlated with the

parameters (Supplementary Fig. 3a). Furthermore, we ana-

lyzed correlations at the genus level and identified that the

4Gmax and 4AUGC values were positively correlated with

Escherichia. However, the PD parameters were negatively cor-

related with Intestinibacter, Clostridium, and Romboutsia (Sup-

plementary Fig. 3b).

3.4. Administration of metformin altered urine, plasma,
and stool metabolites

We next assessed metabolites that changed after administra-

tion of metformin as key drivers between the hypoglycemic

effect and microbiome. Untargeted metabolomic profiling of

urine, stool, and plasma samples was performed to identify

differential metabolites between baseline and postmetformin

periods. A total of 1255, 1463, and 796 metabolic features were

detected in urine, stool, and plasma samples, respectively,

and the data were processed using MetaboAnalyst 4.0 [16].

After data processing, 170 urine, 482 stool, and 411 plasma

metabolic features were used for further analysis. The relia-

bility of the analytical performance and the quality of the

data were validated by using QC samples that were tightly

clustered in a plot of the principal component analysis

(PCA) score derived from the urine, stool, and plasmametabo-

lomes (Supplementary Fig. 4). We identified 25 urine, 10 stool,

and 4 plasma metabolites that significantly changed in rela-

tive abundance between the two periods (Fig. 2), and of these

metabolites, 21 urine, 2 stool, and 3 plasma metabolites were

increased during the postmetformin period. All urinary and

plasma amino acids were increased during the postmet-

formin period. Most urinary carbohydrates and stool carbohy-

drates were decreased (Supplementary Table 3). Fatty acids,

such as palmitoleic acid, a common metabolite in plasma

and stool samples, were decreased during the postmetformin

period. Of the significantly changed metabolites, we identified

13 urine, 4 stool, and 1 plasma microbial metabolite using the
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method of identification. Most microbial metabolites were

decreased during the postmetformin period, as listed in Sup-

plementary Table 3.

3.5. Changes in carbohydrates, branched-chain amino
acids, and fatty acids were correlated with gut microbiota

To investigate functional changes in the gut microbiome

using metabolites as mediators, we performed correlation

analysis between gut microbiota and metabolites whose rela-

tive abundance significantly changed during the postmet-

formin period. We found that carbohydrates, amino acids,

hydroxy acids, and fatty acids were correlated with the micro-

biome (Fig. 3). Among the correlations of urinary metabolites

and microbiota, Intestinibacter was positively correlated with

carbohydrates. Intestinibacter and Clostridium were positively

correlated with amino acids (Fig. 3a). D-galactose, glyceric

acid, glycolic acid, and 2,4-dihydroxybutyric acid were posi-

tively correlated with Intestinibacter, Clostridium, and Rombout-

sia. In contrast, hypoxanthine and hippuric acid were

negatively correlated with Intestinibacter, Clostridium, and Rom-

boutsia. In the correlation of stool metabolites and microbiota,

essential amino acids such as phenylalanine and L-isoleucine

were negatively correlated with Intestinibacter, Clostridium, and

Romboutsia. The three genera were positively correlated with

carbohydrates, fatty acids, hydroxy acids, and L-serine, which

are classified as nonessential amino acids (Fig. 3b). For plasma

markers, amino acids were positively correlated with the

genus, and palmitoleic acid was positively correlated with

Escherichia (Fig. 3c).

3.6. Changed metabolites showed correlations with the
hypoglycemic effect

We performed a correlation analysis to determine whether

changes in the PD parameters of metformin correlated with

changes in metabolites (Fig. 4). The PD parameters were pos-

itively correlated with urinary metabolites except for b-

Fig. 1 – Metformin treatment promotes changes in the composition of the gut microbiota. (a) Relative abundances of

recognized bacterial genera observed in the targeted metagenomics sequence data between baseline and postmetformin. (b)

