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Reduced expression in preterm
birth of sFLT-1 and PlGF with a
high sFLT-1/PlGF ratio in
extracellular vesicles suggests a
potential biomarker

Sama Hussein1†, Weina Ju1†, Stephanie Pizzella2,
Michael Flory1, Chu Chu1, Yong Wang2* and Nanbert Zhong1*

1New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United
States, 2Department of Obstetrics and Gynecology, School of Medicine, Washington University,
St. Louis, MO, United States

Preterm birth may have a pathological impact on intrauterine development of

the fetal brain, resulting in developmental disabilities. In this study, we examine

the expression of soluble Fms-like tyrosine kinase 1 (sFLT-1) and placental

growth factor (PlGF), which is one of the vascular endothelial growth factors

(VEGFs), as these play a key role in angiogenesis; in particular, we examine their

effect on the sFLT-1/PlGF ratio in cases of preterm birth as compared to typical

pregnancies. Enzyme-linked immunosorbent assay was performed on samples

of maternal-derived plasma and extracellular vesicles-exosomes (EVs-EXs)

isolated at the third trimester, consisting of 17 samples from cases of preterm

birth and 38 control cases. Our results showed that both sFLT-1 (P=0.0014) and

PlGF (P=0.0032) were significantly downregulated in cases of preterm birth

compared to controls, while the sFLT-1/PIGF ratio was significantly (P=0.0008)

increased in EVs-EXs, but not in maternal plasma. Our results suggest that this

reduced expression of sFLT-1 and PlGF with an elevated sFLT-1/PlGF ratio in

EVs-EXs may represent a potential biomarker for prediction of PTB.

KEYWORDS

sFlt-1, placental growth factor, biomarker, preterm (birth), PTB, extracellular vehicles
(EVs), exosomes (EX)

Introduction

Preterm birth (PTB) has been defined by the World Health Organization (WHO) as

any birth before the completion of 37 weeks of gestation. PTB is classified into two major

subtypes: spontaneous preterm birth (sPTB) and indicated preterm birth (iPTB). sPTB is

in turn categorized into two distinct clinical scenarios: 1) premature onset of labor (POL),
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which is characterized by the occurrence of regular contractions

with associated cervical change and intact membranes, and 2)

preterm premature rupture of membranes (pPROM) (1). iPTB

occurs when labor is induced or cesarean section delivery carried

out due to maternal or fetal disease (2). PTB is responsible for

75% of perinatal deaths and more than 50% of long-term

newborn morbidities, including neurological impairments,

blindness, deafness, and chronic lung illness, as well as

learning difficulties and psychological, behavioral, and social

issues (3, 4).

The placenta regulates the fetal environment by controlling

the passage of nutrients and waste materials between the

maternal and fetal circulations. Placental abnormalities are the

most typical form of complications arising during human

pregnancies (5). Many prenatal disorders that result in

premature delivery involve placental disturbances, generally

categorized as malperfused placenta or inflamed placenta (6).

An under-perfused placenta is linked to fetal growth restriction,

preterm birth owing to early labor or premature rupture of

membranes, premature placental detachment (abruptio

placenta), and an increased risk of preeclampsia (7).

Angiogenesis is the formation of new microvessels from

larger blood vessels; it is an important aspect of embryogenesis,

as vascularization of the placenta is required for adequate

transport of nutrition and oxygen to the fetus (5). Placental

growth is fastest in the first half of pregnancy, and development

of placental vascular branching continues until term (8). From

day 21 until the end of the first trimester, villous vasculature

increases in terms of number of vessels rather than vessel type.

Villous vascular development shifts from branching to non-

branching angiogenesis at the 26th week of pregnancy and

continues in that form until birth, when mature intermediate

villi specializing in gas exchange are developed. Placentation is

influenced by oxygen levels, angiogenic growth factor(s), and

their natural receptors and antagonists (5).

