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In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known
about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap
by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the
PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release
using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users;
n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of
cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than
NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of
striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding
or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women’s hormone status. Hormonal
contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ∼400 million women worldwide, yet few studies
have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to
address this critical gap in women’s health.
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Sex hormones are powerful neuromodulators of learning and
memory (Taxier et al. 2020). Accumulating evidence suggests that
sex hormones’ influence extends to the regulation of dopamine
(DA) (Becker 1999; Barth et al. 2015; Sun et al. 2016; Yoest et al.
2018), itself a neuromodulator of higher order cognitive functions
(Iversen and Iversen 2007; Cools et al. 2008; Cools and Arnsten
2022). In rodents and nonhuman primates, 17β-estradiol (E2)
and progesterone (P) modulate DA synthesis and release, alter
DA-D2 receptor availability, and modify the basal firing rate of
dopaminergic neurons (Dluzen and Ramirez 1984, 1990; Becker
and Cha 1989; Lévesque et al. 1989; Pasqualini et al. 1995; Czoty
et al. 2009; Asghari et al. 2011). For example, E2 administration
produces a dose-dependent increase in striatal DA (Pasqualini
et al. 1995) and modulates goal-directed behavior (Uban et al.
2012) in rodents. Progesterone has a bimodal effect on striatal
DA concentration, with increases in DA in the first 12 h after P
perfusion, and inhibitory effects 24 h post-infusion. Furthermore,
surgical removal of the ovaries reduces tyrosine hydroxylase

(TH)-immunoreactive neurons in the substantia nigra (Leranth
et al. 2000) and prefrontal cortex (PFC; Kritzer and Kohama 1998).
Estrogen receptors are localized to regions that receive major
projections from midbrain DA neurons, including PFC, dorsal
striatum, and the nucleus accumbens (Björklund and Dunnett
2007). Despite the substantial literature supporting sex hormones’
role in DA neuromodulation in rodents and nonhuman primates,
less is known about hormonal regulation of the DA system in the
human brain.

Indirect evidence in humans suggests that estradiol modulates
DA-dependent cognitive function and PFC activity (Jacobs and
D’Esposito 2011; Jacobs et al. 2016, 2017; Diekhof et al. 2021). For
example, Jacobs and D’Esposito (2011) found evidence that estra-
diol regulates PFC activity and working memory performance,
and the direction of the effect depends on an individual’s basal
PFC DA tone (indexed by catechol-O-methyltransferase activity).
Additional evidence suggests that menstrual cycle phase influ-
ences DA-dependent motor and cognitive functions, including
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response time on tests of manual coordination, working memory,
and cognitive flexibility (Hampson and Kimura 1988; Hidalgo and
Pletzer 2017), and immediate reward selection bias (Smith et al.
2014).

Molecular positron emission tomography (PET) imaging pro-
vides a more direct assessment of dopaminergic activity in vivo
in the human brain. Sex differences have been observed in DA
synthesis capacity (Laakso et al. 2002), DA release (Munro et al.
2006; Riccardi et al. 2006; Manza et al. 2022), and DA transporter
density (Lavalaye et al. 2000; Mozley et al. 2001). PET studies of
women sampled in different phases of the menstrual cycle and
menopausal transition suggest a role for sex steroid hormones in
modulating aspects of DA functioning. Wong et al. (1988) observed
fluctuations in DA-D2 receptor density across the menstrual
cycle in healthy premenopausal women, and Pohjalainen et al.
(1998) observed a greater variability in DA-D2 receptor density in
premenopausal vs postmenopausal women, with the suggestion
that greater variability was attributable to hormonal fluctuations
across the menstrual cycle (but see Nordström et al. 1998; Smith
et al. 2019; Petersen et al. 2021).

An underexplored population for studying hormonal influ-
ences on DA function is women using hormonal contraception.
Hormonal contraception (HC; in the form of pill, shot, implant,
ring, or intrauterine device (IUD)) is used by ∼400 million women
worldwide (United Nations 2019), yet few studies have examined
whether chronic hormone manipulations affect basic properties
of the DA system. In the present analyses, we leveraged data from
a well-characterized cohort (Berry et al. 2018a, 2019; Furman et al.
2020, 2021) to probe the impact of hormonal contraception on
multiple properties of the DA system using molecular PET imaging
techniques, offering new insights into the relationship between
endocrine status and DA neurotransmission in the human brain.
The study consisted of young, healthy women and men, and
paired pharmacological manipulation of the DA system with
PET imaging to assess synthesis capacity (radioligand [18F]fluoro-
m-tyrosine, [18F]FMT), D2 receptor availability (radioligand
[11C]raclopride), and DA release (radioligand [11C]raclopride
paired with methylphenidate). This provides a unique opportunity
to characterize differences in DA synthesis capacity, basal DA
receptor occupancy, and stimulated DA release in a single cohort.
Next, we investigated sex differences in DA neurotransmission.
Finally, we examined whether differences in DA neurotrans-
mission were associated with DA-dependent cognition, using a
behavioral assessment of cognitive flexibility (Berry et al. 2018b;
Furman et al. 2020). Leveraging an existing multimodal molecular
PET imaging cohort allowed us to look at broad differences in
DA neurotransmission between naturally cycling women (i.e.
those who self-report not using any hormone-based medication)
and those using hormonal contraception. These results offer
researchers a strong rationale for designing additional imaging
studies that explicitly test the breadth and depth with which
hormonal contraceptives influence major neuromodulatory
systems.