Alpha and beta diversity plots to visualize the difference in themicrobiota structure between the baseline and postmetformin

periods. Alpha diversity measures with the most common indices, and (c) PCoA plots showing beta diversity, which

represents the dissimilarity of samples or groups. (d) Bacteria differentially represented between baseline and postmetformin

identified by linear discriminant analysis coupled with effect size (LEfSe). LEfSe analysis, which emphasizes both statistical

and biological relevance, was used for microbial biomarker discovery (FDR adjusted p-value < 0.05, LDA score greater

than 2.0). Histogram showing the genera of bacteria that were more abundant at baseline (red color) or postmetformin (blue

color) ranked by the linear discriminant analysis (LDA) score. The LDA score indicates the effect size and ranking of each

differentially abundant genus. Orange: baseline (control), Blue: postmetformin. Box plots showing medians as well as the

lower and upper quartiles. Each dot represents an individual sample. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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(a) (b)

(c)

Baseline
Postmetformin

Class

Log2(Fold change)

d

c acid

ic acid

ic acid

l

ic acid

Fig. 2 – Heatmap representing significantly different metabolites between the baseline and postmetformin periods. Heatmap

visualization of (a) urinary metabolites, (b) fecal metabolites, and (c) plasma metabolites. Metabolites were selected by p-

value < 0.05. Each colored cell represents a log2-fold change of metabolite, and the comparison type of fold change is

postmetformin/baseline.

(a)

)c()b(

Spearman
correlation 
coefficient

Fig. 3 – Association between microbial genus abundance and metabolite abundance. Heatmap showing the Spearman

correlation coefficient between the relative abundance of individual microbial genera and the relative abundance of (a)

urinary metabolites, (b) fecal metabolites, and (c) plasma metabolites. The y-axis represents the microbial genus, and the x-

axis represents metabolic biomarkers. The intensity of the colors represents the degree of association between the relative

abundance of individual genera and the relative abundance of metabolites as measured by Spearman’s correlations. White

asterisks denote a significant correlation. †microbial metabolites. *p-value < 0.05, **p-value < 0.005, ***p-value < 0.001, ****p-

value < 0.0001.
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alanine and lysine (Fig. 4a). Amino acids of stool metabolic

markers were weakly positively correlated with the PD

parameters, and carbohydrates were negatively correlated

with the PD parameters (Fig. 4b). Plasma metabolic markers

were positively correlated with the PD parameters except

for L-tyrosine (Fig. 4c).

3.7. Changed metabolites during the postmetformin
period were involved in gluconeogenesis, amino acid
metabolism, and carbohydrate metabolism

We found that changed metabolites were correlated with

microbiome and hypoglycemic effects. Thus, we performed

a metabolite set enrichment analysis to explore the potential

pathways, including the metabolites (Supplementary Fig. 5).

As a result, numerous pathways, including those involved in

gluconeogenesis and amino acid and carbohydrate metabo-

lism, were affected by metformin. Moreover, we conducted

pathway mapping analysis to identify correlated networks

between metabolites. In the network of urinary metabolites,

carbohydrate metabolism and serine-glycine metabolism

were affected by administration of metformin (Fig. 5(a)). In

addition, microbial metabolites were included in branched-

chain amino acid metabolism and gluconeogenesis. These

networks were related to the microbiota (Fig. 5(b)).

3.8. Safety

Safety was evaluated in the 20 subjects administered met-

formin at least once. There were 15 adverse events (AEs) after

administration of metformin. Of these AEs, 10 were gastroin-

testinal disorders. One case of diarrhea and one case of vom-

iting were evaluated as moderate AEs, and one case of

vomiting was evaluated as a severe AE. All other AEs were

mild.

4. Discussion

In this study, we investigated the effects of changes in micro-

bial composition and metabolites on the hypoglycemic effect

associated with metformin administration by using plasma,

urine, and stool samples from healthy adult males through

multiomics, including metagenomic and metabolomic

approaches. The subjects taking metformin showed signifi-

cant decreases in Gmax and AUGC values, with a nonsignifi-

cant but trending decrease in the value of HOMA-IR. These

results were supported by studies of metformin treatment

in T2D patients unable to control blood glucose due to insulin

resistance, preferentially regulating hepatic glucose output by

inhibiting gluconeogenesis rather than controlling insulin

levels [19,20].
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In addition, by performing 16S rRNA sequencing of stool

samples, we examined the changes in microbial composition

after multiple administrations of metformin. We observed

changes in various microbiome, including Akkermansia,

Escherichia, Intestinibacter, Clostridium, and Romboutsia, a find-

ing that is in agreement with results reported in previous

studies [1,11,21]. The changes in Akkermansia were observed

after taking metformin but were not significant. The change

in the relative abundance of Escherichia is assumed to be indi-

rectly affected by bacteria-bacteria interactions or other phys-

iological alterations [1]. The growth of Firmicutes, including

Intestinibacter, Clostridium, and Romboutsia, was impeded by

metformin [11,21]. In addition, a decrease in Firmicutes has

been reported to decrease insulin resistance and other factors

that lead to the development of T2D [22].

