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Abstract
Motivation: Motifs play a crucial role in computational biology, as they provide valuable information about the binding specificity of proteins.
However, conventional motif discovery methods typically rely on simple combinatoric or probabilistic approaches, which can be biased by heuris-
tics such as substring-masking for multiple motif discovery. In recent years, deep neural networks have become increasingly popular for motif
discovery, as they are capable of capturing complex patterns in data. Nonetheless, inferring motifs from neural networks remains a challenging
problem, both from a modeling and computational standpoint, despite the success of these networks in supervised learning tasks.

Results: We present a principled representation learning approach based on a hierarchical sparse representation for motif discovery. Our method
effectively discovers gapped, long, or overlapping motifs that we show to commonly exist in next-generation sequencing datasets, in addition to
the short and enriched primary binding sites. Our model is fully interpretable, fast, and capable of capturing motifs in a large number of DNA
strings. A key concept emerged from our approach—enumerating at the image level—effectively overcomes the k-mers paradigm, enabling
modest computational resources for capturing the long and varied but conserved patterns, in addition to capturing the primary binding sites.

Availability and implementation: Our method is available as a Julia package under the MIT license at https://github.com/kchu25/MOTIFs.jl,
and the results on experimental data can be found at https://zenodo.org/record/7783033.

1 Introduction

Identifying conserved substrings in a set of unaligned DNA
strings is a fundamental challenge in computational biology.
These conserved substrings, known as motifs, emerge due to
evolutionary forces, and are known to play a crucial role in reg-
ulatory mechanisms. Elucidating the regulatory motifs present in
specific genomic regions, such as the promoters and enhancers,
can shed light on gene regulation mechanisms and contribute to
our understanding of biological processes. As such, accurately
identifying motifs is an essential step toward understanding the
complex interplay between genes and their regulation.

Motifs are often inferred from the representations of compu-
tational models applied to DNA strings. Traditionally, motifs
are inferred directly, as the conventional methods typically de-
pict the motifs as consensus strings (Li et al. 1999), product mul-
tinomials (Bailey and Elkan 1995, Liu et al. 1995), or position
weight matrices (Hertz and Stormo 1999, Heinz et al. 2010,
Bailey 2021). While the traditional methods, e.g. STREME and
HOMER, are efficient in identifying the primary motif, they of-
ten employ heuristics such as substring masking that turns the
methodology into a sequential procedure. This methodological
approach can make it challenging to discover secondary motifs
in the dataset in a principled manner, as secondary motifs usu-
ally share identical patterns with the primary motifs. Moreover,
these conventional methods frequently rely on k-mer enumera-
tion to generate initial seeds for the optimization subroutine,

constraining them to identify only ungapped motifs and limiting
the maximum length of motifs that can be discovered. For exam-
ple, STREME version 5.5.1 by default can only detect motifs
that are up to 30 base pairs in length.

More recently, motifs are inferred from deep learning meth-
odologies, epitomized by the use of convolutional neural net-
work (CNN). Compared with traditional methods, inferring
the motifs is less straightforward: some approaches identify
the motifs as the filters in the first convolutional layers, while
others use model agnostic explanation methods such as
DeepLift or SHapley Additive exPlanations (SHAP)
(Lundberg and Lee 2017, Shrikumar et al. 2017).
Furthermore, the filters in CNNs are convolved with DNA
strings to create embeddings (Fig. 1), which by construction
are primarily intended for building regressors, e.g. predicting
the bigWig coverage (Kelley et al. 2016, Avsec et al. 2021a,b,
Yuan and Kelley 2022). Therefore, identifying all conserved
patterns in datasets is typically not the main objective of
CNNs. Consequently, the motifs predicted by CNNs are not
significantly different from those predicted by traditional
methods, and a principled, unifying model that effectively
captures the long, gapped, and flexible motifs present in the
dataset is still lacking.

In this work, we introduce a hierarchical sparse representa-
tion as a principled framework for motif discovery. Our
method is capable of capturing statistically significant long,
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gapped, and flexible motifs in addition to the primary motifs
in the dataset. These motifs are often longer than 30 base
pairs in length, beyond the computable range for methods
based on k-mer enumerations such as STREME and
HOMER. In addition, as sparse representations are interpret-
able by design, we alleviate the need for explanation methods
like SHAP. Our method can efficiently scale to large datasets
containing hundreds of thousands of DNA strings, requiring
only a moderate amount of computational resources.

