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Abstract: Understanding the higher-order structure of membrane proteins (MPs), which are vital
for numerous biological processes, is crucial for comprehending their function. Although several
biophysical approaches have been used to study the structure of MPs, limitations exist owing to the
proteins’ dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool
for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must
meet several challenges including the lack of stability and solubility of MPs, the complexity of the
protein–membrane system, and the difficulty of digestion and detection. To meet these challenges,
recent advances in MS have engendered opportunities in resolving the dynamics and structures of
MP. This article reviews achievements over the past few years that enable the study of MPs by MS.
We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry
for MPs and then focus on those footprinting methods that report on protein structure.

Keywords: membrane protein; hydrogen–deuterium exchange; footprinting; fast photochemical
oxidation of proteins (FPOP); mass spectrometry

1. Introduction

Membrane proteins (MPs) are essential for a wide range of biological processes, includ-
ing cell signaling, transport, and energy conversion, as well as for mediating interactions
between the internal and external environments of the cell [1]. To understand the function
of MPs, it is crucial to determine their higher-order structure. Biophysical techniques
such as X-ray crystallography [2], nuclear magnetic resonance (NMR) spectroscopy [3],
single molecule tracking with fluorescence spectroscopy [4], and cryo-electron microscopy
(cryo-EM) [5] are being widely used to study the structure of MPs. These methods, however,
have limitations in studying the dynamic nature and in dealing with the heterogeneity of
MPs. The techniques of cryo-electron microscopy (cryo-EM) and X-ray crystallography can
reveal the conformational state(s) of a protein. Cryo-EM has made significant strides in its
improvement in resolution. Thus, cryo-EM can now provide structural information for MPs
in nanodiscs, whereas X-ray crystallography still faces obstacles in obtaining high-quality
crystals of MPs. However, directly probing protein dynamics remains a difficult task for
both Cryo-EM and X-ray crystallography.

Mass spectrometry (MS) is emerging as a powerful tool for investigating localized
structures and dynamics of MPs. Top-down and bottom-up approaches provide detailed
information on protein primary structure, post-translational modifications, and protein–
protein interactions on the “peptide” level and sometimes on the residue level. Recently,
MS-based approaches are being used for interrogating MPs. MS now can provide informa-
tion by examining the levels of protein organization, making use of structural proteomics [6].
Structural proteomics approaches include hydrogen/deuterium exchange (HDX) [7], chem-
ical crosslinking (XL) [8], and footprinting (e.g., chemical labeling (CL), and hydroxyl
radical footprinting (HRFP)). Various strategies for generating hydroxyl radicals, such
as synchrotron radiolysis [9], fast photochemical oxidation of proteins (FPOP) [10], and
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plasma-induced modification of biomolecules (PLIMB) [11] have been developed. Dow-
nard [12] developed the free radical footprinting technique in an ESI source, which has
been recently reviewed [13]. Additionally, Sharp et al. [14] present a new integrated FOX
(Flash OXidation) Protein Footprinting System. Moreover, native MS has emerged as a new
field for studying the stoichiometry of MPs subunits in their gas state and their interactions
with other proteins and lipids [15].

The MS-based approaches used to study MPs have often been adapted from studies of
water-soluble proteins. However, these methods must be refined to overcome challenges
that are unique to MPs, and there are several. (1) Stability and solubility: MPs are often sen-
sitive to changes in pH, temperature, and detergents, inducing denaturation or aggregation.
Thus, it is difficult to maintain their stability and solubility during sample preparation and
analysis. (2) Complexity of the protein–membrane system: MPs are embedded in a lipid
bilayer, and their interactions with the surrounding lipids can play a crucial role in their
function. Structural proteomics MS methods, however, require the protein to be isolated
from the membrane and separated from the lipids to avoid contamination of the analytical
HPLC column and the mass spectrometer. (3) Digestion and detection: owing to the lack of
sites that can be recognized by common digestion enzymes and the hydrophobicity of the
protein, MPs are hard to digest, leading to poor coverage of the protein. (4) Residue reactiv-
ity for footprinting: the presence of the lipid bilayer and/or the detergents surrounding
the protein can affect the efficiency of footprinting. In addition, the residues buried in the
bilayer are often less reactive.

