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a b s t r a c t 

Resting-state fMRI studies have shown that multiple functional networks, which consist of distributed brain re- 
gions that share synchronised spontaneous activity, co-exist in the brain. As these resting-state networks (RSNs) 
have been thought to reflect the brain’s intrinsic functional organization, intersubject variability in the networks’ 
spontaneous fluctuations may be associated with individuals’ clinical, physiological, cognitive, and genetic traits. 
Here, we investigated resting-state fMRI data along with extensive clinical, lifestyle, and genetic data collected 
from 37,842 UK Biobank participants, with the object of elucidating intersubject variability in the fluctuation 
amplitudes of RSNs. Functional properties of the RSN amplitudes were first examined by analyzing correlations 
with the well-established between-network functional connectivity. It was found that a network amplitude is 
highly correlated with the mean strength of the functional connectivity that the network has with the other 
networks. Intersubject clustering analysis showed the amplitudes are most strongly correlated with age, car- 
diovascular factors, body composition, blood cell counts, lung function, and sex, with some differences in the 
correlation strengths between sensory and cognitive RSNs. Genome-wide association studies (GWASs) of RSN 

amplitudes identified several significant genetic variants reported in previous GWASs for their implications in 
sleep duration. We provide insight into key factors determining RSN amplitudes and demonstrate that intersubject 
variability of the amplitudes primarily originates from differences in temporal synchrony between functionally 
linked brain regions, rather than differences in the magnitude of raw voxelwise BOLD signal changes. This find- 
ing additionally revealed intriguing differences between sensory and cognitive RSNs with respect to sex effects 
on temporal synchrony and provided evidence suggesting that synchronous coactivations of functionally linked 
brain regions, and magnitudes of BOLD signal changes, may be related to different genetic mechanisms. These 
results underscore that intersubject variability of the amplitudes in health and disease need to be interpreted 
largely as a measure of the sum of within-network temporal synchrony and amplitudes of BOLD signals, with a 
dominant contribution from the former. 

1. Introduction 

Functional magnetic resonance imaging (fMRI) is a neuroimaging 
technique to measure brain activity using blood oxygenation level 

∗ Corresponding author at: FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, 
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dependent (BOLD) signals. In the past three decades, fMRI studies 
have improved our understanding of the role and function of each 
brain region, and how different brain regions are functionally inter- 
connected. Among the various analysis methods (e.g., clustering-based 
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( Bellec et al., 2010 ; Yeo et al., 2011 ) and graph-based ( Power et al., 
2011 ; Rubinov and Sporns, 2010 ) analyses), independent component 
analysis (ICA) has become one of the most popular tools to investi- 
gate brain networks comprising multiple spatially distributed, but func- 
tionally interacting, brain regions. ICA decomposes a resting-state fMRI 
dataset into multiple components; these distinct components are also 
referred to as “RSNs ” (resting-state networks) or “nodes ” ( Smith et al., 
2013 ), depending on the context. ICA-based studies have found that 
the architectures of large-scale neuronal communications during rest- 
ing state are highly reproducible across different studies ( Chen et al., 
2008 ; Damoiseaux et al., 2006 ; Li et al., 2012 ; Meindl et al., 2010 ) 
and have high correspondence with those occurring across different task 
conditions ( Nickerson, 2018 ; Smith et al., 2009 ). These results suggest 
that resting-state networks (RSNs) reflect the intrinsic functional orga- 
nization of the brain. An increasing number of resting-state fMRI stud- 
ies have explored the intersubject variability in these functional net- 
works, to better understand how this can be related to unique traits of 
individuals, such as mental states ( Geerligs et al., 2015 ) or personality 
( Nostro et al., 2018 ), as well as disease ( Zhang and Raichle, 2010 ). Re- 
cent efforts to create large-scale neuroimaging databases such as the UK 

Biobank (UKB) are expected to foster new findings by leveraging fMRI 
data acquired from tens of thousands of people. 

RSNs can be explored using different approaches. Functional con- 
nectivity (FC, i.e., temporal correlations) between RSNs has been exten- 
sively investigated, revealing that the FC profile is unique to individu- 
als ( Finn et al., 2015 ). In addition, intersubject variability in the con- 
nectivity patterns can predict cognitive behavior ( Cabral et al., 2017 ; 
Lin et al., 2018 ; van den Heuvel and Hulshoff Pol, 2010 ) and disease 
state ( Craddock et al., 2009 ; Dubbelink et al., 2014 ; Liu et al., 2008 ). 
Another popular way to investigate RSNs is to examine spatial maps 
that represent the FC of each voxel to a given network, using dual re- 
gression analysis ( Beckmann et al., 2009 ; Nickerson et al., 2017 ). This 
makes it possible to identify differences in spatial locations or shapes 
of FC between participants, or a group of participants. Compared with 
the methods based on FC, the amplitudes of spontaneous fluctuations of 
RSNs, which can be obtained from the standard deviation of the RSNs’ 
timeseries, have been much less studied. The RSN timeseries have been 
primarily used to derive the aforementioned FC measurements (correla- 
tions between RSNs), and few studies have looked into the intersubject 
variability in the amplitudes of the RSN timeseries. 