2 Materials and methods
2.1 Notation

We refer to DNA strings as strings defined on
R ¼ fA;C;G;Tg. The i-th element of a vector v is denoted by
v½i�. Vectors and matrices are denoted by boldface letters,
while scalars are non-bold. We use the notation x � 0 to indi-
cate that all components of the vector or matrix x are non-
negative. The function j � j returns the cardinality of a finite
set. The norms jj � jjF; jj � jj2; jj � jj1, and jj � jj0 denote the
Frobenius norm, ‘2 norm, ‘1 norm, and ‘0 norm, respectively.

2.2 Problem formulation

Our method begins with a simple idea: we induce a sparse
representation of a DNA string by assuming that each one-
hot encoded DNA string sn can be represented as a finite sum
of linear convolutions, i.e.

sn �
X

m

dm � xmn (1)

where dm represents the features, often called filters, and xmn

is the corresponding sparse vector of sn, known as the sparse
code (Bristow et al. 2013, Heide et al. 2015, Wohlberg 2016,
Dumitrescu and Irofti 2018, Garcia-Cardona and Wohlberg
2018). We consider the filters can be reshaped as ‘-column
position frequency matrices (PFMs) that capture the fre-
quency of nucleotides at each position of a length-‘ DNA
string, i.e.

P‘ ¼ p 2 R
4�‘
þ :

X
a2R

p½a; j� ¼ 1; j ¼ 1; . . . ; ‘
� �

;

which resolves the scaling ambiguity between the filters and
the sparse code. A key insight we present is that the sparse

code can be likened to images. We refer to such images as
code images, and we generate one for each string sn by hori-
zontally concatenating the sparse code xmn for all m (Fig. 2A).
Using the set of DNA strings and their corresponding code
images, we proceed to construct a sparse representation spe-
cifically tailored to represent these images (Fig. 2B). By doing
so, we are able to identify a more extensive and diverse set of
patterns in the DNA strings by enumerating the combinations
within the sparse code. This technique, which we refer to as
enumerating at the image level, yields a broader range of sig-
nificant patterns than by enumerating the k-mers in the DNA
strings.

To start the motif discovery of DNA strings s1; . . . ; sN , we
first tackle the following problem as a precursor to enumerat-
ing at the image level:

argmin
Fk;dm

xmn ;ymn ;zknf g

1

2

X
n

k
X

m

dm � xmn þ ~dm � ymn � snk2
2

þ l
P

k kFkk1 þ k
P

n;m kxmnk1 þ kymnk1

� �
subject to

P
k Fk � zkn ¼ T ðX �n;Y �nÞ

Fk � 0; kFkkF ¼ 18k ¼ 1; . . . ;K

Z�n 2 fZ�n : jjZ�njj0 	 ag 8n ¼ 1; . . . ;N

reshapeðdmÞ 2 P‘ 8m ¼ 1; . . . ;M

xmn; ymn � 08m ¼ 1; . . . ;M; n ¼ 1; . . . ;N

(2)

In problem 2, our first goal is to approximate DNA strings
by a sum of convolutions while promoting the sparsity in the
code vectors xmn; ymn. The filter dm is reversed to obtain ~dm,
enabling the consideration of patterns in both the forward
and complementary strands of DNA strings. Our second goal
in problem 2 is to extract patterns at the image level (Fig. 2B).
To be precise, the matrices X �n; Y �n, and Z�n are constructed
by horizontally concatenating the corresponding code vectors
x1n; . . . ;xMn; y1n; . . . ; yMn, and z1n; . . . ; zKn, respectively.
Similarly, the matrix ðX �n; ;Y �nÞ is formed by concatenating
X �n and Y �n horizontally. The transformed version of
ðX �n;Y �nÞ through a linear transform T is denoted as
T ðX �n;Y �nÞ. To ensure a parsimonious representation of the
transformed image T ðX �n;Y �nÞ, we constrain the matrix Z�n to
be at most a-sparse and require the sum of convolutions

Figure 1. (A) Convolutional neural network (CNN). (B) Sparse representation. The symbol � denotes the convolution. In CNN, the filters are convolved with

the one-hot encoded DNA string to generate an embedding for downstream purposes, e.g. predicting the bigWig coverage. In sparse representations,

the filters are convolved with the sparse code, where the sparse code plays the role of an indicator, indicating where the filters should represent the DNA

string.
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P
k Fk � zkn to match T ðX �n;Y �nÞ. Last, we impose a sparsity

penalty on the filters Fk so that they capture the most salient
features in the images T ðX �n;Y �nÞ.

