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ABSTRACT

Despite years of progress, mutation detection in can-
cer samples continues to require significant man-
ual review as a final step. Expert review is partic-
ularly challenging in cases where tumors are se-
quenced without matched normal control DNA. At-
tempts have been made to call somatic point muta-
tions without a matched normal sample by removing
well-known germline variants, utilizing unmatched
normal controls, and constructing decision rules to
classify sequencing errors and private germline vari-
ants. With budgetary constraints related to compu-
tational and sequencing costs, finding the appropri-
ate number of controls is a crucial step to identi-
fying somatic variants. Our approach utilizes pub-
lic databases for canonical somatic variants as well
as germline variants and leverages information gath-
ered about nearby positions in the normal controls.
Drawing from our cohort of targeted capture panel
sequencing of tumor and normal samples with vary-
ing tumortypes and demographics, these served as a
benchmark for our tumor-only variant calling pipeline
to observe the relationship between our ability to
correctly classify variants against a number of un-

matched normals. With our benchmarked samples,
approximately ten normal controls were needed to
maintain 94% sensitivity, 99% specificity and 76%
positive predictive value, far outperforming compa-
rable methods. Our approach, called UNMASC, also
serves as a supplement to traditional tumor with
matched normal variant calling workflows and can
potentially extend to other concerns arising from an-
alyzing next generation sequencing data.

INTRODUCTION

Although variant detection and mutation calling within
next-generation sequencing (NGS) data have been the
source of much investigation, gaps and shortcomings re-
main. Most methodological development has been in the
areas of detection of population variants or somatic muta-
tions in the setting of matched tumor-normal (MTN) sam-
ples. Importantly, neither of these two approaches represent
the most common clinical application in which clinicians at-
tempt to characterize disease variants, often from an abnor-
mal cancer genome without a matched reference sample.

While common germline variants (GVs) can be identi-
fied with germline databases (GDs) such as dbSNP (1), 1000
Genomes (2) and ExAC (3), rare GVs require more sophis-
ticated methods to identify. The fundamental approach in-
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volves identifying genomic intervals of GV calls at similar B
allele frequencies (BAF) and then inferring the germline sta-
tus of a variant, using their variant allele frequency (VAF),
through some notion of ‘distance’ or posterior probability.
A subset of existing methods (4–6) follow this basic proce-
dure to identify subject-specific or rare GVs. One unavoid-
able limitation of all methods is distinguishing GVs from
somatic for highly purified samples or cell lines since the
BAF and VAF are likely to overlap for variants that initiate
oncogenesis (founder mutations) and present on all copies
of a haplotype (within cancer cells, thus appearing germline
for a purified sample). LumosVar (6) demonstrated this lim-
itation through simulation.

In this setting, the vast majority of patients do not sub-
mit material for MTN sequencing, and published methods
in this area are generally lacking. In this report we describe
a workflow and software, Unmatched Normals and Mu-
tant Allele Status Characterization (UNMASC) that ap-
plies and adapts a series of best-practices techniques for the
purpose of highly sensitive, specific, and precise variant de-
tection.

In its simplest form, somatic mutation detection is sim-
ilar to genotyping, or the detection of non-reference bases
within NGS data. Unlike genotyping, mutation calling gen-
erally considers as uninformative (i.e. not disease-causing)
the vast majority of variants that are present in the germline
of the individual. Improved classification of variants as
germline versus somatic in diseased tissue without matched
normal (MN) samples, while at the same time excluding
other variants as likely sequencing errors or alignment er-
rors is an area of unmet need. GVs can be identified by sev-
eral methods including the use of a MN control, GDs, or
inferred by the sequencing process or through modeling. In
the current manuscript, we will consider the strengths and
weaknesses of each of these approaches while considering
other sources of artifactual variants in NGS data.

Classification is the main objective of tumor-only (TO)
variant calling. Models designed to perform classification
require a sufficient sample size (pooling both samples and
variants) and reliable labels (e.g. somatic, germline, other).
The presence of artificial variants (AVs) in general can hin-
der classification performance. Studies have demonstrated
that AVs arise from various steps in a sample’s process-
ing (7–15). Therefore at the very least, when constructing a
training dataset for variant classification, the labels should
include germline, somatic and various classes of AVs. With-
out accounting for AVs, methods that train models to clas-
sify variants as only germline or somatic will be at a disad-
vantage. In addition, constructing a training dataset com-
posed of MTN variant calls assumes that all underlying
somatic variants (SVs) were captured and that each tu-
mor’s MN served as a reliable control. AVs, such as oxoG
(10), strand bias (9), and paraffin-induced (15–17), present
among MTN variants led us to avoid comparisons with su-
pervised methods that trained models on only germline or
somatic variant classifications. Also, existing unsupervised
methods that perform tumor copy number segmentation
based only on variants reported in GDs run the risk of being
negatively impacted by clusters of AVs presenting in GDs.
This can be seen with low VAF calls in GDs that do not
present in the underlying MN.

UNMASC overview

UNMASC improves on concepts proposed by Hiltemann
et al. (18), MuTect (19) and LumosVar (6) in which pools
of unmatched normals (UMNs) improve or replace a MN
for the purpose of variant detection. We document the role
of pooled normal in quantification of a variety of sequenc-
ing and alignment AVs and apply a series of locus and
sample-specific filters and annotations. A major drawback
of current variant filtering methods (4–6,18,20–24) is the
pre-filtering of variants that can provide crucial genomic
context for understanding the remaining prioritized vari-
ants. With this in mind, UNMASC purposely utilizes the
nature of subsets of variants that reveal local or genome-
wide germline and multiple forms of AV clusters. Most steps
of UNMASC’s variant annotation involves applying a cri-
teria to subset variants, summarizing the subsetted vari-
ants by proposed parametric distributions and then quan-
tifying the relationship between each variant and the over-
all distribution of subsetted variants. To further strengthen
our approach and provide novelty, utilizing UMNs provides
fundamental locus-specific and regional genomic context in
terms of variant calling with respect to the reference genome
and bioinformatic workflow. These steps provide the user
with data-driven annotations.