Placental growth factor (PlGF) is a member of the vascular

endothelial growth factor (VEGF) family and is predominantly

expressed in the placenta (9). FLT-1, a tyrosine-protein kinase,

functions as a cell-surface receptor for VEGFA, VEGFB, and

PlGF, and is crucial for the formation of the embryonic

vasculature, the control of angiogenesis, and other processes

(10). FLT-1 (sFLT-1) and PlGF are each expressed differently in

the human placenta during pregnancy. Soluble FLT-1 (sFLT-1)

is a protein that inhibits angiogenesis; it acts by adhering to the

receptor-binding domains of PlGF and VEGF and blocking their

interaction on the cell surface, leading to endothelial dysfunction

(11). Correlations can be observed between the impact of these

growth factors, along with their patterns of expression

throughout a pregnancy, and the development of the villous

angioarchitecture. sFLT-1 is necessary for embryonic vascular

architecture but not for endothelial cell differentiation (12). PlGF

binding to sFLT-1 is more likely to occur in the final trimester

and to result in non-branching angiogenesis (9).

Extracellular vesicles (EVs), which include exosomes (EXs),

are membranous nanovesicles of endocytic origin, measuring

30-150 nm in diameter, that are generated by most cell types in

various organisms. They encapsulate various proteins and

nucleic acids (microRNA, messenger RNA, long non-coding

RNA, and DNA) and are released into the extracellular space,

where they circulate. Endosome-specific tetraspanins, including

CD9, CD63, and CD81, are abundant in EV-EX membranes (13,

14). Plasma concentrations of EVs-EXs have been found to be

more than 50 times higher in pregnant women compared to

non-pregnant women (15). EVs-EXs derived from the placenta

have been shown to enter the maternal blood in both healthy

and pathologic pregnancies, and their concentration rises more

than twofold as the pregnancy proceeds, reaching a peak at term.

The quantification of placental EVs-EXs in maternal plasma

represents fetal growth and might be a valuable biomarker of

placental function (15–17).

In this study, we examine the expression of soluble Fms-like

tyrosine kinase 1 (sFLT-1) and placental growth factor (PlGF) in

EVs-EXs isolated from maternal plasma, in PTB as compared to

typical control (Ctrl) pregnancies, as PTB is considered to be a

placental disease.

Material and methods

Maternal-derived plasma collection:

Plasma samples were obtained from the Department of

Obstetrics and Gynecology, Washington University in St.

Louis. In total, samples of maternal-derived plasma were

collected at the third trimester in 17 cases of PTB, including 8

cases of spontaneous PTB (sPTB) and 9 cases of indicated PTB

(iPTB), and 38 typical full-term pregnancies (control); samples

were then stored at -80°C until use (Table 1). This study was

reviewed and approved by the Institutional Review Board (IRB

approval #201707152) of Washington University in St. Louis.

Isolation of EVs-EXs

The System Biosciences EQULTRA-20A-1 ExoQuick Ultra

EV isolation kit for serum and plasma was used for EV isolation.

TABLE 1 Number of cases and gestational week of preterm births vs.
controls.

Sample Number of Cases Average Gestational
Week

Indicated 9 32 + 9

Spontaneous 8 35 + 8

Control 37 38 + 8
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We collected 300 ml of plasma and centrifuged at 3,000 × g for 15

minutes to remove cellular debris. 67 ml of ExoQuick was added
to 250 ml of supernatant in a fresh tube, which was incubated at

4°C on ice for 30 minutes. Throughout the incubation period,

the mixture was mixed well by inverting or flicking the tube.

Subsequently, the ExoQuick/plasma mixture was centrifuged at

3,000 g for 10 minutes at room temperature. After

centrifugation, the EVs-EXs appeared as a beige or white pellet

at the bottom of the tube. The supernatant was carefully

aspirated off, and any leftover ExoQuick solution was spun

down and completely removed by aspiration. The pellet was

then resuspended in 200 ml of Buffer B, and 200 ml of Buffer A
was added to the EV-EX mixture. The purification column was

centrifuged at 1,000 x g for 30 seconds to remove the storage

buffer. It was then washed by adding 500 ml of Buffer B on top of

the resin, centrifuging at 1,000 x g for 30 seconds, and then

discarding the flow. This step in the process was repeated once.

The resin was prepared for sample loading by adding 100 ml of
Buffer B on top of it. Finally, the EV-EX mixture was added, and

the column was mixed at room temperature on a rotating shaker

for 5 minutes. Purified EV-EX was obtained after centrifugation

at 1,000 x g for 30 seconds.

Quantification and normalization of
placental EVs-EXs

CD9, a membrane-specific marker of EVs-EXs, was used to

represent the internal level of gene expression in EVs-EXs; this

was employed for normalization of the expression of PlGF and

sFLT-1 in EVs-EXs.

