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Due to the prevalence of chronic pain worldwide, there is an urgent need

to improve pain management strategies. While opioid drugs have long been

used to treat chronic pain, their use is severely limited by adverse effects

and abuse liability. Neurostimulation techniques have emerged as a promising

option for chronic pain that is refractory to other treatments. While different

neurostimulation strategies have been applied to many neural structures

implicated in pain processing, there is variability in efficacy between patients,

underscoring the need to optimize neurostimulation techniques for use

in pain management. This optimization requires a deeper understanding

of the mechanisms underlying neurostimulation-induced pain relief. Here,

we discuss the most commonly used neurostimulation techniques for

treating chronic pain. We present evidence that neurostimulation-induced

analgesia is in part driven by the release of endogenous opioids and

that this endogenous opioid release is a common endpoint between

different methods of neurostimulation. Finally, we introduce technological

and clinical innovations that are being explored to optimize neurostimulation

techniques for the treatment of pain, including multidisciplinary efforts

between neuroscience research and clinical treatment that may refine the

efficacy of neurostimulation based on its underlying mechanisms.
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pain, analgesia, opioid, µ-opioid receptor, neurostimulation, neuromodulation, deep
brain stimulation (DBS), spinal cord stimulation (SCS)
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Introduction

Over 20% of people worldwide suffer from chronic pain
disorders (Goldberg and McGee, 2011). In response to an
unmet need for effective pain management, opioid drugs
have been widely adopted. Opioid drugs harness the body’s
endogenous opioid receptors, which are dispersed throughout
the central and peripheral nervous system to modulate pain
perception. While prescription opioids often provide effective
pain relief, they have undesirable and potentially dangerous
side effects including abuse liability and respiratory depression.
Their contribution to the ongoing opioid epidemic and the
enormous negative impact of chronic pain underscore the
need for safe and effective pain therapies (Manchikanti et al.,
2012). Neurostimulation therapies are potential alternatives
for managing medically refractory pain. However, these
therapies are hampered by inconsistent pain relief across
patients and diminishing analgesic effects over time (Kumar
K. et al., 1998). To optimize these therapies and predict
patient responses, we must first understand the mechanisms
of action underlying their therapeutic effects. The purpose of
this review is to summarize the evidence suggesting current
neurostimulation therapies may provide analgesia in part by
driving endogenous opioid mechanisms. We conclude by
discussing opportunities for multidisciplinary research to shed
new light on mechanisms of neurostimulation-induced pain
relief.

Chronic pain

Chronic pain is a condition often defined by the presence
of long-standing pain that persists beyond recovery of the
injured tissue. In humans, chronic pain is clinically defined
as pain that persists for longer than 6 months (Russo and
Brose, 1998), without regard to tissue healing. One type of
severe chronic pain for which neurostimulation techniques
are often used is neuropathic pain, which is defined by
the International Association for the Study of Pain as “pain
caused by a lesion or disease of the somatosensory system”
(Jensen et al., 2011). In the United States, an estimated 20.5%
of adults suffer from a chronic pain condition, with 10%
experiencing high-impact chronic pain that limits work and
diminishes quality of life (Yong et al., 2022). This figure
is mirrored by an estimated global prevalence of chronic
pain of 18% (Sá et al., 2019). Many patients experiencing
chronic pain are inadequately treated, with estimates ranging
from 40 to 77% depending on pain etiology and study
parameters (Deandrea et al., 2008; Majedi et al., 2019). Due
to its high prevalence worldwide, there is a clear and urgent
need for safe and effective therapies for managing chronic
pain.

Opioid analgesics

Prescription opioids have major drawbacks that limit
their tolerability, effectiveness, and safety. Opioids produce
disorienting psychoactive effects which can interfere with
daily activities. Opioid use can cause constipation which
produces significant discomfort. Repeated opioid use leads
to adaptations in opioid receptor signaling, such as receptor
desensitization, internalization, and augmented downstream
signaling pathways, which are thought to differentially
contribute to tolerance and limit effectiveness in treating pain
(von Zastrow et al., 2003; Gintzler and Chakrabarti, 2006;
Martini and Whistler, 2007). Activation of opioid receptors
in circuits that control breathing induces strong respiratory
depression that leads to death at high doses, with opioid-related
deaths rising steadily over the past 20 years and continuing
at epidemic levels (Rudd et al., 2016; Scholl et al., 2019).
Coupled with the rewarding aspects of opioid signaling that
reinforce drug consumption, respiratory depression is the most
dangerous aspect of opioid analgesics, as it is responsible for the
large number of opioid overdose deaths. There is thus an urgent
demand for novel effective and tolerable treatment paradigms
to lessen suffering of chronic pain patients, a mission that has
been recently prioritized by the US National Institutes of Health
(Collins et al., 2018).

Endogenous opioids

Opioid receptors are expressed throughout the nervous
system, including the cortex, midbrain, brainstem, spinal cord,
and in the presynaptic terminals of the primary afferents of
the dorsal root ganglion (le Merrer et al., 2009). Due to its
prominence as the primary target of opioid analgesics, most
studies of pain revolve around the µ-opioid receptor (MOR).
However, the δ- and κ-opioid receptors (DORs and KORs)
are also important in pain modulation (Fields, 2004; Corder
et al., 2018). MORs are activated by the endogenous opioid
neuropeptides enkephalin, beta-endorphin, and dynorphin.
Enkephalins, of which there are two forms that differ in
their C-terminal amino acid ([Met5]-enkephalin and [Leu5]-
enkephalin), also activate DORs with similar affinity (Toll et al.,
1998; Gomes et al., 2020). Beta-endorphin, which includes
[Met5]-enkephalin at its N-terminus, is usually considered
MOR-selective but can also activate DORs and KORs, with
notable signaling bias toward downstream G-protein signaling
compared to beta-arrestin signaling at MORs observed in vitro
(Gomes et al., 2020). Several opioid peptides that can be
described as short, C-terminally extended forms of [Met5]-
enkephalin have also been isolated from mammalian brains;
one of which (Met-enkephalin-Arg-Phe) has been recently
demonstrated to act at MORs when released endogenously
(Trieu et al., 2022). Several dynorphin peptides of different
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length and sequence are prominent in the mammalian nervous
system. Although dynorphins are usually considered KOR
agonists due their high affinity for KORs (especially the
longer forms), they can also activate MORs and DORs at
physiologically relevant concentrations (Toll et al., 1998; Gomes
et al., 2020).

It is generally assumed that endogenous opioids produce
pain relief through MOR activation. The most unequivocal
experimental manipulation in humans implicating endogenous
opioids in pain is the administration of naloxone, which is
a non-specific opioid antagonist that acts on MORs, DORs,
and KORs in a similar concentration range. Thus, endogenous
opioids may impart some of their antinociceptive effects
through activation of DORs and KORs, in addition to MORs.

Pain processing circuits and their
expression of opioid receptors

Pain information is processed by two broad pathways:
the ascending nociceptive pathway and the descending pain
modulatory system (DPMS). The ascending pathway begins
in peripheral nociceptors, which encode painful stimuli and
synapse onto projection neurons and interneurons in the
spinal cord dorsal horn (DH). Ascending pathways include
the spinothalamic, spinomesencephalic, and spinoreticular
tracts, which target the thalamus, midbrain areas such as
the periaqueductal gray (PAG), and the brainstem reticular
formation, respectively. Within the spinothalamic tract,
subdivisions that target the lateral thalamus and onto the
somatosensory cortices and insula are considered to mediate
the sensory-discriminative aspects of pain (i.e., the sensory
experience of pain involved in reflexive pain behaviors such as
limb withdrawal in response to noxious stimuli). Spinothalamic
subdivisions that target the medial thalamus and onto the
anterior cingulate cortex (ACC) are thought to contribute to
the affective percept of pain (i.e., the emotional-motivational
experience of pain which is non-reflexive). The descending
pain modulatory pathway begins in the PAG. Canonically,
ventrolateral PAG (vlPAG) projects to the rostroventral medulla
(RVM), which in turn sends projections to the DH to gate
spinal outflow of incoming pain information. A brief overview
of key brain areas that encode and modulate pain for the
understanding of neurostimulation-induced analgesia follows.
Schematics of the location, circuitry, and opioid receptor
expression in brain areas within the descending and ascending
pathways most relevant for current neurostimulation techniques
for the treatment of chronic pain are shown in Figure 1.

Descending pathway
Periaqueductal gray

The PAG, a heterogenous midbrain region known for
its roles in divergent behaviors such as defensive responses

and vocalization (Behbehani, 1995), represents the first major
hub in the DPMS. In the context of the pain, PAG receives
and consolidates top-down input from numerous cortical and
subcortical regions, including the prefrontal cortex (PFC),
ACC, anterior insula, and amygdala (Hardy and Leichnetz,
1981; Bingel et al., 2006; Lu et al., 2016; Cheriyan and
Sheets, 2018; Li and Sheets, 2018; Rozeske et al., 2018; Huang
et al., 2019; Zhu et al., 2021). In addition to the RVM and
nearby noradrenergic nuclei, the PAG displays broad ascending
efferent projections to brain regions such as the thalamus,
hypothalamus, and ventral tegmental area (Cameron et al.,
1995a,b; Linnman et al., 2012; Ntamati et al., 2018). Though
human tractography studies indicate some differences in PAG
cortical connectivity between rodents and humans, midbrain
and hindbrain connectivity is conserved, which is critical to our
understanding of neurostimulation techniques that may harness
descending pain modulatory mechanisms (Ezra et al., 2015;
Menant et al., 2016).

In the rodent, the anatomy and function of the PAG opioid
system has been extensively studied and recently reviewed by
Bagley and Ingram, 2020. The canonical circuit by which opioids
signal in the PAG follows a disinhibitory mechanism: MORs
are highly expressed on local vlPAG GABAergic interneurons
that provide tonic inhibition onto PAG projection neurons.
In the presence of endogenous or exogenous opioids, these
inhibitory inputs are suppressed by MOR signaling, leading to
the disinhibition of glutamatergic PAG-RVM projections (Lau
and Vaughan, 2014). The resultant activation of descending
GABAergic, opioidergic and serotonergic RVM neurons directly
inhibits spinal cord neurons to suppress nociception (Salas et al.,
2016; Weiwei et al., 2021).