UNMASC integrates public database annotations, se-
quencing metrics and data-driven annotations to retain
variants meeting variant quality score, germline population
allele frequency, read depth, strand bias P-value, predicted
AV frequencies, Cosmic count, variant prediction and non-
germline posterior probability thresholds. Details associ-
ated with UNMASC’s filtering criteria are presented in Sup-
plemental Materials Section S4.9. Depending on the user’s
intentions, strict or liberal variant filtering can be applied
for which we offer empiric guidance based on a large bench-
marking cohort.

MATERIALS AND METHODS

Data background

For the purpose of assessing our ability to detect and char-
acterize somatic variants in cancer, we assembled a cohort
of patients with clinically validated mutations from a clin-
ical trial of next-generation sequencing in cancer using a
target panel called UNCseq™ (LCCC1108: NCT01457196).
From a total cohort of 1500+ patients, we selected a rep-
resentative subset at random of 100 patients with a spec-
trum of clinical and genomic parameters relevant to a ro-
bust method. All patients had paired tumor and normal
samples to benchmark as well as clinical confirmation of
relevant clinically actionable mutations (25,26).

To assess the performance of our pipeline in the setting
of UMNs, a set of 20 UMN samples independent of the tu-
mor set was selected from the larger UNCseq™ cohort. The
determination that 20 samples would be sufficient was em-
piric but ultimately proved to be a greater number than was
necessary for our purposes. A summary of tumor and nor-
mal benchmark sample demographics is provided in Table
1.

Benchmark tumor samples consisted of brain/central
nervous system, breast, gastrointestinal, genitourinary, gy-
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Table 1. Summary demographics of the 100 tumor and 20 LCCC1108
UMNs. Sequencing metrics include median and range statistics on per-
cent bases with ≥100× coverage, average number of reads covering target
regions and pathologist-derived tumor percent

Variable Normal Tumor
N(%) N(%)

Gender
Female 16(80.0%) 75(75.0%)
Male 4(20.0%) 25(25.0%)

Race
Black 6(30.0%) 16(16.0%)
Other 1(5.0%) 7(7.0%)
White 13(65.0%) 77(77.0%)

Age at diagnosis
20 to 52 4(20.0%) 36(36.0%)
53 to 62 7(35.0%) 33(33.0%)
63 to 82 9(45.0%) 31(31.0%)

# Confirmed mutations
1 6(30.0%) 36(36.0%)
2 8(40.0%) 26(26.0%)
3 3(15.0%) 20(20.0%)
4+ 3(15.0%) 18(18.0%)

Median(range) Median(range)

Target bases with
100× (%)

97.6 (71.7–98.6) 97.5 (76.9–99.2)

Mean target coverage 818.9 (155.8–1190.2) 831.6 (175.7–2048.1)
Percent tumor* 65 (30–90) 70 (20-90)

*Percent tumor in benchmark tumor samples and corresponding tumor
samples for UMNs.

necologic, head and neck, hematologic, lung, lymphoma
and musculo-skeletal tumor types for the UNCseq™ cohort.

Position filtering

While our work is aimed at somatic mutations in tumors,
we wanted to begin by observing how alternate and refer-
ence bases present in normal samples. All samples were pro-
cessed with a hybrid capture method however this analysis
can be applied to whole genome and whole exome sequenc-
ing too. Since one of the most useful characteristics of vari-
ants is their allele frequency (AF), we looked at AFs in the
normal samples without regard to tumor, focusing on posi-
tions that were not called homozygous. The hypothesis was
that at least some non-reference variants in MN from tumor
samples would demonstrate AFs other than a Mendelian
distribution of 50% or 100%. Such positions would be prob-
lematic since they could be falsely interpreted as somatic al-
terations in regions of copy number gains or losses when
detected in tumor cases. We further interrogated the vari-
ant position in association with existing public database an-
notations. For the 100 tumors, Isaac (27) was run on each
of their corresponding normal BAM files to generate nor-
mal genome VCFs. For each sample, loci located within tar-
geted gene panel capture regions were retained and vari-
ants were clustered based on VAF (Supplementary Mate-
rials Section S4.2). Loci with nVAF classified near to zero
(primarily sequencing errors) and one (homozygous) were
excluded based on clustering assignment. Remaining loci
from the 100 normal samples were pooled together for vi-
sualization in Figure 1 and hypothesis testing in Table 2.

Table 2. The cross tabulation of counts between variables defined by ge-
nomic annotations and the outcome are presented

Univariate Multivariate
Variable Label OR 95% CI (P) OR 95% CI (P)

Het. Noise
Umap 0.68–0.85 (1.85e-06) 0.69–0.87 (1.33e-05)

NO 1034 10840
YES 539 4320

GRC 3.22–4.11 (8.60e-107) 3.04–3.90 (1.21e-84)
NO 11377 497
YES 4193 666

GS 1.43–1.82 (2.46e-15) 1.17–1.51 (9.18e-06)
NO 11115 759
YES 4376 483

SV 3.87–4.92 (5.53e-148) 3.65–4.66 (5.62e-115)
NO 11388 486
YES 4096 763

Umap = base uniqueness score is ≥0.99. GRC = base is contained within
a fix/novel patch. GS = base is present in a GDs (ExAC or 1000 Genomes)
and COSMIC database. SV = a somatic variant was called within 10 bases
of the base considered. Univariate and multivariate analyses are presented
in terms of odds ratios (OR), 95% confidence intervals (95% CI), and P-
values (P).