Recently, native MS has emerged as a cutting-edge approach for investigating the
higher-order structure of MPs [16]. Soft electrospray ionization can maintain non-covalent
interactions, making it useful for MPs in their native environment [17,18]. Native-MS
can also be used to study the effects of different lipids on the stability and dynamics of
the protein. This approach has been advanced by Robinson and her colleagues [19], who
have developed a sophisticated top-down native MS approach. A good example of their
approach is an investigation of the pathway of rhodopsin signaling and regeneration,
providing a potential model for G protein-coupled receptor (GPCR) drug discovery in
native membrane environments [20]. For recent progress of native MS for MPs, we refer
the reader to an informative review by Marty’s group [17].

In addition to native MS, hydrogen/deuterium exchange MS (HDX-MS) has also made
significant progress in the resolution of MP dynamics, as detailed in several published
articles [15,21–23]. Unlike native MS, HDX-MS involves incubating the MP in a deuterated
solvent (D2O) to exchange the variable hydrogens of the protein backbone with deuterium.
The mass uptake at different peptide residues are then analyzed by using MS. The method
reveals structural dynamics by comparing the deuterium uptake of the same protein under
several conditions. A difficulty is that water or D2O may not be of high concentration in
the membrane.

This review aimed to highlight the use of some structural proteomics methods for
studying MPs over the past years. Although MS-based approaches have been widely
discussed [24], this review focuses on progress based on three categories of MPs: membrane-
associated proteins, extra-membrane domains, and transmembrane domains of integral
membrane proteins.

2. HDX-MS
2.1. Method Development

HDX-MS has been used for decades to characterize soluble proteins, and recently it has
gained momentum for focusing on MPs and their dynamics [7]. HDX-MS involves labeling
proteins with deuterium and then using MS to measure the extent of exchange of deuterium
for hydrogen atoms in the protein as a function of time. This can provide information
about the stability of different regions of the protein and show how those regions interact
with the surrounding lipid environment. The application of HDX-MS to MPs began in
the early 2000s. One of the first studies was of the G-protein-coupled receptors (GPCRs)
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that play a role in cellular signal transduction. Zhang et al. [25] published the first study
in this field in 2010. The authors used a detergent to solubilize a 2-adrenergic GPCR and
optimized the quantity of detergent, the composition of the quenching solution, and other
important parameters of the LC steps. Since then, HDX MS has been used to study a wide
range of MPs, including more examples of G protein-coupled receptors, ion channels, and
transporters.

It is important, however, to know the lipid-protein interactions at the molecular level
for understanding the conformational changes of MPs. One technical bottleneck in the
HDX-MS experiments is the low sequence coverage that is caused by the scarcity of cleavage
sites, the resistance to digested enzymes, and poor chromatographic separation. The Rand
group [26] compared the digestion of four integral MPs, all transporters including a Cl-
/H+ exchange transporter (CIC-ecl), a leucine transporter (LeuT), a dopamine transporter
(DAT), and a serotonin transporter (SERT). Porcine pepsin and three alternative aspartic
proteases were used either in-solution or as immobilized enzymes on-column to optimize
the processing. Pepsin was the most productive for the digestion of ClC-ec1 and LeuT,
providing coverage of 82.2 and 33.2% of the protein, whereas the alternative proteases
were better than pepsin for the digestion of DAT and SERT. On the other hand, using urea
instead of guanidine hydrochloride as a denaturant turns out to be beneficial for improving
sequence coverage for MPs.

