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Abstract: Fungal infections are a significant source of morbidity in the lung transplant population
via direct allograft damage and predisposing patients to the development of chronic lung allograft
dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review
article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and
treatment strategies in the lung transplant population for fungal infections caused by Aspergillus,
Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis
jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary
fungal infections in lung transplant recipients is also discussed.

Keywords: lung transplant; fungal infections; antifungals

1. Introduction

Fungal infections are common in lung transplant recipients (LTR). The cumulative
1-year incidence of fungal infections in LTR ranges from 10–22% [1]. In a population-
based cohort study of about 9200 solid organ transplant (SOT) recipients, LTR had the
highest incidence of invasive fungal infections (IFI) at 43 per 1000 person-years and a
10-year probability of 26.4% [2]. In the setting of prophylaxis, the prevalence of IFI within
180 days of lung transplant is 19.1 per 100 surgeries, with Aspergillus spp. accounting
for 58% of non-Candida IFI [3]. The elevated incidence of fungal infections in LTR is of
significant consequence since it has been directly linked to the development of chronic
lung allograft dysfunction (CLAD), which has been associated with poor 3- and 5-year
outcomes in LTR [4]. Furthermore, IFI in LTR is associated with the highest 1-year mortality
out of all SOT recipients [2]. Indeed, the identification and treatment of fungal infections
in LTR are crucial to limit the poor long-term outcomes associated with this common
post-transplant complication.

LTR are more prone to fungal infections compared to other solid organ transplant
recipients due to increased exposure to microorganisms via direct contact of the allograft
with the environment [5]. LTR allografts will also have diminished elimination of microor-
ganisms through impairment in mucociliary clearance and cough reflex, and respiratory
tract structural abnormalities secondary to chronic respiratory disorders predispose LTR to
microorganism colonization [5,6]. Receipt of immunosuppression and a reduction of blood
flow to the site of infection through airway ischemia also reduce the host immune system’s
ability to defend against infections [5,7]. Diagnosis of fungal infections following lung
transplantation poses unique challenges as it can be hard to distinguish between coloniza-
tion and active infection [6]. The multifactorial nature behind the increased risk of fungal
infections in LTR results in the enlistment of various strategies to prevent and manage
active fungal infections. Antifungal prophylaxis, either universal or pre-emptive, combined

Pathogens 2023, 12, 694. https://doi.org/10.3390/pathogens12050694 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12050694
https://doi.org/10.3390/pathogens12050694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-4190-946X
https://doi.org/10.3390/pathogens12050694
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12050694?type=check_update&version=2


Pathogens 2023, 12, 694 2 of 25

with routine post-transplant surveillance, has been implemented as a strategy to mitigate
the risk of fungal infections [7,8]. Additionally, once infected, the degree of immunosup-
pression may be lowered in combination with the administration of antifungal agents.
Indeed, the identification and treatment of fungal infections in LTR are crucial to limit the
poor long-term outcomes associated with this common post-transplant complication.

2. Aspergillus

Aspergillus is among one of the most common sources of fungal infections in LTR. The
incidence of invasive pulmonary aspergillosis in LTR has been reported as occurring in
approximately 4–8% of LTR and the utilization of antimold prophylaxis has extended the
average time of onset to 550 days post transplant [9,10]. Patients are at an increased risk
for infections from Aspergillus if they are colonized within the first 12 months post-lung
transplantation, have a single lung transplant, ≥3 episodes of supratherapeutic tacrolimus
levels, if they experience anastomotic complications, airway/graft ischemia, reperfusion
injury, bronchial anastomotic leaks, airway narrowing, CMV infection, or have had episodes
of allograft rejection [11,12]. Tracheobronchial disease is the most common manifestation,
and dissemination to other organs may occur late after transplant.

2.1. Diagnosis

A recent consensus document on IA in SOT recipients states that the approach to
diagnosis should be multifaceted including histopathology, microbiology, serology, and
imaging but that definitive diagnosis is hampered by a lack of prospective and high-quality
studies in SOT [12].

(1,3)-β-D-glucan is a component of the fungal cell walls of Aspergillus, Candida, and
Pneumocystis species. The Fungitell® assay is approved to detect (1,3)-β-D-glucan in the
serum. A meta-analysis in mainly non-SOT immunocompromised patients demonstrated
a sensitivity of 77% and specificity of 83% for IA [13]. In the lung transplant population,
serum (1,3)-β-D-glucan was evaluated; there was no difference in median (1,3)-β-D-glucan
values between those with and without IFI’s with a cutoff value of ≥60 pg/mL demonstrat-
ing a sensitivity of 64% with a specificity of 8%. False positives were linked to colonization
of the respiratory tract and the receipt of renal replacement therapy within seven days of
sample collection; false negatives were linked to the receipt of systemic antifungal ther-
apy [14]. Two studies have evaluated (1,3)-β-D-glucan assays of the bronchoalveolar lavage
(BAL) fluid in transplant recipients; median (1,3)-β-D-glucan values were similar between
colonized and actively infected individuals [15]. One study utilized a cutoff of 41 pg/mL
and found a sensitivity of 80% with 53% specificity [15]; the other study used a cutoff of
60 pg/mL with an associated sensitivity of 79% and specificity of 40% [16].

Galactomannan is a cell wall component of Aspergillus spp. that is released through
the growth of the organism. Platelia™ Aspergillus antigen immunoenzymatic assay (EIA)
can be used on serum or BAL fluid with a positive result if the serum or BAL fluid has
an optical density (OD) of ≥0.5 [17]. Platelia™ assays have been demonstrated to have
lower accuracy in SOT patients when compared to hematological malignancies or post-
hematopoietic cell transplantation [17]. Specifically in LTR, using a positive OD cutoff
of 0.5, 25% of patients with IA had a positive galactomannan serum sample; sensitivity
marginally improved to 30% when the cutoff was raised to an OD of 0.66. Notably, most
false positives occurred within the first two weeks following lung transplantation and
sensitivity was 0% for detection of Aspergillus tracheobronchitis [18]. Galactomannan assays
on BAL fluid to diagnose IA has been assessed in meta-analyses that mainly included non-
lung transplant immunocompromised patients, demonstrating that it could be successfully
employed with a positive OD cutoff value of 1.0 showing higher sensitivity and lower
specificity than serum galactomannan assays [19]. In LTR, three studies have utilized a
positive OD cutoff value of ≥0.5 in BAL fluid for IA diagnosis, demonstrating a sensitivity
of 60–100% and specificity of 89–100% [20–22]. Another evaluation of the Aspergillus
galactomannan assay on BAL fluid in LTR identified an optimal OD cutoff of 1.5 which
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gave a sensitivity of 100% and specificity of 90%; higher BAL galactomannan OD indexes
were observed in single lung transplants when compared to bilateral transplants. With
respect to false galactomannan results, receipt of piperacillin/tazobactam has historically
been linked to false positive galactomannan results; however, recent publications have
failed to show a significant association between false positive galactomannan results and
receipt of piperacillin/tazobactam when multiple lots from varying manufacturers were
assessed [23–25]. Cross-reactivity resulting in positive Platelia™ Aspergillus galactomannan
results has been reported to occur in 50% of patients with Paracoccidioides brasiliensis, 67%
of patients with Histoplasma capsulatum, 63% of those with Cryptococcus neoformans, and 37%
of patients with Cryptococcus gattii infections [26].

PCR testing on BAL fluid in immunocompromised patients has been evaluated in a
meta-analysis for diagnosing proven or probable IA and had a sensitivity of 75% with 94%
specificity in the setting of heterogenous PCR techniques [27]. Aspergillus PCR testing has
historically been limited by the inability to discriminate between colonization of the respiratory
tract and active infection, the inability to determine Aspergillus subspecies, and the lack of
a standardized PCR methodology. One study in LTR evaluated the use of real-time Viracor
pan-Aspergillus PCR of BAL samples and compared results to BAL galactomannan assays
in 137 patients. The optimal quantification cycle (Cq) for Aspergillus was determined to be
≤35, which led to a sensitivity of 100% with a specificity of 88% and was significantly lower
than patients who were colonized with Aspergillus, although 81% of false positive PCR results
were determined to be due to airway colonization and incidences of false positive PCRs were
significantly higher than false positive galactomannan assay results [20].