In line with this hypothesis, vlPAG microinfusion of
glutamate receptor agonists and GABA receptor antagonists
produces antinociception in rodents (Moreau and Fields, 1986;
Jones and Gebhart, 1988; Jensen and Yaksh, 1989). More
recently, modern chemogenetic methods in behaving rodents
indicate that activation of glutamatergic vlPAG neurons or
inhibition of GABAergic neurons is antinociceptive, while
inhibition of glutamatergic neurons or activation of GABAergic
neurons is pronociceptive, although the opioid dependence
of this analgesia was not examined (Samineni et al., 2017).
Local opioid infusion in the PAG, especially vlPAG, has long
been noted for its strong antinociceptive properties in rodents
(Yaksh, 1979; Jones and Gebhart, 1988; Jensen and Yaksh, 1989).
MORs can also be found, however, in a subpopulation of
PAG projection neurons (Wang and Wessendorf, 2002; Bagley
and Ingram, 2020), suggesting that this accepted circuitry may
not account for non-canonical or bidirectional signaling from
PAG to RVM, which may involve competing facilitation and
inhibition. Indeed, about half of RVM-projecting PAG neurons
are actually hyperpolarized by MOR agonists (Osborne et al.,
1996; Umana et al., 2017).
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FIGURE 1

Overview of three neural structures that have been targeted by neurostimulation therapies. Schematic of ascending (purple) and descending
(blue) pain modulatory pathways (left). Middle: Macro level anatomy of the cortex, brainstem and spinal cord, showing key nodes in the
ascending and descending pain modulatory pathways. Connections between the brainstem and spinal cord via the RVM are indicated. Right:
Select synaptic connections and microcircuitry of the ACC, vlPAG and DH are shown. Mu-and delta-opioid receptors are expressed on cell
bodies and pre-synaptic terminals of neurons throughout the pain neuraxis to modulate ascending and descending pain pathways. ACC,
anterior cingulate cortex; RVM, rostroventromedial medulla; vlPAG, ventrolateral periaqueductal gray; LC, locus coeruleus; DH, dorsal horn.

Using functional imaging in humans, PAG activity has
been implicated in a multitude of functions, from pain-and
placebo-related conditions to homeostatic bodily processes
and the manifestation of negative emotional states in panic
and depression (Zhao, 2008; George et al., 2019). For a
comprehensive review of human functional imaging of PAG, we
recommend the meta-analysis provided by Linnman et al., 2012.
In brief, many studies have found pain-induced PAG activation
in response to noxious stimuli such as heat, cold, pressure, and
light touch on allodynic regions, as well as in chronic pain
conditions such as neuropathic pain. PAG fMRI indicates its
functional connectivity at rest with ACC and RVM (Kong et al.,
2010), and this ACC-PAG interaction correlates with attentional
analgesia and can be disrupted by opioid antagonists (Oliva
et al., 2022). Placebo conditioning in humans increases PAG
activity during the anticipation of a painful stimulus (Wager
et al., 2004) and induces coupling of ACC and PAG activity
that is sensitive to systemic naloxone (Eippert et al., 2009).
Due to the abundance of opioid receptors expressed, PAG is
thought to play a key role in pain modulation produced by
exogenous and endogenous opioids. In humans, PET imaging

of [11C]-carfentanil indicates a decrease in radiotracer binding
and therefore an increase in PAG endogenous opioid signaling
in response to pain (Zubieta et al., 2005) and placebo analgesia
(Scott et al., 2008).

Rostroventral medulla

Rostroventral medulla (RVM) receives inputs from PAG
and sends projections to the DH to modulate spinal signaling
through GABAergic, serotonergic, and opioidergic mechanisms
(Millan, 2002; François et al., 2017). RVM neurons are
categorized as ON, OFF, and neutral cells based on their
electrophysiological responses to noxious stimuli and during
nocifensive responses. RVM receives input from the PAG
and has recently been shown to receive synaptic connections
from the parabrachial nucleus (Chen et al., 2017). RVM
outputs relevant for pain modulation include the spinal cord
and midbrain and brainstem noradrenergic nuclei (Clark and
Proudfit, 1991a).

Like PAG, RVM is a known locus of exogenous and
endogenous opioids in pain modulation (Bagley and Ingram,
2020). RVM neurons express opioid receptors in serotonergic
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and non-serotonergic neurons that project to the spinal cord
(Gutstein et al., 1998; Wang and Wessendorf, 1999). Supporting
a role for endogenous opioids, all three opioid receptor types
are also expressed by terminals in the neuropil around RVM
neurons (Kalyuzhny et al., 1996; Gutstein et al., 1998). RVM
receives input from enkephalinergic terminals and some RVM
neurons are enkephalinergic, including a subset of spinally-
projecting GABAergic neurons (Khachaturian et al., 1983;
Zhang et al., 2015). In addition to enkephalins, RVM receives
dynorphinergic input from PAG and contains KOR-expressing
spinally-projecting neurons that inhibit pain and itch via
descending mechanisms (Nguyen et al., 2022). RVM may also
contain dynorphin-expressing neuronal cell bodies (Menetrey
and Basbaum, 1987). Application of opioids to the RVM leads
to the increase in activity of antinociceptive OFF-cells and
the decrease in spiking of pronociceptive ON-cells (Heinricher
et al., 1994) as well as strong antinociception in rodents
(Dickenson et al., 1979; Azami et al., 1982).

Noradrenergic cell groups

Rodent intrathecal pharmacological studies have long
implicated spinal noradrenergic signaling as a key component
in supraspinal influence on pain suppression (Yaksh, 1979;
Proudfit and Hammond, 1981; Hammond and Yaksh, 1984;
West et al., 1993). The locus coeruleus (LC) (A6), brainstem
(A5), and midbrain (A7) noradrenergic cell groups display
projections to the spinal cord in parallel with the RVM
(Westlund et al., 1983, 1984; Clark and Proudfit, 1991b,c, 1993;
Proudfit and Clark, 1991; Bruinstroop et al., 2012; Li et al.,
2016; Hirschberg et al., 2017) and receive anatomical input from
canonical DPMS nuclei PAG and RVM (Clark and Proudfit,
1991a; Bajic and Proudfit, 1999).

Locus coeruleus (LC) highly expresses opioid receptors (Pert
et al., 1976) and LC neuron activity is directly suppressed
by both endogenous and exogenous opioids (Williams et al.,
1982). Opioid receptor expression in LC, A5, and A7 neurons
appears to be limited to MORs (Williams and North, 1984;
North et al., 1987; Guajardo et al., 2017), although a subset
of presynaptic terminals in these areas have been shown to
express DORs (Arvidsson et al., 1995; van Bockstaele et al., 1997;
Holden et al., 1999; Erbs et al., 2015). Additionally, LC and
the pericoerulear region are densely innervated by enkephalin-
expressing terminals (Drolet et al., 1992). Microinfusion of
morphine directly into the LC is antinociceptive in rodents
(Bodnar et al., 1988).

Spinal cord

The spinal cord, especially the DH, is the ultimate target of
the DPMS. Release of neuromodulators and neurotransmitters
in the DH from descending sources modulates spinal outflow
of ascending nociceptive information arriving from the
periphery. Aδ and C nociceptive fibers terminate onto DH
superficial laminae I projection neurons that respond to high

threshold stimulation, as well as onto deeper layer V wide
dynamic range projection neurons. Most neurons in the
laminae II-III, however, are not supraspinally-projecting, but
instead are excitatory or inhibitory interneurons that signal
locally in the spinal cord. It is thought that descending
fibers from the midbrain and brainstem can terminate onto
primary afferent terminals, spinal interneurons, and spinal
projection neurons to modulate the spinal circuit response to
incoming pain information at multiple levels (Mannion and
Woolf, 2000; D’Mello and Dickenson, 2008). In addition to
neurotransmitters, spinal pain transmission is also modulated
by a complicated combination of other neurochemicals such
as neurokinins, CGRP, somatostatin, and opioids (Dickenson,
1995).

Endogenous opioid peptides and receptors play a substantial
role in spinal cord pain-related activity. The rat spinal cord
predominantly expresses MORs, but also exhibits some DORs
and very low KOR expression. Within each of these receptor
subtypes, all show predominant expression on presynaptic
terminals entering the DH, with a smaller proportion on
postsynaptic neurons (Besse et al., 1990; Dickenson, 1995).
Recordings from DH neurons during intrathecal morphine
application show that C and Aδ fibers that convey noxious
information are the most highly inhibited by morphine, while
the pain evoked activity of larger Aβ mechanosensory fibers is
only mildly opioid-modulated (Dickenson and Sullivan, 1986;
Heinke et al., 2011). Intrathecal application of enkephalin is
analgesic (Yaksh et al., 1977), presumably due to activation of the
same opioid receptors affected by morphine. Enkephalin- and
dynorphin-immunoreactive cell bodies and fibers are present in
the DH, suggesting that endogenous opioid peptides are released
in the DH locally and by descending mechanisms (Seybold and
Elde, 1980; Harlan et al., 1987; Marvizón et al., 2009; François
et al., 2017). However, parsing the contribution of local and
descending opioid release has been experimentally challenging.

Ascending pathway
Thalamus

The thalamus receives nociceptive information directly
from the spinal cord and relays it to the cortex (Ab Aziz and
Ahmad, 2006). The spinothalamic tract conveys information
about non-noxious and noxious stimuli to the lateral and
medial thalamus. The lateral thalamic ventral posterolateral
(VPL) and ventral posteromedial (VPM) nuclei project to
the somatosensory cortex and relay tactile, proprioceptive,
and nociceptive signals from the body and face, respectively
(Monconduit et al., 1999; Alitto and Usrey, 2003). Medial
thalamic nuclei receive additional nociceptive information from
ascending spinal tracts. These nuclei transmit information
thought to be related to the affective components of pain to
areas involved in emotional processing, such as the ACC and
the insular cortices (Friedman and Murray, 1986). A study in
rats found a functional correlation between medial thalamus and
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ACC activity during electrical stimulation, supporting the idea
that thalamus conveys information on the affective components
of pain through this projection (Shyu et al., 2004). Among the
medial thalamic nuclei, the mediodorsal nucleus (MD) is the
major source of inputs to the ACC. Also implicated in pain
processing is the medial thalamic nucleus submedius (Sm),
which projects to the ventrolateral orbital cortex (VLO) and
on to the PAG, a pathway that has been shown to mediate
antinociception (Zhang et al., 1995; Huang et al., 2021). Imaging
and electrophysiology studies in both animals and humans have
also found that, like ACC, the MD is hyperactive in chronic pain
conditions (Whitt et al., 2013; Meda et al., 2019). In mice with
neuropathic pain, optogenetic activation of MD inputs to ACC
induces behavioral avoidance and is considered aversive (Meda
et al., 2019).