The presence of lipids, protein ligands, and reducing agents in samples often poses
a challenge in HDX-MS analysis of membrane proteins and large protein assemblies.
Calvaresi et al. [27] introduced a technique for eliminating undesired components from
the HDX sample before conducting chromatographic separation and MS analysis. This
method involves utilizing a compact size-exclusion chromatography (SEC) column that
is incorporated with a standard HDX-MS setup, which is temperature-controlled. By
utilizing this approach, the investigators found they could effectively eliminate lipid
constituents from protein–lipid complexes, separate an antibody from an antigen during
epitope mapping, and eliminate compounds that interfere with MS analysis during HDX-
MS. The integration of the compact SEC column into the conventional HDX-MS setup is a
simple process and also has the potential to be widely applicable in the HDX-MS analysis
of challenging protein structures.

2.2. Applications
HDX Transmembrane Domains

Membrane transporters not only play a role in transporting poorly permeable solutes
into the cell but in targeting drugs. A timely review illustrates the application of HDX-MS
to secondary active transporters [28].

Although X-ray crystallography and high-resolution cryogenic EM can supply a static
snapshot of the different states, the entire processing cannot be monitored. HDX-MS
can reveal the structural dynamics of MPs with molecule-level resolution under native
conditions without chemical labeling, and even with limited amounts of protein. HDX
provides the ability to resolve structure-dynamic landscapes of MPs in their unbound and
ligand-bound forms.

Politis’s group systematically investigated the conformational landscape of three rep-
resentative transporters including xylose transporter (XylE), lactose permease (LacY), and
glycerol-3-phosphate antiporter (GlpT). LacY and XylE are symporters. These transporter
proteins are from Escherichia coli [22]. The investigators measured the difference in deu-
terium uptake (∆HDX) between the mutants LacY G46W, XylE G58W, and GlpT G66W,
and the wild-type (WT) transporter in detergent micelles. They determined that the three
mutants have a higher uptake of deuterium on the extracellular side compared to the wild
type when comparing the ∆HDX of the peptides. Conversely, the investigators observed
that the intracellular side is relatively shielded from deuterium exchange.

By combining MD simulations and results from HDX-MS experiments, the conforma-
tional equilibrium between the outward-facing (OF) and inward-facing (IF) states of XylE
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and LacY, embedded in nanodiscs with several lipid compositions, can be modulated by
phosphatidylethanolamine (PE) through its interactions with charged residue networks.
In this work, The researchers developed a model of secondary transport that not only
accounts for intracellular interactions but also incorporates the influence of conserved
charge networks at the interface between lipids and proteins (Figure 1) [29].
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Figure 1. Use of G-to-W mutants in HDX-MS to examine changes in a conformational equilibrium be-
tween IF and OF states. (a) A comparison of deuteration levels between the WT and the mutant shows
that intracellular peptides are more deuterated in the mutant, whereas the opposite is observed in the
WT. (b) The topological mapping of mutated LacY, XylE and GlpT based on differential deuterium
uptake (∆HDX). Reproduced with permission from Ref. [29], copyright Nat. Commun. 2020.

Traditional structural approaches are limited in characterizing the dynamical ensem-
bles of membrane proteins, whereas HDX-MS has emerged as a powerful tool to study
their conformational dynamics, providing equilibrium information about relevant popula-
tions. While peptide-level exchange analysis is often used in conjunction with molecular
simulations to gain a qualitative understanding of protein flexibility, HDX-MS methods
affording higher spatial resolution hold promise for revealing atomistic details of the entire
spectrum of conformational states that underlie protein function. Jia et al. [30] addressed
an integrative strategy combining HDX-MS and ensemble modeling, benchmarked on
XylE wild-type and mutant conformers, and applied it to different lipid environments and
ligand-bound ensembles to uncover protein–ligand interactions in atomic detail. Through
integrative HDX-MS modeling, this study showcases the potential to effectively quan-
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tify and visualize co-populated states of membrane proteins in the presence of diverse
substrates and inhibitors.