Materials and methods
Participants
Participants consisted of 57 adults (mean age = 21.16 years,
SD = 2.37, range: 18–28 years), including 37 women and 20 men
(n = 28 Asian, 10 Hispanic or Latino, 9 White (not Hispanic or
Latino), 2 Black or African American, 3 more than one race or

ethnicity, 2 other, and 3 declined to state). Participants were
originally recruited and underwent PET and MRI imaging as
part of a parent study on dopaminergic mechanisms of cognitive
control (e.g. see Furman et al. 2020). PET data from this sample
have previously been described in Berry et al. (2018a). This study
was approved by Institutional Review Boards at the University of
California, Berkeley and Lawrence Berkeley National Laboratory,
and the experiments were undertaken with the understanding
and written consent of each subject. Data captured regarding
participants’ hormonal contraceptive use allowed for post hoc
comparisons between current users and current non-users of
hormonal contraception. Participants met the following eligibility
criteria: (i) 18–30 years old, (ii) right-handed, (iii) current weight of
at least 100 pounds, (iv) able to read and speak English fluently,
(v) nondrinker or light drinker (women: <7 alcoholic drinks/week;
men: <8 alcoholic drinks/week), (vi) no recent history of substance
abuse, (vii) no history of neurological or psychiatric disorder as
confirmed by clinician interview, (viii) no current psychoactive
medication or street drug use, (ix) not pregnant, and (x) no
contraindications to MRI. Most participants completed 3 PET
scans over the course of 2 separate sessions: [18F]FMT, and
[11C]raclopride + placebo and [11C]raclopride + methylphenidate
on the same day; the exceptions were 1 participant (an NC
woman) who did not complete the FMT scan due to technical
issues, 1 participant (an NC woman) who did not produce reliable
Raclopride scan data due to technical issues, and 2 participants
(hormonal contraceptive users) who did not complete Raclopride
scans.

Participants also completed a listening span test (Salthouse
and Babcock 1991) and the Barratt Impulsivity Scale (Patton et al.
1995) to assess working memory capacity and trait impulsivity,
respectively.

[18F]FMT sample
Women were categorized based on hormone status: naturally
cycling (NC, no current reported use of hormonal contraception;
n = 21, avg. age = 22.67 years, SD = 2.77) and current users of hor-
monal contraception (HC, n = 15, avg. age = 20.43 years, SD = 1.91).
Types of hormonal contraception used included: combined oral
contraception (OC, n = 10), vaginal ring (n = 1), implant (n = 2), injec-
tion (n = 1), and hormonal IUD (n = 1).

[11C]Raclopride sample
[11C]Raclopride data from 1 NC participant did not pass quality
control and 2 HC users (combined OC) did not have [11C]raclopride
sessions, yielding a final sample of 21 NC women (avg age = 20.67,
SD = 1.91) and 13 HC users (avg age = 22.69, SD = 2.81).

In our secondary analyses, participants were grouped by self-
reported sex (male, n = 20; female, n = 37), and hormone status
(male, NC, and HC). Men and women did not differ significantly
in age or BMI; however, HC users were older than males (p = 0.03,
d = 0.85) and NC participants (p = 0.01, d = 0.94) by 25 months on
average (Table 1).

As trait-like measures of working memory span, impulsivity,
and smoking status have been associated with striatal DA neu-
rotransmission (Landau et al. 2009; Smith et al. 2018; Ashok
et al. 2019), we also considered whether our groups differed
by these phenotypes. Neither baseline working memory (listen-
ing span score) F(2) = 0.27, p = 0.77 (HC: mean = 3.07, SD = 0.98;
NC: mean = 2.91, SD = 0.81; Male: mean = 2.85, SD = 0.89), nor trait
impulsivity (Barrett Impulsivity Scale score) F(2) = 0.50, p = 0.61
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Table 1. Participant demographics by sex and hormone status.

Age BMI

Men (n = 20) 20.7 ± 2.1 23.8 ± 5.3
Women (n = 37) 21.4 ± 2.5 23.7 ± 4.2

Naturally Cycling (n = 22) 20.6 ± 2.0 23.0 ± 3.9
Hormonal Contraception (n = 15) 22.7 ± 2.8 24.7 ± 4.6

NC vs HC
Cohen’s d (Welch’s p)

0.94 (0.01a) n.s.

Men vs Women n.s. n.s.
Men vs NC vs HC
Kruskal–Wallis p

0.03 n.s.

Types of HC used (n): combined OC (10), vaginal ring (1), implant (2),
injection (1), and hormonal IUD (1). NC, naturally cycling; HC, hormonal
contraception. aIndicates significance with Bonferroni correction
(P < 0.0167).

(HC: mean = 55.80, SD = 8.75; NC: mean = 57.86, SD = 5.86; Male:
mean = 58.60, SD = 10.25) differed between groups; and a previous
characterization of participants from this parent data set found a
very low incidence of nicotine use (Berry et al. 2018a).

Structural MRI scan
Images were acquired using a Siemens 3T Trio Tim scanner with
a 12-channel coil. Each participant was scanned on 3 occasions
using a high-resolution T1-weighted magnetization prepared
rapid gradient echo (MPRAGE) whole-brain scan (TR = 2,300 ms;
TE = 2.98 ms; FA = 9◦; matrix = 240 × 256; FOV = 256; sagittal plane;
voxel size = 1 × 1 × 1 mm; 160 slices). The 3 MPRAGE scans were
aligned, averaged, and segmented using FreeSurfer version 5.1
(http://surfer.nmr.mgh.harvard.edu/) and the averaged template
was used for coregistration with the PET data.