ELISA

A dilution of the plasma/EVs-EXs (2ml in 4 ml PBS, pH 7.4)

was adjusted to the optical density (OD280) indicating 0.04 ng/

ml using a nanodrop spectrophotometer. Polystyrene 96-well

plates were coated with 50 ml of diluted plasma in PBS and were

left at room temperature for one hour on a laboratory rocker;

this was followed by incubation overnight at 4°C. Excess plasma

was removed from the coated plates; subsequently, 250 ml of
blocking buffer (5% milk in PBS) was added and the plates were

incubated overnight in a fridge at 4°C. After the incubation

period, the blocking buffer was removed and 50 ml per well of
primary antisera diluted in PBST (PBS + 0.05% Tween-20) was

added in ratios of 1:500, 1:200, and 1:40,000 for anti-CD9

antibody (Monoclonal Santa Cruz sc-13118), PlGF polyclonal

antibody (Invitrogen cat #PA5-95604), and sFLT-1 polyclonal

antibody (Bioss BS cat #20692R), respectively. The plates were

incubated overnight at 4°C on a laboratory rocker. The plates

were then washed three times using 300 ml per well of PBST

(washing buffer: PBS + 0.05% Tween-20). The following steps

were performed in darkness: secondary antisera were diluted in

PBST at 1:1000 and 50 ml per well was added. Goat anti-mouse

IgG (H+L) secondary antibody, HRP conjugate (Invitrogen

cat#31430), was added to CD9 wells, while goat anti-rabbit

IgG (H+L) secondary antibody, HRP conjugate (Invitrogen,

cat#31460), was used for PlGF and sFLT-1 wells; the plates

were covered with aluminum foil and incubated at 37°C for one

hour. Next, the plates were washed four times using 300 ml per
well of PBST and incubated with 100 ml per well of Thermo

Scientific™ Pierce™ TMB Substrate Kit (Thermo Scientific, cat

#PI34021; 1:1 peroxide solution and peroxidase substrate) at RT

for 30 min on a laboratory rocker, covered with aluminum foil.

The reaction was halted by the addition of 100 ml per well of 20%
H2SO4, and the absorbance was measured on a microplate

reader SpectraMax M3 at 450 nm. Finally, the sFLT-1/PlGF

ratio for each sample was determined.

Statistical analysis

Each sample was measured in duplicate and the average of

the two measurements was computed. We computed p-values

using the mean of PTB samples against those from typical Ctrl

pregnancies. The data collected were tallied, sorted, and

statistically evaluated; the normality of the distributions of the

optical densities was examined using the Shapiro–Wilk test. All

variables were significantly non-normal, with a pronounced

rightward skew. Variables were therefore square root

transformed, achieving reasonably normal distributions.

Differences between groups were analyzed using unpaired two-

tailed t-tests, with no adjustments needed for unequal variances.

Analyses were performed using version 16.0 of the Stata

statistical package (StataCorp, 2019: Stata Statistical Software:

Release 16; College Station, TX: StataCorp LLC).

Results

We first tested whether women who gave birth to a preterm

fetus had altered levels of sFLT-1 and PlGF, as measured with

plasma and EVs-EXs. As shown in Table 2, individual

measurement of sFLT-1 and PlGF indicated that there was

little difference in the level of either sFLT-1 or PlGF in PTB

samples as compared to controls, showing no statistical

significance with P > 0.05. There was also no significant

difference in terms of the sFLT-1/PlGF ratio in plasma

(Figure 1). Our immediate hypothesis was that this non-

significance was a result of heterogenous sampling in our

study: i.e., among 17 PTB samples, nine were from cases of

iPTB and eight were from cases of sPTB, which could interfere

with the results. To verify this, we analyzed our data by

separating iPTB from sPTB samples and repeating the

statistical analysis. Surprisingly, there was no significant
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effect for sPTB or iPTB in three comparisons (namely, sPTB vs.

Ctrl, iPTB vs. Ctrl, and PTB vs. Ctrl; P > 0.05, data not shown).

Because there were no statistical differences in the comparisons

of sPTB vs. iPTB vs. PTB, we decided to combine sPTB with

iPTB, treating them as a single group for subsequent analyses.