A lateral flow device (LFD) qualitatively detects an Aspergillus extracellular glycopro-
tein antigen via a monoclonal antibody. In immunocompromised patients, BAL fluid was
evaluated using LFD, galactomannan assay, PCR, (1,3)-β-D-glucan assay, and mycology
culture; LFD demonstrated a sensitivity of 80% with 95% specificity [28]. In LTR, the use of
LFD on BAL fluid showed similar results with a sensitivity of 91% and specificity of 83%
for the detection of invasive pulmonary Aspergillus (IPA) [29]. A more recent study of BAL
fluid point-of-care LFD in a heterogeneous immunocompromised population, including
those critically ill, demonstrated a lower sensitivity (58–69%) and specificity (68–75%) for
the diagnosis of IPA [30].

CT imaging of Aspergillus pulmonary infections within LTR has been studied with high-
resolution computed tomography, which demonstrated that abnormalities were bilateral
in 87%; among those with unilateral abnormalities, all were single lung transplants with
the transplanted organ being affected in two out of three cases. Centrilobar tree-in-bud
nodules with bronchial wall thickening were present in 65% of cases, consolidation and
ground-glass opacities in 22%, and large nodules with or without halo sign were present in
13% of patients [31].

2.2. Treatment

Per IDSA guidelines, voriconazole is the first-line agent for the management of IA [32].
In a randomized controlled trial of 277 immunocompromised patients (mainly non-SOT) with
definite or probable IA that compared voriconazole vs. amphotericin B, survival in the voricona-
zole group was 70.8% vs. 57.9% in the amphotericin B group (HR, 0.59, 95% CI, 0.40–0.88) [33].
The voriconazole group experienced fewer adverse drug reactions compared to the ampho-
tericin B group, but also had an increased rate of transient visual disturbances. Isavuconazole
is a second-generation triazole antifungal that has less drug–drug interactions with CYP3A4
substrates, such as tacrolimus and cyclosporine compared to other triazole antifungals, making
it a desirable option for IA treatment in SOT recipients. However, there is limited evidence
for its use following lung transplant. In the SECURE trial, which compared isavuconazole to
voriconazole for the management of invasive mold infections, isavuconazole was shown to be
non-inferior to voriconazole while also having a reduced incidence of hepatobiliary disorders,
visual disorders, and skin or subcutaneous tissue disorders [34]. Twenty percent of patients
were immunocompromised, but there were no lung transplant recipients. A non-comparative
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study in SOT described the use of isavuconazole for various mold infections, including 43 As-
pergillus spp. infections [35]. Similarly, posaconazole has been identified as a therapeutic option
for IA. A phase 3, randomized controlled trial identified that posaconazole was non-inferior
to voriconazole in survival up to day 42, while also resulting in fewer treatment-emergent
adverse events than voriconazole [36]. While there were no lung transplant recipients in the
trial, there was a significant population of hematopoietic stem cell transplant recipients, and
patients receiving treatment with T-cell immunosuppressants or prolonged courses of corticos-
teroids. Ultimately, while only voriconazole has been specifically studied in LTR, posaconazole
or isavuconazole may be viable first-line alternatives given their more favorable safety profile,
as well as a diminished effect of drug interactions with isavuconazole.

Alternative therapies may be considered in patients who are unable to tolerate
voriconazole, posaconazole, or isavuconazole. Possible strategies include itraconazole;
echinocandins such as caspofungin or micafungin; or lipid formulations of amphotericin
B [32]. Table 1 contains information on antifungal interactions, adverse reactions, and
recommended dosing for aspergillosis.

Table 1. Antifungal considerations in SOT.

Drug Uses Immunosuppressant Drug
Interactions Key Adverse Drug Reactions Dosing

(Pulmonary Infections)

Fluconazole
Candida (non-glabrata);

Cryptococcus;
Coccidioides;

Blastomyces (alternative).

Tacrolimus: 50% increase in
serum tacrolimus levels [37].

Sirolimus: 28–70% increase in
serum sirolimus levels [38].

Everolimus: 2.8-fold decrease
in everolimus clearance [39].
Cyclosporine: approximately

150% increase in serum
cyclosporine levels [37].

QTc prolongation,
hepatotoxicity [37]

Candida a [40]:
800 mg on day 1, followed by 400 mg daily;

duration dictated by extent of
dissemination and resolution of

signs/symptoms.
Cryptococcus b [41]:

400 mg daily for 6–12 months followed by
chronic suppression.

Coccidioides [42]: 400–1200 mg daily for
6–12 months followed by chronic

suppression.
Blastomyces b [43]:

400–800 mg daily for 6–12 months.

Itraconazole
Aspergillus (alternative);

Coccidioides;
Histoplasma;
Blastomyces.

Tacrolimus: significant
increases in concentrations

requiring a 50–75% dose
reduction [44].

Sirolimus: significant increase
in sirolimus concentrations

anticipated [45].
Everolimus: 3.9-fold increase

in everolimus Cmax and
15-fold increase in everolimus

AUC [46].
Cyclosporine: 50–75%

cyclosporine dose reductions
have been required in

LTRs [47,48].

Hepatotoxicity, peripheral
neuropathy, hearing loss, CNS

depression, QTc
prolongation [45].

Boxed warning: heart failure
exacerbation through negative

inotropic effects [45].

Candida c [45] Aspergillusc,d [45]:
200–400 mg twice daily for 6–12 weeks.

Coccidioides c [49]:
200 mg twice daily for ≥12 months

followed by chronic suppression.
Histoplasma c [42]:

200 mg twice daily for ≥12 months
followed by chronic suppression.

Blastomyces c [43]:
200 mg twice daily for 6–12 months.

Voriconazole

Aspergillus;
C. glabrata (alternative);
C. krusei (alternative);

Cryptococcus (alternative);
Coccidioides (alternative);
Histoplasma (step-down,

alternative) [50].
Blastomyces (alternative);

Scedosporium (alternative);
Fusarium [51].

Tacrolimus: 2-and 3-fold
increases of tacrolimus Cmax
and AUC, respectively [52].

Sirolimus: 4.5-to 11-fold
increase in sirolimus AUC [52].
Everolimus: 8.2-fold increase

in everolimus
concentration/dose ratio;

everolimus dose reductions of
67% have been needed [53,54].
Cyclosporine: 1.7-fold increase

in cyclosporine AUC and
2.5-fold increase in

cyclosporine minimum plasma
concentration [52,55].

Acute kidney injury, QTc
prolongation, hepatotoxicity,
periosteal disease, and visual

disturbances [52].

Aspergillus e,f [12], Cryptococcus f [56]:
IV: 6 mg/kg twice daily for 2 doses, then
4 mg/kg twice daily; oral: 200 mg twice

daily for ≥6 weeks.
Candida f [40]:

400 mg twice daily for 2 doses, then
200–300 mg twice daily; duration dictated
by extent of dissemination and resolution

of signs/symptoms.
Coccidioides f [57], Histoplasma f [52]:
400 mg twice daily for 2 doses, then
200 mg twice daily for ≥12 months

followed by chronic suppression.
Blastomyces f [4]:

400 mg twice daily for 2 doses, then
200 mg twice daily for 6–12 months.