[18F]FMT PET data acquisition
Participants underwent an [18F]FMT PET scan to measure DA
synthesis capacity. Detailed methods are provided in Berry
et al. (2018b). PET data were acquired using a Siemens Biograph
Truepoint 6 PET/CT scanner (Siemens Medical Systems, Erlangen,
Germany) ∼1 h after participants ingested 2.5 mg/kg of carbidopa
to minimize the peripheral decarboxylation of [18F]FMT. After
a short CT scan, participants were injected with ∼2.5 mCi of
[18F]FMT as a bolus in an antecubital vein (M ± SD; specific
activity = 947.30 ± 140.26 mCi/mmol; dose = 2.43 ± 0.06 mCi).
Dynamic acquisition frames were obtained over 90 min in 3D
mode (25 frames total: 5 × 1, 3 × 2, 3 × 3, 14 × 5 min). Data were
reconstructed using an ordered subset expectation maximization
algorithm with weighted attenuation, corrected for scatter, and
smoothed with a 4 mm full width at half maximum kernel.

[11C]Raclopride PET data acquisition
Participants received two [11C]raclopride PET scans an average
of 21.65 days before or after the [18F]FMT scan (median = 7 days)
to measure D2/3 receptor occupancy and DA release. To measure
baseline D2/3 receptor occupancy, participants ingested a placebo
pill ∼1 h before [11C]raclopride scan 1. The placebo scan was
always performed first. To measure DA release, participants
ingested 30 mg (M ± SD mg/kg: 0.46 ± 0.08) of methylphenidate
∼1 h before [11C]raclopride scan 2. Endogenous DA release was
measured as the percent signal change (PSC) in nondisplaceable
binding potential (BPND) from [11C]raclopride scans 1 to 2
((placebo [11C]raclopride − methylphenidate [11C]raclopride)/placebo
[11C]raclopride). Scans were conducted on the same day, 2 h
apart and participants were blind to whether placebo or
methylphenidate was administered. For both [11C]raclopride
scans 1 and 2, after a short CT scan, participants were injected

with ∼10 mCi of [11C]raclopride as a bolus in an antecubital vein.
Dynamic acquisition frames were obtained over 60 min in 3D
mode (19 frames total: 5 × 1, 3 × 2, 3 × 3, 8 × 5). Reconstruction
was performed as described above.

PET data analysis
PET data were preprocessed using SPM8 software (Friston et al.
2007). To correct for motion between frames, images were
realigned to the middle frame. The first 5 images were summed
prior to realignment to improve realignment accuracy, as these
early images have relatively low signal contrast. Structural images
were coregistered to PET images using the mean image of frames
corresponding to the first 20 min of acquisition as a target. The
mean image for the first 20 min was used rather than the mean
image for the whole scan time because it provides a greater range
in image contrast outside of striatum thus making it a better
target for coregistration.

[18F]FMT
Graphical analysis for irreversible tracer binding was performed
using Patlak plotting (Patlak and Blasberg 1985; Sossi et al. 2003)
implemented using in-house software and MATLAB version 8.2
(The MathWorks, Natick, MA). Without measurement of the arte-
rial input function, [18F]FMT PET analysis used reference region
models. Cerebellar gray matter was used as the reference region
because this region shows very little tracer uptake, and has an
extremely low density of DA receptors and metabolites relative to
striatum (Farde et al. 1986; Camps et al. 1989; Levey et al. 1993;
Hall et al. 1994). The most anterior, one-fourth of cerebellar gray
matter, was removed from the reference region to limit contami-
nation of signal from the substantia nigra and ventral tegmental
area. Ki images were generated from PET frames corresponding to
25–90 min (Ito et al. 2006, 2007), which represent the amount of
tracer accumulated in the brain relative to the reference region.

[11C]Raclopride
For [11C]raclopride PET, reversible tracer binding was quantified
using simplified reference tissue model analysis (SRTM; Lam-
mertsma and Hume 1996). Specifically, a basis function version
of the SRTM was applied as previously described (Gunn et al.
1997) with posterior cerebellar gray matter used as the refer-
ence region. The SRTM analysis was performed using in-house
software provided by Dr. Roger Gunn and MATLAB version 8.2.
SRTM analysis was used to determine BPND, which can be defined
as: BPND = fNDBavail/KD where Bavail is the concentration of D2/3
receptors, KD is the inverse of the affinity of the radiotracer for
D2/3 receptors, and fND is the free fraction of the ligand in the
nondisplaceable tissue compartment (Slifstein and Laruelle 2001;
Innis et al. 2007).

Regions of interest
An ROI approach was used to test relationships between hor-
monal status and PET measures of dopaminergic function in
striatal subregions. Striatal subregions were manually drawn in
native space on each participant’s averaged MPRAGE MRI scan
using Mango software. The dorsal caudate, dorsal putamen, and
ventral striatum were segmented as described in Mawlawi et al.
(2001). Inter-rater reliability was high for manually drawn striatal
subregions (see Berry et al. 2018b).

As we did not hypothesize an effect of hemisphere, ROI values
for our 3 ROIs (dorsal caudate, dorsal putamen, and ventral
striatum) were analyzed as voxel-weighted averages of left and
right hemisphere PET values as follows:
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(L value × L ROI volume + R value × R ROI volume)/Combined
L + R ROI volume.

All analyses on striatal values were conducted on partial vol-
ume corrected ROIs (PVC; Rousset et al. 1998). PVC was performed
in native space (non-normalized data) and corrects for between-
subject differences in the inclusion of white matter and CSF in
the measured volumes. To apply the PVC in native space, we used
FreeSurfer-generated ROIs for gray matter cortical and subcortical
regions, white matter, and cerebral spinal fluid. All statistical
analyses were conducted using R (version 1.2.5001).

