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United States, 7Division of Biostatistics, Washington University in St. Louis School of Medicine, St.
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Objectives: Neuroinflammation signaling has been identified as an important

hallmark of Alzheimer’s disease (AD) in addition to amyloid β plaques (Aβ)

and neurofibrillary tangles (NFTs). However, the molecular mechanisms and

biological processes of neuroinflammation remain unclear and have not well

delineated using transcriptomics data available. Our objectives are to uncover

the core neuroinflammation signaling pathways in AD using integrative

network analysis on the transcriptomics data.

Materials and methods: From a novel perspective, i.e., investigating weakly

activated molecular signals (rather than the strongly activated molecular

signals), we developed integrative and systems biology network analysis to

uncover potential core neuroinflammation signaling targets and pathways in

AD using the two large-scale transcriptomics datasets, i.e., Mayo Clinic (77

controls and 81 AD samples) and ROSMAP (97 controls and 260 AD samples).

Results: Our analysis identified interesting core neuroinflammation signaling

pathways, which are not systematically reported in the previous studies of

AD. Specifically, we identified 7 categories of signaling pathways implicated

on AD and related to virus infection: immune response, x-core signaling,
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apoptosis, lipid dysfunctional, biosynthesis and metabolism, and mineral

absorption signaling pathways. More interestingly, most of the genes in

the virus infection, immune response, and x-core signaling pathways are

associated with inflammation molecular functions. The x-core signaling

pathways were defined as a group of 9 signaling proteins: MAPK, Rap1, NF-

kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo, and TNF, which indicated

the core neuroinflammation signaling pathways responding to the low-level

and weakly activated inflammation and hypoxia and leading to the chronic

neurodegeneration. It is interesting to investigate the detailed signaling

cascades of these weakly activated neuroinflammation signaling pathways

causing neurodegeneration in a chronic process, and consequently uncover

novel therapeutic targets for effective AD treatment and prevention.

Conclusions: The potential core neuroinflammation and associated signaling

targets and pathways were identified using integrative network analysis on two

large-scale transcriptomics datasets of AD.

KEYWORDS

neuroinflammation, signaling network, Alzheimer’s disease, molecular mechanism,
signaling targets

Introduction

A major challenge limiting effective treatments for
Alzheimer’s disease (AD) is the complexity of AD. More
than 42 genes/loci have been associated with AD (Sims et al.,
2017; Verheijen and Sleegers, 2018). Unfortunately, only
few of these genes, such as CD33 (Zhao, 2019), TREM2
(Gratuze et al., 2018), and MS4A (Deming et al., 2019), are
being evaluated as therapeutic targets for AD management
(Verheijen and Sleegers, 2018). Over 240 drugs have been
tested in AD clinical trials, but only one drug, i.e., Aduhelm
(aducanumab) was recently approved for the treatment of
AD since 2003 (Alzheimer’s Association, 2018; Cummings
et al., 2018; Dunn et al., 2021). One major challenge is that
the complicated pathogenesis and core signaling pathways of
AD remain unclear. Therefore, it is significant to uncover the
core signaling pathways implicated on AD pathogenesis and
novel therapeutic targets of AD for identifying effective drugs
and synergistic drug combinations (targeting multiple essential
targets on the cores signaling network) for AD prevention
or treatment. Our knowledge of the molecular mechanisms
and signaling pathways that ultimately lead to the chronic
neurodegeneration in AD is limited. For example, there are
only a few strong genetic biomarkers for AD that have been
identified, including the APOE, APP, and PSEN1/2 genes.
However, the signaling consequence of these biomarkers, as
they relate to the accumulation of dysfunctional A-beta and
p-Tau proteins, as well as neuron degeneration and immune
response, remains unclear.