As expected, the bulk of all remaining positions centered
around nVAF of 0.5. Clustering then provided an objective
means of assigning a variant to the heterozygous state plus
or minus measurement error versus the alternative (neither
0, 0.5 or 1) (Figure 1). Samples in the alternative state were
considered as non-Mendelian or simply ‘noise’. Difficult to
genotype regions have been characterized previously by ef-
forts such as Umap (8) (Figure 1) and often noted in re-
gions of lower genome complexity such as near centromeres.
The challenge posed by these regions might initially ap-
pear trivial since the genomic territory involved covers a
small fraction of the genome. However, the scale becomes
more daunting when the results are indexed by variant order
rather than position (Figure 1B), demonstrating that these
narrow regions generate large numbers of variants. Closer
examination reveals that in genomic intervals of unexpected
nVAF deviations (such as the chr1 centromere), only exclud-
ing loci with decreases in Umap score was too conserva-
tive. Several loci classified as Mendelian corresponded to
decreases in Umap and other loci with Umap scores near
1.0 were classified as non-Mendelian suggesting that Umap
alone is insufficient for identification of these challenging
genome positions.

We then considered if these non-Mendelian germline po-
sitions were associated with somatic mutation calls in can-
cer databases. Such variants would likely be false positives
since they violate the assumptions of many variant detec-
tion algorithms. We confirmed that many variants were re-
ported in these challenging regions (Figure 1C). We fur-
ther excluded sequencing depth as a meaningful contribu-
tion to variant allele imbalance (Figure 1D). Given that we
were unaware of existing methods to consider allele imbal-
ance in this manner, we interrogated the AFs in our sam-
ple set of variants previously reported in public datasets in-
cluding 1000 Genomes (2), ExAC (3) and COSMIC (28).
Importantly, for normal sample non-Mendelian variants in
the UNCseq™ cohort and also reported in 1000 Genomes,
these loci had low population AF suggesting underlying
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Figure 1. Chromosome 1 visualization. Normal sample loci classified as either noise or heterozygous. Figures (A) and (B) plot the normal nVAF on the y-
axes. While the x-axis denotes the genomic position in megabases for Figure (A), the x-axes for Figures (B–H) denote the ordered genomic loci of positions.
Figure (C) illustrates the distribution of loci where somatic variants were called. In Figure (D), the y-axis denotes the log10 of total read depth of clustered
normal read counts with the line indicating the median. In Figures (E–H), the y-axes denote the 1000 Genomes population allele frequencies (AF), ExAC
population AF, log10 of 1 + COSMIC counts, and Umap scores, respectively.

AVs rather than rare population variants (Figure 1E). Vari-
ants overlapping with ExAC were more likely to have ExAC
AFs of 0.5 but still with many ExAC AFs divergent from
0.5 (Figure 1F). Finally we observed that many of these
difficult positions were present in the COSMIC database
as somatic variants, concerning for false positives. We also
overlay genomic interval novel/fix patch information with
version GRCh37.p13 provided by the Genome Reference
Consortium (GRC) (12) as a possible cause of the non-
Mendelian AF distributions. In order to formally quantify
the patterns seen in Figure 1 across all genome positions

and all samples, we modeled the probability that a locus was
ever classified as non-Mendelian as a function of being lo-
cated within a GRC patch, Umap score ≥ 0.99, presenting
in both germline and somatic databases, and finally if a so-
matic variant was called within 10 bases of the locus (Table
2). Our analyses revealed strong associations between each
of the four covariates and non-Mendelian status, suggesting
our initial classification procedure aligned with existing ge-
nomic annotations. While direct interpretation of such po-
sitions might be complex, this locus classification provides
the user additional insight into a variant that might other-
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wise be considered clinically meaningful when it is anno-
tated as non-Mendelian among normal controls. In other
words, variants called in this position have higher proba-
bility of being false positives. We then considered the mul-
tivariate model. For model predictiveness, the AUC of the
multivariate model is 0.610 with a McFadden R-squared of
0.051. These results suggested that existing variant annota-
tion such as Umap for challenging regions alone was highly
statistically associated with non-Mendelian status but fails
to account for most false positive variant calls. The limited
prediction can be attributed to how the outcome variable
was naively characterized. For example, within a given GRC
patch, there was a mixture of variants near normal VAF of
0.5 as well as variants deviating from 0.5. Our analyses sug-
gested GRC patches were more associated with increased
deviations but would have difficulty inferring the status of
variants as likely true versus likely false within a GRC patch.
The other three covariates appeared informative of nVAF
deviations from 0.5 in a subset of regions but did not capture
overall regions of deviation. Chromosomes 1 and 6 (Sup-
plementary Figure S1) have regions in which GRC regions
correlated with our observation of abnormal VAF. In other
cases, however, there were regions in which we detected ab-
normal VAF not in association with a GRC region, and we
observed this along chromosomes 7, 14, 16 and 19 (Supple-
mentary Figures S2–S5, Supplementary Section S2). Moti-
vated by these results, we developed an empiric measure of
baseline allelic fraction noise across the genome referred to
as hard to map (H2M) regions (Supplementary Materials
Section S4.3). A simulated example of H2M regions is also
provided (Supplementary Figure S7).

H2M application to tumor only variant detection. Having
shown that H2M positions have unfavorable properties for
variant detection in normal samples, we conclude that these
positions are even more unfavorable for tumor variant de-
tection. To address this challenge, we considered different
approaches to identify and penalize such positions. Impor-
tantly, we demonstrated that such positions can be empir-
ically determined from non-cancer controls characterized
by the sequencing platform configuration (such as capture
bait set, sequencing strategy such as depth or read length) as
opposed to being inherent properties of the genome itself.
Accordingly, rather than creating a catalog of all H2M re-
gions, we assess each genome positions on the fly on a sam-
ple by sample basis through nVAF segmentation applied
to each tumor benchmark sample across all detected vari-
ants. In this novel approach UNMASC pools nVAFs from
UMNs to identify gene regions specifically challenging for
variant calling. Interestingly, these H2M regions have vari-
able impact on variant detection across samples and loci.
For example, variants detected in genomic intervals in the
genes PDE4DIP and NOTCH2 were deemed H2M in all
benchmark samples. By contrast, ANTXR1-contained vari-
ants were called in H2M regions among 22 of the 100 tu-
mors. Our approach is not the first to identify genes with
challenges to variant calling. For example, authors of SGZ
(5) acknowledged that H2M genomic regions exist but their
algorithm addresses this at the gene level rather than at the
problematic DNA sequence. For example, SGZ excluded all
variants along HLA and CYP2D6 genes, whereas we will

show that UNMASC is able to identify H2M regions within
HLA-A, HLA-B, CYP2D6 and others without resorting to
exclude all variants along each gene (Supplementary Table
S3).