Cognitive paradigm
The task was an adaptation of the task-switching paradigm devel-
oped by Armbruster et al. (2012) and is described in detail in
Furman et al. (2020). Briefly, on each trial, participants were
required to respond quickly to digits between 1 and 9 (excluding
5) that appeared in different shades of gray against a black back-
ground. On 82% of trials, a single digit appeared above a central
fixation. For these “ongoing task” trials, participants performed
an operation (odd/even or low/high decisions) on the digit and
responded by pressing the index finger of either their left or
right hand. On the remaining 18% of trials, 2 digits appeared
on the screen simultaneously: 1 above and 1 below the fixation
cross. The relative brightness of the upper and lower digits varied
and encoded a task cue. When the upper digit was brighter (6%
of trials), participants were instructed to ignore the lower digit
and continue to apply the ongoing task rule to the upper digit
(“distractor trials”). When the lower digit was brighter (6% of
trials), participants were signaled to switch attention to the lower
digit and to apply the alternate task rule to it (“switch trials”). On
the final third of these trials (6% of total trials), the difference
in brightness between the upper and lower digits was reduced
(“ambiguous trials”). Ambiguous trials were not considered in our
analyses. Participants performed a total of 990 trials distributed
across 3 blocks with brief interposed breaks. Cognitive testing
occurred prior to PET imaging. Distractor cost was calculated as the
difference between performance accuracy on “distractor” trials
and “ongoing” trials, and is thought to reflect cognitive stability,
a process sensitive to variation in prefrontal DA. Switch cost was
calculated as the difference between performance accuracy on
“switch” vs “ongoing” trials and is a putative behavioral marker of
cognitive flexibility, reflective of striatal DA. One NC participant
did not undergo cognitive testing, resulting in a final sample of 20
NC women (avg age = 20.67, SD = 1.91), 15 HC users (avg age = 22.69,
SD = 2.81), and 20 men (avg age = 20.70, SD = 2.08).

Statistical analysis
Impact of hormone status on DA neurotransmission
Since hormonal contraceptive (HC) users were older than NC par-
ticipants, to compare markers of dopaminergic signaling between
HC and NC groups, we conducted 2 × 4 ANCOVA (hormone
group × bilateral region of interest, controlling for the effects of
age) for measures of interest (FMT Ki, [11C]raclopride BPND and
PSC in [11C]raclopride BP). We investigated significant main effects
with post hoc 1-way ANCOVAs to determine which regions were
driving the effect, controlling for the effects of age. Statistically
significant findings that survived Bonferroni correction for
multiple comparisons are noted (pBf = 0.05/3 regions = 0.0167).
Partial effect sizes (η2) are reported for statistically significant
findings.

Welch’s t-tests were used to compare distractor costs and
switch costs between our comparison groups. One NC participant
with unusable task data was omitted from these analyses. As a

follow-up to observed differences between NC and HC women,
switch costs were correlated with [18F]FMT Ki PVC striatal values
to evaluate a relationship between performance and DA synthesis.

Sex differences in DA neurotransmission
To compare the aspects of DA signaling by sex and hormone sta-
tus, we conducted 2 × 3 mixed ANCOVA (group × bilateral region
of interest, controlling for age) for measures of interest (FMT Ki,
[11C]raclopride BP, and PSC in [11C]raclopride BP).

Welch’s t-tests were conducted to compare distractor costs
and switch costs by sex. Additionally, for reference, switch costs
were correlated with [18F]FMT Ki PVC striatal values in our male
sample.

Finally, to determine whether differences in hormonal status
within women influenced the detection of sex differences, we
conducted 3 × 3 mixed ANCOVA (group × bilateral region of inter-
est, controlling for age) for each measure of interest (FMT Ki,
[11C]raclopride BP, and PSC in [11C]raclopride BP). Significant main
effects were investigated using post hoc 1-way ANCOVAs, again to
control for the effects of age.

Results
DA neurotransmission differs with hormonal
contraceptive use
Striatal [18F]FMT Ki

[18F]FMT PET data were obtained to assess DA synthesis
capacity in the striatum. ANCOVA revealed significant main
effects of age (F(1,33) = 4.844, p = 0.035, η2 = 0.13), hormone
status (F((1,33) = 7.753, p = 0.009, η2 = 0.19, Fig. 1), and region
(F(2,68) = 207.859, p < 0.00001, η2 = 0.86). Regional effects were
expected as previously reported (Berry et al. 2018a). There was
no significant interaction between hormone status and region.
Results from post hoc 1-way ANCOVAs indicate that hormonal
contraceptive users exhibited greater FMT Ki values compared
with NC participants, with the largest effect in dorsal caudate
(F(1, 33) = 9.611, pBf = 0.004). Ki values differed marginally between
hormonal contraceptive users and NC participants in dorsal puta-
men (F(1,33) = 3.966, p = 0.055) and ventral striatum (F(1,33) = 3.754,
p = 0.061) (Table 2; see Supplementary Table 2 for uncorrected
values).

Striatal [11C]raclopride BP
[11C]Raclopride PET data were obtained to measure D2/3 recep-
tor binding potential. [11C]Raclopride BP differed significantly
by region (F(2,64) = 389.281, p < 0.0001, η2 = 0.92). Regional effects
were expected as previously reported (Berry et al. 2018a). There
was no significant main effect of age (F(1,31) = 3.795, p = 0.061)
or hormone status (F(1,31) = 0.09, p = 0.76) on [11C]raclopride BPND

values, nor was there an interaction between hormone status
and region (F(2,64) = 0.815, p = 0.447) (see Supplementary Table 1
for values).