Scedosporium f [51]:
IV: 6 mg/kg twice daily for 2 doses, then
4 mg/kg twice daily; oral: 400 mg twice
daily for 2 doses, then 200–300 mg twice

daily for a prolonged duration.
Fusarium f,g [51]:

IV: 6 mg/kg twice daily for 2 doses, then
4 mg/kg twice daily followed by

step-down to oral 200 mg twice daily once
improvement on IV for a

prolonged duration.
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Table 1. Cont.

Drug Uses Immunosuppressant Drug
Interactions Key Adverse Drug Reactions Dosing

(Pulmonary Infections)

Posaconazole

Aspergillus
Candida (alternative);

Cryptococcus (alternative);
Mucorales (alternative);

Coccidioides (alternative);
Histoplasma (step-down,

alternative);
Blastomyces (alternative);

Fusarium (alternative) [58].

Tacrolimus: ~120% increase in
tacrolimus Cmax and ~350%

increase in tacrolimus
AUC [59,60].

Sirolimus: 8.9-fold increase in
sirolimus AUC [61,62].

Everolimus: 3.5-fold increase
in everolimus Cmin/dose

ratio [63].
Cyclosporine: reductions in
cyclosporine dose of 14–29%

have been required [59].

Hepatotoxicity, QTc
prolongation [64].

Aspergillus h [32]:
tablets (preferred): 300 mg twice daily for

2 doses, then 300 mg daily; suspension:
200 mg three times daily or 400 mg twice

daily for ≥6 months.
Candida [65]:

Tablet: 300 mg daily; suspension: 400 mg
twice daily; duration dictated by extent of

dissemination and resolution of
signs/symptoms.
Cryptococcus [57]:

300 mg twice daily for 2 doses, then
300 mg daily; suspension: 200 mg three

times daily or 400 mg twice daily for
6–12 months followed by

chronic suppression.
Mucorales step-down [66], Fusarium:

tablets/IV: 300 mg twice daily for 2 doses,
then 300 mg daily (suspension not

recommended) for a prolonged duration.
Coccidioides [57], Histoplasma [67]:

tablets: 300 mg twice daily for 2 doses,
then 300 mg daily; suspension: 200 mg

three times daily or 400 mg twice daily for
≥12 months followed by chronic

suppression.
Blastomyces [68]:

tablets: 300 mg twice daily for 2 doses,
then 300 mg daily; suspension: 200 mg

three times daily or 400 mg twice daily for
6–12 months.

Isavuconazole

Aspergillus [35]
Candida (alternative) [35];
Cryptococcus (alternative);

Mucorales [35] (alternative);
Coccidioides (alternative);
Histoplasma (step-down,

alternative);
Blastomyces (alternative).

Tacrolimus:
dose/concentration ratio has
been decreased by 30% [69].

Sirolimus: likely to
significantly increase sirolimus

levels [70].
Everolimus: likely to
significantly increase
everolimus levels [71].

Cyclosporine: AUC and Cmax
have been increased by 29%
and 6%, respectively [62,71].

QTc shortening,
hepatotoxicity [70].

Aspergillus [12]:
372 mg every 8 h for 6 doses, then 372 mg

daily for ≥6 weeks.
Candida [70]:

372 mg every 8 h for 6 doses, then 372 mg
daily; duration dictated by extent of

dissemination and resolution of
signs/symptoms.
Cryptococcus [72]:

372 mg every 8 h for 6 doses, then 372 mg
daily for 6–12 months followed by chronic

suppression.
Mucorales:

372 mg every 8 h for 6 doses, then 372 mg
daily for a prolonged duration [66].

Coccidioides [72], Histoplasma:
372 mg every 8 h for 6 doses, then 372 mg
daily for ≥12 months followed by chronic

suppression.
Blastomyces [72]:

372 mg every 8 h for 6 doses, then 372 mg
daily for 6–12 months.

Caspofungin

Aspergillus (alternative) [32].
Candida

Mucorales (alternative in
combination with

amphotericin B) [66].

Tacrolimus decrease in Cmax
by 16%, Cmin by 26%, and

AUC by 20% [73].

Hypotension, peripheral
edema, tachycardia, phlebitis,

and elevated liver
enzymes [73].

Aspergillus (part of combination therapy):
70 mg on first day, then 50 mg daily for ≥6

weeks.
Candida [65]:

70 mg on first day, then 50 mg daily;
duration dictated by extent of

dissemination and resolution of
signs/symptoms.

Mucorales (part of combination therapy):
70 mg on first day, then 50 mg daily for a

prolonged duration.

Anidulafungin

Aspergillus (alternative) [32].
Candida

Mucorales (alternative in
combination with

amphotericin B) [66].

None.

Hypo/hypertension,
hypokalemia,

hypomagnesemia, and
peripheral edema [74].

Aspergillus (part of combination therapy):
200 mg on first day, then 100 mg daily for

≥6 weeks.
Candida:

200 mg on first day, then 100 mg daily;
duration dictated by extent of

dissemination and resolution of
signs/symptoms [65].

Mucorales (part of combination therapy):
200 mg on first day, then 100 mg daily for a

prolonged duration.

Micafungin

Aspergillus (alternative) [32].
Candida

Mucorales (alternative in
combination with

amphotericin B) [66].

Sirolimus AUC may increase
by 21% [75].

Cyclosporine: 1.7-fold increase
in cyclosporine serum
concentrations [76,77].

Phlebitis [75].

Aspergillus (part of combination therapy):
100–150 mg daily for ≥6 weeks.

Candida [65]:
100 mg daily; duration dictated by extent

of dissemination and resolution of
signs/symptoms.

Mucorales (part of combination therapy):
100–150 mg daily for a prolonged duration.
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Table 1. Cont.

Drug Uses Immunosuppressant Drug
Interactions Key Adverse Drug Reactions Dosing

(Pulmonary Infections)

Amphotericin B
deoxycholate

Aspergillus (alternative);
Candida (alternative);

Cryptococcus (alternative);
Coccidioides (alternative) [43].

Blastomyces (alternative).

None.

Dose-dependent
nephrotoxicity, infusion
reactions, transaminitis,

hypokalemia,
hypomagnesemia, and

hypocalcemia [78].

Aspergillus i [5]:
1–1.5 mg/kg/day for ≥6 weeks.

Candida i [40]:
0.5–0.7 mg/kg/day; duration dictated by
extent of dissemination and resolution of

signs/symptoms.
Cryptococcus i [56] (in combination with

flucytosine or fluconazole):
0.7–1 mg/kg/day for ≥2 weeks followed

by step-down therapy.
Coccidioides i [42]:

0.5–1 mg/kg/day until clinical
improvement followed by

step-down therapy.
Blastomyces i [43]:

0.7–1 mg/kg/day for 1–2 weeks followed
by step-down therapy.

Liposomal
amphotericin B

Aspergillus (alternative);
Candida (alternative);

Cryptococcus;
Mucormycosis;

Coccidioides [42].
Histoplasma [42].

Blastomyces.

Dose-dependent
nephrotoxicity (less common

than with amphotericin
deoxycholate), infusion
reactions, transaminitis,

hypokalemia,
hypomagnesemia, and

hypocalcemia [79].

Aspergillus j [13]:
3–5 mg/kg/day for ≥6 weeks.

Candida j [40]:
3–5 mg/kg/day; duration dictated by

extent of dissemination and resolution of
signs/symptoms.

Cryptococcus j [41] (in combination with
flucytosine or fluconazole):

3–4 mg/kg/day for ≥2 weeks followed by
step-down therapy.

Mucorales j [66]:
5–10 mg/kg/day for a prolonged duration.

Coccidioides j [42]:
3–5 mg/kg/day until clinical

improvement followed by step-down
therapy.

Histoplasma j [42]:
3–5 mg/kg/day for 1–2 weeks followed by

step-down therapy.
Blastomyces j [43]:

3–5 mg/kg/day for 1–2 weeks followed by
step-down therapy.