A meta-analysis of published fMRI data in humans with
acute, experimentally-induced and chronic pain showed that
the thalamus is active in both conditions (Friebel et al., 2011).
Chronic pain patients show altered thalamic regional cerebral
blood flow (rCBF) and several imaging studies suggest that
altered thalamic activity is involved in the development of
neuropathic pain (Witting et al., 2001; Casey et al., 2003).
Studies in animal models of neuropathic pain have also shown
a correlation between chronic pain and changes in biochemistry
and immediate early gene expression in the thalamus (Narita,
2003).

Opioid receptors are widely expressed in the thalamus. High
levels of MOR mRNA are observed in several thalamic nuclei,
including the medial habenula, laterodorsal, paraventricular,
centromedial, and reuniens nuclei. DOR mRNA expression is
also observed in the thalamus, but KOR mRNA expression is
limited to fewer nuclei in the paraventricular and zona incerta
(Mansour et al., 1994; Erbs et al., 2015). In rodent brain slices,
thalamic output to ACC and dorsal striatum is suppressed in
the presence of a MOR agonist, indicating the sensitivity of
thalamic output to opioids and suggesting the attenuation of
noxious information relay to cortex during opioid treatment
(Birdsong et al., 2019). In rodents, pharmacological blockade of
MORs in the dorsal midline thalamus induced a fear memory
extinction deficit (Bengoetxea et al., 2020), while stimulation
of MORs caused increased locomotor activity associated with
decreased freezing extinction. These data suggest that targeting
dorsal midline thalamus MORs could have therapeutic effects on
stress-related and anxiety disorders. Animal research using both
electrophysiology and EEG points to the medial thalamus as the
primary site of morphine action (Linseman and Grupp, 1980).
Indeed, morphine microinfused in the medial or intralaminar
thalamic nuclei has been shown in a small number of rodent
studies to produce analgesia (Carr and Bak, 1988; Wang
et al., 2006; Erfanparast et al., 2015). Consistently, studies
in both humans measuring [11C]diprenorphine binding via
PET imaging and rodents have found lower opioid receptor
availability in chronic pain conditions in the thalamus, ACC,

posterior temporal and orbitofrontal cortices, as well as in the
posterior midbrain (Thompson et al., 2018).

Anterior cingulate cortex

The ACC refers to a subregion of frontal cortex with
heterogenous subdivisions that are differentially involved in
the affective, cognitive, and emotional components of pain
processing (Bush et al., 2000; Vogt, 2005; Heilbronner and
Hayden, 2016). In humans, ACC receives inputs from the
anterior insular cortex (aI) (Peltz et al., 2011; Wiech et al.,
2014) and amygdala (Sharma et al., 2020). It receives ascending
noxious sensory information mainly via the medial thalamic
nuclei (Xiao and Zhang, 2018). The ACC pain-aversive response
can be increased by inputs from the primary somatosensory
cortex on a subset of ACC neurons (Singh et al., 2020). Several
pieces of evidence suggest that projections from ACC to the
brainstem, specifically through the PAG or by way of the medial
thalamic nuclei, are important for the cortical contribution to
opioid analgesia and to placebo analgesia (Hardy and Leichnetz,
1981; Royce, 1983; Devinsky et al., 1995). ACC also sends
reciprocal projections to the amygdala (Allsop et al., 2018)
and insular cortex; while functional connectivity between these
regions is associated with negative affective states (Shao et al.,
2018), the role of this circuitry in the emotional and affective
components of pain remains to be determined.

Early single neuron recordings in cingulotomy patients
showed that ACC neurons respond selectively to mechanical
and thermal painful stimuli, but not to innocuous stimuli
(Hutchison et al., 1999). Likewise, single-unit recordings in
rabbits demonstrate that ACC neurons which respond to
noxious stimuli have diffuse receptive fields covering the entire
body (Sikes and Vogt, 1992). In non-human primates, ACC
neurons were reported to encode the integration of nociception,
specifically the anticipation of pain following cutaneous electric
stimulation (Koyama et al., 1998). Interestingly, ACC activation
has also been observed during placebo-induced analgesia
(Wager et al., 2004), though this activation may occur in a
different substructure than that activated by noxious stimuli.
Subsequent human fMRI and PET studies further confirm that
ACC is activated by noxious stimuli (Kwan et al., 2000) and
the response magnitude correlates with stimulus intensity and
changes in the perceived unpleasantness of painful stimuli (Vogt
et al., 1996; Rainville et al., 1997; Tölle et al., 1999). Together,
these findings confirm that nociceptive stimuli activate ACC
across species.

Arguing against a simple role for the ACC in nociception,
patients with ACC lesions experience reduced pain-related
unpleasantness and reduced avoidance of noxious stimuli, but
their ability to identify intensity and location of noxious stimuli
remains intact (Foltz and White, 1962; Ballantine et al., 1967;
Wayne Hurt et al., 1974). Similarly, microinjection of excitatory
amino acids into the ACC in naïve rodents elicits conditioned
place aversion without altering pain thresholds (Johansen and
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Fields, 2004), while ACC lesions eliminate the aversiveness of
neuropathic pain but not stimulus-evoked hypersensitivity (Qu
et al., 2011). These findings argue against the role of ACC in
nociceptive processing per se. Instead, several studies in both
humans and rodents have shown that ACC contributes to the
unpleasantness of pain (Seminowicz et al., 2009; Fuchs et al.,
2014; Bliss et al., 2016). Functional and structural alterations
of ACC, such as hyperactivation and reduction of gray matter,
have been observed in neuropathic patients and are associated
with emotional and psychological pain (Rodriguez-Raecke et al.,
2009; Bushnell et al., 2013).

Early human studies reported high [3H]diprenorphine
binding in the ACC of healthy subjects but a reduction in
patients with central post-stroke pain (Willoch et al., 1999),
suggesting that opioids can directly impact aspects of pain
processing by binding ACC opioid receptors (Vogt et al., 1995;
Jones et al., 1999). Further receptor-imaging studies confirm
the involvement of ACC in opioid-dependent analgesia and,
intriguingly, suggest a role in placebo analgesia (Petrovic et al.,
2002). PET studies performed with [11C]Carfentanil observed
endogenous ACC opioid release during placebo analgesia and
the consequent endogenous opioid-induced ACC activation
correlated with a reduction in pain affect during a sustained
painful stimulus (Zubieta et al., 2001). Consistent with this,
rodent ACC morphine microinjection selectively suppresses
pain affect but not withdrawal responses (LaGraize et al., 2006;
Gomtsian et al., 2018).

Opioid receptors are abundantly expressed in the ACC, with
MOR expression most prominent in superficial layers (Vogt
et al., 1995). MORs are expressed by both cortical neurons
and afferent axons from subcortical regions. Presynaptic MORs
are predominant on thalamic axonal projections to the ACC
(Vogt et al., 1995). This distribution pattern led to the idea
that endogenous opioids can regulate nociception by inhibiting
the thalamocortical afferents in the ACC or by modulating the
activity of interneurons and projection neurons (Navratilova
et al., 2015). This model has been recently expanded upon by
examining the thalamo-cortico-striatal circuit (Birdsong et al.,
2019), whose involvement in pain processing was first described
by Rainville et al. (1997). Thalamic inputs to ACC are potently
inhibited by MOR agonists, but ACC inputs to dorsomedial
striatal neurons are not affected. In contrast, DOR agonists
disinhibit ACC pyramidal neurons and allow for the excitation
of ACC inputs onto striatal medium spiny neurons. These
mechanisms are mediated by different receptors and suggest
that opioid-mediated attenuation of nociceptive information
transfer to ACC from thalamus may be a primary mechanism by
which opioids reduce the negative affective component of pain.

Prefrontal cortex

While most frequently studied in the context of executive
cognitive function, recent evidence has begun to implicate
the PFC in processing acute nociceptive stimuli and in the

development of chronic pain. Within the PFC, the dorsolateral
PFC (dlPFC) is considered a master regulator of higher order
cognitive functions and is also involved in the cognitive and
affective modulation of pain (Lorenz et al., 2003), including
placebo analgesia (Petrovic et al., 2002). Functional imaging
in humans with acute and chronic pain reveal that PFC
activity correlates with the activity of pain-implicated regions
above, including ACC, insula, and thalamus (Apkarian et al.,
2005). Further, it has been posited that PFC-PAG output and
reciprocal PFC connections with the amygdala play a role in
antinociception, whereas thalamocortical PFC input and PFC
output to the basal ganglia may contribute to pain chronicity
(Ong et al., 2019). Previous fMRI studies have found that the
magnitude of placebo-induced dlPFC activity correlates with an
increase in PAG activity, supporting the idea that this circuit is
involved in expectancy-based placebo (Wager et al., 2004, 2007).
The prelimbic cortex in rodents is often included in definitions
of the rodent PFC, and while not considered homologous to
dlPFC in primates (Laubach et al., 2018), recent work has
revealed a role for this structure in pain processing. Specifically,
inflammatory pain decreases both basal firing rate and evoked
nociceptive responses in prelimbic neurons (Dale et al., 2018),
while inhibition of prelimbic neurons and their outputs to the
nucleus accumbens enhances pain responses (Zhou et al., 2018).

The effects of opioids in the PFC are less well-characterized.
Rodent PFC neuronal activity has been shown to be opioid
sensitive (Williams and Zieglgänsberger, 1981; Giacchino and
Henriksen, 1998), while in humans, PET imaging implicates
PFC endogenous opioid signaling in placebo-induced analgesia
(Wager et al., 2007). Caution is required, however, when
attempting to draw parallels between the rodent and human
PFC as expansion over the course of evolution has led to
more distinct functions and subregions within the human
PFC as compared to the rodent (Carlén, 2017; Laubach et al.,
2018), with rodents lacking a specific homologue of the dlPFC.
Nonetheless, important findings for the implications for PFC
in pain signaling may still be gleaned by carefully designing
and interpreting experiments and corroborating findings across
experimental models.