PSC in striatal [11C]raclopride BP
Methylphenidate-paired [11C]raclopride PET data were acquired
to measure DA release. [11C]Raclopride BP PSC values differed
significantly by region (F(2,64) = 389.281, p < 0.0001, η2 = 0.92).
Again, regional effects were expected as previously reported
(Berry et al. 2018a). There were no significant effects of age
(F(1,31) = 3.795, p = 0.061) or hormone status (F(1,31) = 0.092,
p = 0.76) on [11C]raclopride BP PSC values, nor was there an
interaction between status and region (F(2,64) = 0.815, p = 0.45)
(see Supplementary Table 1 for values).
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Table 2. Dopamine synthesis capacity ([18F]FMT Ki values) by group and striatal region of interest.

Dorsal caudate Dorsal putamen Ventral striatum

Male 0.0278 ± 0.0034 0.0346 ± 0.0030 0.0209 ± 0.0034
Women 0.0272 ± 0.0033 0.0343 ± 0.0037 0.0204 ± 0.0049

Naturally Cycling 0.0256 ± 0.0025 0.0331 ± 0.0033 0.0190 ± 0.0053
Hormonal Contraception 0.0295 ± 0.0030 0.0360 ± 0.0037 0.0224 ± 0.0037

HC vs NC
partial η2 , p-value

0.23, 0.004a 0.11, 0.055 0.10, 0.061

Men vs Women
partial η2 , p-value

0.02, n.s. <0.01, n.s. <0.01, n.s.

Men vs NC vs HC
partial η2 , p-value

0.18, 0.006a 0.08, n.s. 0.10, 0.064

aIndicates significance with Bonferroni correction (p < 0.0167). n.s. indicates p > 0.10. NC, naturally cycling; HC, hormonal contraception.

Fig. 1. Effect of hormone status on DA synthesis capacity. [18F]FMT Ki
values in naturally cycling females and hormonal contraceptive users by
striatal region of interest. Striatal DA synthesis capacity was greater in
hormonal contraceptive users relative to naturally cycling women, with
the most pronounced effects observed in dorsal caudate.

DA neurotransmission does not differ by sex
Striatal [18F]FMT Ki

We observed a main effect of region on FMT values (F(2,108) = 358.424,
p < 0.0001, η2 = 0.87), no main effect of sex (F(1,53) = 0.415, p = 0.52),
and no interaction between sex and region (F(2,108) = 0.032,
p = 0.97).

Striatal [11C]raclopride BP
We observed a main effect of region on [11C]raclopride BP values
(F(2,104) = 479.362, p < 0.0001, η2 = 0.90), but no main effect of
sex (F(1,52) = 0.084, p = 0.77), and no interaction between sex and
region (F(2,104) = 1.453, p = 0.24).

Striatal [11C]raclopride BP PSC
Again, we observed a main effect of region on PSC in [11C]raclopride
BP values (F(2,104) = 5.383, p = 0.006, η2 = 0.09), but no main effect
of sex (F(1,51) = 0.089, p = 0.77), and no interaction between sex
and region (F(2, 104) = 1.488, p = 0.23).

Differences in DA neurotransmission by sex and
hormone status
Striatal [18F]FMT Ki

Despite notable differences in striatal DA synthesis capac-
ity within women based on hormone status, men did not

differ appreciably from women in either hormone group.
ANCOVA revealed an overall main effect of group (F(2,52) = 5.058,
p = 0.010, η2 = 0.16) and region (F(2,106) = 116.5, p < 0.00001,
η2 = 0.60). Post hoc Tukey’s HSD test confirmed that the main
effect of hormone status was driven by significant differences
between NC and hormonal contraceptive groups (p = 0.004),
with no differences between males vs HC (p = 0.20) or vs NC
(p = 0.12).

Striatal [11C]raclopride BP
We identified a significant effect of region (F(2,102) = 476.183,
p < 0.0001, η2 = 0.90); however, there was no significant main effect
of age (F(1,50) = 1.330, p = 0.25) or hormone status (F(2,50) = 0.044,
p = 0.96), nor an interaction between the 2 factors (F(4,102) = 1.049,
p = 0.39).

Striatal [11C]raclopride BP PSC
There was a significant effect of region (F(2,102) = 5.284, p = 0.007,
η2 = 0.09), no significant effect of age (F(1,50) = 0.400,
p = 0.53) or hormone status (F(2,50) = 0.081, p = 0.92), and no
significant interaction between the two (F(4, 102) = 0.750,
p = 0.56).

Individual differences in DA transmission are
tied to differences in cognitive flexibility
Naturally cycling vs hormonal contraceptive users
There was no statistically significant difference in distractor
cost between hormonal contraceptive users and NC partic-
ipants (t(31.9) = 0.093, p = 0.926; Fig. 2a). However, hormonal
contraceptive users exhibited significantly reduced switch
cost compared with NC participants (t(31.0) = −2.256, p = 0.031;
d = −0.74; age-adjusted) (Fig. 2b). Across female participants,
switch cost was inversely correlated with [18F]FMT Ki values in
the dorsal caudate (Pearson’s r(33) = −0.41, p = 0.016) and ventral
striatum (r(33) = −0.34, p = 0.042), but not in the dorsal putamen
(r(33) = −0.29, p = 0.089). Only the effect in the dorsal caudate was
statistically significant after correcting for multiple comparisons
(Fig. 2c). In contrast, there were no significant correlations
between [18F]FMT Ki values and distractor cost in any ROI (all
ps > 0.6). There were no significant correlations among males
between [18F]FMT Ki values and switch or distractor costs in any
ROI (p > 0.2 for all).