To investigate whether the changed gut microbiota is cor-

related with the hypoglycemic effect of metformin, we per-

formed correlation analysis. As a result, Escherichia was

positively correlated with the hypoglycemic effect. Escherichia

could use glucose as a carbon source in the b-alanine pathway

[23], and the increase in Escherichia was found to be related to

improved glucose homeostasis by the regulation of metabo-

lism, such as carbon uptake, catabolism, and energy and

redox production [11,24]. In fact, rats that underwent Roux-

en-Y gastric bypass (RYGB) surgery to treat obesity had

increased Escherichia and decreased glucose levels. Similarly,

mice that underwent ileal interposition (IT) surgery to treat

T2D had the same results [25,26]. Therefore, an increase in

the relative abundance of Escherichia after administration of

metformin may contribute to improving the hyperglycemic

effect. In contrast, Intestinibacter, Clostridium, and Romboutsia,

belonging to Firmicutes, were negatively related to the hypo-

glycemic effect. Firmicutes can generate surplus energy from

carbohydrates by fermenting unabsorbed carbohydrates,

and the accumulation of surplus energy can cause obesity

and T2D [27]. In an animal study, Firmicutes were increased

in ob/obmice, and body fat mass and energy harvesting ability

were increased in germ-free mice transplanted with ob/ob

microbiomes, such as Firmicutes [28]. Thus, hyperglycemia

may be improved as the relative abundance of Firmicutes

decreases after administration of metformin.

We used global metabolomic approaches to explore the

underlying pathway of the hypoglycemic effect. Global meta-

bolomic analysis showed changes in metabolic signatures,

including amino acid, carbohydrate, and fatty acid metabo-

lism. In particular, amino acids, hippuric acid, glyceric acid,

galactose, and palmitoleic acid were largely changed after

administration of metformin. Hippuric acid, largely increased

after administration of metformin, is a normal urinary com-

ponent derived from the degradation of phenols and aromatic

Carbohydrate metabolism

Serine and glycine 
metabolism

(a)

BCAA metabolism

Gluconeogenesis

(b)

Fig. 5 – Metabolic correlation network diagram. (a) A fully connected network of metabolites detected in the urine samples. (b)

Urinary and stool microbial metabolite correlation network diagram. The metabolites and microbiome are shown in color:

red represents an increase, blue represents a decrease in the postmetformin period, and gray represents no changes. The size

of the nodes represents the fold change of metabolites. The blue solid line represents chemical relationships, and the red

solid line represents biochemical relationships. The red dashed line denotes a negative correlation, and the blue dashed line

denotes a positive correlation. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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amino acids by microbiota belonging to Clostridium sp. [29].

The level of hippuric acid, a metabolite derived from the gut

microbiome, decreased in obese patients and increased

approximately 30-fold in patients who underwent RYGB sur-

gery [30] and was also associated with impaired glucose toler-

ance [31]. Additionally, the decrease was reduced in T2D

patients after treatment with antidiabetic drugs, which is cor-

related with a protective effect on gut microbiota metabolism

[32]. The intermediates of energy metabolism were decreased

after administration of metformin (Supplementary Fig. 6). In

previous studies, urinary TCA intermediates were elevated

in db/db mice [33], and myo-inositol, the bioconverted form

of scyllo-inositol, is known to be elevated in T2D patients

[34]. The high level of myo-inositol is due to competitive inhi-

bition with glucose in renal tubular transport, and the level

was decreased after administration of antidiabetic drugs.

Thus, both the levels of myo-inositol and scyllo-inositol are

expected to be good indicators of T2D treatment by antidia-

betic drugs. Fatty acids, including palmitoleic acid, were

increased in gestational diabetes mellitus patients. In partic-

ular, palmitoleic acid, produced by desaturation of palmitic

acid, promotes gluconeogenesis [35]. In our study, the

changes in these metabolites may affect the hypoglycemic

effect of metformin.