Neurostimulation therapies for
chronic pain

It is now well-established that the widespread adoption
of prescription opioids for the treatment of chronic pain has
been instrumental in driving the ongoing opioid epidemic.
The continuing burden of untreated chronic pain on patients
underscores the need for safe and effective pain therapies.
Neurostimulation therapies that target peripheral or central
pain mechanisms are promising alternatives for managing
medically refractory pain. However, these therapies are
hampered by inconsistent pain relief across patients and
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frequently diminishing analgesic effects over time. Across all
neurostimulation therapies, we do not currently understand the
physiological mechanisms of action by which these therapies
provide pain relief. A clear understanding of the mechanisms of
stimulation-induced analgesia is crucial to improve the efficacy
of these therapies.

Overview of neurostimulation for
chronic pain

Neurostimulation therapies (Figure 2) are non-addictive,
reversible strategies for managing intractable chronic
pain. Neurostimulation therapies aim to modulate neural
activity through targeted delivery of electrical stimuli to
specific regions of the nervous system. In the clinical
context, the term “neuromodulation” commonly refers
to electrical neurostimulation therapies, but may also

refer to targeted drug delivery (e.g., intrathecal pumps),
radiofrequency ablation therapies, or modulation of neural
activity via ultrasound, which are outside the scope of
this review. We use the terms “neuromodulation” and
“neurostimulation” interchangeably to describe therapies
which use electrical stimulation of the nervous system to treat
neurological disorders.

Neurostimulation therapies range in invasiveness.
Non-invasive therapies, such as transcranial direct current
stimulation (tDCS), place electrodes on the scalp or magnetic
coils proximal to the head. Invasive neurostimulation therapies,
such as deep brain stimulation (DBS) or spinal cord stimulation
(SCS), involve placing small electrode arrays in the body
near the neural structure of interest, which are connected to
implantable pulse generators. After electrode placement, a
clinician programs the stimulus pulse (i.e., sets the stimulus
pulse amplitude, duration, and frequency) to maximize
therapeutic effect while minimizing unwanted side effects.

FIGURE 2

Overview of neurostimulation modalities for the treatment of chronic pain. (Left) Schematic of application of neurostimulation devices for the
treatment of chronic pain. (A) DBS electrodes are surgically targeted to specific brain nuclei (i.e., ACC, midline thalamus, PAG) with an external
pulse generator. Following optimization of stimulation settings, the pulse generator and leads are internalized under the clavicle to deliver
electrical stimulation to the brain. (B) With tDCS, small amounts of electric current are applied externally via electrodes held in place against the
scalp. (C) rTMS is applied with an external electromagnetic coil to generate an electromagnetic field in the underlying cortical regions. Both
tDCS and rTMS are applied for 20–60 min over repeated sessions without requiring anesthesia. (D) SCS employs implanted electrodes in the
epidural space to apply electrical current to the spinal cord. Similar to DBS, SCS patients undergo a trial period to ensure adequate pain relief
before the pulse generator and leads are internalized in the posterior flank. (Bottom) For all modalities, several properties of the stimulus
waveform can be modulated, including the waveform shape, pulse amplitude, duration, and frequency, as well as whether it is applied
continuously, in regular burst patterns or in a closed-loop manner in response to neural activity or patient control. DBS, deep brain stimulation;
tDCS, transcranial direct current stimulation; rTMS, repeated transcranial magnetic stimulation; SCS, spinal cord stimulation; IPG, implanted
pulse generator.
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These stimulation parameters may be adjusted at follow-up
visits to ensure consistent therapeutic benefit.

Neurostimulation has emerged in the past 60 years as
an effective therapeutic approach to treating pain and other
disorders (Bittar et al., 2005; Moisset et al., 2020). Based on
the premise that pain percept is encoded by aberrant patterns
of neural activity, the objective of neurostimulation is to alter
neural activity in a way that minimizes the experience of pain.
Melzack and Wall’s Gate Control Theory of Pain formed the
scientific basis for the first modern uses of electrical stimulation-
induced pain relief in humans (Melzack and Wall, 1965).
This theory suggests that driving the activity of large-diameter
afferents may produce pain relief by increasing the activity of
inhibitory interneurons in the spinal cord DH. Only 2 years
after the publication of the Gate Control Theory, Wall and
Sweet demonstrated analgesia via peripheral nerve stimulation
(Wall and Sweet, 1967), and Shealy and colleagues demonstrated
analgesia via electrical stimulation of the dorsal columns of the
spinal cord (Shealy et al., 1967). Conventional neurostimulation
theory suggests that extracellular electrical stimulation induces
action potentials (APs) in myelinated axons at lower stimulus
amplitudes than other neural structures (e.g., non-myelinated
axons, cell bodies) (Rattay, 1986, 1999; McIntyre and Grill,
1999). Therefore, electrical stimulation of peripheral nerves and
the dorsal columns likely provides analgesia by driving the
activity of myelinated tactile afferent axons and feed-forward
pain-gating circuitry (Mendell, 2013; Braz et al., 2014; Duan
et al., 2018).

The past several decades have produced many innovations
in stimulation-induced analgesia. Therapies such as spinal cord
stimulation (SCS) are most commonly indicated for neuropathic
limb pain conditions, such as failed back surgery syndrome and
complex regional pain syndrome. Modern neurostimulation
approaches have also been investigated to treat central chronic
pain syndromes, such as post-stroke and phantom limb pain
(Bittar et al., 2005; Moisset et al., 2020). Furthermore, novel
stimulation targets (e.g., deep brain stimulation (DBS) of the
ACC (Spooner et al., 2007)) and stimulus pulse paradigms
[e.g., burst SCS (de Ridder et al., 2013)] are hypothesized
to modulate the neural activity associated with the affective
component of pain, rather than affecting circuits associated
with the sensory component (e.g., the spinal cord DH).
Recent years have seen numerous promising innovations in
neurostimulation for pain, and these modalities of exogenous
electrical stimulation likely have broad effects across the pain
neuraxis, which are not limited to circuits being directly
stimulated. This property poses additional challenges to
understanding the specific therapeutic mechanisms underlying
each neurostimulation technique. Therefore, understanding
how different neurostimulation therapies affect specific circuits,
such as opioidergic circuits, is crucial to understanding the
mechanisms that will ultimately be necessary for optimizing the
design and implementation of each therapy.

Spinal cord stimulation

Spinal cord stimulation (SCS) is the most common
neurostimulation therapy, with more than 50,000 SCS systems
implanted each year (Sdrulla et al., 2018). SCS is primarily
indicated for chronic neuropathic pain of the trunk or limbs
which is refractory to conventional medical management
(Kumar et al., 2007). SCS is achieved by implanting an electrode
array in the dorsal epidural space, either via percutaneous
implantation of a cylindrical electrode array, or by implanting
a paddle electrode array which requires a laminectomy (Sears
et al., 2011). Traditionally, SCS is applied with stimulus pulse
frequencies between 40 and 60 Hz, pulse durations between
200 and 600 µs, and pulse amplitudes on the order of
several Volts or milliamps for voltage-and current-controlled
stimulation, respectively (Kumar R. et al., 1998; Kapural et al.,
2015; Malinowski et al., 2020). Recent innovations in SCS
technology apply novel stimulus pulse paradigms, particularly
with regards to stimulus pulse frequency (Lempka and Patil,
2018). However, few studies have provided evidence regarding
the involvement of endogenous opioid mechanisms in analgesia
achieved with these novel SCS therapies. Therefore, we will
focus our discussion on the possible opioidergic mechanisms of
conventional SCS. Furthermore, to the extent that peripherally-
targeted neurostimulation therapies such as peripheral nerve
stimulation (PNS) (Helm et al., 2021) and dorsal root ganglion
stimulation (DRGS) (Deer et al., 2017) engage the CNS,
they are hypothesized to directly stimulate similar neural
targets as conventional SCS (Lin et al., 2020; Graham et al.,
2022). Accordingly, in addition to potentially modulating
action potential propagation in nociceptors, these therapies
likely engage similar central analgesic mechanisms as with
conventional SCS.

Conventional SCS applied with pulse frequencies between
∼40 and 60 Hz evokes paresthesia (i.e., tingling or pins-
and-needles sensations) in the area of the body targeted by
stimulation. The goal of stimulator programming is to overlap
these evoked paresthesias with the patient’s painful region
(North et al., 1991). Conventional SCS induces bidirectionally
propagating action potentials (APs) in Aβ axons in the dorsal
columns (Struijk et al., 1991; Holsheimer, 2002; Zhang et al.,
2014; Lempka et al., 2020; Rogers et al., 2022). Antidromically
propagating APs enter the dorsal horn caudal to the spinal
level where SCS is applied, where they likely provide pain relief
by activating feed-forward pain-gating circuitry in the spinal
cord. Orthodromically propagating APs are likely responsible
for SCS-induced paresthesia (Moffitt et al., 2009) and enter
the brain at the brainstem dorsal column nuclei. It is possible
that SCS simultaneously engages the endogenous opioid system
both via orthodromically propagating APs to the brain and
antidromically propagating APs into the DH.

Several brain structures related to the endogenous opioid
system have been implicated in the supraspinal mechanisms
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of action of SCS, such as the PAG, RVM, and thalamic VPL
nucleus (Sivanesan et al., 2019). Many studies have examined the
role of the DPMS, particularly the GABAergic and serotonergic
components, in SCS-induced analgesia (Cui et al., 1996; Song
et al., 2009, 2011). Early work in four patients suggested
that SCS-induced analgesia is not reversed by naloxone
administration, suggesting opioid-independent mechanisms
(Freeman et al., 1983). However, this study examined a limited
number of patients, and subsequent preclinical work has
demonstrated RVM activation during SCS, a structure known to
be crucial in endogenous opioid release (Dejongste et al., 1998),
leaving the role of opioidergic circuits in SCS-induced analgesia
unclear.