Men vs women
We did not observe a difference in switch cost (t(46.4) = −0.11,
p = 0.91) or distractor cost (t(47.9) = −0.47, p = 0.64) between men
and women (Table 3).
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Fig. 2. Cognitive flexibility differs between naturally cycling and hormonal contraceptive groups and correlates with DA synthesis capacity in dorsal
caudate. A) Performance on a task-switching paradigm reveals no difference in cognitive stability between groups, indicated by no difference in distractor
costs on distractor/ongoing trials. B) In contrast, hormonal contraceptive users exhibited greater cognitive flexibility compared with naturally cycling
participants, indicated by a smaller performance cost on task-switching trials. C) We observed a significant negative correlation between performance
on a task-switching paradigm and [18F]FMT Ki values in dorsal caudate across our female participants (both NC and HC).

Table 3. Performance on task-switching paradigm.

Distractor cost Switch cost

Men (n = 20) 0.035 ± 0.040 0.125 ± 0.108
Women (n = 36) 0.029 ± 0.051 0.121 ± 0.132

Naturally Cycling (n = 21) 0.029 ± 0.054 0.160 ± 0.149
Hormonal Contraception (n = 15) 0.030 ± 0.048 0.070 ± 0.085

NC vs HC
Cohen’s d (Welch’s p)

n.s. −0.74 (0.03)

Men vs Women n.s. n.s.
Men vs NC vs HC
Kruskal–Wallis p

n.s. n.s.

NC, naturally cycling; HC, hormonal contraception.

Men vs naturally cycling vs hormonal contraceptive users
We did not observe significant effects of switch cost (F(2,52) = 2.428,
p = 0.098) or distractor cost (F(2,52) = 0.1, p = 0.905) between groups
(Table 3).

Discussion
In this study, hormonal contraceptive users exhibited greater
DA synthesis capacity (as measured by [18F]FMT Ki) and greater
cognitive flexibility than NC participants. No group differences
in D2/3 binding potential ([11C]raclopride BP) or DA release
([11C]raclopride BP PSC) were observed. Though synthesis capacity
differed significantly between NC women and women using
hormonal contraception, women overall did not differ appreciably
from men. This suggests that investigations into the influence of
sex hormones on DA neurotransmission may be hampered if
limited to comparisons between sexes. Together, these findings
lay the groundwork for understanding how global manipulations
of the endocrine system, e.g. via hormonal contraceptives, impact
DA neurotransmission and related cognition.

DA synthesis capacity differs by hormone status
No sex differences in DA neurotransmission were observed.
These findings are inconsistent with previous studies comparing
DA synthesis between sexes, which report greater synthesis in
females relative to males (Laakso et al. 2002; Hahn et al. 2021).
However, these studies did not control for or exclude participants
based on hormonal contraceptive use. In the present study (e.g.

Supplementary Fig. 1), DA synthesis values for our male sample
fell between values observed for HC and NC women. Thus, based
on findings reported here, the magnitude and direction of a sex
effect observed in DA synthesis may reflect the proportion of
HC vs NC female participants in the sample rather than a sex
difference, per se.

Within women, DA synthesis capacity was greater in hormonal
contraceptive users compared with NC participants, whereas
D2/3 receptor binding potential and stimulated DA release
did not differ between groups. Findings from the preclinical
literature suggest that pharmacological manipulations of the
hypothalamic-pituitary-gonadal axis impact the DA system. In
an ablation-replacement study in ovariectomized rats (Pasqualini
et al. 1995), 17β-estradiol add-back selectively increased striatal
DA synthesis but not release, as measured via local superfusion of
E2 into the caudate nucleus. Similarly, Algeri et al. (1976) observed
increased DA synthesis in the striatum and forebrain of intact rats
after acute (4 days) and chronic (30 days) oral administration of a
synthetic progestin and an estrogen.

Estradiol’s influence on DA synthesis capacity may be medi-
ated by estradiol-induced increases in phosphorylation of tyro-
sine hydroxylase (TH) (Pasqualini et al. 1995), the enzyme that
converts tyrosine to L-dihydroxyphenylalanine (L-DOPA). Another
mechanism of action may be the hormonal regulation of aromatic
L-amino acid decarboxylase (AADC) that converts L-DOPA to DA
(and is the target of [18F]FMT). AADC activity is dependent on pyri-
doxal phosphate (PLP), or Vitamin B6 (Rahman et al. 1982; Hartvig
et al. 1995), a nutrient and coenzyme with intermediate concen-
trations in basal ganglia (Ebadi 1985) that is reduced, in some
cases to the point of deficiency, in HC users (Luhby et al. 1971; Ben-
nink and Schreurs 1974; Wilson et al. 2011; Rios-Avila et al. 2015). If
low levels of PLP are associated with reduced AADC activity (Allen
et al. 2010), we would expect HC users to exhibit reduced [18F]FMT
binding relative to NC women. We observed the opposite pat-
tern. Without information regarding vitamin B6 status for partici-
pants, the relationship between PLP and [18F]FMT binding remains
untested.

The selectivity of our findings to differences in AADC activity
(as measured with [18F]FMT) and not DA release or D2/3
receptor binding (both measured with [11C]raclopride) also
suggests the possibility that other catecholamine systems may
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be impacted. AADC is a critical enzyme in the formation of
catecholamines in general, including serotonin (Ebadi 1985).
In rodent studies, chronic treatment with oral hormonal
contraceptives increases brain levels of tryptophan and serotonin
(Baker et al. 1977; Daabees et al. 1981; reviewed in Porcu et al.
2019). Future investigations should clarify whether global sex
steroid hormone manipulations alter DA synthesis capacity
specifically, or the catecholamine system generally.