RESULTS

Benchmark variant samples and somatic mutations

Samples were sequenced using hybrid capture technology
and Illumina paired-end sequencing technology on the
HiSeq2000/2500 and NextSeq500 machines as has been re-
ported elsewhere (25). For the purposes of developing a gold
standard set of variants, we compared those variants ob-
tained when a matched tumor normal pipeline was utilized
versus the results obtained when the same samples where
assessed compared to a tumor-only pipeline utilizing non-
matched reference controls. Briefly, variants were called and
combined using Strelka (29), UNCeqR (30) and Cadabra
(31) and annotated with Oncotator (32). As documented
above, variants in H2M regions are problematic even when
MNs are available. As such, variants present in MTN calls
were excluded from the gold standard set if they were lo-
cated in H2M intervals unless they presented in COSMIC
with at least 10 counts.

To generate the experimental set of variants, the pipeline
was run for each tumor against each of 20 normal controls.
The variants from all 20 runs were collected and passed
into UNMASC’s workflow described below. The outcome
of interest in the study was whether or not a variant de-
tected by the paired MTN analysis was also detected by
the UNMASC tumor only pipeline. A variant was assessed
to be present at a position if it was detected by consen-
sus across the iterated control runs. We confirmed exper-
imentally that 100% detection of a variant across all nor-
mal controls was suboptimal because variable coverage and
other factors were responsible for occasional false negative
variant detection in any individual normal control at a spe-
cific location. At thresholds of 25%, 50%, 75%, 90% and
100% across all 100 samples led us to select 90% as an ap-
propriate threshold for the proportion of UMNs a variant
was called in. This threshold provided a variant call with
robustness since 100% was too stringent for some samples
when at least one UMN failed to call a variant. On the other
hand, a threshold <90% led to highly variable PPV (due to
random draws of UMNs) for some samples. The pipeline’s
performance was assessed by sensitivity (SENS) and posi-
tive predictive value (PPV) with the gold standard filtered
MTN variants described above as the test statistics. As a
secondary validation we interrogated a subset of all vari-
ants that were manually reviewed and clinically validated
by secondary clinical lab testing in the clinical trial.

UNMASC workflow. To obtain a high sensitivity, it is nec-
essary that the initial variant calling liberally collects the
sum of all possible variants. Filtering of variants from the
initial set was hypothesized to improve the specificity and
PPV. We therefore considered the following filtering steps
as part of the UNMASC workflow (Figure 2 and Supple-
mentary Section S4). In keeping with convention, we first
defined a concept of sequencing quality filtering criteria
‘BASE’ corresponding to filtering variants on read depth
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6 NAR Cancer, 2021, Vol. 3, No. 4

Figure 2. Overall performance across the 100 benchmark tumor samples. Box plots were generated by averaging within each subject’s performance met-
rics for the 90% frequency threshold required to call a variant somatic. Columns correspond to the six cumulative filtering criterion (BASE includes
depth, Qscore, targeted capture, low/moderate/high impact, ExAC, 1000 Genomes filtering, UMNQC includes BASE and excluding low quality UMNs,
H2MGERM includes UMNQC along with H2M and GVs filtering, OXOG includes H2MGERM and removing oxoG variants, STRAND includes OXOG
along with removing strand bias AVs, and FFPE not only includes STRAND but also excludes paraffin AVs). Rows correspond to sensitivity (SENS),
positive predictive value (PPV), F1 measure (F1M) and number of filtered variant calls (#fVCs). The x-axis denotes the number of randomly selected
UMNs to perform the variant calling. SENS, PPV, F1M, #fVCs were averaged among the 10 instances of UMN draws at the 90% UMN call threshold
within a sample and summarized by boxplots.

(≥10), Qscore (≥10), targeted capture region, retaining
low/moderate/high impact exonic variants and present be-
low a specific population allele frequency in ExAC and 1000
Genomes (excluding common SNPs) (Supplementary Sec-
tion S4.7). We defined a second criteria ‘UMNQC’ (UMNs
quality control) which improves UNMASC by recognizing
that lower quality normal controls negatively impact SENS
and PPV and should be removed. Criteria ‘H2MGERM’ re-
moves penalized variants from H2M regions and variants
in germline equilibrium (VIGE). VIGE variants are those
variants which appear to have the same allele fraction as
known SNPs in their shared clustered region but are not
present in a SNP database above a prespecified population
threshold. Such variants are most likely private germline
SNPs but could represent at least two important alternative
classes: founder driver gene mutations which occur early in
tumorigenesis and somatic mutations in samples with very
high tumor purity. VIGE variants with posterior probabil-
ity >0.5 are excluded but the user might wish to interro-
gate these specifically for the possibility of highly pure tu-
mors or founder mutations (Supplementary Materials Sec-
tion S4.6). A fourth criteria ‘OXOG’ penalizes and excludes

positions as likely due to the oxoG artifact (loci clustered to
the tumor VAF cluster characterized by base substitutions
C>A/G>T, Supplementary Materials Section S4.5). The
fifth criteria ‘STRAND’ penalizes and excludes strand bias
variants (Fisher test P-value <0.05, Supplementary Ma-
terials Section S4.4). Lastly, the criteria ‘FFPE’ penalizes
and excludes identified paraffin variants (loci clustered to
the tumor VAF cluster characterized by base substitutions
C>T/G>A and indels). In the current implementation the
strand bias does not consider context of the trinucleotide
sequence but future implementations might. Details of UN-
MASC’s overview workflow are provided in the Supplemen-
tary Materials Section S4.8 and 4.9 and depicted in Supple-
mentary Figure S8 along with a table summary in Supple-
mentary Table S2.