It has been challenging to study full-length membrane proteins in lipid bilayers owing
to the scarcity of automated methods and the negative effects of membrane lipids on chro-
matography and mass spectrometry. Anderson et al. [31] described a new workflow that
enables fully automated HDX-MS analysis of full-length transmembrane proteins in lipid
bilayers by depleting phospholipids using zirconium oxide beads and syringeless nanofil-
ters. The method was successfully demonstrated using the single-pass transmembrane
protein FcγRIIa, which showed optimal liquid chromatography-mass spectrometry per-
formance and suitable amino acid sequence coverage needed for future measurements of
structural dynamics. Moreover, Hammerschmid et al. [32] presented an extended HDX-MS
system that automates the delipidation process of lipid-solubilized membrane proteins. An
HDX-MS equipment was enhanced with the integration of a chromatographic phospholipid
trap column, which enabled the online delipidation of samples before protease digestion of
the deuterium-labeled protein–lipid assemblies. The setup allows proteins to pass through
and undergo digestion with subsequent peptide trapping while retaining phospholipids
in the ZrO2 matrix of the phospholipid trap column. The effectiveness and automation of
phospholipid capture were successfully demonstrated on both empty and AcrB-loaded
membrane scaffold protein–lipid nanodiscs, with minimal D-to-H back-exchange, peptide
carry-over, and protein loss. The method can significantly overcome the challenges of
membrane protein analysis and allow for better interrogation of their dynamics in artificial
lipid bilayers or even native cell membranes.

As we know, HDX-MS can provide conformational information about membrane
proteins, but HDX analysis on reconstituted in-vitro systems cannot represent the in-vivo
environment. Donnarumma et al. [33] used outer-membrane vesicles naturally released
by Escherichia coli to analyze native OmpF through HDX-MS, and a new protocol was
developed to avoid interference from lipid contents. The extent of deuterium incorporation
is consistent with the X-ray diffraction data, with buried β-barrels incorporating a low
amount of deuterium and internal/external loops incorporating a higher amount. The
kinetics of incorporation showed that peptides were segregated into two distinct groups
based on trimeric organization, with fast-labeled peptides facing the surrounding environ-
ment and slow-labeled peptides located in the buried core. The study demonstrates that
HDX-MS can address solvent accessibility and spatial arrangement of an integral outer
membrane protein complex in a complex biological system.

2.3. Future Directions for HDX

The outlook for HDX-MS on MPs is promising. Advances have led to novel insights
into the dynamic behavior of MPs, allowing the study of structural changes under diffi-
cult conditions. The structural-resolution capabilities of HDX-MS make it attractive for
structural biology studies, as it can provide residue-level information about the protein.
There are, however, challenges associated with the complexity of the MP. The hydropho-
bic parts of the MPs are challenges for the LC separation performance. Furthermore,
the development of experimental and computational methods needs to be accelerated to
shorten the gap between obtaining static snapshots from X-ray crystallography or CryoEM
and determining the underlying conformational landscapes. The automated method for
phospholipid removal described in this review may have significant implications for the
structural characterization of membrane proteins and the development of pharmaceuticals
targeting them. HDX can also be adapted for other MS applications such as protein enrich-
ment for proteomics of extracellular vesicles [34]. The adaptable nature of HDX suggests
its potential for various applications, and its relatively easy adoption makes it a promising
tool for future studies of membrane proteins.
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3. Chemical Footprinting
3.1. Method Development

Protein footprinting coupled with MS has proven successful in studying the higher-
order structure of proteins, including in recent years those of MPs. As stated earlier, MPs
are a challenging class of proteins owing to their hydrophobic nature and the inevitable
presence of contaminants such as detergents and lipids in solutions prepared for the mass
spectrometer. MS-based irreversible footprinting methods, when adjusted to overcome
these challenges, can provide information about the dynamic behavior of MPs and their
interactions. An advantage of irreversible labeling in footprinting is that it produces a
stable, irreversible modification that can withstand the purification process employed in
proteomic workflows, making the analysis more complicated but less vulnerable to the
reversibility of HDX. It can provide a reliable and robust analysis of protein structure and
dynamics, as the labeling modification remains intact throughout the entire process of
sample preparation, purification, and analysis.