2.3 Obtaining the sparse representation: the

classical way

We can design iterative algorithms to solve problem 2 by al-
ternatively minimizing the sparse code fxmn; ymn; zkng and the
filters fFk;dmg. To do so, we define L�n and R�n as the left and
right halves of the image

P
k Fk � zkn, respectively, and for

simplicity, let T be the identity transform. With the filters
fFk;dmg held fixed, we apply Alternating Direction Method
of Multipliers (ADMM) (Boyd 2010) to problem 2 to solve
the sparse code fxmn; ymn; zkng:

xtþ1
mn ; y

tþ1
mn ¼

argminfxmn� 0; ymn� 0g
1

2

�����
X

h

dh � xmn þ ~dh � ymn � sn

�����
2

2

þkðkxmnk1 þ kymnk1Þ

þ q
2

 �����Lt
mn � xmn þ Ct

mn

�����
2

2

þ
�����Rt

mn � ymn þ !t
mn

�����
2

2

!
;

8m ¼ 1; . . . ;M;n ¼ 1; . . . ;N

(3)

Ztþ1
�n ¼ argminfZ�ng 1aðZ�nÞ

þ q
2

�����
X

k

Fk � zkn � ðX tþ1
�n ;Y tþ1

�n Þ þ ðCt
�n;!

t
�nÞ
�����

2

F

;

8n ¼ 1; . . . ;N

(4)

ðCtþ1
�n ;!tþ1

�n Þ ¼ ðCt
�n;!

t
�nÞ þ

P
k Fk � ztþ1

kn � ðX
tþ1
�n ;Y tþ1

�n Þ;

8n ¼ 1; . . . ;N

(5)

where Lmn;Rmn are the m-th column of L�n and R�n, respec-
tively. The scaled dual variables are C�n and !�n, and the

penalty parameter is q. The function 1að�Þ is an indicator func-
tion that projects the input matrix into the space of matrices
with at most a non-zero elements.

The solution to equation (3) can be obtained by alterna-
tively solving xmn and ymn using iterative shrinkage threshold-
ing algorithm (ISTA), i.e. for all m, n,

xtþ1
mn ¼ Sþkgt

ðxt
mn � gtdm~�� qðxt

mn � Lt
mn � Ct

mnÞÞ

ytþ1
mn ¼ Sþkgt

ðyt
mn � gt ~dm~�� qðyt

mn � Rt
mn � !t

mnÞÞ

with � ¼
P

h dh � xt
hn þ ~dh � yt

hn � sn

(6)

where ~ is the cross correlation, Sþkgt ð�Þ is the non-negative
soft-threshold operator, and gt the step size at t. We consider
projected gradient descent to solve equation 4. Here, an up-
date step for all n is

Ztþ1
�n ¼ ProjectaðZt

�n � ctGZÞ (7)

where Projectað�Þ keeps at most a largest magnitude
components and zeros out the rest, GZ the gradient of the
penalty term of equation (4), and ct is the step size at t.
On the other hand, by applying block coordinate
descent with method of multipliers to problem 2 with
the sparse code fxmn; ymn; zkng held fixed, we obtain
the following iterative algorithm to solve the filters
fFk;dmg:

dtþ1
m ¼ argmin

reshapeðdmÞ2P‘

1

2

X
n

�����
X

m

dm � xmn þ ~dm � ymn � sn

�����
2

2

;

8m ¼ 1; . . . ;M

(8)

Ftþ1
k ¼ argmin

Fk�0
l
X

k

kFkk1

þ s
2

X
n

�����
X

k

Fk � zkn � ðX �n;Y �nÞ þHt
�n

�����
2

F

;

8k ¼ 1; . . . ;K

(9)

Figure 2. We show how we enumerate at the image level, with a single one-hot encoded DNA string as the input: (A) we first obtain a sparse

representation of the one-hot encoded DNA string as a sum of linear convolutions. Next, we concatenate the collection of the sparse code in this sparse

representation as an image. We refer to this image as a code image. (B) We obtain a sparse representation of the code image. Using the sparse

representation of the code image, we enumerate the configurations within the sparse code.
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Htþ1
�n ¼ Ht