In more recent preclinical work, SCS applied to the cervical
spinal cord caused dynorphin release in spinal segments caudal
to the stimulation site (Ding et al., 2008), suggesting a potential
role for segmental opioid release in SCS. In addition, SCS-
induced analgesia in rats can be abolished by systemic naloxone,
with both SCS-frequency and naloxone-dose dependent effects
(Sato et al., 2013). A naloxone dose of 3 mg/kg/h reversed
the effects of 4 Hz SCS, but the dose had to be increased
to 10 mg/kg/h to reverse the analgesic effects of 60 Hz SCS.
Interestingly, administering the DOR antagonist naltrindole
abolished analgesia induced by 60 Hz but not by 4 Hz SCS.
Finally, a recent preclinical study simultaneously applied SCS
and the cholecystokinin (CCK) receptor antagonist proglumide
(Inoue et al., 2017). While CCK receptor antagonists typically
enhance opioid-dependent analgesia, co-application of SCS and
proglumide did not provide enhanced analgesia compared to
a single therapy alone. Taken together, these data present a
murky picture regarding opioid-dependent analgesia during
SCS, warranting continued study into both the involvement
of endogenous opioids in SCS-induced analgesia and how
SCS pulse parameters influence the engagement of these
mechanisms.

Deep brain stimulation

Deep brain stimulation (DBS) is a surgical therapy whereby
electrode arrays are implanted in discrete nuclei in the brain.
Current is then passed through these electrode contacts through
a fully implanted pulse generator to manipulate brain activity.
Due to its invasiveness, DBS is typically reserved as a late-stage
intervention after pharmacological and behavioral treatments
have proven ineffective. Brain regions targeted for DBS are
often historically identified as sites at which surgical lesions
provide some relief for a disorder. Relative to ablative surgery,
DBS is reversible and individually programmable, enabling
stimulation parameters to be titrated for each patient. Although
most commonly used for treatment of movement disorders,
indications for DBS have recently expanded to include major
depressive disorder, obsessive compulsive disorder, Tourette

syndrome, cluster headache, and chronic pain. We focus
our discussion on three brain sites that have been targeted
clinically for pain relief and highlight evidence for involvement
of opioidergic mechanisms in the therapeutic effects of DBS
applied to these brain targets.

Periaqueductal gray-deep brain stimulation
When targeting PAG, DBS electrodes are placed bilaterally

or contralaterally to the site of pain. Some studies indicate
that even unilateral electrode placement provides a largely
generalized pain relief described as a feeling of warmth and
analgesia (Hosobuchi et al., 1977; Boccard et al., 2015). Across
multiple case studies, PAG-DBS has proven effective in patients
with “nociceptive pain” (Kumar and Wyant, 1985; Levy et al.,
1987; Gybels and Kupers, 1990; Kumar et al., 1990), referring
to pain generated through ascending dorsal horn input, such
as peripheral neuropathic pain, spinal cord injury, plexopathy
or phantom limb pain (Prévinaire et al., 2009; Subedi and
Grossberg, 2011). Conversely, PAG-DBS exhibits much lower
efficacy in centrally generated pain (e.g., post-stroke pain or
headache) (Levy et al., 1987; Kumar et al., 1990; Gray et al., 2014;
Kashanian et al., 2020). PAG-DBS was largely abandoned in
2000 after two large scale clinical trials (206 total patients) failed
to meet clinical endpoints (Coffey, 2001). However, several
design and interpretation issues have been raised concerning
these studies, including the absence of randomization or placebo
control, heterogeneity of the initial pain condition, and attrition
of patients from the study which reduced statistical power to
detect treatment differences (Shirvalkar et al., 2020). Critically,
most data on PAG-DBS has been collected in case series or small
clinical trials, without proper randomization or double blinding,
the latter of which is arguably unfeasible due to PAG-DBS-
induced paresthesia. Though its popularity has decreased, PAG-
DBS is still used clinically to treat patients who are treatment
refractory with good overall outcomes (Boccard et al., 2013).
In the future, patient selection will be a key focus point for
refinement to optimize treatment efficacy (Farrell et al., 2018;
Frizon et al., 2020).

The therapeutic effects of PAG-DBS are frequency-
dependent, with frequencies between 5 and 25 Hz being more
efficacious than frequencies above 50 Hz (Nandi et al., 2002;
Hentall et al., 2016). Interestingly, patients tended to prefer
stimulation frequencies as low as 0.67 Hz (Jermakowicz et al.,
2017) and between 5 and 35 Hz (Nandi and Aziz, 2004)
when given the opportunity to blindly tune the parameters
of their own DBS. It is interesting to note that pain-relieving
stimulation in the 5 to 25 Hz range is within the physiological
firing frequency of PAG neurons (Yu et al., 2021) and stands in
sharp contrast to frequencies classically used to treat movement
disorders, which are typically above 100 Hz (Creed, 2018). This
supports the interpretation that intermittent activation of PAG
descending projections with DBS applied at a physiological
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firing rate could induce its effects through downstream opioid
release.

In rodents with nerve injury, electrical stimulation of vlPAG
was effective in reducing spontaneous pain behaviors and
mechanical allodynia even 30–40 min after stimulation (Lee
et al., 2012). A similar study using acute noxious stimuli found
that unilateral vlPAG stimulation produces significant bilateral
analgesia in rodents (Wang N. et al., 2016). Both studies state
that the mechanism of this analgesia is still unclear, although
opioids have been identified as a probable factor due to the
concentration of MORs in PAG (Wang and Wessendorf, 2002;
Loyd et al., 2008) and the finding that naloxone reverses some of
the PAG stimulation-induced analgesia (Mayer et al., 1971; Akil
et al., 1976; Morgan et al., 1991). Further downstream, the role
of endogenous opioid release in the RVM for antinociception
achieved by pharmacological and electrical activation of PAG
has been assayed in preclinical models. PAG microinjection
of GABA receptor antagonists (to cause PAG disinhibition),
morphine, and non-opioid painkillers leads to antinociception
that can be blocked by RVM microinfusion of naloxone
(Llewelyn et al., 1984; Aimone and Gebhart, 1986; Kiefel et al.,
1993; Roychowdhury and Fields, 1996; Vasquez and Vanegas,
2000). The role of endogenous opioid activity in the spinal
cord with activation of DPMS by PAG and RVM electrical
stimulation is still unclear; these stimulation interventions
produce antinociception that can be blocked by intrathecal
naloxone in some studies, while others have found a lack of an
effect on antinociception by spinal opioid antagonism (Aimone
et al., 1987; Miller and Proudfit, 1990; Morgan et al., 1991).

Clinical studies also suggest a role of endogenous opioids in
PAG-DBS-induced analgesia. Early studies found that treatment
with systemic naloxone blocks the analgesic effects of PAG-DBS
in humans (Adams, 1976; Hosobuchi et al., 1977). A more recent
study investigating dlPAG DBS-produced local field potentials
also found that naloxone reversed the analgesia while increasing
the 30–60 Hz band power measured at the same site, but this
experiment was restricted to only two human subjects (Pereira
et al., 2013). However, in a study of 45 patients with electrodes
implanted in the PAG or periventricular gray (PVG), the
attenuation of PAG-DBS pain relief by naloxone was similar in
magnitude in both active and sham DBS conditions, suggesting
the effect of naloxone may not specifically block PAG-DBS, but
may instead enhance subjective pain ratings independent of
stimulation (Young and Chambi, 1987). A study utilizing PET
imaging to observe PAG opioid release found an increase in
endogenous release during DBS, but it was not correlated with
subjective analgesia (Sims-Williams et al., 2017). Furthermore,
upon naloxone treatment, analgesia was still observed, with no
significant effect to ongoing pain scores.

Additionally, it has been reported that patients may develop
tolerance to chronic PAG-DBS stimulation and cross tolerance
to opioids such that morphine becomes less effective after
chronic PAG stimulation, suggesting occlusion of descending

pain modulatory pathways and endogenous opioid release
(Hosobuchi, 1986). However, other studies of PAG-DBS in
humans have found tolerance to stimulation in other brain
regions that are not presumed to function through endogenous
opioid signaling and a lack of cross tolerance to morphine in
chronic PAG-DBS (Young et al., 1985; Young and Chambi,
1987; Duncan et al., 1991). Finally, initial reports of endogenous
opioid release driven by PAG stimulation in humans found
increased enkephalin and beta-endorphin in cerebrospinal fluid
of patients that had a positive, pain-relieving response to
stimulation (Akil et al., 1978; Hosobuchi et al., 1979). Follow-up
studies, however, found that this effect may be due to artifacts
in immunoreactivity assays caused by contrast media (Dionne
et al., 1984; Fessler et al., 1984). As a result of these collective
studies, involvement of endogenous opioid peptides in PAG-
DBS-driven analgesia remains unresolved.

Thalamus-deep brain stimulation
Compared to PAG-DBS, DBS in the sensory thalamus is

thought to be more effective for deafferentation pain (Bittar
et al., 2005), which is caused by damage to the peripheral or
central nervous system that causes the loss of normal incoming
pain signals. Examples of this type of pain include post-
stroke pain, spinal cord injury, and facial anesthesia dolorosa
(Hosobuchi et al., 1973; Adams et al., 1974). The theory behind
the effectiveness of sensory thalamus DBS for this type of
pain is that deafferentation pain is caused by a lack of normal
proprioceptive information reaching the thalamus, which is
combated by direct stimulation of VPL and VPM (Duncan et al.,
1991). Additionally, stimulation may modulate the altered firing
patterns in the sensory thalamus that are found in chronic pain
patients (Dostrovsky, 2000; Moisset et al., 2020). When targeting
sensory thalamus, stimulating electrodes are typically placed
contralaterally and somatotopically according to the location of
the painful area, and stimulation produces paresthesia in that
area that masks pain (Hosobuchi et al., 1973; Boccard et al.,
2015; Moisset et al., 2020). Comparatively, studies of sensory
thalamic-DBS often use higher stimulus pulse frequencies than
PAG-DBS, with frequencies falling between 50 and 100 Hz
(Bittar et al., 2005; Moisset et al., 2020).