Amphotericin B
lipid complex

Aspergillus (alternative);
Candida (alternative);

Cryptococcus;
Mucorales;

Coccidioides [42].
Histoplasma [42].

Blastomyces.

Aspergillus k [12]:
5 mg/kg/day for ≥6 weeks [13].

Candida k [40]:
3–5 mg/kg/day; duration dictated by

extent of dissemination and resolution of
signs/symptoms.

Cryptococcus k [56] (in combination with
flucytosine or fluconazole):

5 mg/kg/day for ≥2 weeks followed by
step-down therapy [41].

Mucorales k [66]:
5–10 mg/kg/day for a prolonged duration.

Coccidioides k [42]:
3–5 mg/kg/day until clinical

improvement followed by
step-down therapy.
Histoplasma k [42]:

5 mg/kg/day for 1–2 weeks followed by
step-down therapy.
Blastomyces k [43]:

3–5 mg/kg/day for 1–2 weeks followed by
step-down therapy.

Abbreviations: AUC: area under the curve; LTRs: lung transplant recipients; Cmin: minimum blood plasma
concentration; Cmax: maximum blood plasma concentration; CNS: central nervous system. Dose adjustments
indicated for estimated glomerular filtrate rate < 50 mL/min. (a) Weight-based dosing should be considered
in obesity; (b) initial treatment for mild disease, otherwise amphotericin B lipid complex is indicated prior to
initiation; (c) solution preferred; (d) goal trough level after 4–7 days of therapy (combined hydroxyitraconazole
and itraconazole) of 0.5–3 mcg/mL; (e) goal trough level after 4–7 days of therapy of 1–5.5 mcg/mL; (f) use
adjusted body weight for calculations; (g) consider combination therapy in severe disease; (h) goal trough level
after ≥7 days of therapy of ≥1 mg/L; (i) use adjusted body weight for calculations but actual body weight can
be considered for severe infections, suggested maximum dose of 150 mg daily; (j) use actual body weight for
calculations; recommended maximum dose of 600 mg; (k) use actual body weight for calculations; recommend
maximum dose of 500 mg.

Bronchial anastomotic sites may undergo transient devascularization, and thus be
more susceptible to ischemic injury. Thus, utilization of systemic agents may provide
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little benefit in patients with this complication in the setting of impaired blood flow to
the ischemic site, and inhaled antifungal agents may be preferred. However, there is a
low quality of evidence supporting the use of inhaled antifungals for IA [80]. Inhaled
amphotericin B is often used as a prophylactic agent, but has demonstrated efficacy when
used as an adjunct to systemic voriconazole, caspofungin, or amphotericin B for the
treatment of IA [81]. Inhaled voriconazole has resulted in clinical improvement when
utilized as monotherapy or adjunct to systemic caspofungin and liposomal amphotericin
B [82,83]. It should be noted that the evidence is limited to case reports and case series
for these agents, and further higher-quality studies are needed. A case vignette of a lung
transplant recipient with aspergillosis is presented in Table 2 with the accompanying
computed tomography image presented in Figure 1.
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Figure 1. Computed tomography of the chest; bilateral pleural effusions grew Aspergillus fumigatus.
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Table 2. Case vignettes of lung transplant recipients with Aspergillosis, Cryptococcosis, and Histoplasmosis.

Patient Presentation Diagnosis Treatment Outcome

1: Aspergillosis

53 YO, 5 weeks
post-transplant.

Received antithymocyte
globulin and carfilzomib 2

weeks prior.
Symptom of desaturations.

Chest CT: small right basilar
empyema, partial collapse of

left lower lobe, bilateral
ground glass opacities, and
septal thickening (Figure 1).

Chest and pleural tissue
culture from decortication

procedure:
A. fumigatus.

Voriconazole 6 mg/kg for
2 doses followed by

4 mg/kg daily.
Voriconazole changed to

liposomal amphotericin B
after one week.

Five weeks later, daily
intrapleural voriconazole
irrigation added for one

week.

Systemic voriconazole
stopped after one week for
elevated hepatic function

tests, intrapleural
voriconazole stopped for

bloody sputum.
Aspergillus not

redemonstrated in cultures.
Patient death 4 months later

due to bacterial sepsis.

2: Cryptococcosis

49 YO, 7 years post
transplant.

Received rituximab 3
months prior.

Symptoms of headache,
confusion, and photophobia.

MRI: hydrocephalus.
CT chest: multifocal nodular

abnormalities.
LP: opening pressure 36 cm,

CSF 65% neutrophils,
protein 107, glucose 14, RBC

24, WBC 17.
India ink stain: yeast.

Serum and CSF antigen titer:
≥1:2560.

CSF culture: C. neoformans.

Liposomal amphotericin
5 mg/kg + flucytosine for 16

days, then step-down to
fluconazole 400 mg daily.
Six days after step-down,
liposomal amphotericin B

restarted for altered mental
status and cerebral swelling.

Progressive renal
dysfunction to 1.5× baseline
serum creatinine at time of

fluconazole step-down.
Death 48 h after cerebral

swelling noted on imaging.
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Table 2. Cont.

Patient Presentation Diagnosis Treatment Outcome

3: Histoplasmosis

38 YO, 14 years post
transplant.

Symptoms of low-grade
fever and weight loss

prompted colonoscopy.

CT chest/abdomen/pelvis:
bowel wall thickening,

lymphadenopathy, no acute
pulmonary changes.
Colonoscopy biopsy:

Histoplasma (Figure 2).
Histoplasma blood antibody:

negative.
Histoplasma urine antigen:

7.01 ng/mL.

Liposomal amphotericin
5 mg/kg for 7 days, then

step-down to itraconazole
200 mg TID for 9 doses,
followed by 200 mg BID

Itraconazole trough
1.5 mcg/mL.

Remains on itraconazole
after two years without
significant side effects.

Colonic thickening resolved
five months after treatment

initiation.
Histoplasma urine antigen
decreased to 0.77 ng/mL

after 8 weeks of treatment.

Abbreviations: CSF: cerebrospinal fluid; CT: computed tomography; LP: lumbar puncture; MRI: magnetic
resonance imaging; RBC: red blood cell count; TID: three times daily; WBC: white blood cell count; YO: years old.
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3. Candida

Candida spp. often cause nosocomial infections in LTR. Candida infections commonly
occur within the first 3 months post transplantation due to the presence of indwelling
catheters, anastomotic dehiscence, and post-surgical complications [1]. The incidence
of invasive candidiasis (IC) from 1980–2004 was 5.2%, and the most commonly isolated
species were Candida albicans, Candida glabrata, and Candida parapsilosis [84]. Extracorporeal
membrane oxygenation (ECMO) has been associated with a higher incidence of candidiasis,
and risk factors for Candida infections include prolonged courses of antibiotic therapy,
prolonged critical illness, and neutropenia. Because patients are often colonized with
Candida spp., it can be difficult to identify the presence of a true Candida infection [85].
Therefore, isolated pulmonary manifestations of the disease are not typically identified,
and IC can often manifest as candidemia, line infections, or surgical site infections.
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3.1. Diagnosis

Candida pneumonia is rare and culture of Candida spp. from the airways of LTR usually
reflect colonization but has been reported to be the cause of anastomotic infections in
2.8–9.8% of LTR in two case series [40,86,87]. Culture of Candida from a sterile site such as
the blood provides a definitive diagnosis of candidiasis; however, the growth of Candida
in culture is slow, with time to species identification typically being ≥50 h [88,89]. To
circumvent the prolonged time to identification, several diagnostics have been developed.

Peptide nucleic acid fluorescent in situ hybridization assay (PNA-FISH) allows for
rapid species identification of Candida in blood cultures in which different species fluoresce
varying colors. The accuracy of PNA-FISH assays has been demonstrated to be ≥94%
from blood cultures [90,91] and the use of PNA-FISH has also been reported for Candida
identification from urine, catheter tips, and peritoneal fluid cultures [92].