Over the last 10 years, neuroinflammation signaling has
been identified as the third core feature or a central pathogenesis
mechanism of AD (Akiyama et al., 2000; Combs et al., 2000;
Ekdahl et al., 2003; Kinney et al., 2018; Knezevic and Mizrahi,
2018; Newcombe et al., 2018), in addition to amyloid β

plaques (Aβ) and neurofibrillary tangles (NFTs) pathologies.
The detailed occurrence and roles of neuroinflammation are
complex and remain unclear, though set of inflammation and
immune genes, such as TNF (Decourt et al., 2017), IL-1beta
(Shaftel et al., 2008; Ng et al., 2018), IL-6 (Ng et al., 2018),
and NFkB (Chen et al., 2012), have been reported (Guzman-
Martinez et al., 2019). For example, the accumulation of
altered proteins, such as the Aβ and tau protein, are toxic to
neuron cells and are believed to trigger the neurodegeneration
diseases (Guzman-Martinez et al., 2019). Not restricted to the
neurons, the neuroinflammation and immune response are
reported to be regulated and affected by the neuron-immune
cell interactions (Heneka et al., 2015; Leng and Edison, 2021),
such as macroglia and astrocytes(Gratuze et al., 2018; Shi et al.,
2019; Mahan et al., 2022). Moreover, peripheral infections
are also identified to be associated with degeneration diseases
(McManus and Heneka, 2017).

On the other hand, large-scale transcriptomics datasets of
AD and control samples have been generated, such as ROSMAP
(Bennett et al., 2018; de Jager et al., 2018) and Mayo Clinic (Allen
et al., 2016), to investigate the essential targets and signaling
pathways in AD. Network analysis models were proposed to
identify the potential dysfunctional signaling pathways and
biomarkers using these related RNA-seq datasets. For example,
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the molecular signatures and networks under different brain
regions were reported using integrative co-expression network
analysis, and the myelin signaling dysregulation was identified
in AD (Wang et al., 2016; Wan et al., 2020). In addition, the
co-splicing network using the WGCNA (co-expression network
analysis model) was conducted to identify the altered splicing in
AD, which indicated that the altered splicing is the mechanism
for the effects of the AD-related CLU, PTK2b, and PICALM
alleles (Raj et al., 2018). Moreover, the molecular subtypes and
potential driver genes, such as CABRB2, LRP10, and ATP6V1A
of AD, were identified by combing key driver analysis (KDA)
and multiscale embedded gene expression network analysis
(MEGENA) (McKenzie et al., 2017; Neff and Vatansever,
2020; Neff et al., 2021). Moreover, the meta-analysis of multi-
datasets of human and mouse AD samples has been studied to
understand the essential biomarkers and signaling modules of
AD (Wan et al., 2020).

However, the systematic delineation of core
neuroinflammation signaling pathways has not been reported
yet in these previous computational data analysis models
using the transcriptomics data (Guzman-Martinez et al., 2019).
Therefore, it is important to continue to pursue systematic
investigations, including the use of network analysis techniques,
in order to understand the details of core neuroinflammation
and immune signaling pathways that are associated with the
neurodegeneration of AD. In response to the preceding gap
in knowledge, herein, we systematically sought to identify
the potential core neuroinflammation and related signaling
pathways that potentially cause neuron degeneration in AD by
analyzing the large-scale transcriptomics, i.e., RNA-seq data
of human AD samples (Bennett et al., 2018; de Jager et al.,
2018). Inspired by the observation of that strongly activated
(hyper-) inflammation and immune (Catanzaro et al., 2020;
Patel et al., 2021) signaling pathways are often associated with
relatively faster/acute disease progression, such as what is
observed in COVID-19 (Gordon et al., 2020; Li et al., 2020)
here we hypothesize that the neuroinflammation in AD (a
chronic disease) is weakly activated (i.e., with small fold change
values compared with control samples). In another word, the
transcriptomics changes in neuroinflammation are at a low
level, which might be missed by only detecting the strongly
activated signaling targets and pathways. This hypothesis
was also supported by the that there are only a few strongly
activated signals in AD samples vs. control, which is defined
as large gene expression fold-change, e.g., fold-change ≥2.0
(see the results) (Andrews, 2010; Dobin et al., 2013; Patro
et al., 2017; Gordon et al., 2020; Li et al., 2020). Specifically, we
employed the RNA-seq data of neuropathology-free controls
and AD samples from two datasets: ROSMAP (Bennett et al.,
2018; de Jager et al., 2018) and Mayo Clinic (Allen et al.,
2016). Leveraging these data, we then identified all of the
weakly activated and inhibited genes with very low fold-change
thresholds. Subsequently, we conducted network analyses to

identify relevant core neuroinflammation signaling pathways.
More importantly, the potential core neuroinflammation and
associated signaling pathways were identified using large-scale
transcriptomics datasets.