While [18F]FMT is a straightforward measure of AADC
enzyme activity, which should directly reflect DA synthesis,
[11C]raclopride is a more complex signal. [11C]Raclopride com-
bines several measures, including the binding potential or number
of D2/3 receptors (Bavail), and the dissociation constant or how
probable the ligand–receptor complex is to dissociate (KD). One
limitation of our study is that NC participants were not staged
according to menstrual cycle phase. DA release and DA-D2
receptor availability vary across the estrus (Becker and Cha 1989;
Lévesque et al. 1989; Yoest et al. 2018) and menstrual cycles (Czoty
et al. 2009, though see Munro et al. 2006; Petersen et al. 2021). In
ovariectomized rodents, 17β-estradiol administration augments
striatal D2 receptor density (Bavail), but does not influence binding
affinity (1/KD) (reviewed in Di Paolo 1994). Thus, it is possible that
differences in DA release and baseline binding potential between
HC users and unstaged NC women exist, but were obscured in
our sample. However, data from Smith et al. (2019) suggest this is
unlikely. In their study, DA release (as measured via [18F]fallypride
paired with D-amphetamine) did not differ between women using
hormonal contraception and NC women staged within the first
10 days of their menstrual cycle.

Another consideration is that FMT signal increases over the
adult lifespan. Braskie et al. (2008) observed greater striatal FMT
Ki values in older participants (mean age = 67) relative to younger
participants (mean age = 23). In young adults, higher FMT Ki val-
ues in caudate are associated with increased working memory
capacity (Cools et al. 2008). In contrast, in older adults greater stri-
atal FMT signal may reflect potential compensation for deficits
elsewhere in the DA system (e.g. PFC). In a recent study of DA
synthesis and working memory capacity in cognitively normal
older adults (Ciampa et al. 2021), we observed that adults with
the highest FMT Ki values also display the greatest atrophy in
posterior parietal cortex, raising the possibility of a compensatory
response with aging. In the present study of younger adults, HC
users were slightly older than NC participants (2 years on average),
but the age range of our sample was limited (18–28 years) and
results remained significant after controlling for age. Thus, it is
unlikely that the group differences we observed are attributable
to general effects of aging. Furthermore, our results do not sup-
port the idea that higher FMT Ki values reflect suboptimal DA
functioning, given that HC users had higher FMT Ki values and
greater cognitive flexibility. Higher FMT Ki values in young adults
have consistently been associated with better cognitive flexibility
(Berry et al. 2016, 2018b) as well as with working memory capacity
(Cools et al. 2008).

Consistent effects across hormonal contraceptive
regimens
The women in our HC group were on different forms of hormonal
contraception, including the combined oral contraceptive pill,
vaginal ring, subdermal implant, injection, and hormonal IUD.
Exploratory analyses suggest that the relationship between HC
use and potentiated DA synthesis capacity is independent of
route of administration (Supplementary Fig. 1). Similarly, in their
population-level study of hormonal contraception use and mood
disorders, Skovlund et al. (2016) report an increased risk with

hormonal contraceptive use, regardless of method and formu-
lation. Hormonal contraception can alter endogenous hormone
concentrations to varying extents depending on the formulation
and method of delivery. Oral contraceptives and the depot
medroxyprogesterone injection exert powerful and sustained
suppression of endogenous sex hormone production (Gaspard
et al. 1983; Croxatto and Mäkäräinen 1998; Rivera et al. 1999),
whereas hormonal IUDs and implants generally exert less
pronounced suppression of endogenous hormone levels (Barbosa
et al. 1990; Luukkainen et al. 1990; Xiao et al. 1995; Croxatto
and Mäkäräinen 1998; Coelingh Bennink 2000). Therefore, the
impact of HC on DA may occur in part by altering endogenous
hormone levels, but the observed effects are unlikely to be solely
attributable to endogenous hormone modulation, per se.

The synthetic hormones introduced by the HC regimen, not
the alteration of endogenous hormones alone, may be driving
changes within the DA system. In one of the few studies of
synthetic hormones’ effects on striatal DA, Jori and Dolfini (1976)
report increased turnover of striatal DA in intact female rats after
acute and chronic oral administration of steroid contraceptive
drug combinations (mestranol with either lynestrenol, norethin-
drone, or norethynodrel). While endogenous estrogen levels are
suppressed in users of OC, the exogenous estrogen (typically
ethinylestradiol) is considered to be significantly more potent
than its endogenous analog (Helgason et al. 1982; Jeyakumar
et al. 2011). If synthetic hormones’ potency confers an enhanced
estrogenic effect (see Hampson 2023, for discussion), this could be
contributing to the augmented DA synthesis we see in HC users
relative to nonusers. However, this account could not fully explain
the pattern of results observed here, since users of progestin-only
IUDs were similarly affected (n.b. Skovlund et al. 2016).