We evaluated UNMASC’s performance across the bench-
mark samples and the filtering criteria (Figure 2). Consid-
ering only quality filtering approaches (BASE criteria) gen-
erated overall very high sensitivity, which was reassuring,
but disappointingly low PPV and an overall large num-
ber of variants per samples. By considering optimal num-
ber and nature of normal controls (UMNQC criteria) we
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observed that the sensitivity approached 100%, no matter
which normal was used and no matter how many were em-
ployed. However, we clearly demonstrated that a subset (n
= 3) of UMNs demonstrated unfavorable properties and
their exclusion improved the results overall (Figure 2, col-
umn BASE). The impact of each filtering criteria can also
be observed for one selected sample (Supplementary Sec-
tion S5 and Supplementary Figure S10). We determined
that compared to other controls, the unfavorable controls
demonstrated clustering in sequencing quality metrics to-
ward the lower end although they remained in the accept-
able range (Supplementary Figure S6 and Supplementary
Section S3).

As part of the selection of normal controls, we consid-
ered the impact of race as a measure of genetic diversity
in the selection of controls. Racially diverse controls re-
sulted in higher numbers of variants detected and they did
not decrease the sensitivity. Additionally, although racially
mismatched controls generated higher numbers of variants,
these did not generally inflate false positives because they
were filtered out of the combined variant set which required
a variant to occur in 90% of all tumor-normal pairs. Re-
moving the three under-performing UMNs from the dataset
increased the average sensitivity by a small amount, by re-
moving outlier cases of lower sensitivity (Figure 2, column
UMNQC). Although sensitivity was high overall after con-
sidering the BASE and UMNQC criteria, the total number
of variants per assay remained high (n = 50 on average for 3
mb of genome interrogated) and the PPV was modest over-
all (50%).

We observed that increasing numbers of normal controls
per sample decreased the false positive calls as expected by
increasing the chances that any single normal control would
contain a rare SNP that might otherwise be called a mu-
tation. Somewhat unexpectedly, this benefit was marginal
and plateaued at around 10 normal controls. We then con-
sidered the impact of removing both variants in H2M re-
gions (variants within a genomic segment where the major-
ity of nVAFs harboring a mixture of reference and non-
reference reads deviate from 0.5) and VIGE. The H2M
critera produced a significant decrease in the total num-
ber of variants called and a significant increase in the PPV
(Figure 2, column H2MGERM) with overall little impact
on sensitivity. Examples of wide and narrow regions con-
sistently identified as H2M are presented in Supplemental
Figure S9.

At this point we turned our attention away from over-
all trends towards individual samples demonstrating large
number of variants relative to other cases. We recognized
that these were overwhelmingly oxoG. Removal of oxoG
AVs at this stage normalized the variant count of the out-
lier samples with no measurable negative impact on other
quality parameters (Figure 2, column OXOG). We then ob-
served that there remained at least one sample with very
low PPV and considered the role of strand bias (Figure 3,
column STRAND). Filtering remaining variants for strand
bias dramatically improved the PPV in a single case and im-
proved the overall average PPV modestly with no measur-
able impact on sensitivity and slight decreases in the overall
decrease in the number of called variants per sample. In a fi-
nal step, we observed a pattern of variants most consistent

with paraffin artifact base substitution. Removal of these
variants had no impact on sensitivity and modest improve-
ment in PPV and reduction in the total number of variants
called (Figure 3, column FFPE).

It should be noted that the order of filtering was empiri-
cally developed. Several criteria are highly correlated, such
as paraffin artifact, oxoG and strand bias. Filtering per-
formed in alternative orders would change the marginal im-
pact of each step but would arrive at the same final set of
variants. Extending this logic, and in consideration of spe-
cific tumor examples we observed that across samples indi-
vidual filtering criteria had widely different impacts on the
total number of variants and the concordance of those vari-
ants with the gold standard set.

Selected samples are highlighted in instances where a spe-
cific AV had a disproportionate and profound impact (Fig-
ure 3). These examples document that the factors associ-
ated with quality variant filtering are not uniform across
clinical samples. Sample S1 is highlighted for its initial low
PPV of 20% in column BASE and UMNQC but once H2M
and tumor VAF segmentation filters were applied, PPV
reached 70% with 10 UMNs while maintaining 100% sen-
sitivity. Samples S2 and S3, with approximate tumor puri-
ties of 90% suffer from low sensitivity once H2MGERM
filters were applied. Gold-standard somatic variants were
excluded because their allele frequencies were inferred as
similar to the local BAF. Sample S4, a hematologic sam-
ple had no gold standard variants after applying our filter-
ing criteria while five filtered TO variants remained. While
sample S5 maintained 100% sensitivity, after applying filters
BASE through FFPE, the PPV plateaued at about 25% be-
cause only one gold standard variant remained with an ad-
ditional three TO variants. Sample S6, under filters BASE
through H2MGERM, had over 500 variant calls present in
both the gold standard and TO. After applying oxoG fil-
ters, the vast majority of both MTN and TO calls were ex-
cluded as AVs due to the genome-wide consistent AF rang-
ing between 1% and 3%. Moreover, with only 29 TO calls,
25 of which are refined MTN gold standard calls, sample
S6 had a PPV increase from 50% to 86%. At last, sample
S7 maintained 100% sensitivity across filtering criteria. The
sample harbored about a dozen private GVs, about a dozen
hard-to-map variants, 40 oxoG AVs, and 23 strand bias AVs
where the noticeable increase in PPV came from the strand
bias filtering.