PCR was compared to (1,3)-β-D-glucan assay in patients with IC which had similar
diagnostic results except in deep-seated infections where PCR was more sensitive than
(1,3)-β-D-glucan and both outperformed blood cultures [93]. A separate study evaluated
the use of PCR compared to blood culture in critically ill patients demonstrating PCR
sensitivity of 21.4% and specificity of 91.9% when compared to blood cultures, with the
authors attributing a lower sensitivity compared to other studies to the use of serum instead
of whole blood [94].

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-
TOF MS) analysis detects proteins that are released by Candida spp. and compares those
proteins to a database of yeast proteins. The use of MALDI-TOF MS on positive blood
cultures also allows for rapid Candida species identification and has a reported sensitivity
of 95.9% for C. albicans and 86.5% for non-albicans species [95,96].

T2Candida requires a specific diagnostic instrument (TDx) with magnetic resonance
to detect Candida species in the blood and has a reported sensitivity of 89% in clinical
practice [97].

(1,3)-β-D-glucan assays have also been studied in a non-SOT population; the sensitivity
of Fungitell® assay on serum samples was >80% for the diagnosis of Candida infections at a
cutoff of 60 pg/mL, except for C. parapsilosis, whereby sensitivity was 72% [98]. A more
recent article assessing (1,3)-β-D-glucan on candidemia revealed C. auris had a much lower
sensitivity of 43.75% than other Candida spp. when ≥80 pg/mL was utilized as the cutoff
for positivity [99]. Given the non-specific nature of (1,3)-β-D-glucan assays, it may be best
used as a surveillance technique or in combination with standard blood cultures.

3.2. Treatment

Per IDSA guidelines, first-line agents for the treatment of candidemia are either flu-
conazole or echinocandins, depending on disease severity [65]. In mild manifestations of
the disease, fluconazole may be initiated. However, in moderate–severe manifestations, it
is recommended for a patient to receive an echinocandin until they are deemed clinically
stable before transitioning to fluconazole. Certain Candida species, such as C. glabrata, are
intrinsically resistant to fluconazole, and would thus be managed with an echinocandin,
unless the patient is intolerant to echinocandins [100]. In a study that compared anidula-
fungin to fluconazole for the management of IC, 75.6% of patients in the anidulafungin
group achieved treatment success vs. 60.2% in the fluconazole group (95% CI, 3.9 to 27.0).
Patients were on immunosuppressive therapy in 14% of the anidulafungin group and 23%
of patients in the fluconazole group [101]. Confirmation of superiority of echinocandins
over fluconazole for IC was confirmed in a recent meta-analysis in non-SOT patients [102].
Additionally, a randomized, double-blind study found that micafungin was non-inferior to
liposomal amphotericin B in achieving both clinical and mycological response, while also
resulting in a decreased rate of adverse drug reactions, but SOT recipients only comprised
4–8% of the study population [103]. Therefore, further studies may be warranted to further
solidify the role of echinocandins versus fluconazole in LTR with IC.
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Alternative strategies may be considered in patients who cannot tolerate fluconazole
or echinocandins. Liposomal amphotericin B may be utilized but carries an increased risk of
significant adverse drug reactions. Voriconazole may be a possible option in patients with
C. krusei or voriconazole-susceptible C. glabrata based on in vitro data [104]. However, there
have been observations that voriconazole achieves subtherapeutic plasma concentrations in
cystic fibrosis LTR, so therapeutic drug monitoring is recommended in this population [105].
Itraconazole has a similar spectrum of activity against Candida species compared to flu-
conazole but has a variable pharmacokinetic profile depending on the formulation used,
leading to an unpredictable therapeutic effect [65]. Isavuconazole has been evaluated for
IC treatment. In the ACTIVE trial, isavuconazole did not meet its non-inferiority endpoint
when compared to caspofungin for IC treatment; however, the study excluded patients
with severe immunodeficiencies [106]. Posaconazole and isavuconazole both exhibit an
excellent spectrum of activity that is similar to fluconazole against most Candida species,
but given the lack of evidence to support their use in LTR, fluconazole or echinocandins
should be explored first prior to their use. Itraconazole has not been studied in IC and
is currently not recommended for its management given fluconazole’s improved ease of
administration, tolerability, and pharmacokinetic profile [65]. Table 1 contains information
on antifungal interactions, adverse reactions, and recommended dosing for candidiasis.

4. Cryptococcus

Cryptococcal infections are estimated to occur in about 2.8% of SOT recipients [107].
The median time of occurrence is 16–21 months post-transplant, which corresponds to a
longer time of onset compared to the previously discussed infections [108]. In a multicenter
study of cryptococcal infections, 54% were identified as having pulmonary infections,
52.2% had CNS involvement, and 8.1% had skin/soft tissue/osteoarticular infections [107].
In a study of kidney transplant patients, presenting symptoms in cases of cryptococcal
meningitis were headache, focal neurological signs, fever, and vomiting [109]. Cryptococcal
pneumonia typically radiographically presents as solitary or multiple nodules. In SOT,
infections are usually disseminated at the time of presentation [41].

4.1. Diagnosis

It is recommended to evaluate blood, urine, and cerebrospinal fluid (CSF) to determine
the presence and extent of Cryptococcus infections which ultimately guides therapy [41].
Antigen assays using latex agglutination (LA) or lateral flow device (LFD) detect polysac-
charides that are released by Cryptococcus. LA is more labor intensive and less sensitive
for C. gattii, so LFD is the preferred method of antigen detection [41]; however, LFD can
be impacted by a prozone effect in cases with a high disease burden [110]. In a study
of SOT recipients with pulmonary cryptococcal infections, a positive serum antigen was
present in 83.3% of cases; those with disseminated infections were more likely to have a
positive serum antigen with higher antigen titers. A positive antigen was also more likely
if there were ≥1 pulmonary nodules present [111]. A meta-analysis in the HIV population
demonstrated a positive serum antigen was associated with Cryptococcus meningitis with a
sensitivity of 99.7% and specificity of 94.1% [112]. Antigen presence in the CSF and serum
is preferred for the diagnosis of Cryptococcus infections; lack of serum antigen does not
necessarily exclude CNS involvement in SOT recipients [41].

PCR panels may also be useful for the identification of a wide range of organisms
from the CSF including C. neoformans and C. gattii [113,114].

Isolation of Cryptococcus from culture, using Gomori’s methenamine silver or periodic
acid-Schiff staining, may also be utilized for diagnosis [41].

4.2. Treatment

Management of cryptococcal infections is stratified depending on if the disease is
localized to pulmonary tissue or if it has disseminated to the CNS. In patients with mild
to moderate isolated pulmonary infections, fluconazole may present an appropriate ther-
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apeutic option. However, amphotericin B and flucytosine are recommended in CNS,
disseminated, or moderate to severe pulmonary cryptococcal infections for at least two
weeks followed by fluconazole step-down for consolidation and maintenance treatment [41].
A study comprising 299 HIV-positive patients with cryptococcal meningitis identified a
statistically significant decrease in day 70 mortality in patients who received amphotericin
B and flucytosine versus amphotericin B monotherapy [115]. An extended duration of
treatment is indicated, with the 2010 IDSA guidelines suggesting a treatment duration
of 6–12 months for SOT recipients [56]. Voriconazole, itraconazole, and posaconazole
have demonstrated efficacy against Cryptococcus spp. in vitro, indicating that they may
act as a suitable alternative to fluconazole in patients who cannot tolerate it [116,117]. C.
neoformans carries an underlying resistance mechanism against echinocandins, rendering
this pharmacological class ineffective [118]. Ultimately, further clinical trials are warranted
to assess the efficacy of antifungal classes in LTR with cryptococcal infections. Table 1
contains information on antifungal interactions, adverse reactions, and recommended
dosing for cryptococcosis.