�n þ
P

k Fk � zkn � ðX �n;Y �nÞ;

8n ¼ 1; . . . ;N
(10)

where s is the penalty term and H�n are the scaled dual varia-
bles. We can solve equation (8) via mirror descent (Beck and
Teboulle 2003). Because we can reshape each dm into a ‘-col-
umn PFM by assumption, a way to express each component
of dm is dm½4ðj1 � 1Þ þ j2� for j1 ¼ 1; . . . ; ‘; j2 ¼ 1; . . . ; 4. We
define the distance function w associated with the mirror de-
scent as the sum of the negative entropy of each column of the
reshaped filter dm. This function is expressed as:

wðd1; . . . ;dMÞ ¼

XM
m¼1

X‘
j1¼1

X4

j2¼1

dm½4ðj1 � 1Þ þ j2� log ðdm½4ðj1 � 1Þ þ j2�Þ:

Therefore, to update each filter dm with all components
indexed by j1 and j2 in the mirror descent, we have the follow-
ing expression:

dtþ1
m ½4ðj1 � 1Þ þ j2� ¼

dt
m½4ðj1 � 1Þ þ j2� exp �ptgt

m½4ðj1 � 1Þ þ j2�
� �

P4
j3¼1 dt

m½4ðj1 � 1Þ þ j3� expð�ptgt
m½4ðj1 � 1Þ þ j3�Þ

(11)

with pt the step size at t, and gt
m the gradient of dm in equa-

tion (8). We solve equation (9) by ISTA for each filter Fk:

Ftþ1
k ¼ Sþlxt Ft

k � xts
X

n

zkn~�
0

� �
with �0 ¼

P
k0 F

t
k0 � zk0n � ðX �n;Y �nÞ þHt

�n

(12)

and then normalize so that each kFkkF ¼ 1. Here, xt is the
step size at t and Sþlxt ð�Þ is the non-negative soft-threshold
operator.

2.4 Obtaining the sparse representation by deep

unfolding

Rather than relying on the algorithm from Section 2.3 to ob-
tain the sparse representation, we adopt a different approach
called deep unfolding (Gregor and LeCun 2010, Monga et al.
2021). The deep unfolding approach employs a neural net-
work that parameterizes the iterates of an iterative algorithm
as its forward pass, which obtains an approximate representa-
tion of the problem and has been shown to achieve signifi-
cantly faster convergence in practice (Gregor and LeCun
2010).

We use deep unfolding to obtain an approximate sparse rep-
resentation in problem 2. To construct our network, we use the
iterates from Section 2.3, with the sparse code fxmn; ymn; zkng
and the scaled dual variables fC�n;!�n;H�ng in the network ini-
tialized to be zero. Next, the equations (6), (7), (11), and (12)
can be implemented as non-linearities of the layers in the net-
work. We construct the first 2�K1 layers by interleaving the
iterates of equations (6) and (7), and the subsequent 2�K2

layers by executing the iterates of equations (11) and (12). The
parameters of the our network are the filters fdm;Fkg, the

sparsity inducing parameters fk;lg, the penalty parameters
fq; sg, and the stepsizes fgt1 ; ct1 ; pt2 ;xt2 : t1 ¼ 1; . . . ;K1; t2 ¼
1; . . . ; K2g, learned by training the network with
backpropagation.

Once the network completes its forward pass, we define the
loss of the network as

1

N

X
n

"�����
X

m

dK2

m � xK1
mn þ ~d

K2

m � yK1
mn � sn

�����
2

2

þ
�����Pk FK2

k � zK1

kn � T XK1
�n ;Y

K1
�n

	 
�����
2

F

#

where the sparse code fxK1
mn; y

K1
mn; z

K1

kng are from the final out-
put of the first 2�K1 layers, and the filters fdK2

m ;FK2

k g are
from the final output of the subsequent 2�K2 layers of the
network. An illustration of the unfolded network is shown in
Fig. 3.

2.5 Enumerating at the image level

After the network is trained, we can retrieve the sparse code
of the code images, i.e. the set fZ�ng by a network forward
pass. Similar to the seeding phase in methods such as
STREME and HOMER, our motif discovery also performs
enumerations. Yet, instead of enumerating the oligonucleoti-
des, we enumerate the combinations of the sparse code com-
ponents in each Z�n, for n ¼ 1; . . . ;N. Specifically, we count
how q 2 Zþ components are arranged in each Z�n. Given that
Z�n has at most a components, the number of operations re-
quired to enumerate all possible combinations of q compo-

nents in each Z�n is at most
a
q

� �
. This is a relatively small

number, especially considering that we restrict both a and q
to be small integers.