Deep brain stimulation (DBS) of medial thalamic
centromedian-parafascicular nuclear complex (CM-Pf)
has been attempted in humans under the assumption that
this stimulation may activate descending pain modulatory
opioidergic or non-opioidergic mechanisms, as well as drive
a sensory feedforward loop with cortical targets (Andy, 1980;
Duncan et al., 1991). While this manipulation appeared to be
effective in a small cohort of patients with painful dyskinesia
(Andy, 1980), other studies have produced variable results
on reported painfulness and report a variety of potentially
unpleasant side effects (Thoden et al., 1979; Hollingworth
et al., 2017). Interestingly, a recent case study in 3 patients
refractory to conventional neuromodulatory therapies found
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potential therapeutic benefits of dual stimulation of CM-Pf
and PAG/PVG using a single electrode at different frequencies
(Hollingworth et al., 2017).

The different electrical stimulation parameters of successful
PAG-and thalamic-DBS strongly suggest that these two
therapies exert their effects through distinct neural mechanisms.
Early neurostimulation trials provide further evidence for this
distinction. Specifically, responsiveness to morphine is used
throughout the literature to select patients for PAG-or thalamic-
DBS. Patients that respond moderately well to morphine are
selected for PAG-DBS, while those that do not respond well
to high doses of morphine are still able to find pain relief
via thalamic-DBS whereas PAG-DBS would be ineffective
(Hosobuchi, 1986). Along these lines, centrally generated pain is
attenuated by thalamic-DBS, whereas PAG-DBS is not effective.
These findings, coupled with the observation of low-threshold
spontaneous discharge patterns in midline thalamic nuclei
associated with pain states (Andy, 1983), lead to the hypothesis
that thalamic-DBS produces a “functional lesion” by inducing
depolarization block and inactivating low threshold discharging
neurons surrounding the stimulation electrode. This “functional
lesion” mechanism has also been proposed to account for the
anti-dyskinetic effects of subthalamic nucleus-DBS applied for
Parkinson’s disease, which shows pathological burst activity
that correlates with onset of motor symptoms (Lobb, 2014). If
an analogous mechanism of thalamic-DBS were confirmed, it
presents the opportunity to trigger thalamic-DBS in response to
nociceptive-related spontaneous discharge patterns of thalamic
nuclei. Such closed-loop stimulation protocols have been
increasingly adopted with STN-DBS for Parkinson’s disease and
have the advantage of reduced off-target effects and extended
battery life by requiring only intermittent stimulation.

Anterior cingulate cortex-deep brain
stimulation

In contrast to PAG and thalamus which have been targeted
with electrical stimulation for pain relief for over 30 years, DBS
of dorsal ACC (dACC) has only recently emerged as treatment
for neuropathic pain. In an initial case report (Spooner et al.,
2007), a single patient with neuropathic pain resulting from a
spinal cord injury received bilateral dACC-DBS electrodes and
a unilateral electrode in the PVG. In this patient, DBS applied
to the dACC at 130 Hz provided superior pain relief, mood
improvement, and reduction in medication usage compared to
PVG-DBS applied at 20 Hz. This treatment resulted in reduced
pain as assessed via visual analog scale (VAS) pain ratings
and pain medication usage. This patient also showed improved
mood in terms of reduction of fear, anxiety, and depression,
suggesting that dACC stimulation works at least in part by
targeting pain affect.

Anterior cingulate cortex (ACC) stimulation in rodents
can produce diverse behavioral effects depending on stimulus
pulse frequency and which neuronal subtypes are stimulated.

Unilateral electrical stimulation of the rodent ACC with
intermittent trains of 100 Hz pulses (200 ms inter-train
interval) induced fear-like freezing responses (Tang et al.,
2005). Optogenetically activating ACC Thy1 + neurons
at 20 Hz induced anxiodepressive behaviors, but did not
increase the hindpaw withdraw threshold to mechanical stimuli
(Barthas et al., 2015). Optogenetic activation at 10 Hz of
CaMKII + excitatory ACC neurons (which partially overlap with
the Thy1 + population) increased paw withdrawal thresholds
in naïve mice, while inhibition reversed inflammatory pain-
induced behavior (Kang et al., 2015). Further, nociceptive
responses have been demonstrated to be attenuated in rodents
following optogenetic and chemogenetic activation of subsets
of ACC interneurons (Gu et al., 2015; Kang et al., 2015; Shao
et al., 2021). These findings suggest that heterogeneity in both
function, topography, and cellular architecture contribute to the
diverse behavioral responses produced by ACC stimulation.

Clinical applications of ACC-DBS are typically applied at
stimulation frequencies of approximately 130 Hz and stimulus
pulse widths around 450 µs (Boccard et al., 2014, 2017). The
efficacy of ACC-DBS has been shown for patients suffering
from failed back surgery syndrome, poststroke pain, brachial
plexus injury, cervical spinal cord injury, head injury, and
pain of unknown origin (Boccard et al., 2014). Interestingly,
some patients receiving ACC-DBS do not report significant
reductions in pain as measured by numerical rating scales.
However, many ACC-DBS patients report improvements in
metrics related to the affective component of pain as well as
overall improvements in quality of life and describe their pain as
being “separate from them” or “not distressing” (Boccard et al.,
2017).

Due to its novelty, there are few published studies on
ACC-DBS mechanisms of action. However, the ACC projects
to many pain matrix structures, such as amygdala and PAG
(Shi et al., 2022). Therefore, it is possible that the analgesic
effects of ACC-DBS are due to postsynaptic DPMS engagement.
MORs are present both on local ACC cells and afferents
(particularly from the thalamus) terminating in the ACC (Vogt
et al., 1995). Furthermore, it is understood that terminating
afferents are highly excitable near DBS electrodes (Bower
and McIntyre, 2020). This suggests that local opioid release
could occur during ACC-DBS to either engage the DPMS or
suppress thalamocortical relay of noxious sensory information.
Preclinical and clinical data are needed to test these hypotheses.

Motor cortex stimulation

For more superficial brain targets, some researchers and
physicians have opted for intracortical or epidural stimulation.
Using this method, a craniotomy is performed, and electrodes
are placed on the surface of the brain in the epidural space.
Intracortical stimulation (ICS) is used for patients with chronic
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neuropathic pain that cannot be treated by medication and
does not respond to other forms of stimulation, such as post-
stroke pain (Moisset et al., 2020). For chronic pain patients, ICS
is mostly performed on the surface of the motor cortex in a
procedure called intracortical motor cortex stimulation (iMCS).
iMCS is typically applied at stimulus frequencies between 30
and 90 Hz and requires constant, continuous stimulation via an
implanted device for patients to continue the therapy at all times
(Fontaine et al., 2009; Lefaucheur et al., 2009). The stimulus
pulse amplitude is set at 80% of the amplitude necessary to elicit
a motor response, but is generally imperceptible to the patient
(Moisset et al., 2020).

Primary motor cortex (M1) is not particularly rich in
endogenous opioid peptides or receptors. Rat M1 exhibits
radiolabeled ligand binding at MORs at intermediate levels in
layers I and VI, but the level of MOR expression is much
less than in nearby limbic cortical areas. Ligand binding to
DORs is also very low (Lewis et al., 1983). Similarly, M1
dynorphin and enkephalin immunoreactivity reveals extremely
sparse expression of these endogenous opioids (Fallon and
Leslie, 1986). However, because M1 stimulation is thought to
activate the DPMS, endogenous opioid signaling in downstream
circuits could still be an important mechanism of action. In
the rat, iMCS has been shown to effectively activate M1 layer
V output neurons via transsynaptic mechanisms, underscoring
a mechanism by which superficial electrodes can affect motor
cortex output (Hussin et al., 2015). In rodents, iMCS activates
PAG and decreases activity in the DH, as assessed by recordings
of neuronal activity and immunohistochemistry for immediate
early genes, such as cFOS (Pagano et al., 2012; França et al.,
2013). Some of the strongest evidence implicating endogenous
opioid signaling in M1 stimulation-driven analgesia arises from
the finding in rats that the resulting analgesia is consistently
blocked by systemic naloxone (Fonoff et al., 2009). Further, PAG
naloxone pretreatment in rats blocked the inhibition of sensory
evoked potentials in the somatosensory cortex induced by M1
stimulation (Chiou et al., 2013). These preclinical data suggest
that release of endogenous opioids may be a key component of
iMCS-induced analgesia.

Exactly how M1 stimulation activates the DPMS remains
unclear. In rats, iMCS activates striatum, cerebellum and some
thalamic areas, while responses to noxious stimuli in VPL, S1,
and PFC are inhibited (Jiang et al., 2014; Kim et al., 2016).
In humans, functional imaging and electrophysiological studies
have revealed that iMCS rapidly activates lateral thalamus.
Hours later, activation of medial thalamus, ACC, orbitofrontal
cortex (OFC), and PAG is observed. The PAG receives input
from ACC and OFC, and functional connectivity between ACC
and PAG in particular is associated with pain suppression in the
contexts of opioid analgesia, placebo analgesia, and attentional
analgesia (García-Larrea et al., 1999; Peyron et al., 2007). It is
plausible to hypothesize that the prefrontal pain modulatory
network engages the PAG, yet it remains unclear precisely how

M1 stimulation recruits the prefrontal cortex and how this
unfolds on such a slow timescale. The precentral gyrus in the
macaque, which contains M1, additionally sends projections to
PAG, suggesting a possible direct route for DPMS activation via
iMCS (von Monakow et al., 1979).

In a meta-analysis of 14 studies that used iMCS in 210
chronic pain patients, subjective classification of outcomes
yielded a positive response to iMCS in ∼55% of patients, which
dropped to 45% in patients that were able to be assessed more
than 1 year later. For the patients that provided visual analog
scale scores of pain, their pain ratings improved by 56% after
receiving the intracortical stimulation. Importantly, however, in
the two studies that had internal controls for stimulation by
cycling through “on” and “off” stimulation periods, patients
did not show significant differences in pain outcomes between
the two (Fontaine et al., 2009), suggesting the possibility
that at least some aspects of iMCS pain relief result from
placebo effects. Alternatively, “wash-out” effects of stimulation
or induction of plasticity may also contribute to persistently
reduced pain outcomes during the “off” stimulation periods.
Future experiments are required to parse the contribution of
these factors.