Materials and methods

Gene expression data and analysis of
Alzheimer’s disease samples

In this study, 77 control tissue samples and 81 AD
pathological aging samples in Mayo dataset1; and 97 control
samples and 260 AD dorsolateral prefrontal cortex samples
in ROSMAP dataset2 that passed the quality control using
FastQC (Andrews, 2010) were used. The AD and control
samples in Mayo dataset were identified using the diagnosis
result in the clinical data. The definition of AD and control
cases was provided in the study description, which is available
at.3 As introduced, two experts, i.e., Dr. Dennis Dickson or
Dr. Thomas Beach, conducted the neuropathologic evaluation
of Mayo samples, respectively. The AD cases were diagnosed
according to the NINCDS–ADRDA criteria and with Braak
NFT stage of IV or greater. The control cases had Braak NFT
stage of III or less; and the CERAD neuritic and cortical
plaque densities are less than 1 (1 represents “sparse” and 0
means “none”) and had no any of the dementia-related diseases.
The clinical and neuropathological data available from the
ROSMAP cohort were used to classify controls and AD cases
in our analyses. Specifically, subjects that exhibit no decline
in cognition and scored Low or No AD on the Reagan scale,
and with a BraakTau score of ≤3, were identified as controls.
The AD cases were identified as patients who exhibit clear
cognition decline as well as scored high or intermediate on
the Reagan scale (Bennett et al., 2018). For RNA-seq data
analysis, these RNA-seq data were first aligned to reference
genome GRCh38 using STAR (v.2.7.1a) (Dobin et al., 2013).
We excluded ALT, HLA, and Decoy contigs from the reference
genome due to the lack of RNA-Seq tools that allow to handle
these regions properly. Then, reads alignment was further
evaluated by applying Picard CollectRnaSeqMetrics4 based on
the GENCODE5 annotations to examine reads distribution
on the genome. Samples that showed a Percent Duplication
of >50% were flagged for removal. Then, the transcripts per
million (TPM) values of 16,132 common protein-coding genes
were then obtained in the two datasets by applying the Salmon

1 https://www.synapse.org/#!Synapse:syn23277389

2 https://www.synapse.org/#!Synapse:syn3191087

3 https://www.synapse.org/#!Synapse:syn5550404

4 http://broadinstitute.github.io/picard/

5 https://www.gencodegenes.org/human/releases.html

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2022.935279
https://www.synapse.org/#!Synapse:syn23277389
https://www.synapse.org/#!Synapse:syn3191087
https://www.synapse.org/#!Synapse:syn5550404
http://broadinstitute.github.io/picard/
https://www.gencodegenes.org/human/releases.html
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-935279 September 21, 2022 Time: 15:24 # 4

Li et al. 10.3389/fnagi.2022.935279

quantification tool (Patro et al., 2017) in alignment-based mode
using the aligned RNA-seq data using the coding transcripts of
the reference genome.

Differentially expressed genes

To identify the upregulated and downregulated genes in AD
samples vs. control samples, the limma-voom (Law et al., 2014;
Ritchie et al., 2015) approach, taking the normalized [using
trimmed mean of M values (TMM) (Robinson and Oshlack,
2010)] log-transformed TPM values as the input, in edgeR
(Robinson et al., 2010) R package, was employed.

Inflammation genes

A set of 1,043 inflammation genes were obtained by
extracting genes from the inflammatory response category as
defined in the Gene Ontology (GO:0006954) (Gene Ontology
Consortium et al., 2000). Subsequently, 485 inflammation genes
were obtained from the 5,191 kyoto encyclopedia of genes and
genomes (KEGG) signaling genes, i.e., the interaction between
the KEGG signaling pathways and GO inflammation genes.

Alzheimer’s disease GWAS data

The GWAS data of AD was obtained from NIAGADS
database (Kunkle et al., 2019).6 The Stage 1 p-Value Data
(updated by 26 February 2019) and Stage 2 p-Value Data
(updated by 27 February 2019) were downloaded. The 553
candidate GWAS genes and also available in the KEGG signaling
pathways were obtained by a filter with p-value ≤ 1.0× 10−5.