MS-based footprinting methods include chemical labeling (CL) [35–37] and hydroxy
radical footprinting (HRF) including synchrotron radiolysis [9], fast photochemical ox-
idation of proteins (FPOP), or other methods mentioned earlier. Oxidative labeling is
commonly used for analyzing the conformation changes of MPs, whereas FPOP, syn-
chrotron HRF, and Fenton chemistry use different means of producing reactive oxygen
species to label the protein. Other chemical footprinting reagents, such as carbenes, iodide
radicals, and carbocations, are also reactive, introducing labels in the protein faster than
protein unfolding [38]. Residue-specific reagents, such as diethylpyrocarbonate, glycine
ethyl ester, and benzyl hydrazide, are more targeted methods that can provide informa-
tion about specific residues of the protein, but these reagents require validation that the
footprinting does not perturb structure.

MS-based footprinting is a valuable tool for studying the interactions of MPs with
other molecules and their conformational changes. Some reviews discuss covalent labeling
coupled with MS [39] and the fast footprinting of MPs [40]. In this review, we focus on
several advanced footprinting methods coupled with MS for (i) membrane-associated
proteins, (ii) extramembrane domains, and (iii) transmembrane domains, showing how
methods can be developed to probe various domains of the protein.

3.2. Applications
3.2.1. Footprinting Membrane-Associated Proteins

Membrane-associated proteins are physically attached to cellular membranes, either by
covalent bonds or by non-covalent interactions [41,42]. These proteins play important roles
in maintaining membrane structure, regulating cell signaling and transport, and facilitating
communication between cells. An example of footprinting this type of MP was discussed
by Van et al., in 2020 [43]. They investigated a membrane-distal conformation of the small
GTPase KRAS by using a combination of neutron reflectivity, FPOP, and NMR. KRAS is
positioned on the plasma membrane, where it plays a critical role in linking extracellular
growth factor stimulation to intracellular signaling pathways (Figure 2). Defining the
membrane-bound state of KRAS and gaining insight into the mechanism of the signal
transfer are crucial for understanding its biological functions. The study focused on the
membrane-associated protein alone or in a 1:1 ratio with nanodiscs. This is a compelling
illustration that FPOP can interrogate the interactions of MPs with nanodiscs, and the
outcome can inform on native membranes.

An earlier example shows the use of residue-specific reagents glycine ethyl ester
(GEE) by Blankenship, Gross, and co-workers [44] for labeling solvent-accessible car-
boxyl groups on glutamic (E) and aspartic acids (D). The membrane-attached Fenna-
Matthews-Olson (FMO) antenna protein plays a role in photosynthesis to absorb light
and connect the large peripheral chlorosome antenna complex with the reaction center.
The investigators compare three states: the solvent-exposed surfaces of isolated FMO
protein, the FMO from chlorosome-depleted membranes, and the FMO from the native
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membrane. The reagent is covalently attached to glutamic acid (E) and aspartic acid (D)
relatively rapidly in the presence of a mediator, water-soluble carbodiimide, 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC). EDC is often used as a cross-linking reagent
to activate the carboxyl groups of proteins. Once activated, the nucleophilic modifying
reagent, GEE, reacts with the activated carboxyl group to produce the desired product [45].
The labeling sites were located and quantified by MS after protein purification and enzyme
digestion. The modification levels of different peptides were compared to determine the
interaction interfaces. The approach combines carboxyl group modification with MS to
afford surface mapping or footprinting [46,47] of the protein and to uncover the interaction
of a protein associated with membranes.
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with partial conservation of orientation as determined by a membrane contact that is broken in a
transient, orientationally defined membrane-bound state. Reproduced with permission from Ref. [43],
copyright PNAS. 2020.