We refer to each combination of q components and its spa-
tial information a configuration. The configuration is defined
as a tuple:

	
fð1Þ; dð1Þ; fð2Þ;dð2Þ; . . . ; dðq�1Þ; fðqÞ




where the numbers fð1Þ; fð2Þ; . . . ; fðqÞ are the q filter-indices of
filters fFkg directly inferred from Z�n in the combination,
sorted by their spatial occurrences in the DNA string sn. The
numbers dð1Þ;dð2Þ; . . . ; dðq�1Þ are the distances (number of
nucleotides) in between their neighboring components in the
configuration. We store the configurations as keys in a hash
table H. The value associated with each key in H is a collec-
tion of DNA strings of the same length, each obtained by tak-
ing the DNA string in the region covered by the particular
configuration, as we perform the enumerations through DNA
strings s1; . . . ; sn. Thus, each set of the DNA strings associated
with a key defines a multiple sequence alignment (MSA), and
corresponds to a position weight matrix (PWM).

We select up to J most enriched PWMs in the hash table H
as the motifs. As multiple keys in H may correspond to simi-
lar motifs, we reduce such redundancy by merging the similar
PWMs using the average log-likelihood ratio (Wang and
Stormo 2003). We report the resulting PWMs P1; . . . ;PJ0 as
the discovered motif in the dataset.
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2.6 Soft versus hard clustering representation of the

motifs

Since a PWM represents an average and proteins can have dis-
tinct binding preferences, the motif discovery problem is, in a
sense, similar to the clustering problem. Soft-clustering sce-
narios, such as mixtures of Gaussians, allow a point to belong
to multiple clusters, exhibiting characteristics that coexist in
each of them. This situation frequently arises in motif discov-
ery, where, for instance, the primary motif may frequently oc-
cur by itself but occasionally appears twice in certain DNA
strings in the dataset.

In this work, we present our result in the soft-clustering rep-
resentation. Unlike most traditional motif discovery methods
that use hard clustering representations, which use PWMs
composed of mutually exclusive DNA substrings, our method
employs soft clustering representations that allow PWMs de-
rived by multiple sequence alignment to share DNA sub-
strings with other PWMs. We provide a detailed comparison
of both approaches and their trade-offs in Supplementary File
S1 Section C.

2.7 Implementation
2.7.1 Hyperparameters

We implement our model with M ¼ jfdmgj ¼ 50 filters for
the sparse representation of DNA strings fsNg, where each fil-
ter (a PFM) dm covers ‘ ¼ 8 nucleotides. Additionally, we use
K ¼ jfFkgj ¼ 24 filters for code images, where each filter Fk

can cover 12� ð2�MÞ pixels. To limit the number of non-
zero elements in each code image Z�n, we set a to 32. We set
the operator T as a scaling operator, i.e. T ðMÞ ¼ bM, where
b¼ 100 to ensure numerical stability. Our unfolded network
is trained using AdaBelief (Zhuang et al. 2020), with a batch
size of 6 DNA strings. We set K1 to 6 interleaved iterations on
the sparse code and K2 to 3 iterations on the filters. This pa-
rameterization results in a network, i.e. Fig. 3, consisting of
30, 421 parameters, which is much smaller in size compared
with current mainstream deep learning models. We set q¼ 3

for the configurations, which results in at most
a
q

� �
¼

4;960 counting operations for each retrieved code image Z�n.
We select up to J¼ 1000 most enriched motifs from the stored
enumerations in the hash tableH to display in the results.

2.7.2 Motif significance

We randomly select DNA strings and set aside 15% of them
as a test set that is not used during training. For each motif
discovered and indexed by j, we follow this procedure: Let NT

denote the total number of available positions in the test set,
where Nt is the number of DNA strings in the test set, and L
is the length of each string. We define NT ¼ NtL. The number
of hits of the j-th motif in the test set is denoted by sh, and the
number of misses is denoted by sm ¼ NT � sh. A hit at a posi-
tion is defined as the positions occupied by the PWM that
scored above its threshold. The score threshold for each
PWM is determined using the approximation algorithm
pvalue2score with a P-value of 1e�3 (Touzet and Varré
2007). Hits and misses for the control set are similarly defined
as ch and cm, respectively. The control set is constructed by
shuffling the DNA strings in the test set such that the 2-mer
frequency is preserved. We then perform Fisher’s exact test to
test the null hypothesis that the odds ratio ðsh=smÞ=ðch=cmÞ is
one, against the alternative hypothesis that they are not equal.