Kyoto encyclopedia of genes and
genomes signaling pathway
enrichment analysis

The KEGG signaling pathways were extracted using the
graphite R package (Sales et al., 2012), which consists of
311 signaling pathways (Ogata et al., 1999; Kanehisa and
Goto, 2000). There are 59,242 signaling interactions among
5,191 genes in these pathways, which were used for network
enrichment analysis and network inference analysis in this
study. For the network enrichment analysis, a Fisher’s exact
test (Fisher, 1932; Kim, 2017) was used based upon the
upregulated genes.

6 https://www.niagads.org/igap-rv-summary-stats-kunkle-p-value-
data

KEGG signaling network inference
analysis

To infer the signaling cascades among a set of genes of
interest, we developed a network inference approach. First,
we divided the genes into two groups: signaling sources (like
the inflammation signaling genes) and signaling targets (like
the apoptosis signaling genes). Second, a signaling network
was constructed by linking the signaling source genes to the
signaling target genes iteratively. Specifically, the signaling
source genes were used as the initial signaling source nodes set:
V0. The signaling target genes were used as the target nodes set:
V1. In the iterative process, the shortest signaling cascades/paths
between the nodes in V0 and V1 were calculated and identified:
Pij ≤ gi, gk1, gk2,. . ., gj > , where gi belongs to V0, and gj belongs to
V1. Third, all of the genes on the signaling path Pij and belong to
V1 were selected and added to V0, and removed from V1. This
process was repeated until all the genes were added to V0. The
data analysis codes are available upon request.

Results

Normal and Alzheimer’s disease tissue
samples are barely separable in the
gene expression data space

There were 77 control subjects and 81 AD cases in
Mayo dataset; and 97 control samples and 260 AD cases in
ROSMAP dataset. Table 1 shows the epidemiology information
of Mayo and ROSMAP datasets. The transcripts per million
(TPM) values of 16,132 protein-coding genes were obtained by
applying the Salmon quantification tool (Patro et al., 2017) in
alignment-based mode using the STAR-aligned RNA-seq data.
A multidimensional scaling (MDS) model was used to generate
the 2D clustering plots of control and AD samples in the Mayo
and ROSMAP datasets, respectively (see Figure 1). As seen
in these visualizations, the control and AD samples are barely
separable, especially in the ROSMAP dataset, which of note, has
more control samples than Mayo dataset.

We further conducted a widely used differential expression
analysis method to identify differentially expressed genes
(DEGs) between the AD and control samples. To identify the
common set of DEGs between the two datasets, we applied
a number of fold-change and p-value thresholds. As seen in
Supplementary Table 1 and expected from Figure 1, only a few
common upregulated and downregulated DEGs were identified
with fold change thresholds ≥1.5 and p-value ≤ 0.05. With the
fold-change threshold ≥1.25, only about 230 upregulated and
about 60 downregulated genes were identified (out of the 16,132
protein-coding genes, ∼1.85%), in both studies. When relaxing
both thresholds to fold change ≥1.1 and p-value ≤ 0.1, 1,120
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FIGURE 1

Alzheimer’s disease (AD) and control tissue samples are not well separable in the first (x-axis) and second (y-axis) principal components of MDS
analysis on the RNA-seq protein-coding genes in Mayo (top-panel) and ROSMAP (bottom-panel) datasets.
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TABLE 1 Epidemiology information of Mayo and ROSMAP datasets.

Mayo Control AD ROSMAP Control AD

Total 77 81 Total 97 260

Male 40 33 Male 44 82

Female 37 48 Female 53 178

Age, mean (SD) 82.65 (8.70) 82.57 (7.62) Age, mean (SD) 84.24 (6.82) 90.34 (5.75)

Braak, mean (SD) 2.18 (0.86) 5.53 (0.52) Braak, mean (SD) 1.88 (0.98) 4.25 (0.85)

APOE_22 0 0 APOE_22 2 0

APOE_23 12 4 APOE_23 13 22

APOE_33 56 34 APOE_33 72 141

APOE_24 1 0 APOE_24 1 10

APOE_34 8 36 APOE_34 8 83

APOE_44 0 7 APOE_44 1 3

TABLE 2 Upregulated genes in TNF and apoptosis signaling pathways.