As assessed by PET imaging using [11C]diprenorphine,
iMCS leads to endogenous opioid release in patients with
refractory neuropathic pain in anterior midcingulate cortex
(aMCC), PAG, PFC, and cerebellum, with aMCC and PAG
changes correlating with pain relief (Maarrawi et al., 2007).
Additionally, high opioid receptor availability in insula,
thalamus, PAG, ACC, and OFC were positively correlated
with later MCS pain relief efficacy (Maarrawi et al., 2013).
However, another study appears to challenge the evidence
pointing to endogenous opioid recruitment of the DPMS by
iMCS. Although M1 stimulation increased discharge rates in
LC neurons in rats experiencing neuropathic pain, lidocaine
block of LC or intrathecal alpha2-adrenergic antagonists
did not attenuate M1 stimulation-induced antinociception in
neuropathic pain or control rats (Viisanen and Pertovaara,
2010). Continued study is needed to elucidate the exact
mechanisms of endogenous opioid release during iMCS, and
how it may correlate with resultant analgesia.

Repetitive transcranial magnetic
stimulation

Repetitive transcranial magnetic stimulation (rTMS) is
a non-invasive neurostimulation method during which an
electromagnetic coil is placed against the scalp in alignment
with a target brain region. A current is passed through the coil
to produce pulsatile changes in the magnetic field surrounding
the coil. This magnetic field passes through the skull and
into the brain, where it induces electrical currents which
modulate the activity of neurons in target regions. rTMS is
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most commonly used to treat depression in patients who
are unresponsive to or unable to tolerate medications (Speer
et al., 2000). However, a systematic review of the literature
concluded that rTMS is effective for central pain, peripheral
nerve disorders, fibromyalgia, and migraine, and that studies
using rTMS for orofacial pain, phantom limb pain, lower back
pain, and complex regional pain syndrome were promising
but inconclusive (Yang and Chang, 2020). Importantly, when
targeted to the appropriate brain regions, the reported rTMS
effects are pain-specific (Nahmias et al., 2009).

Repetitive transcranial magnetic stimulation (rTMS)
treatment paradigms are widely used in the clinic and are
therefore highly standardized. Typically, a patient receives
rTMS for several min per session, undergoing 10s of sessions
over several months. rTMS frequencies for pain treatment
range between ∼0.5 and 10 Hz, with the consensus being that
frequencies greater than 5 Hz are most effective (Lefaucheur
et al., 2006; Moisset et al., 2015). rTMS has been extensively
studied at two sites: the dlPFC, based on its accessibility and
role in pain processing, and primary motor cortex (M1). M1
rTMS has been consistently reported to provide pain relief in
both chronic pain patients and experimental models of pain
(Lefaucheur et al., 2006; Nahmias et al., 2009; de Andrade et al.,
2011; Moisset et al., 2015). Although there is some disagreement
in the literature (Yoo et al., 2006), there is a general consensus
that dlPFC rTMS also provides pain relief in models of
experimental pain in healthy subjects (Graff-Guerrero et al.,
2005; Borckardt et al., 2007; Nahmias et al., 2009; Valmunen
et al., 2009; de Andrade et al., 2011; Taylor et al., 2012). While
rTMS is performed contralateral to the painful site, bilateral
analgesia can be evoked in humans (Nahmias et al., 2009). M1
rTMS produces bilateral analgesia in healthy patients that does
not affect thermal detection thresholds, which points toward
a role for diffuse descending pain modulation (Nahmias et al.,
2009). rTMS provides both short-term pain relief immediately
after the stimulation session, which may take 2–3 days to
reach its peak, as well as long term relief that lasts for weeks to
months after the end of session in contrast with the previously
introduced stimulation techniques (Lefaucheur et al., 2001,
2006). Interestingly, the impact on pain affect lasts longer than
on the sensory component of pain (Passard et al., 2007).

In humans, evidence for the involvement of endogenous
opioids in M1 rTMS-induced analgesia has emerged from
studies in healthy subjects in which naloxone blocked the
rTMS-induced short-term analgesia. However, dlPFC studies
by different groups reached different conclusions. A landmark
study found that naloxone attenuated the analgesic effect of M1
stimulation but not dlPFC or sham rTMS (de Andrade et al.,
2011), whereas another study found that naloxone blocked the
analgesic effect of dlPFC rTMS (Taylor et al., 2012). A PET study
using the radioligand [11C]carfentanil administered several
hours after rTMS treatment of a diffuse area containing M1
and primary somatosensory cortex in healthy subjects revealed

endogenous opioid release in the ipsilateral ventral striatum,
mOFC, PFC, ACC, contralateral insula, superior temporal
gyrus, dlPFC, and precentral gyrus, without impacting striatal
D2 receptor availability (Lamusuo et al., 2017).

Transcranial direct current stimulation

Transcranial direct current stimulation (tDCS) applies low
levels of electrical current via small battery powered electrodes
placed on the head. Although it is not currently approved
by the Federal Drug Administration in the United States
as its regulatory status is only “investigational,” studies on
small cohorts have shown promising results for the use of
tDCS in patients with fibromyalgia, spinal cord injury, and
migraine (Fregni et al., 2006a,b; Dasilva et al., 2012). In
other studies, however, tDCS was not effective for chronic
low back pain or in spinal cord injury (O’Connell et al.,
2013; Wrigley et al., 2013). Similar to iMCS and rTMS, tDCS
appears most effective when applied over the motor cortex.
Interestingly, PET imaging for radiolabeled opioids revealed
motor cortex tDCS-driven endogenous opioid release, which
reveals a possible mechanism for the measured improvements
in thermal pain thresholds (DosSantos et al., 2014). Although
both tDCS and placebo stimulation caused endogenous opioid
release in PAG and precuneus, tDCS alone produced analgesia
and additional opioid release in left PFC. Though naloxone was
not administered to determine the causality of opioid signaling
in the observed analgesia, these studies suggest opioidergic
signaling is responsible at least in part for the tDCS-induced
pain relief.

Future outlook

Technological innovation

Stimulus pulse paradigms
In recent years, there have been several innovations

regarding the electrical stimulus waveforms applied by
neurostimulation therapies for chronic pain. With SCS, many
of these innovations apply tonic SCS at frequencies not typically
utilized by conventional (i.e., 40 to 60 Hz) SCS. Kilohertz
frequency SCS (KHFSCS), ultra-low frequency SCS (ULFSCS),
and burst SCS all provide pain relief without producing
paresthesias. KHFSCS utilizes frequencies greater than 1,000 Hz
(Kapural et al., 2015), while ULFSCS applies frequencies below
0.1 Hz (Jones et al., 2021). Burst SCS employs bursts of SCS
pulses at ∼40 Hz with an intraburst frequency of 500 Hz
(de Ridder et al., 2013). Similar to conventional SCS, the
physiological mechanisms of analgesia for each of these novel
forms of SCS are unknown, presenting the same challenges to
improving their design and implementation. However, these

Frontiers in Systems Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnsys.2022.1044686
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 15

Lubejko et al. 10.3389/fnsys.2022.1044686

paresthesia-free SCS waveforms allow for placebo-controlled
clinical studies, providing exciting new opportunities to
systematically examine the effects of these new therapies in the
patient’s pain experience.

In addition to new tonic SCS waveforms, new stimulus
paradigms are emerging in clinical neuromodulation.
Differential targeted multiplexed SCS (DTMSCS) applies
two simultaneous SCS waveforms: a lower frequency 50 Hz
waveform, and a higher frequency 1,200 Hz waveform (Vallejo
et al., 2020). It is hypothesized that in addition to inducing
conventional segmental pain inhibition, DTMSCS also affects
properties of spinal glial cells (Vallejo et al., 2020). A recent
innovation in DBS, Coordinated Reset DBS (CRDBS), applies
precisely timed, spatially distributed stimuli to desynchronize
pathological brain activity, possibly by rectifying aberrant
synapses which were remodeled by disease conditions (Tass,
2003). Interestingly, CRDBS may produce long-lasting
therapeutic benefit, even after the stimulus pulse is switched off
(Wang J. et al., 2016). These stimulus paradigms suggest that it
is critical to consider the effects of neuromodulation therapies
on pre-and post-synaptic terminals and on non-neuronal cells,
and that improving our scientific understanding of how the
timing of exogenous electrical stimuli is integrated by neurons
and synapses may allow for the evidence-based design of novel
stimulus protocols which directly target the synaptic basis of
pathological neural activity.

Closed-loop neurostimulation
A major challenge in diagnosis and treatment of chronic

pain conditions is that there are no objective biomarkers of
the pain experience. Most existing neurostimulation therapies
apply stimulation in an “open-loop” fashion, where electrical
stimuli are delivered at a constant frequency with no variation in
intensity or rate. Given temporal fluctuations in severity of pain
symptoms in chronic pain patients, modulating stimulation in
response to changes in neural activity or behavioral biomarkers
would represent an important treatment advance and may
prevent tolerance by delivering stimulation only when needed
and limiting unwanted side effects. Closed-loop approaches
are beginning to be adopted in neurostimulation for pain,
such as monitoring the amplitude of evoked compound action
potentials recorded from the dorsal columns to modulate SCS
pulse amplitudes. This approach was recently demonstrated
to provide superior pain relief compared to open-loop SCS
(Mekhail et al., 2020). Improving our understanding of how
chronic pain pathogenesis and neurostimulation therapies affect
the characteristics and behavior of opioidergic (and other)
circuits could reveal new biomarkers with which to design
closed-loop stimulation algorithms.

Alternate sites for neurostimulation
Continued study of the complicated matrix of brain areas

involved in pain processing has revealed other targets that may

provide therapeutic benefit by neurostimulation, including the
insular cortex (IC). The IC can be divided along the anterior-
posterior axis, with the posterior insula (pI) participating in
somatosensory features of pain, whereas the anterior portion
(aI) is implicated in encoding pain unpleasantness (Craig, 2002).