2.7.3 Motif occurrences

We define the number of instances of a motif as the number
of position that a PWM scores above its score threshold, i.e.
the number of hits (Section 2.7.2) in the dataset.

3 Results

We take experimental datasets from JASPAR, FactorBook,
ReMap, and Avsec et al. (Weirauch et al. 2014, Avsec et al.
2021b, Castro-Mondragon et al. 2022, Hammal et al. 2022,
Pratt et al. 2022) to conduct motif analysis, for which we de-
tailed our data processing steps in Supplementary File S1
Section A. In our analysis, we characterize all the motifs as
position weight matrices (PWMs). All motifs presented in this
section (motifs shown in Figs 4–6) are statistically significant
with a P-value <1e� 6, as determined by the Fisher exact test
(Section 2.7.2). Additionally, we make the following
characterizations:

• Primary motif: the short (often 6–12bp), ungapped, PWM
that correspond to the core binding sites of a transcription
factor (TF).

Figure 3. The unfolded network obtained by parameterizing the iterates derived in Section 2.3.
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• Long motif: the long (often longer than 30bp) PWM with
uniformly high information content columns, e.g. Fig. 4;
these motifs, like gapped motifs, can also characterize
multiple binding sites of the same or different TFs.

• Gapped motif: the PWM that contain groups of consecu-
tive high information content columns separated by low
information content columns, e.g. PWMs in Fig. 6.

Our analysis of the datasets reveals a large presence of long
motifs and gapped motifs in these experimental datasets. In
particular, among the 91 ChIP-Seq datasets we selected from
JASPAR, 50 of them contain long motifs that are transposable
elements, as we verified in the Dfam database (Hubley et al.
2016) (Supplementary File S1 Section E). Moreover, gapped
motifs were identified in many datasets from diverse sources,
including 89 out of 198 datasets in JASPAR across various
experiment types including ChIP-seq, DAP-seq, SELEX,
PBM, and ChIP-Chip. This large presence of long motifs and
gapped motifs in our analysis is noteworthy, as they are often
overlooked in motif discovery and may have important impli-
cations in transcriptional regulation. In the following sections,
we will highlight the discovery of gapped and long motifs. We
skip the results on primary motif discovery as our method al-
most always find them (Supplementary File S1 Section F), and
it is straight-forward problem tackled by many well-
established methods.

3.1 Long motifs

A central theme that frequently occurs in long motif discovery
is the overlap between the long motifs and the primary motifs.
These overlappings present a significant challenge for tradi-
tional motif discovery methods, discussed in Section 4.1. In
qualitative terms, the primary motifs can either be
“embedded” within the long motifs or “compounded” in
proximity to other motifs in the dataset.

3.1.1 “Embedded” motifs

Our method simultaneously discovers the primary motifs and
the long motifs that embed these primary motifs, as shown in
Fig. 4. We observe many such cases, especially in ChIP-Seq
datasets, where TF binding sites in vivo can often overlap
with repetitive elements. Our result reveals a relationship be-
tween primary motifs and repetitive elements, and suggests
that the use of repeat masking is not strictly necessary for mo-
tif discovery.

3.1.2 “Compound” motifs

Our analysis shows that compound motifs are frequently seen
in ChIP-Seq datasets. These findings suggest that our method
effectively identifies binding sites including those that work in
conjunction with the TF of interest, as TFs often work in con-
cert with other TFs to regulate gene expression in vivo. We
show in Fig. 5 several compound motifs that we identified in
a ChIP-Nexus experiment exploring the localization of Oct4
pluripotency factor, using experimental data from (Avsec
et al. 2021b).