Considering the fact that both sFLT-1 and PlGF are involved in

placental development, measurement of placental sFLT-1 and

PlGF would provide a more accurate reflection of their

expression in pregnancy. We therefore reanalyzed sFLT-1

and PlGF levels, and the sFLT-1/PlGF ratio, with EVs-EXs

that were isolated from maternal plasma but released from

trophoblasts (15, 16). Indeed, the results of this analysis

showed that there was a striking difference between the

sample groups in sFLT-1, PlGF, and sFLT-1/PlGF ratio

within EVs-EXs, when CD9 was used to normalize the assay

(Figure 2). The corresponding P values were 0.0014 for sFLT-1/

CD9, 0.0032 for PlGF/CD9, and 0.0008 for sFLT-1/PlGF. If

CD9 was not used for normalization, PIGF level was still found

to be significantly different, with P = 0.0003, although this was

not the case for sFLT-1 level, with P > 0.05.

Discussion

The primary underlying mechanism in numerous pregnancy

complications is now understood to be disorders of placentation

(18). Many factors influence the health of the placenta, including

ethnicity, history of smoking cigarettes, high blood pressure,

multiple gestation pregnancy, maternal blood-clotting disorders,

history of uterine surgery (such as a cesarean delivery), history of

placental problems, maternal substance abuse (such as cocaine

use), abdominal trauma (such as from a fall or blunt trauma),

maternal age (as women over the age of 40 years have a higher

risk of developing placental problems), and premature rupture

of membranes (because the risk of placental problems increases

when the amniotic sac ruptures too early). Phenotypically, these

factors may result in adverse pregnancy outcomes, such as

miscarriage or stillbirth, IUGR, preeclampsia, or spontaneous

preterm birth, which are considered to be placental diseases.

Pathogenically, these diseases may share abnormal development

and differentiation of the placenta at an early stage of

placentation, which may impact placental angiogenesis.

A B C

FIGURE 1

Boxplots overlaid with scatterplots showing median sFLT-1, PlGF, and sFLT1/PlGF ratio in maternal plasma, comparing preterm birth (PTB) and
controls (Ctrl). (A) sFLT-1 in PTB (0.3385) vs. Ctrl (0.3918), (B) PlGF in PTB (0.0688) vs. Ctrl (0.0833), and (C) sFLT-1/PlGF ratio in PTB (4.9779) vs.
Ctrl (5.2004) showed that sFLT-1, PIGF and sFLT-1/PlGF were not significant in compared to Ctrl groups.

TABLE 2 Quantitative measurement of sFLT-1 and PlGF.

Sample Type Biomarker Median in Preterm Median in Control P-Value Significance

EVs-EXs PlGF 0.1292 0.3345 0.0003 Significant

EVs-EXs PlGF/CD9 1.2857 4.3520 0.0032 Significant

EVs-EXs sFLT-1 0.1733 0.2001 0.9997 Non-Significant

EVs-EXs sFLT-1/CD9 1.9224 2.6671 0.0014 Significant

EVs-EXs sFLT-1/PlGF ratio 0.9578 0.5226 0.0008 Significant

Maternal plasma PlGF 0.0688 0.0833 0.8844 Non-Significant

Maternal plasma sFLT-1 0.3385 0.3918 0.5207 Non-Significant

Maternal plasma sFLT-1/PlGF ratio 4.9779 5.2004 0.6501 Non-Significant
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Molecularly, altered placental angiogenesis, under the influence

of the risk factors mentioned above, may result from differential

gene expression of angiogenic factors, causing these angiogenic

factors to be up- or down-regulated in the placenta, which would

also be reflected in maternal circulation. Therefore, alteration of

the pro- and anti-angiogenic proteins that have been identified

and characterized in relation to each individual disorder could

be applied as a biomarker that can be clinically used to predict

pregnancy disorder(s), such as preeclampsia or miscarriage.

In preeclampsia (PE) it has been well established that

increased levels of sFLT-1 and reduced levels of PlGF may be

the underlying pathophysiology (19). The sFLT-1/PlGF ratio has

been demonstrated to be elevated in pregnant women 4-5 weeks

before the clinical onset of preeclampsia (20). In intrauterine

growth retardation (IUGR), few studies have investigated

maternal serum levels of sFLT-1 and PlGF. According to one

report, the median level of sFLT-1 is significantly greater in

women who experience PE and IUGR compared to controls,

whereas the median level of PlGF is lower (21). Additionally, a

previous study on mice models of fetal growth retardation has

shown that elevated sFLT-1 levels disrupt vascularization in the

murine placenta, impair placental function, and result in fetuses

with fetal growth retardation (22). Finally, in relation to

miscarriage, it has been reported that concentrations of sFLT-

1 and PlGF are significantly lower in a subgroup of participants

with threatened miscarriage who subsequently experience

miscarriage, compared to asymptomatic controls (10); the

same has been observed in cases of ectopic pregnancy or

missed abortion, compared with healthy intrauterine

pregnancies (23).