Interestingly, the administration of calcineurin inhibitors (CNI), such as tacrolimus and
cyclosporine, has been identified as improving survival in SOT recipients with cryptococcal
infections. In a study of 111 SOT recipients with cryptococcosis, receipt of a calcineurin
inhibitor was independently associated with lower mortality in multivariable analysis [107].
A case vignette of a lung transplant recipient with cryptococcosis is presented in Table 2.

5. Mucormycosis

The incidence of mucormycosis is highest within the first year post-lung transplant,
with several cases developing in the first month [119]. In a study of 58 SOT recipients
with mucormycosis, pulmonary manifestations developed in 53% of patients, and were
associated with a 45.2% 90-day mortality after treatment [120]. A similar mortality rate
of 57.1% for pulmonary mucormycosis was identified in a recent meta-analysis [121].
The high incidence of pulmonary involvement has significant ramifications for LTR. A
systematic review of mucormycosis infections in LTR identified that 78% of mucormycosis
developed in the first post-transplant year, and although patients received treatment with
either posaconazole, amphotericin B, or a combination of the two medications, mortality
was 32% [119]. The most commonly implicated sites of infection are the sinuses, lungs,
and skin [122]. Tissue necrosis from hyphae invasion of vasculature causes most of the
symptoms associated with mucormycosis. Within the SOT population, symptoms of
pulmonary mucormycosis infection were most commonly fever in 54.8%, followed by
cough in 29%, dyspnea in 19.4%, chest pain in 12.9%, and hemoptysis in 9.7%. In the same
study, radiological findings were consolidation or mass lesions in 29%, nodules in 25.8%,
cavitation in 22.6%, and infiltrates in 19.4% [120].

5.1. Diagnosis

Direct examination of specimens can be undertaken in the diagnosis of mucormycosis.
The organism’s presence in tissue or fluids appears as irregularly branching non- or sparsely
septate hyphae. Culture growth allows for speciation and antifungal susceptibility testing.
Although DNA-based testing is being developed, there is no standardized assay currently
available [66].

5.2. Treatment

Liposomal amphotericin B or amphotericin B lipid complex are recommended as first-
line therapy in SOT patients in European guidelines [66]. Isavuconazole has demonstrated
similar efficacy to amphotericin B in the VITAL study, although only 1 SOT patient out
of 21 patients administered isavuconazole for primary treatment of mucormycosis was
included [123]. A post hoc analysis of the VITAL study demonstrated day 84 survival of
63.6% in patients treated with isavuconazole for Mucorales CNS infection [124]. Posacona-
zole can also be considered a second-line agent in patients who fail or are unable to tolerate
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amphotericin B [125]. In patients with progressive disease despite amphotericin B treat-
ment, isavuconazole or posaconazole may be considered for salvage therapy [66]. Table 1
contains information on antifungal interactions, adverse reactions, and recommended
dosing for mucormycosis.

Deferasirox is an iron chelator that can be considered an add-on therapy for mu-
cormycosis. This agent is typically utilized for patients who develop iron overload in
transfusion-dependent anemia, but has been utilized in combination with other antifungal
agents in patients who are refractory to liposomal amphotericin B [126]. Echinocandins
have also demonstrated benefits when used in combination with amphotericin B [127,128].
Adjunctive inhaled amphotericin B has been employed in the treatment of pulmonary
mucormycosis in stem cell transplant recipients and could be an area of future investigation
in the LTR population [129].

6. Coccidiodiomycoses

Coccidiodomycosis is endemic to the southwestern United States, northern Mexico,
and Central and South America. The causative organism is either Coccidioides immitis
or Coccidioides posadasii [130]. Coccidioidomycosis occurs in 1.4–6.9% of SOT recipients
in endemic regions [42]. Risk factors include allograft rejection, positive serology at the
time of transplant, African American race, and a history of Coccidioides infection [42]. In
general populations, most patients experience asymptomatic seroconversion; the incidence
of asymptomatic seroconversion in SOT recipients is not known [131]. Proper identification
of coccidioidomycosis infection is important in LTR as immunosuppressed patients are
at an increased risk of disseminated disease. Symptoms of active Coccidioides infection in
SOT recipients are usually fever or pneumonia but may also include the CNS, skin, or
osteoarticular systems; pulmonary manifestations may include chills, night sweats, cough,
dyspnea, and pleurisy [42].

6.1. Diagnosis

Radiographic findings of Coccidioides pneumonia that may be present include lobar
consolidation, pulmonary nodules, mass-like lesions, interstitial infiltrates, or cavities [42].
Coccidioides spp. have a characteristic spherule with endospores. Positive cultures are
definitive for diagnosis but may take 5–7 days for growth.

EIA testing for anti-coccidioidal IgM and IgG is widely available and is more sensitive
than complement fixation and immunodiffusion; a positive IgM without positive IgG is not
diagnostic and repeat testing over subsequent weeks is recommended [50]. The IgG titer
may indicate a more severe disease and will turn negative once the infection is adequately
treated [132]. Antigen presence in the serum or urine may be positive in cases of extensive
infections [49].

6.2. Treatment

Per the 2019 AST Infectious Diseases Community of Practice guidelines, in patients
with acute or chronic pulmonary coccidioidomycosis, fluconazole is recommended. If
symptoms are severe or rapidly progressing, amphotericin B should be considered. In
cases of meningeal Coccidioides infection, high-dose fluconazole is recommended [42]. In-
trathecal amphotericin B has been utilized in patients with meningeal disease as well,
and while it has achieved treatment success, it has also been associated with increased
adverse drug effects compared to triazole antifungals [133,134]. In the non-SOT population,
itraconazole has demonstrated similar efficacy compared to fluconazole in nonmeningeal
coccidioidomycosis [135]. Alternative triazole antifungals such as voriconazole, isavucona-
zole, and posaconazole have been utilized, with voriconazole and posaconazole displaying
efficacy in the management of refractory disease [57,136]. Echinocandins have only been
reported for use in Coccidioides infection in a pediatric case series when used in combi-
nation with voriconazole [137,138]. Treatment duration is prolonged, with at least six
months of treatment recommended followed by lifelong suppression, as relapses of in-
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fection have been reported [42]. Table 1 contains information on antifungal interactions,
adverse reactions, and recommended dosing for Coccidioides infection.

7. Histoplasmosis

Histoplasmosis is endemic to the Midwestern United States, Mexico, and certain
regions of South America and is thought to occur in less than 0.5% of SOT recipients
in these endemic areas [1]. Symptoms of infection in SOT patients are typically non-
specific and may be disproportionate to disease severity, but usually involve fever with
imaging evidence of extra-pulmonary infection; infections indicative of progression include
hepatosplenomegaly, pneumonia, GI disturbances, pancytopenia, weight loss, transaminase
elevations, and lactate dehydrogenase elevations [42].

7.1. Diagnosis

Culture is the gold standard for diagnosis, but the growth of Histoplasma can take
weeks and delay diagnosis. The histopathological presence of H. capsulatum cannot dis-
tinguish between active, past, and resolved infections. The histochemical stains Gomori
methenamine silver and periodic acid-Schiff best highlight the cell wall and help differenti-
ate H. capsulatum from other organisms; mucicarmine stains the capsule of H. capsulatum
and differentiates from Cryptococcus and P. jirovecii, specifically [139].

The use of Histoplasma antigen assay of BAL fluid in mainly non-transplant recipients
was evaluated and demonstrated a positive result in 93.5% of patients with histoplasmosis;
when combined with BAL cytopathology, there was a sensitivity of 96.8% for diagnosis of
histoplasmosis [140]. Antigen detection in the urine is marginally more sensitive than in
the serum; combining the two tests increased the ability to detect Histoplasma antigen to
82.8% [141] and is recommended by the AST Infectious Diseases Community of Practice
guidelines [42]. However, a more recent study with paired urine and serum antigen testing
identified a 98% agreement, making the argument that a single test may be appropriate for
initial histoplasmosis screening [142]. Isolated pulmonary histoplasmosis demonstrates
lower antigen sensitivity than disseminated histoplasmosis. Antigen levels decline with
treatment and thus can be utilized as a marker of treatment success. It should be noted
that Histoplasma antigen has cross-reactivity with Blastomyces dermatitidis, Paracoccidioides
brasiliensis, and T. marneffei [139].