3.2 Gapped motifs

Our method detects several gapped motifs that have been pre-
viously reported in the literature, shown in Fig. 6. For in-
stance Zuo et al. (2023) report that traditional motif
discovery methods have been shown to underestimate the
binding sites of CTCF, a zinc finger protein containing 11
zinc finger domains, resulting in a paradox known as long fin-
gers but short motifs. This paradox highlights that the full
binding sites of evolutionarily conserved zinc finger domains
may follow an irregular structure that is not easily detected by
traditional methods. Our method successfully identifies the
upstream motif TGCAG of the core binding sites of CTCF, as
reported in (Zuo et al. 2023), shown in Fig. 6A. In addition,
we confirm that ESR2, a Nuclear Receptor factors binds with
its half sites AGGTCA (Khorasanizadeh and Rastinejad 2001,

Figure 4. For each dataset, we list the TF/JASPAR-ID and the number of DNA strings in the dataset. We show how the primary motifs are embedded in

the repetitive elements, with the primary motifs on the left and their overlap on the right. Below each sequence logo, we show the number of instances

that occurred throughout the dataset. In short, (A) NFE2L2 overlaps the ERV2. (B, C, and D) YY1, STAT1, and SRF overlaps the ERV1. (E) AR overlaps

Tiggers. Each transposable element is validated by taking the consensus string of each PWM and then search to confirm via Dfam (Hubley et al. 2016).

For more, see Supplementary File S1 Section E.
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Siggers and Gordân 2014), which we found to be separated
by a spacer up to 36 nucleotides, shown in Fig. 6B.

Notably, our method exhibits high sensitivity in quantify-
ing the spacers within gapped motifs, providing detailed
insights into gapped motifs’ composition. For example, we
identified a gapped motif in the MAFF factor from JASPAR
that exhibits a gap between the primary motif and its partial
complement, with a total of 26 spacers, shown in
Supplementary File S1 Section D.

4 Discussion
4.1 Distributed representation of DNA strings using

sparse representation

A key distinction between traditional and more recent
approaches to motif discovery is in how motifs are repre-
sented during optimization. Traditional methods, such as
STREME and HOMER, typically use local representations,
such as PWMs, for motif characterization during optimiza-
tion. In contrast, recent approaches often use deep learning
that leverage distributive representations to learn and repre-
sent motifs (Hinton et al. 1986). The choice between the two
types of representation involves a trade-off between interpret-
ability and expressiveness, with local representations being

easier to interpret. However, problems that characterize
motifs with local representations has generally been shown to
be NP-hard (Bafna et al. 1997, Li et al. 1999, Akutsu et al.
2000). Due to this, common heuristics, such as substring
masking, are often used during optimization to find motifs,
resulting a sequential procedure for motif discovery (Bailey
and Elkan 1995, Heinz et al. 2010, Bailey 2021). This sequen-
tial procedure may pose challenges as primary motifs can
overlap with secondary motifs, including gapped motifs and
transposable elements present in the dataset. Our result dem-
onstrates the existence of these secondary motifs, and there
are simulated experiments indicate that methods such as
STREME and HOMER are less effective when multiple
motifs overlaps (Chu and Stormo 2022).

We select sparse representations for DNA strings as they
provide a distributive representation with a clear interpreta-
tion. By approximating DNA strings as a sum of linear convo-
lutions (equation (1)), the non-zero components in the sparse
code essentially act as indicators, indicating where filters
should be used to represent DNA substrings (Fig. 2A). The
combined sparse code, which we refer to as code images, pro-
vides a high-level view on the spatial arrangements of the fil-
ters, which we build another sparse representation upon
(Fig. 2B). This sparse representation on the code images

Figure 5. (A, B, and D) We validated the presence of motifs reported in the ChIP-Nexus experiment (GEO: GSE137193) conducted by (Avsec et al.

2021a), such as Oct4-Sox2, Oct4-Oct4, and Zic3. (D) Our analysis revealed new insights into the Oct4-Oct4 motif, including the potential for variable

spacing between the half-sites TGCA, ranging from 1 to 8 nucleotides. (E, G, C) We also observed that Oct4 can co-occur up to 4 times with equal-length

spacers of TATG, and it is frequently associated with Zic3 factors. (F, H, I, J, K, L) Furthermore, we identified two minor variants of Oct4, which we

designate as Oct40 and Oct400, due to the insertion of a nucleotide A either upstream or downstream of the central nucleotide G in Oct4. Our additional

findings for Sox2, Klf4, and Nanog pluripotency factors from (Avsec et al. 2021a) are presented in Supplementary File S1 Section F.
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enables us to identify the conserved patterns in the dataset,
akin to enumerating k-mers at the nucleotide level. Yet, by
enumerating at the image level, the spatial relationship in be-
tween the regulatory elements is preserved, in contrast to k-
mers enumerations, which do not account for the spatial
information.