Here, DA synthesis capacity was similarly elevated in users
of OC (“the pill,” which is primarily a combination of ethinyl
estradiol and progestin) and users of other forms of hormonal
contraception (including implants, injection, and hormonal IUDs)
that primarily contain progestin. This suggests that the progestin
component, alone or in concert with endogenous or exogenous
estrogen, could be influencing the observed effects. Skovlund
et al. (2016) proposed that their findings of increased risk of
depression across all types of HC reflected the influence of pro-
gestins. A general consensus from animal and human research
is that endogenous estradiol augments DA function (reviewed in
Barth et al. 2015), whereas the influence of progesterone has not
been fully characterized (Hidalgo and Pletzer 2017). Still, proges-
terone receptor expression in embryonic DA neurons suggests
a potentially powerful role of progesterone in modulating DA
signaling. In a study of mouse embryonic stem cells, Díaz et al.
(2007) studied the expression of steroid hormone receptors in
differentiated DA neurons. They report that 92% of DA neurons
expressed progesterone receptors and only 19% of these neu-
rons co-expressed TH and ER-α. Other studies report effects of
progesterone, independent of estrogens, on DA release (Dluzen
and Ramirez 1990; Petitclerc et al. 1995). Future investigations
delineating the influence of synthetic progestins alone and in
combination with ethinyl estradiol on dopaminergic function will
provide mechanistic insight into the results reported here.

Hormonal modulation of dorsal caudate vs
striatum broadly
We observed a significant difference in DA synthesis capacity
between HC and NC groups across the striatum, and post hoc tests
revealed the strongest effect to be in dorsal caudate (Fig. 1). Thus,
hormonal contraception may broadly alter striatal DA synthesis
capacity, or do so more selectively within dorsal caudate. In a case
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study of oral contraceptive-induced hemichorea using 18FDG-PET,
investigators observed striatal hypermetabolism, with increased
glucose metabolism in the body of the left caudate nucleus
(contralateral to the dyskinesia) (Vela et al. 2004), suggesting
augmented effects of OC in the caudate.

Individual differences in DA synthesis capacity
are tied to cognitive flexibility
Hormonal contraceptive users differed from NC women on switch
cost but not on distractor cost in this task-switching paradigm,
suggesting a specific effect on cognitive flexibility. This reduced
switch cost (i.e. greater cognitive flexibility) in hormone users is
consistent with our observation of greater striatal DA synthesis
capacity in hormone users relative to NC women, and aligns with
models of cognitive control, which posit unique roles of prefrontal
and striatal DA on cognitive stability (i.e. distractor cost) and flexi-
bility (switch cost), respectively (Cools and D’Esposito 2011). Previ-
ous studies have reported an association between task-switching
performance and DA synthesis capacity, specifically in the dor-
sal caudate (Klanker et al. 2013; Berry et al. 2016, 2018b). Our
results suggest an influence of hormonal contraceptive use on the
corticostriatal circuitry underlying executive functioning. Future
studies should consider whether other measures of executive
functioning are influenced, and, by extension, whether dopamin-
ergic medications used to treat disorders of executive function
(e.g. ADHD) exert unique effects with or without concomitant use
of hormonal contraception.

Strengths and limitations
Together, this study provided a unique opportunity to examine dif-
ferences in basal DA receptor occupancy, stimulated DA release,
and DA synthesis capacity in a single cohort, based on women’s
hormonal contraceptive status. However, a number of limitations
should be considered. First, these data were collected as part of a
parent study that was not designed with a woman’s health lens
in mind. For this reason, our sample is representative of contra-
ceptive use by the general pool of women enrolled in the parent
neuroimaging study. The route of administration and formula-
tion of the hormonal contraceptive regimen varied (e.g. patch,
pill, IUD, and implant) among HC participants. Detailed informa-
tion on participants’ age of initiation, duration of hormone use,
and schedule would further enhance our understanding of the
time course with which hormonal contraceptives impacts the DA
system. Second, NC participants were not staged according to
menstrual cycle phase. Thus, the robust differences we observed
may reflect stable characteristics of the DA system that differ
between groups as opposed to state-dependent effects sensitive to
hormonal variation across the cycle. It remains a possibility that
there are differences in DA signaling within NC women over time
or between contraceptive users and NC women at specific cycle
stages (as opposed to NC women generally). Finally, though we
determined that a number of non-hormonal factors (e.g. working
memory span, impulsivity, and smoking status) that could influ-
ence DA neurotransmission were likely not contributing to our
findings, there are other factors (e.g. IQ) that future studies should
also take into consideration.

This study leveraged an existing multimodal molecular PET
imaging cohort, which gave us the rare opportunity to identify
broad differences in DA neurotransmission between NC women
and those using hormonal contraception. This analysis provides
researchers with a strong rationale for conducting additional
studies designed explicitly to test the breadth and depth with

which hormonal contraceptives influence major neuromodula-
tory systems. Strikingly little has been done to investigate the
impact of chronic ovarian hormone suppression and synthetic
hormone regimens on brain regions that are densely populated
with sex hormone receptors and modulated by sex hormones
(Taylor et al. 2021; Petersen et al. 2023). This multi-tracer molecu-
lar PET imaging study, which allows a comprehensive assessment
of DA receptor occupancy, DA release, and DA synthesis in a single
cohort, represents a critical step toward that goal.

Conclusions
This PET imaging study revealed differences in DA synthesis
capacity between hormonal contraceptive users and naturally
cycling women. Measures of DA binding potential and stimulated
DA release were similar between groups. Hormonal contraception
(in the form of pill, shot, implant, ring, or IUD) is used by ∼400
million women worldwide (United Nations 2019), yet few studies
have examined whether hormonal manipulations impact basic
properties of the DA system. Findings from this study begin to
address this critical gap in women’s health. Moving forward, it
is important to consider hormone use as a factor in studies of
DA function. More broadly, our findings motivate consideration
of the clinical implications of concomitant use of commonly used
DA-based medications and hormonal contraceptives.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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