Apoptosis BCL2, RELA, BIRC3, FADD, GADD45G, TNFRSF1A, NFKBIA, TNFRSF10B,
CAPN2, TUBA1C, IL3RA, CTSH, FOS, CASP6, CASP7, TNFRSF10A, PARP4

TNF signaling pathway RELA, BIRC3, FADD, MAP2K3, TNFRSF1A, NFKBIA, CREB3L2, FOS, CASP7,
MLKL, IRF1, CEBPB

upregulated genes and 689 downregulated genes were identified
(∼11.2% of the 161,32 protein-coding genes). Based on these
observations, we hypothesized that the AD-associated signaling
pathways are weakly activated or inhibited. The “weakly” term
is defined as that the differentially expressed genes have small
fold-change values.

Weak inflammation and hypoxia are
the potential major factors in the
Alzheimer’s disease brain
microenvironment causing neuron cell
death

As was noted previously, we believe it is important to
identify AD-associated weakly activated signaling pathways and
understand their roles in AD disease progression, as well as
their potential roles as targets for AD therapeutics. Among the
1,120 common upregulated genes (identified from Mayo and
ROSMAP datasets), 417 genes were included in the 311 KEGG
signaling pathways, and the rest genes were not available in the

TABLE 3 Odds ratio (OR), beta, and p-values of logistic regression
using all genes and 417 upregulated genes.

All genes 417 genes

OR abs(beta) P-value OR abs(beta) P-value

Mayo 1.42 0.35 0.037 5.9 1.78 9.5× 10−9

ROSMAP 1.31 0.27 0.027 1.9 0.63 9.7× 10−5

KEGG signaling pathways. To this end, we first conducted an
enrichment analysis of KEGG signaling pathways using Fisher’s
exact test applied to the 417 upregulated genes. Table 2 showed
the enriched signaling pathways with p-value ≤ 0.15. We
then clustered these activated signaling pathways empirically
into 7 categories. Using these 417 upregulated genes, the first
principal component values in the MDS analysis of the AD and
control samples were used to compare the difference between
AD and control samples. The OR, absolute beta values, and
p-values of logistic regression analysis (see Table 3) indicated
that these selected genes [p-value = 1.22 × 10−13 (Mayo)
and p-value = 4.2 × 10−6 (ROSMAP)] can separate the AD
and control samples much better than using all protein genes
[p-value = 0.036 (Mayo) and p-value = 0.027 (ROSMAP)] in the
two datasets, respectively. The box plots are also provided in
Figure 2, which indicated that the control and AD samples are
more separable using the selected genes.

As seen in our results (see Figure 3 and Table 4), a set
of signaling pathways were activated, such as those involved
in virus infection signaling [including Epstein-Barr virus,
Human T-cell leukemia virus 1 infection, Legionellosis,
Pathogenic Escherichia coli infection, Staphylococcus aureus
infection, Yersinia infection, Human cytomegalovirus
infection, Human papillomavirus infection, Malaria, Human
immunodeficiency virus 1 infection, Rheumatoid arthritis,
and Inflammatory bowel disease (IBD)]. Out of the 417
upregulated genes, 111 genes were in common across
these pathways highlighting a set of core genes implicated
on these processes. These results indicated that weakly
activated inflammation-related signaling pathways, such
as inflammation, cytokine, and immune response, may be
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FIGURE 2

Box plots of the first principal component of MDS analysis in control and AD cases. Left and right columns are Mayo and ROSMAP samples,
respectively. Upper and lower panels represent the MDS analysis using all genes and 417 upregulated genes, respectively. Y-axis is the first
principal component of MDS analysis.

FIGURE 3

Seven categories of weakly activated signaling pathways in AD.
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TABLE 4 The seven categories of enriched kyoto encyclopedia of genes and genomes (KEGG) signaling pathways.