Looking across individual samples, the unfiltered variant
calls have varying proportions of private GVs and varying
sources of NGS AVs. These factors, along with tumor pu-
rity and tumor type, individually impacted each sample’s
metrics. But overall, applying the six levels of filtering crite-
ria achieved 94% SENS on average (median of 100%) and
76% PPV on average (median of 78%). It is important to
note that if a higher level of sensitivity is desirable, it is pos-
sible to reduce the level of filtering. It is also important to
note that to achieve these levels of test performance, we did
not require annotation filtering such as Polyphen-2 (33) or a
similar approach. We reduced the total numbers of variants
to a very manageable number with little loss of sensitivity.
Further applications, such as the elimination of low impact
mutations would allow even more focused review of driver
mutations in clinical and other cohorts.
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Figure 3. Performance of seven highlighted tumor samples. Columns correspond to the six cumulative filtering criterion (BASE includes depth, Qscore,
targeted capture, low/moderate/high impact, ExAC, 1000 Genomes filtering, UMNQC includes BASE and excluding low quality UMNs, H2MGERM
includes UMNQC along with H2M and germline variant filtering, OXOG includes H2MGERM and removing oxoG variants, STRAND includes OXOG
along with removing strand bias artifacts, and FFPE includes STRAND but also excludes paraffin artifacts). Rows correspond to sensitivity (SENS),
positive predictive value (PPV), F1 measure (F1M) and number of variant calls. The x-axis denotes the number of randomly selected unmatched normals
to perform the variant calling.

False positive calls. Using the filtering strategies described
in Figure 2, we observed a plateauing in PPV approaching
80% with 10 UMNs after applying filtering criteria BASE
through FFPE due to false positive variants. We then pur-
sued a descriptive evaluation of the remaining 261 false-
positive variants in the cohort of 100 samples (Table 3).
In UNMASC filtering, we offer strong prejudice to vari-
ants that have been reported recurrently in the COSMIC
database even though that Figure 1 and other reports sug-
gest that public databases may contain GVs and AVs. About
31 of 261 (12%) variants were retained as false positive be-
cause of inclusion in COSMIC despite failing other crite-
ria such as suspicion of germline status (n = 14/261). The
most cited concern of sequencing the tumor with no MN is
false classification of GVs as somatic. Our data demonstrate
that only 73/261 (28%) of false positives fall into this cate-
gory. Importantly, and not unexpectedly a disproportionate
fraction of false positive calls overall were insertion-deletion
variants (107/261, 41%) suggesting that the user might have
a heightened suspicion of indels in the final variant set. In
terms of average false positives across samples, 68 samples
had 0−3, 27 samples had 4−7 and 5 samples had 8−11.
Chromosome X variants presented in 2 male and 3 female
samples. UNMASC is designed to retain calls presenting in

COSMIC with at least 10 counts regardless of other crite-
ria. However a subset of these calls also presented as vari-
ous AVs by UNMASC or were germline based on their MN
VAF. Among the 14 underlying GVs reported in COSMIC
(≥25), ten of them could have been characterized as VIGE
using UNMASC’s annotation if COSMIC’s annotation was
ignored.

Among the 73 GVs, all but four have non-missing VIGE
values. Thus the remaining GVs resulted in VIGE probabil-
ities <0.5. With these variants occurring across 44 samples,
this suggests a low GV false positive rate of less than two
private GVs per sample. Regarding the 69 non-conforming
control AF variants, they were characterized by matched
control nVAFs ranging between 0.01 and 0.39 and were
never called within tumor variant calls when using the
MN. These variants share a non-Mendelian characteristic
in their nVAF but in a subject-specific manner and thus
were not detected as H2M regions. Using the MN as a con-
trol would have easily flagged these 69 variants as harbor-
ing non-reference bases. The putative false positive novel
variants (Table 3) were composed of calls with normal VAF
<0.01, VIGE probability <0.5, not identified as H2M (for
chr1-chr22 variants) or AV. Mismatch variants considered
‘Other’ had tumor VAFs ranging between 0.015 and 0.123
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Table 3. Summary of false positive variants by reason and variant type. Numbers in the columns are the numbers of false positive variants. Shown in
parenthesis are the numbers of patients contributing to the false positive variant number in any class. For example, In row 1 column 2 there were 5 multi-
base deletions. Those 5 deletions occurred in 4 subjects, such that 3 subjects had 1 multi-base deletion and 1 subject had 2 multi-base deletions. The total
for the row was 8 variants occurring in 6 patients. False-positive variants are divided into base substitutions (Base Sub.), one and multi-base deletions
(One-base Del, Multi-base Del), and one and multi-base insertions (One-base Ins, Multi-base Ins). Rows labeled ‘COSMIC, ...’ indicate variants reported
in COSMIC at least 10 times and the reason they are false-positive. H2M genes correspond to variants located along genes with identified H2M regions.
Non-conforming control AF refers to variants’ matched nVAF appearing non-Mendelian and undetected by H2M. ‘Novel, ...’ rows refer to variants
determined to not be GV or AV (oxoG, FFPE, strand bias, H2M), with no variant present in the MN

Reason BS DEL (MB, 1B) INS (MB, 1B) Total

COSMIC, FFPE 5(4), 2(2) 0(0), 1(1) 8(6)
COSMIC, germline 13(12) 0(0), 1(1) 14(13)
COSMIC, oxoG 2(2) 2(2)
COSMIC, SB 5(5) 2(1), 0(0) 7(6)
Germline 61(38) 6(6), 6(6) 73(44)
H2M Genes 6(5) 2(2), 0(0) 0(0), 1(1) 9(8)
Non-conforming 46(30) 3(3), 2(2) 12(8), 6(6) 69(39)

control AF
Novel, chr1-chr22 3(3) 2(2), 2(2) 1(1), 0(0) 8(7)
Novel, chrX 5(3) 0(0), 1(1) 6(4)
Novel, in COSMIC 0(0), 3(3) 0(0), 2(2) 5(5)
Other 13(9) 12(11), 21(14) 8(4), 6(6) 60(29)

SB = strand bias, BS = base substitution. MB = multi-base. 1B = one base

and appeared to occur almost uniformly across autosomes
suggesting possible unaccounted source of artifact.