4.2 Comparison to recent deep learning

methodologies in regulatory genomics

As with recent work on deep learning for regulatory genomics
(Alipanahi et al. 2015, Avsec et al. 2021b, Yuan and Kelley
2022), our approach use distributive representations to char-
acterize patterns in DNA strings. Additionally, our method
incorporates the design of a neural network (Fig. 3).
However, our network design process is distinct from stan-
dard deep learning practices. Rather than using traditional de-
sign tools, we create the network architecture by unfolding
the iterative algorithm detailed in Section 2.3. The unfolding
technique incorporates hyperparameters, such as sparsity-
inducing parameters, step-sizes, and penalty parameters from
problem 2, as part of the network architecture, which are au-
tomatically tuned with backpropagation (Gregor and LeCun

2010, Monga et al. 2021). This results in a more expressive
model compared with the original. We note that our network
is fully interpretable as the forward pass can be seen as opti-
mizing the objective posed by problem 2 via gradient descent.
Inferring the motifs relies on enumerating at the image level
(Section 2.5 and Fig. 2), without relying on explanation meth-
ods such as SHAP (Lundberg and Lee 2017). Our network is
light in parameters (Section 2.7.1), allowing us to quickly
train and infer motifs in a matter of minutes using a single
GPU, and only requires DNA strings (FASTA files) as inputs.

4.3 Extensions to other regulatory genomics

problems

Our method produces a computational graph (Fig. 3), which
permits us to easily extend it to other regulatory genomics
problems, such as DNA classifications or regressions. To ac-
complish this, one can treat the sparse code as an embedding,
analogous to the embeddings constructed in the CNNs
(Fig. 1). Furthermore, with the filters in problem 2 held fixed,
the sparse code provides an alternative way of representing
the binding sites. This alternative approach could be valuable
for estimating the recognition code, e.g. designing C2H2 zinc-

Figure 6. We present a selection of gapped motifs, chosen from the many we discovered in each dataset (labeled with TF/GEO accession number or TF/

JASPAR-ID). (A) Notably, we discovered the presence of the upstream motif CTGCAG of CTCF (Zuo et al. 2023); on the right, we note that the upstream

motif of the core motif occur independently of the primary motif of CTCF. (C) Our analysis reveals that the primary motif of SP1 and ESR2 exhibits

repetition with spacers of varying lengths. We note that ESR2 variable spacing correspond to the findings reported in (Siggers and Gordân, 2014). (D, E, F)

In the case of STAT1, we observe a fixed spacing across all three datasets. (G) We present a gapped motif discovered in MAFF, which demonstrates our

method’s capability to capture gapped motifs with spacers longer than 40 bp. To avoid clutter, we display only motifs with the smallest, middle, and

largest spacers, as determined by their pairwise distance (number of nucleotides) for ESR2, SP1, and MAFF. A full result of our motif discovery is in

Supplementary File S1 Section F.
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fingers with novel specificity (Gupta et al. 2014, Najafabadi
et al. 2015, Aizenshtein-Gazit and Orenstein 2022, Ichikawa
et al. 2023).

4.4 Future work

Our method effectively captures the gapped motifs (Figs 5
and 6), but highly varying spacers are common in these
motifs. For instance, a gapped motif in BZIP MA0495.1 from
JASPAR appears with 26 different spacer lengths
(Supplementary File S1 Section D), resulting in numerous
PWMs in our results. We intend to improve motif summariza-
tion and visualization in the future.

5 Conclusion

We present a motif discovery method that includes the discov-
ery of long, gapped, or overlapping motifs. Our key concept,
enumerating at the image level, enables a more extensive and
diverse pattern identification in DNA strings compared with
enumerating the k-mers. Our study demonstrates that the
sparse representation is a highly interpretable modeling tech-
nique for DNA strings. This approach enables us to reveal
that transposable elements and gapped motifs are common in
ChIP-Seq datasets from JASPAR, Factorbook, and Remap
(Castro-Mondragon et al. 2022, Hammal et al. 2022, Pratt
et al. 2022). Our methodology is compatible with the deep
learning paradigm through deep unfolding, enabling us to ex-
tend it to various regulatory genomics problems.
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