Name P-value Name P-value

Virus-related signaling pathways x-core signaling pathways
Viral protein interaction with cytokine and cytokine receptor 0.0019 PI3K-Akt signaling pathway 0.0011

Epstein-Barr virus infection 0.0056 MAPK signaling pathway 0.0059

Human T-cell leukemia virus 1 infection 0.0188 NF-kappa B signaling pathway 0.0085

Staphylococcus aureus infection 0.0249 Hippo signaling pathway 0.0132

Human papillomavirus infection 0.0299 TGF-beta signaling pathway 0.0137

Pertussis 0.0375 TNF signaling pathway 0.0434

Yersinia infection 0.0397 Rap1 signaling pathway 0.0571

Pathogenic Escherichia coli infection 0.0430 HIF-1 signaling pathway 0.1009

Human cytomegalovirus infection 0.0603 Wnt signaling pathway 0.1043

Malaria 0.0758 Apoptosis 0.0658

Legionellosis 0.0906

Human immunodeficiency virus 1 infection 0.1075

Rheumatoid arthritis 0.1192 Mineral absorption 2.56E-05

Inflammatory bowel disease (IBD) 0.1321

Immune signaling pathways Diabetic/Lipid signaling pathways
IL-17 signaling pathway 0.0104 AGE-RAGE signaling pathway in diabetic complications 0.0021

Complement and coagulation cascades 0.0214 Adipocytokine signaling pathway 0.0060

NOD-like receptor signaling pathway 0.0401 Insulin resistance 0.0283

Th17 cell differentiation 0.1275 Glucagon signaling pathway 0.1179

Th1 and Th2 cell differentiation 0.1368 Cushing syndrome 0.1356

Natural killer cell-mediated cytotoxicity 0.1410

Biosynthesis/Metabolism signaling pathways Adhesion signaling pathways
Sulfur metabolism 0.0758 Focal adhesion 1.39E-05

Galactose metabolism 0.0812 ECM-receptor interaction 0.0002

Glycosaminoglycan degradation 0.0905 Adherens junction 0.0669

Steroid hormone biosynthesis 0.1084

Starch and sucrose metabolism 0.1084

Primary bile acid biosynthesis 0.1437

represent activated signaling pathways in the AD brain
microenvironment.

In addition, a group of activated signaling pathways or
factors that are not clustering to a specific biological function
or disease (referred to as the x-signaling pathway: the Hippo,
PI3K-Akt, AGE-RAGE, MAPK, Adipocytokine, NF-kappa B,
IL-17, TGF-beta, NOD-like receptor, TNF, Apoptosis, HIF-1,
and Wnt signaling pathways, as well as apoptosis signaling)
were identified. Figure 4 shows the associations between these
upregulated genes and activated signaling pathways. As seen
in Figure 4, a set of genes in the center areas of the network
are associated with a set of signaling pathways, which could
represent therapeutic signaling targets that could be used to
inhibit or otherwise perturb these activated signaling pathways.
In addition, there are a number of metabolisms signaling
pathways, such as sulfur metabolism, galactose metabolism,
starch and sucrose metabolism, steroid hormone biosynthesis,
and glycosaminoglycan degradation, implicated in this model.
Moreover, Th1/2/17 (T helper, CD4 + cells) cell differentiation
and natural killer cell-mediated cytotoxicity signaling pathways
were activated. Supplementary Table 2 lists these associated
upregulated genes and the involved signaling pathways. All
the observations suggest a potential novel hypothesis that the
inflammation, immune signaling, and hypoxia signaling in AD

microenvironment activated the MAPK, PI3K-Akt, and mTOR
signaling pathways, and then activated the HIF-1 signaling
pathway. However, the activation of HIF-1 may fail to bring
enough oxygen to protect against hypoxic injury to the involved
neurons. The dysfunction of blood vessel functions, leading
to hypoxia, might be partially indicated by the recent study
showing that blood and cerebrospinal fluid flow cleaning the
brain during sleeping (Fultz et al., 2019).

Weak inflammation and hypoxia are
the major factors in the Alzheimer’s
disease brain microenvironment
causing neuron cell death

As was introduced above, many genes that are activated
as a function of virus infection, immune response, and the
x-core signaling pathways are inflammation-related genes. It is
well known that virus infection and immune response signaling
pathways respond to inflammation. Our analyses identified
1,043 inflammation response genes in the gene ontology (GO)
database (GO:0006954), which includes 492 genes in the KEGG
signaling pathways. Interestingly, among the 417 upregulated
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FIGURE 4

The upregulated gene (green circles)-pathway (purpose squares) interaction network, including 1,021 interactions between 291 upregulated
genes and 61 enriched pathways.