Recently, Vachet’s group [48] demonstrated that diethylpyrocarbonate (DEPC) can
efficiently label specific amino acid residues to characterize the binding interactions between
a membrane-associated protein and its binding partners (Figure 3). Using chemotaxis
histidine kinase (CheA) as a model system, the investigators showed how DEPC-based
covalent labeling can provide structural and binding information. Surprisingly, DEPC-
based CL-MS is suitable for studying the interactions of membrane-associated proteins in
artificial membranes even though DEPC has moderate hydrophobicity.
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3.2.2. Footprinting Extramembrane Domains

The capability to use MS to study MPs has emerged because it has high sensitivity,
good structural resolution, relatively high throughput, and the capability to study proteins
in complex mixtures [24]. MP structures, however, are difficult to resolve compared to
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structures of water-soluble proteins owing to the complexity of the assemblies [49]. The
usual way to solve and stabilize an MP is by using detergents. But detergents affect
protein conformation and hinder protein interactions with other molecules and reagents
that footprint the protein. To overcome these problems, investigators reconstituted MPs
in liposomes and bicelles that are chosen to mimic a native environment. Yue and co-
workers [49] used Nanodiscs [50] to stabilize a light-harvesting complex 2 (LH2) from
Rhodobacter (Rb.) sphaeroides in an aqueous buffer prior to and during labeling by hydroxyl
radicals. They demonstrated MS-based FPOP footprinting of an MP complex in a near-
native environment. The results show the protein’s outer membrane regions are footprinted
more by •OH radicals than the regions spanning the lipid bilayer, which remain largely
inert to the labeling.

Furthermore, Zhou and co-workers [51] showed for the first time the application
of a picodisc system for MS footprinting of MPs. A novel methodology was used to
incorporate an MP into saposin A picodiscs for MS footprinting. The saposin–lipoprotein
picodisc [52,53] allows for the reconstitution of MPs in a lipid environment that is stabilized
by a scaffold of saposin proteins. It is an advantageous methodology that provides a
more native-like environment for MPs. The investigators achieved broad coverage that
enables the analysis of the ferroportin structure. The picodisc system allows the protein to
maintain its native folding topology during the footprinting, and the FPOP labeling occurs
preferentially at the extramembrane regions of ferroportin.

N-Ethylmaleimide (NEM) also can be used in specific amino acid footprinting of Cys
residues [54] of ferroportin in picodiscs. As usual, the investigators used proteomics-based
MS analyses to locate the labeled sites. The investigators demonstrated that ferroportin, a
membrane protein, is less stable in detergent micelles. The high sequence coverage could be
achieved after reconstituting in picodiscs for MS footprinting. Although the FPOP labeling
occurs preferably at the extramembrane regions of ferroportin, the NEM footprinting occurs
in both extramembrane and intramembrane regions.

There are also other reactive species that can be chosen. One is the CF3 radical, which
can label almost all amino residues [55,56]. It is a complement to the hydroxyl radical
for addressing conformational changes. It can modify 18 of the 20 common amino acid
residues, and it can be employed to investigate MPs. By using this reagent on vitamin K
epoxide reductase (VKOR), the authors found that •OH was not reactive. Only ten residues
on the extra-membrane regions were modified and some of them were Ala and Gly.

Protein conformation can be captured in its native state by footprinting with reactive
carbocations possessing lifetimes as short as nanoseconds. Sun et al. [57] introduced carbo-
cations (R3C+) as laser-initiated footprinting reagents for MPs. A trifluorobenzyl bromide
(TFBB) reagent was tested for footprinting VKOR at pH 7.4. Most of the footprinting
occurs on the extra-membrane region, cytosolic or extra-cytosolic (Figure 4). Moreover,
amphiphilic TFB+ may offer the potential to footprint the transmembrane regions of in-
tegral MPs as confirmed by the discovery that TFB-modified peptides were observed in
the transmembrane region, although the labeling efficiency was not high compared with
residues in the solvent-accessible domains.