The role of tumor purity. We looked exclusively at the re-
tained variants that underwent all six filtering criteria and
after using at least 15 UMNs. Recalling that as tumor purity
approaches one, a somatic founder variant (variant found
on all copies of a haplotype) and a heterozygous GV be-
comes indistinguishable. This led us to explore the relation-
ship between tumor purity, derived from the pathologist,
and sensitivity as well as number of remaining variants and
PPV (Supplementary Figure S11). Of the benchmark sam-
ples, two samples, one lymphoma and one hematologic, had
missing purity estimates. The remaining samples had puri-
ties ranging from 20% to 90%. The figure supported the ex-
pected notion that purer samples would result in drops in
sensitivity because mutations with VAF close to germline
BAFs generally suggests variants to be VIGE rather than
somatic, just as in most algorithms. From the second plot,
we see the PPV converging toward 85% and with less vari-
ability as the number of variants increase. The degree to
which variants were incorrectly classified is captured in Sup-
plementary Figure S12, which summarizes the number of
false negative variants per sample as well as plots the fre-
quency of tumor purity of samples. Seventy false negative
variants across 30 benchmark samples contributed to the
drop in sensitivity. Thus across the 100 samples, approxi-
mately one variant per sample could be incorrectly classified
as germline when in fact it was somatic. These false negative
variants composed of 58 base changes and 12 indels span-
ning 20 high, 42 moderate and 8 low or lesser worst case
impacts where 16 of them originated from a single sample
with a pathologist reported purity of 90%.

In addition to MTN variant calls, we analyzed the subset
of clinically confirmed variants. Out of 215 confirmed vari-
ants, all were present in the unfiltered variant calls. How-
ever, 29 of them would have been excluded/flagged by UN-
MASC. Of the 29, one appeared to be a strand bias AV, 20
appeared to be FFPE or oxoG AVs, 4 were heterozygous

GVs, 1 appeared to be H2M, and 3 were intronic or syn-
onymous in terms of highest impact. Whether confirmed or
non-confirmed mutations, an underlying trade-off exists be-
tween detection and classification of mutations.

Alternative approaches. For the purposes of indexing our
effort to prior efforts, we reviewed a number of approaches
(Supplementary Table S1). Among the presented methods,
we aimed for self-contained workflows with published and
open-source software that did not require supplying a pre-
labeled variant set handled similar to the tumor samples
of interest, which may not be available to the user, thereby
excluding methods SGZ, ISOWN, GATKcan, TOBI and
Teer et al.’s method. The remaining methods included Hilte-
mann et al.’s approach, SomVarIUS and LumosVar 2.0.
The BASE and UMNQC steps of UNMASC’s filtering cri-
teria align closely with Hiltemann’s general pipeline by uti-
lizing UMNs. Methods SomVarIUS and LumosVar were
run with default arguments, targeted variants were retained,
and then annotated with SnpEff for variant effect predic-
tion to retain protein altering impact variants. The Hilte-
mann workflow calls tumor variants against a set of UMNs
and reports the intersection as somatic variants. SomVar-
IUS runs without UMNs and annotates variants with cal-
culated probabilities of being germline and/or artifact. On
the other hand, LumosVar utilizes multiple UMNs to an-
notate positions in terms of coverage, quality, and depth
and models the underlying biology in terms of tumor pu-
rity, intra-tumor heterogeneity and copy number states.

We summarized performances in terms of SENS, PPV,
F1M and number of variants called (Figure 4). UNMASC
and Hiltemann achieve near 100% median sensitivity. Hilte-
mann attained the second highest mean PPV and F1M met-
rics. SomVarIUS resulted in an average of 90 variants per
case compared to approximately 80 from SomVarIUS, 30
from LumosVar 2.0 and 10 from UNMASC. SomVarIUS’s
median sensitivity and PPV were approximately 25% and
7%, respectively, while LumosVar’s median sensitivity and
PPV were approximately 35% and 20%, respectively. Hilte-
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Figure 4. A summary comparison of Hiltemann, SomVarIUS, LumosVar 2.0 and UNMASC performances. Performance metrics include sensitivity
(SENS), positive predictive value (PPV), F1-measure (F1M) and number of variant calls after applying filters. The bold lines and points within boxplots
correspond to median and mean statistics per method and metric.

mann’s PPV was driven by the presence of unfiltered GVs
and AVs. Similarly for SomVarIUS, AVs including strand
bias, FFPE, and oxoG composed the majority of false pos-
itives. The proportion of GVs was higher in SomVarIUS
than in Hiltemann due to misidentified BAF clusters. Lu-
mosVar 2.0 made some modest improvements over Som-
VarIUS, but purity and copy number modeling posed a
challenge with the prevalence of low AFs driven by AVs that
negatively impact the detection of underlying BAF clusters.
Finally, variants called within UNMASC’s identified H2M
regions consistently emerged among Hiltemann, SomVar-
IUS, and LumosVar methods also resulting in lower PPV.
Therefore, SomVarIUS and LumosVar 2.0 appear relatively
unfavorable for our samples in terms of identifying GVs and
AVs.

DISCUSSION

Despite the importance of variant calling in research and
clinical care, as our work has shown, current methodology
still lacks precision when applied in an automated fashion.
UNMASC provides a new set of tools to address several

facets in this field. First, our characterization is systematic
with a catalog of expected and unexpected challenges while
estimating the relative impact of each on the outcome of
accurate variant detection. We demonstrate the empirical
challenge that samples have varying numbers of underlying
‘gold-standard’ variant calls and harbor undetected focal
copy number alterations, artifacts and private GVs.

A credible set of gold standard variants are required to
assess the performance of any methodology in this space.
As such we provide an elegant public resource of a large
set of tumors with MNs and UMNs. This set contains a
wide distribution of sample and tumor types and includes
a range of high and lower quality samples representative of
clinical cohorts [dbGap phs001713.v1.p1]. Additionally, we
offer some of the most conclusive evidence that automated
variant calling in tumor with UMNs can be highly sensi-
tive (approaching 100%), highly specific and with very fa-
vorable PPV overall. Our approach of scoring variants by
various penalties allows the user to consider specific situa-
tions where excluded variants might warrant additional re-
view. For example, in a sample suspected of being highly
pure for tumor in which somatic variants and contaminat-
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ing private GVs are difficult to distinguish, the user might
decide to retain VIGE variants which are otherwise gener-
ally excluded.