genes, 66 genes were inflammation related. The p-value of
observing the 66 upregulated inflammation signaling targets
from 417 upregulated genes identified in the AD vs. control
samples was 8.34E-05 (calculated using Fishers’ exact test),
and the odds ratio (OR) = 1.77, which indicates that the
activation of inflammation signaling is concomitant with AD
progression. Furthermore, there are 66 overlapping upregulated
genes spanning the virus infection (from 111 upregulated genes)
and x-core signaling pathways (from 136 upregulated genes),
which indicate that the x-core signaling pathways are the likely
pathways being activated in response to this inflammation. In
addition, the activation of HIF-1 signaling pathway indicates the
presence of hypoxia in the AD brain environment.

To further investigate the network signaling cascades
involving inflammation and apoptosis genes, we conducted the

network analysis incorporating the activated signaling pathways
and apoptosis signaling genes. Figure 5 shows the inferred
signaling network that links the upregulated inflammation-
related genes (cyan) in virus infection and x-core signaling
pathways, respectively, to the apoptosis signaling genes (red).
Among the 338 signaling network genes in Figure 5, there were
18 reported GWAS genes (with p-value≤ 1.0× 10−5): PIK3CB,
AKT3, RAF1, MAPK10, PPP2R2B, ERBB4, MECOM, IL1R1,
MYD88, CAMK2D, GNB4, VAV3, PRKD3, PRKCE, THRB, FN1,
LTBP1, and WWTR1, which were reported in the GWAS
analysis (Kunkle et al., 2019). The signaling network might
indicate the roles of GWAS genes in neuroinflammation and
neurodegeneration. For example, the PIK3CB, AKT3, MAPK10,
and ERBB4 genes are in the x-core signaling pathways; IL1R1
and MYD88 are cytokine, inflammation, and immune response
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FIGURE 5

Signaling cascades that links the upregulated genes in the virus infection pathways (cyan) (top) and x-core signaling pathways (bottom),
respectively, to the upregulated apoptosis signaling genes (red) via the linking genes (pink).

genes; CAMK2D belongs to serine/threonine protein kinase
and Ca2 + protein kinase subfamily. MECOM is involved
in apoptosis and is a transcription factor that interacts with
SMAD3 and MAPK genes. The GNB4, PRKD3, and PRKCE

are related to the cAMP response element-binding protein
signaling, which is associated with AD (Saura and Valero, 2011).

Further, we also compared the distance distribution among
the inflammation-related upregulated genes and apoptosis genes
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FIGURE 6

The distribution of average shortest distance on the kyoto encyclopedia of genes and genomes (KEGG) signaling network between the
upregulated genes in the inflammation related signaling pathways, including virus infection, immune response, and x-core signaling pathways
to the apoptosis signaling genes. As seen, the inflammation signaling genes are much closer (see green, blue, and red) to the apoptosis genes
compared with all other signaling genes (see gray lines). X-axis represents the shortest path distance; and y-axis is the density function.

as shown in Figure 6. As can be seen, the inflammation
signaling genes are much closer, based on the shortest path
metric calculated using Dijkstra’s algorithm, on the signaling
network (see green, blue, and red nodes) to the apoptosis

FIGURE 7

Signaling cascades, causing neuron degeneration, from the 3
TNF receptors (cyan) to the upregulated genes (red) in TNF and
apoptosis signaling pathways via the linking genes (pink).

genes compared with other signaling genes (see gray lines).
These results indicate a potential signaling interaction between
the inflammation signaling genes and apoptosis signaling. In
other words, the results suggest a potential association that
the weak inflammation and hypoxia signaling in the AD brain
environment led to chronic neurodegeneration process via
the activation of the x-core signaling pathways. Therefore,
drugs and drug combinations that can perturb the x-core
signaling pathways have the potential to be effective for AD
prevention and treatment.

Activated tumor necrosis factor
signaling might lead the programmed
apoptosis of neurons

Of note, our results show that among the x-core signaling
pathways, the TNF signaling pathways are also activated.
Particularly, the TNF (Tumor Necrosis Factor) receptors
(TNFRSF1A TNFRSF10A, and TNFRSF10B) were upregulated.
We reconstructed these signaling pathways linking the TNF
receptors to the upregulated genes in TNF and apoptosis
signaling pathways (see in Figure 7) using the proposed KEGG
network inference model. As seen, the activation of these TNF
signaling pathways might be one possible molecular mechanism
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causing the activation of apoptosis signaling via the CASP6
and CASP7 cascades.