Some chemical labeling approaches modify specific amino acid side chains in slow
reactions. These always have the disadvantage that slow labeling can be excessive and
misleading because the protein undergoes conformational opening during the footprint-
ing itself. Here the investigators choose a labeling strategy for specific amino acid side
chains [58] that are hypothesized to be involved in the interactions. Schmidt et al. [59] used
diethylpyrocarbonate (DEPC) to modify histidine residues. DEPC modifies lysine, arginine,
tyrosine, cysteine, and threonine residues with different reactivities. The investigators
also combined the MS approach with computational methods to improve the prediction of
multiprotein complexes (i.e., F-type ATP synthase from spinach chloroplasts (cATPase)).
The strategy helps investigators understand the conformational states of the peripheral
stalk and allows localization of the flexible regions of the enzyme.
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In another example, Zhou et al. [60] demonstrated a strategy to monitor ligand modu-
lation of protein receptors. Protein complexes often have lysine residues located in or near
the binding sites of small-molecule ligands. These lysine residues are crucial for facilitating
protein–ligand interactions and can play a significant role in the binding and recognition of
the ligand by the protein. The investigators used a dimethyl label to assess the solvent ac-
cessibility of lysine residues in catechol-O-methyltransferase and the N-methyl-D-aspartate
receptors. Sixty-three lysine residues were comprehensively monitored. The results show
that 20 lysine residues are involved in the ligand-binding and conformation-changing
regions. The approach may provide an unbiased ligand modulation predicting strategy
that can “scout” ligand-protein interactions.

3.2.3. Footprinting Transmembrane Domains

Transmembrane regions of proteins span the cell membrane and have both intracel-
lular and extracellular portions, which play important roles in regulating the transport
of ions and small molecules across the membrane and in transmitting signals from the
extracellular environment to the cell interior [61]. Examples of transmembrane proteins
include ion channels, transporters, and receptors. Compared with water-soluble proteins,
their higher-order structures and binding interactions are difficult to characterize owing
to their partially hydrophobic surfaces and instability [62]. As mentioned above, Zhou
and co-workers [51] showed that FPOP labeling occurs preferably at the extramembrane
regions of ferroportin. NEM labels not only extramembrane but intramembrane regions.
Because N-ethylmaleimide (NEM) is amphiphilic, it footprints cysteine residues in both
extramembrane and transmembrane regions, thereby affording complementary footprint-
ing coverage. Earlier, using •OH radicals produced by radiolysis, Bricker’s group [63]
modified buried amino acid residues and demonstrated that water and oxygen channels
are crucial for understanding the function of photosystems.

In addition to hydroxyl radicals, new reagents that are compatible with the FPOP
platform are under development. One is the carbene diradical (:CR2), which can be used
to study protein–protein interactions. A suitable precursor molecule is chosen to gen-
erate carbene radicals upon UV irradiation. Manzi et al. [35] demonstrated the use of
photoactivatable aryl diazirines to create reactive carbenes that can be used to map the
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transmembrane region of the MP and ompF proteins from E. coli. The aryl diazirine pre-
cursor, due to its amphiphilic nature, can insert into micelles and generate carbenes upon
laser irradiation. This allows for the mapping of hydrophobic transmembrane regions.
Another means of generating carbenes is the FPOP platform, as demonstrated by Zhang,
et al. [64]. Although carbenes have not been used for MPs on this platform, they offer the
advantage that the precursor can be designed to be hydrophobic and readily partitioned to
the membrane to be activated there. Furthermore, there are no reactive secondary products
(e.g., radicals) produced in the footprinting as there must be with free radicals.