In terms of the comprehensive metabolic effects on hypo-

glycemia, amino acid metabolism, fatty acid b-oxidation, and

BCAAmetabolism were important metabolic pathways (Fig. 5,

Supplementary Fig. 6). First, amino acid metabolism, such as

serine-glycine metabolism, influences signaling associated

with obesity and insulin resistance [36]. In particular, mam-

malian target of rapamycin complex (mTORC), which has

been implicated in specific human pathologies, including

obesity, T2D, and cancer, is affected by amino acid metabo-

lism [37,38]. Metformin inhibits mTORC1, which reduces

ATP production and activates AMPK [39], but amino acids

stimulate mTORC1 signaling by activating a family of GTPases

[40]. Therefore, we presumed that a decrease in amino acids

could affect mTORC1 signaling, thereby lowering blood glu-

cose levels through the regulation of AMPK.

Moreover, AMPK activation can also affect fatty acid b-

oxidation [41]. Fatty acid b-oxidation, the first step of fatty

acid catabolism, is an energy production process. In T2D

patients, fatty acid b-oxidation was decreased and associated

with insulin resistance by impaired b-cell function [42]. Under

this condition, more fatty acids were metabolized to more

diacylglycerols, which inhibited the interaction between insu-

lin and glucose transporter type 4 (GLUT4) [43]. Peroxisome

proliferator–activated receptor-gamma (PPAR-c) is a nuclear

receptor that regulates fatty acid metabolism and glucose

metabolism [44], and it is known to be activated by metformin

[45]. The activation of AMPK by metformin induces PPAR-c

activity, which plays an important role in the transcriptional

control of mitochondrial fatty acid b-oxidation by upregulat-

ing the expression of genes involved in fatty acid b-

oxidation [41,45].

BCAA metabolism could be affected by Escherichia, which

contributes to an increase in BCAA biosynthesis and a reduc-

tion in BCAA transport into bacterial cells [46]. However, the

role of BCAA is still controversial. On the one hand, insulin

resistance is related to increased levels of BCAAs [46], but

on the other hand, glucose homeostasis and insulin sensitiv-

ity are improved in mice fed a diet enriched in leucine [47]. We

confirmed that the hypoglycemic effect is influenced by

BCAAs and Escherichia.

In the present study, we used paired samples to reduce the

effect of interindividual variations, a common issue in previ-

ous studies exploring the effect of metformin on the human

gut microbiome [1,11,48,49]. Additionally, to reduce the effect

of dietary intake on the human gut microbiome, the subjects

were hospitalized and fed the same diet prior to starting met-

formin administration. Thus, the design of our study enabled

us to decrease the effect of confounding factors that have an

impact on the human gut microbiome. In addition, this study,

for the first time, revealed the underlying pathway of the

hypoglycemic effect of metformin through metagenomic

and metabolomic approaches utilizing plasma, urine, and

stool samples from healthy subjects. However, this study

has some limitations. First, the proposed pathway of the

hypoglycemic effect has not been substantiated by further

mechanistic studies and has been presented only as a corre-

lation. Therefore, the results of this study need to be verified

through additional mechanistic studies. Second, we con-

ducted a clinical trial in Korean adults who were provided a

normal diet, not a high-fat/high-fiber diet, to reduce the effect

of diet on the results. Nevertheless, the human gut microbiota

is affected by genetic and environmental factors, including

diet, medications, and stress [50], and varies across different

ethnic groups. Thus, further evaluation is needed in different

ethnic groups with different diets.

5. Conclusion

Our study indicates that specific changes in metabolites may

affect the hypoglycemic effect through both signaling related

to AMPK activation and pathways correlated to the micro-

biome. In particular, amino acid metabolism and energy

metabolism were related mainly to hypoglycemic effects,

and among them, BCAA metabolism and gluconeogenesis

were associated with microbial changes. However, further

studies combining metabolomics and metagenomics are

essential to identify the effects of the gut microbiome and

metabolites on metformin. Future studies will be of great help

in elucidating the mechanism of metformin.
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