Previously, we have found that cytokine–cytokine receptor

interaction is the most common and the most enriched pathway

observed in spontaneous preterm birth and spontaneous

miscarriage. Ten genes (CCL3, TNF, CCL2, CXCL3,

TNFRSF8, CCL4, CXCL10, CXCR4, CCL3L3, and CCL4L1)

that are commonly differentially expressed in both sPTB and

spontaneous miscarriage (sM) are largely focused on

chemokines (including the CC subfamily and the CXC

subfamily), TNF, and TNFRSF8, suggesting that sPTB and sM

may share a common pathogenic mechanism. Considering that

preterm birth is one of the placental diseases that has been

determined to share pathogenic alteration in the early stage of

placentation with miscarriage and preeclampsia (17, 24), we

measured sFLT-1 and PlGF in our preterm birth cohort. Indeed,

our results demonstrated that sFLT-1 and PlGF are differentially

expressed in PTB.

CD9, CD63, and CD81 are membrane proteins that have

become widely accepted as extracellular vesicle markers.

CD63 and CD81 have been previously employed as

quantifiers of total extracellular vesicle particles, including

exosomes, in circulation in maternal blood (25–27). In this

study, CD9 was employed as an internal reference for EVs-

EXs; without normalization against CD9, the sFlT-1 findings

were not significant (Figure 2A). This aspect of the findings

highlights the importance of using CD9 and supports the

hypothesis that, without normalization, sFLT-1 expression

levels may be derived not only from exosomes, but also from

other sources. In the present study, we found that PlGF/CD9

was 71% lower in the PTB group compared to the typical

pregnancy group, and the same was true of sFLT-1/CD9

(47% lower), while the sFLT-1/PlGF ratio was significantly

higher at 147% (Figure 2). Conversely, when we examined

sFLT-1, PlGF, and sFLT-1/PlGF in plasma, the findings were

not significant (Figure 1). This indicates that placental-

derived EVs-EXs in maternal plasma are the better

materials for studying placental function and intrauterine

fetal growth. This result also opened a new avenue for the

application of quantitative measurement of sFLT-1, PlGF,

and sFLT-1/PlGF in EVs-EXs as a potential biomarker for

prediction of sPTB.

In summary, PlGF is commonly reduced in placental

diseases, such as PE, IUGR, miscarriage, and preterm birth.

While the sFLT-1/PlGF ratio is also commonly elevated, which

could arise as a result of the reduced levels of PlGF, use of the

sFLT-1/PlGF ratio alone as a biomarker would be misleading.

However, a combination of individual sFLT-1 or PlGF assay

DA B EC

FIGURE 2

Boxplots overlaid with scatterplots showing median sFLT-1 and PlGF with/without normalization to CD9, and sFLT1/PlGF ratio, each in EVs-EXs,
comparing preterm birth (PTB) and controls (Ctrl). (A) sFLT-1 in PTB (0.1733) vs. Ctrl (0.2001), (B) PlGF in PTB (0.1292) vs. Ctrl (0.3345), (C) PlGF/
CD9 in PTB (1.2857) vs. Ctrl (4.3520), (D) sFLT-1/CD9 in PTB (1.9224) vs. Ctrl (2.6671), and (E) sFLT-1/PlGF ratio in PTB (0.9578) vs. Ctrl (0.5226).
As illustrated, sFLT-1 and PlGF are significantly lower in PTB (p<0.05), while the sFLT-1/PlGF ratio is significantly higher (p<0.05) in PTB
compared to the Ctrl group.
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with the sFLT-1/PlGF ratio could be more accurate. This

combination may also differentiate sPTB from PE and from

IUGR. To further confirm the potential value of employing

sFLT-1, PlGF, and sFLT-1/PlGF as a set of biomarkers for

prediction of sPTB, further studies should be conducted with a

cohort offering a larger sample size at early-stage pregnancy. For

this purpose, employing EVs-EXs rather than plasma is highly

recommended, not only for the prediction of sPTB but also for

intrauterine loss of pregnancy, IUGR, or PE.
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