Discussion and conclusion

In addition to Aβ and NFTs, neuroinflammation has been
identified as another important AD pathogenesis (Heneka et al.,
2015; Shi et al., 2017; Kinney et al., 2018). A set of inflammation
and immune genes, such as TREM2 (Guerreiro et al., 2012;
Jonsson et al., 2012), TNF (Decourt et al., 2017), IL-1beta
(Shaftel et al., 2008; Ng et al., 2018), IL-6 (Ng et al., 2018),
and FkB (Chen et al., 2012) have been reported (Guzman-
Martinez et al., 2019). The neural–immune interactions were
also reported to exacerbate the AD disease progress (Heneka
et al., 2015; Shi et al., 2017; Kinney et al., 2018). Also, the analysis
in the human brain endothelial cells and in Alzheimer’s brain,
the JNK-AP1 signaling pathway was identified that mediates
the activation and expression of inflammatory genes induced by
beta-amyloid peptides (Vukic et al., 2009). The network analysis
models were proposed to identify the potential dysfunctional
signaling pathways and biomarkers using the same RNA-seq
datasets (Wang et al., 2016; McKenzie et al., 2017; Raj et al., 2018;
Neff and Vatansever, 2020; Wan et al., 2020; Neff et al., 2021).
However, neuroinflammation signaling pathways have not
been systematically uncovered and analyzed in these reported
computational models using the same datasets. Compared with
existing studies, the unique contributions are the discovery
of systematic core neuroinflammation signaling pathways in
AD by investigating the weakly activated molecular signals.
We generated supportive evidence of linking these targets
with neuroinflammation using enrichment analysis, GO terms,
and network analysis systematically. The neuroinflammation
signaling pathways, including the virus infection, immune
response, x-core signaling pathways, and apoptosis signaling
pathways indicated potentially novel targets and mechanisms of
neuroinflammation in neurodegeneration.

There are some limitations in the analysis. Through
integrative and network analysis, we uncovered a set of core
signaling pathways of neuroinflammation. However, first, the
detailed signaling cascades among these neuroinflammation
signaling genes in AD brain niche remain unclear. The
general known signaling pathways in KEGG are not specifically
designed for AD. For example, though the activation of T
and NK cell signaling pathways can indicate the activation of
some immune signaling–related proteins, the roles of these
proteins in neuroinflammation remain unclear because the T
and NK cells are not involved in the brain. In addition to
the identified inflammation signaling pathways, it is interesting
to further investigate the specific and detailed inflammation
signaling cascades among the identified signaling targets
that are potentially caused by the abnormal β-amyloid and
tau protein aggregations. The other limitation is that the
identified inflammation-related targets were not experimentally
validated at the RNA or/and protein levels, such as qPCR

or/and Western blotting/IHC. We will look for wet-lab
collaborators for the potential experimental validations. Also,
different brain regions might have different dysfunctional
signaling pathways or different levels of neuroinflammation.
Moreover, the current RNA-seq datasets are bulk tissue
based, including multiple cell types, which confounds the
gene expression change. Therefore, cell type composition
correctness might affect the differential expression analysis.
In addition, the neuroinflammation signaling pathways are
reported to be affected by multiple cell types, such as
microglia and astrocytes, in addition to neuron cells. Thus,
it is important to analyze brain-region specific, single nuclear
or cell RNA-seq data (Mathys et al., 2019) to uncover the
finer-scaled neuroinflammation signaling pathways in different
cell types and their signaling interactions in AD brain
microenvironment and niche. To evaluate the relatively weak
and strong inflammation levels, it is interesting to investigate
the inflammation activation levels in control cases with different
pathology levels measured by the clinical data. Some clinical
information, such as beta-amyloid plaques, cerebral amyloid
angiopathy, or/and tau pathologies in the brains of AD patients,
of the two publicly available datasets were not available, thus
some signaling targets and pathways, like HIF-1 signaling
pathway, might be associated with subtypes of AD patients with
vascular dementia. Therefore, it is interesting and critical to
differentiate patients with vascular dementia from AD patients.
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