While we integrate with public databases which are vital
to interpreting variants whether from MNs or UMNs cases,
we also provide evidence as to the shortcomings of such
database. Variants present in public databases such as COS-
MIC or dbSNP that have unfavorable penalties by the H2M
criteria can be considered with added scrutiny, again ei-
ther in paired MTN or unmatched cases. This tool does not
require elimination of large regions of the genome, entire
genes or cataloging of variants. UNMASC’s H2M pipeline
can be calculated on the fly and is tuned to the specific se-
quencing platform and parameters as long as UMNs from
the same protocol are available. Although not the primary
focus of this manuscript, we suspect that all samples, tumor
and normal, can equally suffer in quality from low coverage
regions, misaligned reads, and AVs introduced from sam-
ple processing. Our work suggests that many normal sam-
ples can serve as multiple controls against a tumor and that
the nature of variant calling can be dynamically annotated
by pooling normal samples. We also demonstrate that each
sample may present a unique set of challenges in the num-
ber and nature of variants as well as the protocol specific
AVs.

H2M regions and other artifacts

One of the frustrations of reliable variant detection is that
many regions of the genome are more challenging than oth-
ers for mutation calling, yet efficient identification of those
regions is elusive. Some users have developed catalogs of
such challenging positions whereas a limited number of
techniques has proposed computational identification in-
cluding BlackOps (7) and Umap (8). In the current ap-
proach, we develop an efficient method which is platform-
specific for high resolution scoring of regions for the un-
favorable properties of being H2M, emphasizing that many
such regions occur in small neighborhoods that can be iden-
tified stochastically by clustering their nVAF. The success
of this genome regional clustering approach was extended
to define the VIGE variants which share similar properties
in a regional manner. The VIGE variants cluster in regions
of shared copy number changes in a manner first identified
through the B allele frequency techniques of copy number
analysis (4,6,22), and we integrate the presence of H2M into
this for the first time to our knowledge in the service of
variant filtering. Having identified variants with properties
of H2M and VIGE allowed us to focus on other variants
whose allele frequencies and composition documented use-
ful properties, usually pointing to NGS AVs such as oxoG
or paraffin sequencing artifact. Remaining variants, in most
cases, are those that were our true positives. The UNMASC
autopsy of remaining false positives and negatives docu-
mented the need for added concern for indels in the setting
of UMN variant detection, as well as raising caution for
cases where annotated databases point the user astray. COS-
MIC, for example contains many false positive variants in
H2M locations. Additionally, we dismiss in most cases the
concern that private GVs are a major source of false pos-

itive when the concept of VIGE is incorporated in variant
filtering.

Limitations

TO variant calling suffers from several limitations. First, the
VAF is assumed to follow an underlying distribution that
allows us to model genotypes, germline/somatic status or
subclonality. For this to work, however, the algorithms re-
quire the underlying signal across variants to largely out-
weigh the noise. This is not always true, especially among
indels and in the case of very pure tumors where separation
of somatic variants from germline allele frequencies is chal-
lenging. As demonstrated by H2M regions, the AF is also a
function of the underlying mappability to genomic intervals
from a reference genome, whether it is near regions of low
complexity or highly polymorphic.

In normal and tumor read count modeling, we chose the
binomial over beta-binomial distribution when paired with
a discrete uniform (noise) distribution. Through the noise
and binomial mixture, highly variable VAFs would be con-
sidered noise whereas using a noise and beta-binomial mix-
ture risks classifying them as over-dispersed beta-binomial
variants depending on the distribution of noisy variants. In
terms of variant classification performance, we aim to main-
tain high SENS for somatic variants while making small
sacrifices to PPV for AVs and GVs.

Identifying segments of copy number aberration using
tumor read counts alone relies on a sufficient number of
sample-specific germline heterozygous variants. While UN-
MASC does not rely on detecting changes in total copy
number from log R ratios (LRR), derived from matched or
UMNs for LRR/BAF joint segmentation, segments can be
misidentified due to a lack of GVs. In these regions, UN-
MASC may misclassify variants, not provide VIGE infor-
mation, or characterize a segment as noisy (Supplementary
Materials Section S4.6). This issue can be overcome when
trading read depth for coverage going from targeted cap-
ture panel sequencing to whole exome or whole genome se-
quencing.

A common issue that emerged from previous works is
the fact that the ‘denominator’, or number of true-positive
variants within a sample impacts the benchmark metric in-
terpretations. A larger number of true-positive variants will
provide less spread in PPV and potentially reveals the con-
vergence of PPV. The right plot in Supplementary Figure
S11 captures the relationship between PPV and the number
of filtered MTN variants which appears to converge toward
80% or more given the scope of the UNCseq™’s targeted
capture region.

Future directions

While the UNMASC benchmark was developed for tar-
geted capture human samples aligned to hg19, we may ex-
plore alternate capture versions (whole genome/exome),
species and bioinformatic workflows (reference genomes,
alignments and variant callers) to assess UNMASC’s
protocol-specific features. UNMASC may integrate TO de-
rived copy number calling methods such as SynthEx (34)
to refine tumor read count segmentation and improve vari-
ant classification, especially in noisy genomic regions where
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identifying local germline allele frequency remains a chal-
lenge. From the benchmark, UMN screening is key to main-
taining high sensitivity and further work can be done to
identify low quality tumor and normal samples. Using UN-
MASC, another aspect for future study may look to see if
H2M regions are associated with abnormalities from other
NGS-based platforms and analyses. Additional biologic
constructs could also be incorporated into the work to aug-
ment the variant distributions. For example, we could con-
sider the tri-nucleotide context for variant annotation to
augment signals associated with linear DNA structure such
as certain oxidation artifacts or mutations signals that occur
in the context of adjoining bases (35).

The sample set constructed in the current report was in-
tended to include a diverse set of samples with the hypothe-
sis that important differences might be observed as a func-
tion of tumor type, gender or other clinical feature. Such
patterns were not systematically detected in the current re-
port, although rare outlier samples were observed due to
unknown factors. Future cohort design might explore the
etiology of such rare outliers for the sources of bias or arti-
fact in the detection of variants such as experimental plat-
form (i.e. sequencing machine or chemistry), sample prepa-
ration or other experimental conditions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Cancer online.
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