Applying data-driven multivariate analyses, a multimodal UK 

Biobank (UKB) brain imaging study on 5,430 participants revealed sev- 
eral “modes ” of population covariation between image-based measures 
and non-image based measures (e.g., demographic, lifestyle), which 
included a covariation between fMRI measures (network amplitude 
and FC) and aging-related process ( Miller et al., 2016 ). Two more re- 
cent studies focused more directly on network amplitude itself. One 
study investigated whether the amplitudes of RSNs are associated with 
brain states by assessing their performance on discriminating different 
brain states in the fMRI data collected during rest and task conditions 
( Sala-Llonch et al., 2019 ). It was found that the discrimination perfor- 
mance of the amplitudes of the RSNs derived from high-dimensional ICA 

( > 100 components) was comparable to those obtained using between- 
network FC, capturing information relevant to different brain states. In 
Bijsterbosch et al. (2017) , within-subject and intersubject variability in 
the amplitudes were investigated using resting-state fMRI scans acquired 
from two different public datasets, UKB and the Human Connectome 
Project (HCP). The results showed that the networks responsible for 
similar brain functions (e.g., processing visual information) have similar 
covariation of their amplitudes across participants. Analyzing the fMRI 
data collected from the HCP participants who were scanned twice on the 
same day, it was further shown that the intra-subject variability in the 
amplitudes was related to the sleep duration of the participants, which 
is known to alter vigilance and arousal states. To our knowledge, there 
have been only these three studies ( Bijsterbosch et al., 2017 ; Miller et al., 

2016 ; Sala-Llonch et al., 2019 ) reporting associations between the RSN 

fluctuation amplitudes and individuals’ behavioural traits. Therefore, 
the associations with broad individual traits (e.g., biophysical, lifestyle) 
remain largely unknown. 

It is worth noting that the RSN amplitude investigated in this work, 
which we refer to as “network amplitude ” in the remainder of the arti- 
cle, is different from the voxel-level metrics such as amplitude of low- 
frequency fluctuation (ALFF) or fractional ALFF (fALFF) ( Zang et al., 
2007 ; Zou et al., 2008 ). Indeed, in our study, the network amplitude 
is derived from the network-level timeseries obtained by weighted- 
averaging the timeseries of all voxels within the network, whereas, 
in ALFF/fALFF analysis, amplitudes are derived from the voxel-level 
timeseries. Therefore, network amplitude is a highly compact indica- 
tor that summarizes each RSN in one scalar value. Network ampli- 
tude has so far been understood in the context that it represents the 
magnitude of the BOLD activity in the RSN ( Bijsterbosch et al., 2017 ; 
Nickerson et al., 2017 ), but it has not been studied in great detail. This 
motivated us to investigate the relationship between network ampli- 
tude derived from the network-level timeseries and BOLD amplitude 
defined as the average voxelwise BOLD fluctuation amplitudes within a 
network. 

In this work, we comprehensively assessed network amplitudes to 
understand their variations across participants, and to identify the 
factors determining intersubject variability using UKB data collected 
from 37,842 participants. The dataset consists of the resting-state fMRI 
scans and a wide range of physical, health-related, sociodemographic, 
lifestyle, and genetic information on the individuals. 

In the first part of this study, we show how intersubject variability in 
network amplitudes is related to differences in imaging, non-imaging, 
and genetic phenotypes: 

- FC between RSNs was chosen as the imaging phenotype to asso- 
ciate with network amplitudes, as it is derived from the same RSN 

timeseries and intimately related to amplitude changes ( Duff et al., 
2018 ), yet measures a different property of the RSNs ( Cole et al., 
2016 ; Duff et al., 2018 ; Friston, 2011 ). 

- We conducted clustering and correlation analyses to relate the net- 
work amplitudes to 4,897 non-imaging variables such as systolic 
blood pressure and year ended full time education. 

- We carried out population-based genome-wide association studies 
(GWASs) to discover genetic variations associated with the network 
amplitudes. 

In the second part of the study, the key factors contributing to the in- 
tersubject variability of the network amplitudes were investigated. We 
show that the primary factor is the temporal synchrony between the 
spontaneous fluctuations of the distributed brain regions involved in 
a given RSN, rather than the average voxelwise BOLD fluctuation am- 
plitudes of the regions (mathematically, network amplitude should be 
largely driven by a combination of these two measures). This finding 
has significant implications in interpreting the downstream analysis re- 
sults. We demonstrate that associations of network amplitudes with the 
FC between RSNs, non-imaging variables, and genetic phenotypes are 
mostly driven by the temporal synchrony, by conducting the following 
analyses: 

- The correlations between network amplitudes and FC across partic- 
ipants were compared with the correlations between temporal syn- 
chrony and FC, and between BOLD amplitudes and FC. 