Antibodies to Histoplasma can be detected after several weeks via immunodiffusion,
complement fixation, and EIA testing but sensitivity in the SOT population is low and of
limited utility [42,143]. Complement fixation is typically considered presumptively positive
if the titer is ≥1:8 but this could indicate a past infection; to diagnose an acute infection, a
4-fold increase in the titer (taken 2 weeks apart) or a titer of ≥1:32 is required [144,145].

7.2. Treatment

Therapies are highly effective if they are initiated before the infection becomes severe.
Mild to moderate infections may be treated with itraconazole monotherapy for an extended
duration of at least 12 months. For severe infections, liposomal amphotericin B should be
employed followed by itraconazole. In a study of 152 SOT recipients, of which 5% were
LTR, amphotericin B followed by step-down to triazoles was utilized in 73% of patients
which resulted in 90% survival. The different triazoles that were utilized as step-down
therapy included itraconazole, voriconazole, or fluconazole, although fluconazole was
only utilized in one of the patients [146]. In a survey of infectious disease physicians, step-
down therapy for severe Histoplasma infections (non-CNS) was reported to be itraconazole,
voriconazole, posaconazole, isavuconazole, or fluconazole [147]. For refractory patients or
those who do not tolerate first-line agents, posaconazole, voriconazole, and isavuconazole
are recommended as salvage therapy over fluconazole [42]. Lifelong antifungal prophylaxis
may not be necessary if the patient maintains adequate allograft function and is maintained
on low-dose immunosuppression. Consideration of lifelong suppression with itraconazole
should be weighed against its adverse drug effect profile, which includes possible heart
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failure exacerbations and hepatitis as well as its drug–drug interactions with CNIs. H.
capsulatum is resistant to echinocandins and may develop resistance to fluconazole and
voriconazole [148,149]. Table 1 contains information on antifungal interactions, adverse
reactions, and recommended dosing for Histoplasma infections.

When utilizing itraconazole, an appropriate understanding of the pharmacokinetic
variability among different dosage forms is required. There are currently two dosage forms
available: oral capsules and oral suspensions; these dosage forms are not interchangeable.
Itraconazole capsules require a low gastric pH for dissolution and should thus be taken
on an empty stomach to improve absorption. This also results in increased variability in
bioavailability, which may lead to unpredictable treatment effects across patients. However,
the suspension, while absorbed better, is associated with increased GI adverse effects [32].
A newer capsule formulation, super bioavailable (SUBA) itraconazole, has improved
absorption compared to traditional capsule formulations as well as reduced variability in
bioavailability [150]. SUBA-itraconazole continues to have diminished bioavailability if
taken with meals, so it is recommended to be taken in a fasted state. A case vignette of a
lung transplant recipient with histoplasmosis is presented in Table 2, with a biopsy image
presented in Figure 2.

8. Blastomycosis

Blastomyces dermatitidis is the causative organism for blastomycosis and it exists in
states that border the Mississippi River basin, Great Lakes, St. Lawrence Seaway, as
well as in Ontario and Manitoba [42]. Complement inhibitors, such as eculizumab, have
been reported to increase the risk of blastomycosis in LTR [151]. The most common
presentation in patients with blastomycosis is pneumonia and this progresses in some
instances to acute respiratory distress syndrome. The respiratory tract is involved in the
majority of Bloastomyces infections in SOT recipients, typically presenting as fever and
cough; radiographically, patients may have lobar or interstitial infiltrates with mediastinal
adenopathy or lung cavitations. Outside of the lungs, organs that can be involved in
disseminated infections include the skin, genitourinary tract, osteoarticular systems, and,
rarely, the CNS.

8.1. Diagnosis

Culture is the most definitive way to diagnosis blastomycosis but requires 4–6 weeks
of incubation. Histopathological identification of Blastomyces can occur via visualization of
micro-abscesses and noncaseating granulomas; Gomori methenamine silver and periodic
acid-Schiff stains can aid in the visualization of yeast forms. In respiratory specimens,
KOH ± calcofluor white wet preparation can be useful for detection [152].

A chemiluminescent DNA test can identify B. dermatitidis within hours but is cross-
reactive with Paracoccidioides basiliensis.

Antibody detection utilizing complement fixation has low sensitivity and specificity;
immunodiffusion techniques are more sensitive. Antigen testing can be performed on
urine, BAL, CSF, and serum but has a high cross-reactivity with Histoplasma, Paracoccidioides,
and T. marneffei [153]. Serial antigen monitoring has been shown to correlate with treatment
response [42].

8.2. Treatment

The 2008 clinical practice guidelines for the treatment of blastomycosis recommend
that all immunocompromised patients receive treatment for blastomycosis [43]. Liposomal
amphotericin B is recommended as a first-line therapy for severe pulmonary, CNS, or
disseminated infections, and once stable the patient may step down to itraconazole for
6–12 months [43]. For CNS disease, voriconazole is preferred to itraconazole for step-
down therapy due to better CNS penetration [42]. Itraconazole may be used as first-
line therapy if the patient presents with mild or localized disease. Voriconazole and
posaconazole have demonstrated favorable spectrum of activities against B. dermatitidis
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in vitro and thus can serve as alternatives to itraconazole [42,68]. Isavuconazole’s use
in the treatment of blastomycosis has been described in two small case series [72,154].
Though the echinocandins seem to display some in vitro activity, this does not correspond
to clinical efficacy and thus they do not have a current role in therapy [43]. Table 1 contains
information on antifungal interactions, adverse reactions, and recommended dosing for
Blastomyces infections.

9. Scedosporium/Lomentospora and Fusarium

Scedosporium and Fusarium are filamentous fungi that are associated with a high risk
of mortality in immunocompromised patients [155,156]. Clinical manifestations range from
keratitis and subcutaneous nodules to invasive infections such as brain abscesses and dissem-
inated diseased [6,157]. In LTR, CT findings may include nodular ground glass infiltrates,
bronchiectasis with tree-in-bud or ground glass nodules, or cavitation [158,159]. Possible risk
factors for severe fusariosis include prolonged neutropenia and T-cell immunodeficiency [157].
The incidence of invasive disease has been reported to be 3–14% [158]. Given the high mortal-
ity rate reported in the hematological malignancy population [155,160], proper management
of these infections is imperative in LTR.

9.1. Diagnosis

Culture isolation of Fusarium and Scedosporium/Lomentospora from tissue or bodily
fluid yields a definitive diagnosis; histopathologically, Fusarium is similar to other hyalo-
hyphomycetes [161]. Fusarium is more likely to grow in blood cultures when compared
to Aspergillus spp. [157]. In Furasium infections, (1,3)-β-D-glucan assays may be posi-
tive but are non-specific; decreasing values could be useful for monitoring response to
treatment [162]. Aspergillus galactomannan assay may also be positive in fusariosis [163].