Low frequency electrical stimulation of the right pI elicits
nociception in humans and primates with some somatotopy
(Ostrowsky et al., 2002; Mazzola et al., 2009), while high
frequency stimulation of pI and aI reduces pain thresholds
with no obvious side effects, consistent with insular inactivation
(Denis et al., 2016; Liu et al., 2021). A form of rTMS in IC has
been shown to produce bilateral thermal analgesia in humans
without affecting the ability to perceive innocuous thermal
or vibrotactile sensations (Lenoir et al., 2018). Similarly, pI-
rTMS increases thermal pain thresholds in patients with central
neuropathic pain, but this did not translate to differences in
relief from chronic pain and quality of life (Galhardoni et al.,
2019). Although studies have not yet extended ICS to the human
insula, one preclinical study in rodents suggests a potential
role for low frequency intracortical pI stimulation in relief
from chronic neuropathic pain. Importantly for this review,
all forms of analgesia examined in this study were blocked
by naloxone, clearly implicating endogenous opioid release
(Komboz et al., 2022). Although opioid peptides and receptors
are prominent in pI, it remains to be determined whether local
opioid signaling, activation of afferents from other structures, or
projections to the DPMS are involved. Innovation in the brain
areas targeted by neurostimulation techniques may elucidate
stimulation paradigms that provide pain relief in the absence of
adverse side effects.

Innovating clinical paradigms

Pharmacological adjuvants
A key challenge with electrical stimulation of any neural

structure is the cellular heterogeneity of the target. Electrical
stimulation is inherently non-specific; all neurons in the vicinity
of the electrode are subject to modulation, which presents a
challenge when the target structure is comprised of diverse
neuronal subtypes which may play distinct or even opposing
functional roles in neural circuits. In some cases, it may be
advantageous to preferentially modulate specific subpopulations
of neurons within a target structure. For example, the PAG can
be subdivided into populations of glutamatergic and GABAergic
neurons with subpopulations of each type projecting to the
RVM to drive descending pain modulation. We hypothesize that
MOR-expressing PAG-RVM projection neurons may facilitate
pain, since they are inhibited by opioid analgesics. Thus,
selective recruitment of the MOR-lacking PAG projection
neurons using electrical stimulation may produce the most
effective pain relief.
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We recently demonstrated that pharmacological adjuvants
can be combined with DBS to enhance its specificity (Creed
et al., 2015; Creed, 2017). Pharmacological adjuvants have also
been applied in preclinical (Cui et al., 1996) and clinical (Lind
et al., 2004, 2007) studies of SCS, suggesting that co-application
of SCS and the GABAB receptor agonist baclofen may increase
analgesia compared to the application of a single therapy
alone. Currently, the combined approach of simultaneous
electrical and chemical neuromodulation is not widely adopted
in the clinical neuromodulation field. However, characterizing
differences in ion channel or receptor expression between
functional subpopulations of a target structure could identify
pharmacological targets to be chemically manipulated during
concurrent electrical stimulation. A dual electrical and chemical
modulatory approach may allow for greater symptom control
in cases where symptoms of a given disease are governed by
biochemically distinct neuronal subpopulations. This approach
may improve the specificity of a therapy, and thus increase
efficacy while limiting off-target effects.

The advent of non-invasive, region-specific drug delivery
and devices capable of delivering simultaneous electrical and
chemical stimulation (Capogrosso et al., 2018) makes this an
even more exciting and tractable possibility. Recently, focused
ultrasound has been used to target drug release to specific sites
in the brain in a non-invasive manner (Airan and Butts Pauly,
2018; Wang et al., 2018; McMahon et al., 2021). We anticipate
that light-driven activation of drugs and neurotransmitters (i.e.,
photopharmacology) will also emerge as a viable approach that
offers improved spatial and temporal precision for in vivo drug
delivery (Banghart and Sabatini, 2012; Font et al., 2017; Hüll
et al., 2018; López-Cano et al., 2021). Photopharmacology may
interface particularly well with DBS and iCS, as light sources can
be readily incorporated into stimulating electrodes (Royer et al.,
2010; Lechasseur et al., 2011).

Early stimulation
Neurostimulation therapies are usually reserved for patients

who are treatment refractory to every other standard of
care in chronic pain conditions and for other neurological
and psychiatric disorders. However, chronic pain, like other
neurological and psychiatric disorders, is a disease of neural
plasticity, with reorganization of neural pathways involved in
pain and affective processing contributing to the persistence of
pain symptoms. Recently, it has been proposed that patients
receiving stocktickerSCS to manage their chronic pain would
benefit from implementing the therapy earlier in disease
pathogenesis (Kumar et al., 2014; Taylor et al., 2014; Lad
et al., 2016; Campos et al., 2019). Along the same lines,
novel DBS protocols have been shown to effectively reverse
maladaptive plasticity associated with behavioral symptoms
in Parkinson’s disease (Wang J. et al., 2016; Mastro et al.,
2017; Spix et al., 2021) and addiction (Creed et al., 2015;
Lüscher et al., 2015). Because these protocols alter plasticity

in neural circuits, their therapeutic effects outlast the duration
of stimulation, which is in stark contrast to classically applied
tonic ∼100 Hz DBS in which motor or psychiatric symptoms
reappear nearly immediately after DBS offset (Lüscher et al.,
2015). An intriguing prospect would be to apply DBS in patients
with pain disorders before nociceptive and affective circuitry
undergo pain-induced plasticity that contributes to affective
comorbidities or cognitive symptoms of chronic pain (Andrade
et al., 2013). Alternatively, designing DBS protocols capable
of normalizing chronic pain-induced synaptic adaptations
in nociceptive processing pathways would hold enormous
therapeutic promise.

Novel pain assessment metrics
Accurate assessment of treatment efficacy is crucial for any

therapy. The success of neurostimulation therapies for chronic
pain is typically defined as a ≥ 50% reduction in a patient’s
overall pain, measured by the visual analog scale (VAS), verbal
rating scale (VRS), or numeric rating scale (NRS). However,
subjective measurements made with different scales are not
always comparable (Ohnhaus and Adler, 1975; Lund et al.,
2005) and may suffer from low reproducibility (van Tubergen
et al., 2002). Furthermore, some have shown that the percentage
of a patient cohort satisfied with SCS is disproportionately
greater than the percentage of the cohort which met the ≥ 50%
reduction in VAS (Sears et al., 2011). Taken together, these
findings suggest that novel, holistic assessments of a patient’s
pain experience may more accurately capture the efficacy of
a neurostimulation therapy than a single pain rating alone.
Some have suggested that dynamic pain measures, such as
temporal summation and conditioned pain modulation, which
are proxy measures for central sensitization and descending
inhibitory tone respectively, may hold clinical value in both
patient selection and assessing the efficacy of SCS (Yarnitsky
et al., 2010; Campbell et al., 2015; Sankarasubramanian et al.,
2019, 2021). Others have demonstrated that composite metrics
which incorporate measurements of pain intensity, physical
functioning, quality of life, and affect more closely represent the
patient’s impression of therapeutic benefit (Pilitsis et al., 2021).
These measures could provide a more accurate and reliable
readout of a patient’s experience with a therapy for use during
stimulator programming and as primary endpoints in clinical
trials of neurostimulation therapies.

Improving our mechanistic
understanding to improve therapeutic
strategies

A key limitation facing all neurostimulation therapies is that
we do not understand their therapeutic mechanisms of action.
Uncovering these mechanisms may allow for the evidence-based
design of targeted therapies which produce robust therapeutic
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benefit with minimal side effects. The study of neurostimulation
therapies highlights several key knowledge gaps pertaining to
understanding the neural substrates of symptom management
in neurological disorders.

The rationale for selecting an implant location for a
neurostimulation therapy, such as ACC-DBS, is often based
on historical lesioning studies (Boccard et al., 2017). However,
the selection of stimulus pulse parameters is largely initially
arbitrary and empirically adjusted based on subjective patient
feedback. The stimulus pulse frequencies which produce
therapeutic benefit in the many therapies discussed in this
review are quite variable, with some therapies using pulse
frequencies greater than 100 Hz, while others use pulse
frequencies closer to 20 Hz. A notable finding of the involvement
of endogenous opioids in preclinical SCS studies is that
opioidergic analgesia during SCS may be dependent on stimulus
pulse frequency. SCS applied at 60 Hz required higher doses of
naloxone to abolish SCS-induced analgesia and was sensitive to
a DOR antagonist, while SCS applied at 4 Hz required lower
doses of naloxone to abolish analgesia and was not sensitive to
a DOR antagonist (Sato et al., 2013). These data imply that the
stimulus pulse frequency, putatively the rate at which axons near
the stimulating electrode are conducting artificially generated
APs (McIntyre et al., 2004), may affect the characteristics of
neurotransmitter release from the presynaptic terminals of
stimulated neurons. Future studies should examine how varying
stimulus pulse frequency affects neurotransmitter release and
pre-and post-synaptic receptor activation.

Many studies of neurostimulation therapies focus on the
effects of stimulation on the neurons which are directly
responding to the stimulus pulse. However, the resulting effects
on postsynaptic networks are likely complex and intricately
involved in symptom relief. Novel experimental techniques
to study the activity of large networks such as in vivo
calcium imaging (Göbel and Helmchen, 2007) and high-density
electrical recordings (Jun et al., 2017; Juavinett et al., 2019;
Steinmetz et al., 2021) provide the opportunity to monitor
the behavior and properties of neural networks over time.
These techniques could be used to observe the network
response to neurostimulation therapies (Trevathan et al., 2021).
Crucially, these methods also allow for the characterization of
network properties across different behavioral states (Sweeney
et al., 2021). Comparing network properties during both pain
pathogenesis and intervention could give key insights into the
development of neurological disease and reveal novel methods
for targeted intervention.

Conclusion

Neurostimulation therapies are important tools in
managing intractable chronic pain. Our incomplete
understanding of the mechanisms of action of such therapies
precludes their improvement to maximize pain relief.
In this review, we summarized the evidence that many

neurostimulation therapies for pain may provide analgesia in
part by modulating opioidergic circuits throughout the neuraxis.
Further study is needed to understand the mechanisms by,
and extent to which, neurostimulation therapies modulate
these circuits. Continued study of the interactions between
exogenous electric fields and neuronal and synaptic dynamics
will be critical to the evidence-based design of neurostimulation
therapies which specifically target mechanisms underlying
neurological disease. We believe that a multidisciplinary
approach combining basic neurobiological studies, innovation
in clinical paradigms, and novel technology development will
be key to engineering the next generation of safe and effective
therapies for chronic pain.
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