Another novel approach takes FPOP to a new level to offer a high coverage of the
hydrophobic transmembrane (TM) regions. The provided resolution is enough to address
structural inquiries with accuracy [65]. The method, developed by Sun et al. [65] and named
NanoPOMP, can overcome some obstacles of MP footprinting. The investigators designed
an approach to afford increased footprinting coverage of the TM region of an integral
MP. To achieve higher coverage of the TM region, photocatalytic titanium dioxide (TiO2)
nanoparticles are attached to the surface of the liposome and, upon irradiation by the same
laser used in FPOP, generate high local concentrations of free radicals (including •OH). At
the same time, the laser irradiation initiates a Paterno-Buchi reaction of the phospholipids
comprising the liposome. That reaction is a photochemically allowed [2 + 2] cycloaddition
of a lipid double bond with the carbonyl bond of acetone, perturbing the lipid layer. The
reactions help radicals easily penetrate and footprint VKOR and hGLUT1 (human glucose
transporter family 1). The results show good coverage of transmembrane helices and help
to locate both the ligand-binding residues and the ligand-induced conformational changes
in a transporter.

In another approach whereby the precursor of a reactive species is partitioned to the
membrane for subsequent activation, Cheng et al. [66] used highly hydrophobic perfluo-
roisopropyl iodide (PFIPI) as the precursor to footprint both the hydrophobic intramem-
brane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase
(VKOR). A key step in the protocol is the implementation of tip sonication to ensure pen-
etration of PFIPI into the micelle interior. The footprinting is initiated by a laser pulse
that presumably photolyzes C3F7—I→·C3F7 + ·I. The heptafluoro isopropyl radical reacts
with side-chain Hs to give a protein-centered radical that is “capped” by the more stable
iodine radical. The reaction is fast and has 100% coverage for Tyr and Trp (it may also
react with histidine). The incorporation of the reagent with sonication does not perturb
VKOR’s high-order structure as determined by checking its activity as an enzyme. By
taking advantage of the high logP (Figure 5), small size, and suitability to form radicals
upon 248 nm laser photolysis on the FPOP platform, the approach may be generally suitable
for interrogating MPs.

Building on this work, Guo et al. [67] tested the hydrophobic reagent diethylpyro-
carbonate (DEPC) for MP footprinting. This reagent, mentioned earlier, is specific for
nucleophilic residues Lys, His, Tyr, Ser, Thr, Cys, and the N-terminus, which can map
the VKOR structure without affecting protein structure. Although DEPC predominantly
footprints the extramembrane domain, the labeling yield was increased by tip sonication
to enhance reagent diffusion into the micelle medium. This method resulted in a total of
30 modified residues (including Lys, His, Tyr, Ser, and Thr), including nine residues in the
TM domain. Whereas DEPC labeling without tip sonication footprinted 10 residues, only
two residues (i.e., K41 and K158) were located in the TM domain (Figure 6). Overall, the
combination of choosing a suitable reagent and employing tip sonication has promise for
transmembrane domain footprinting.
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4. Summary and Perspectives

The past decade has seen substantial advances in MS-based approaches for the struc-
tural analysis of MPs. These approaches, including native MS, HDX-MS, and MS-based
footprinting, each have their own benefits and limitations. In native MS, there have been
remarkable improvements in probing MP-lipid interactions. In footprinting, both HDX-MS
and molecular modeling have added to our understanding of membrane protein function.
HDX-MS has enabled the examination of whole MPs under varying conditions, presenting
new opportunities to investigate membrane-protein interactions, substrate recognition, and
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transport-related conformational transitions. MS-based footprinting is also beginning to
play a part in determining the structure, dynamics, and ligand interactions of MPs. Both
approaches require attention to proper handling of MPs and to developing optimal isola-
tion and MS analysis methods. The media in which the MP is placed, including detergent
or artificial membranes, and the MS experimental approach play crucial roles. Choosing
labeling reagents or a combination of them is vital to ensure high precision and coverage
in analyzing MPs. Integrating MS data with that from other structural methods, such as
cryo-EM and NMR, may expedite the study of complex systems by using an integrated
structural biology approach. The integration of MS data into structural models can be
challenging, especially for dynamic systems, but advances are being made. Exploring the
interaction of lipids, small molecules as drugs, and other proteins with MPs, both in vitro
and ultimately in vivo, is expected to see considerable progress in the coming years [68].
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