9.2. Treatment

Management of these infections is complicated by the resistance profiles of some
species, such as Lomentospora prolificans (previously known as Scedosporium prolificans),
which are resistant to all available antifungals [164,165]. A single-center study evaluated
Scedosporium apiospermum and Lomentospora prolificans in 30 LTR; posaconazole was their
most commonly utilized agent for the management of infection [158]. Treatment of infection
resulted in improved lung function over 6 months, with a median duration of therapy
of 364 days. A study in non-transplanted cystic fibrosis patients demonstrated that com-
bination therapy with an echinocandin plus voriconazole/posaconazole was superior to
monotherapy in Scedosporium apiospermum infections [166]. Itraconazole has demonstrated
in vitro activity against this pathogen, which lends itself as a possible alternative to other
triazoles. Echinocandins and isavuconazole exhibit limited activity against Scedosporium
and are thus not recommended [167]. Interestingly, a case report identified that nebulized
voriconazole is a possible option for the management of Scedosporium apiospermum, which
can aid in limiting its adverse drug effect and drug interaction profile due to a lack of
systemic absorption. Further studies are warranted to fully assess the efficacy and safety of
this therapeutic option, however.

Fusarium may similarly be treated with broader-spectrum triazoles such as voriconazole
and posaconazole [157]. Lipid formulations of amphotericin B have also been utilized, but
awareness of the adverse drug effect profile should be maintained when considering it
over triazoles. When applicable, surgical debridement should also be considered, as should
secondary prophylaxis [161]. A case series of 6 LTR with Fusarium infections recommended
either a combination of amphotericin B and voriconazole or amphotericin B monotherapy as
first-line; posaconazole can be used in a refractory disease [168]. Fusarium spp. have intrinsic
resistance against echinocandins, limiting the use of these agents. Itraconazole may act as a
possible alternative, but evidence in LTR is limited. Isavuconazole’s in vitro activity against
Fusarium revealed MIC’s >16 ug/mL, which limits its applicability against this group of
pathogens [169]. There is currently limited evidence to support the use of fluconazole as well.
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Despite the current evidence supporting these recommendations, certain multidrug-resistant
strains of Fusarium solani have also been shown to be resistant to voriconazole, caspofungin,
and posaconazole in vitro which complicates drug selection [164]. Table 1 contains information
on antifungal interactions, adverse reactions, and recommended dosing for infections due to
Scedosporium/Lomentospora and Fusarium infections.

10. PJP

Pneumocystis jirovecii pneumonia (PJP) may develop in both the general and immuno-
suppressed population. The incidence of PJP varies from 3–15% depending on the type of
transplant as well as the use of prophylaxis, with lung transplantation having the highest
incidence of PJP among SOT recipients [170]. A key risk factor for PJP is the receipt of
corticosteroids, T-cell depletion, neutropenia, and the presence of CMV infections. The
highest incidence of PJP occurs in the first 1–6 months post-transplant, often warranting
prophylaxis within that time period [170]. However, reports of infection after 12 months
post-transplant have occurred. Asymptomatic isolation of P. jirovecii in LTR may exceed
10%. Symptoms typically involve progressive dyspnea, fever, and cough [170].

10.1. Diagnosis

Chest radiographs are non-diagnostic for PJP, presenting as diffuse interstitial pro-
cesses [170]. Isolation of PJP from the respiratory tract can provide a definitive diagnosis;
BAL is more sensitive than sputum. Silver, polychrome, or Calcofluor white stains provide
the ability to exclude PJP from BAL samples. [170] Gomori methenamine silver stain has
been reported to have a lower diagnostic yield in non-HIV immunocompromised patients
when compared to the HIV population [171]. The classic histopathological finding of PJP
includes foamy eosinophilic exudate with a honeycomb appearance; patchy distribution
throughout the lungs is common [170].

Direct immunofluorescent antibody (DFA) staining on sputum or BAL samples is
the most reliable method for the identification of PJP and should be employed for initial
diagnoses [170].

PCR on BAL samples has demonstrated high agreement with DFA [172–174]; in non-
HIV patients, a PCR cycle threshold value of <31 excluded colonization and value >35
excluded PJP altogether, although the cutoff for positive cycle threshold differs by as-
say [173–175].

(1,3)-β-D-glucan assay on serum samples has been reported to have a sensitivity of
86% but with a specificity of only 83% in non-HIV patients for the diagnosis of PJP [176].

10.2. Treatment

First-line therapy for PJP is trimethoprim–sulfamethoxazole. Careful monitoring of
possible adverse drug reactions such as hyperkalemia, neutropenia, and thrombocytopenia
should be observed when utilizing this agent. Alternative strategies such as primaquine and
clindamycin, pentamidine, atovaquone, and dapsone are not as effective as trimethoprim–
sulfamethoxazole in the treatment of PJP [170]. These agents are often considered in
situations in which a patient is not a candidate for trimethoprim–sulfamethoxazole, such
as in those with sulfa allergies. Primaquine and clindamycin monotherapy is typically
reserved for a milder manifestation of disease. Prior to the use of primaquine or dapsone,
patients must be screened for G6PD deficiencies due to the risk of hemolytic anemia.
Atovaquone can be used in mild to moderate disease manifestations, but can be associated
with dermatologic adverse drug reactions such as skin rashes.

Pentamidine may be utilized as either an IV or nebulized formulation, with nebulized
being reserved for prevention as it is unlikely to reach adequate concentrations in the
distal airways needed for the treatment of PJP. Pentamidine is associated with significant
side effects including hypo- and hyper-glycemia, neutropenia, thrombocytopenia, GI side
effects, as well as pancreatic islet cell necrosis.
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Echinocandins are possible options in cystic manifestations of PJP. Combination ther-
apy of echinocandins with trimethoprim–sulfamethoxazole may be considered due to their
possible synergy in severe PJP, but the overall quality of evidence and level of recommen-
dation by the American Society of Transplantation’s guidelines is weak [170].

Adjunctive corticosteroids should be considered early in the treatment course in cases
of hypoxia, defined as arterial oxygen partial pressure of >70 mmgHg or alveolar-arterial
gradient of <35 mmHg on room air [170,177]. Table 1 contains information on antifungal
interactions, adverse reactions, and recommended dosing for PJP infections.

11. Inhaled Antifungals

Inhaled antifungal therapy is an attractive option for the treatment of isolated pul-
monary fungal infections due to low systemic absorption which minimizes drug interac-
tions and adverse effects. Nebulized amphotericin B or liposomal amphotericin B have
been reported as adjunctive therapies for the treatment of tracheobronchial aspergillosis,
invasive pulmonary aspergillosis, as well as pulmonary infections due to Mucorales spp.,
Scedosporium spp., and Fusarium spp., and is recommended as an adjunctive therapy in
cases of tracheobronchial aspergillosis that are associated with ischemic airways in lung
transplant recipients by the IDSA and AST-IDCOP [32,178]. Inhaled voriconazole has been
reported in case series of Aspergillus infections, either as monotherapy or adjunctive to
systemic antifungal therapy, resulting in good clinical response [82,83]. The feasibility
of nebulizing posaconazole has also been reported, including a case report of using in-
haled posaconazole as an adjunct during bronchoscopies in three lung transplant patients
with Scedosporium apiospermum [83,179]. Inhaled opelconazole has been studied for the
treatment of fungal infections caused by Aspergillus spp., Candida spp., and Rhizopus in pre-
clinical murine models and is currently under investigation for the treatment of invasive
aspergillosis in lung transplant recipients [180].

12. Conclusions

Fungal infections following lung transplant continue to be a source of significant
morbidity, with LTR being at particularly high risk for fungal infections among solid organ
transplant recipients due to the potential for ischemic airway injury and communication
of the allograft with the environment. It is also challenging to differentiate between
colonization and active infection when species are identified within the lung allograft.
Prompt diagnosis and treatment are integral to limiting allograft damage. Amphotericin
B continues to be a mainstay of treatment for severe fungal infections, although newer
triazole antifungals may be appropriate in some cases and carry a lower risk for side effects.
There are many drug interactions between immunosuppressives and triazole antifungals
as well as additive adverse effects that must be taken into consideration when selecting
treatment options for fungal infections in LTR. Inhaled antifungals are promising due to
their direct application to the site of infection which may diminish side effects and drug
interactions, although further studies in larger lung transplant populations are warranted.
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