- Linear regression analyses were conducted with non-imaging vari- 
ables of interest as predictors and either temporal synchrony or 
BOLD amplitude as a dependent variable. 

- GWASs of temporal synchrony and separate GWASs of BOLD ampli- 
tude were carried out to determine which set of associated genetic 
variants was more similar to the set identified from GWASs of net- 
work amplitude. 

2 
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2. Material and methods 

2.1. Imaging data 

This study used imaging and non-imaging variables derived from the 
January 2020 UKB data release. This contains brain imaging datasets 
(T1, T2 FLAIR, susceptibility-weighted MRI, resting fMRI, task fMRI, 
and diffusion MRI) of 41,985 participants collected at three sites (Stock- 
port, Newcastle, and Reading), all having identical imaging hardware 
( Alfaro-Almagro et al., 2021 ). The brain imaging data were acquired 
using a Siemens Skyra 3T scanner with a standard Siemens 32-channel 
RF receive head coil at each site. Before the resting-state functional 
scans, T1-weighted images of the entire brain were acquired for 5 min 
(repetition time = 2000 ms, echo time = 2.01 ms, flip angle = 8°, 
resolution = 1 × 1 × 1 mm, field of view = 208 × 256 × 256 
matrix). For the resting-state functional scans, BOLD contrast echo- 
planar (EPI) T2 ∗ -weighted images (repetition time = 735 ms, echo 
time = 39 ms, flip angle = 52°, resolution = 2.4 × 2.4 × 2.4 mm, 
field of view = 88 × 88 × 64 matrix) were acquired for 6 min (490 
timepoints). Participants were instructed to lie still, keeping their eyes 
fixated on a crosshair. The full acquisition protocol can be seen at 
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 2367 . 

The datasets were processed with an automated processing and 
quality control (QC) pipeline ( Alfaro-Almagro et al., 2018 ), and un- 
usable datasets (e.g., because of incomplete data, or severe MRI arti- 
facts) were removed. To briefly describe the preprocessing pipeline, the 
anonymized ( “defaced ”) T1 structural images were preprocessed with 
the following steps: gradient distortion correction using the tools devel- 
oped by FreeSurfer and HCP teams ( Glasser et al., 2013 ), removal of non- 
brain structure (e.g., neck) and brain extraction using FLIRT (FMRIB’s 
Linear Image Registration Tool) ( Jenkinson et al., 2002 ; Jenkinson and 
Smith, 2001 ) and BET (Brain Extraction Tool) ( Smith, 2002 ), linear 
alignment to MNI152 space using FLIRT, and non-linear registration 
to 1-mm MNI152 space using FNIRT (FMRIB’s Nonlinear Image Reg- 
istration Tool) ( Andersson et al., 2007a , 2007b ). The rfMRI data was 
preprocessed using Melodic ( Beckmann and Smith, 2004 ) that performs 
EPI unwarping, gradient distortion correction, motion correction, grand- 
mean intensity normalisation, and highpass temporal filtering, fol- 
lowed by FMRIB’s ICA-based X-noiseifier ( Beckmann and Smith, 2004 ; 
Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ) to remove struc- 
tured artefacts. The preprocessed data were then aligned to T1 space 
using FLIRT and then transformed to the standard MNI152 space us- 
ing the previously obtained nonlinear transformation from T1 space to 
the MNI space. All preprocessing steps are described in great detail in 
Alfaro-Almagro et al. (2018) . 

In this study, we used data from the 37,842 participants (17,721 
males and 20,121 females; 64.1 ± 7.5 years old) with usable T1 and 
rfMRI data in the MNI space. We only used the first-scan data from the 
1,503 out of the 37,842 participants with repeat-scan data. 

2.2. Dual regression 

Group ICA with temporal concatenation was performed using 
FSL-MELODIC ICA ( Beckmann et al., 2005 ) with 25 ICA dimen- 
sions ( Miller et al., 2016 ). The ICA output is a collection of spatial 
maps of RSNs that are common to all participants and that closely 
match those frequently found in resting-state fMRI studies ( Fig. 1 A) 
( Damoiseaux et al., 2006 ; Smith et al., 2009 ). 

The group spatial maps were then used in a dual regression anal- 
ysis, to estimate subject-specific network timeseries and spatial maps 
( Fig. 1 B); these can then be used to compare differences across partici- 
pants ( Beckmann et al., 2009 ; Nickerson et al., 2017 ). 

Of the 25 group spatial maps, four components were non-neural 
components (e.g., motion artifacts), and their timeseries were dis- 
carded in further analyses. The maps of the 21 group ICA com- 

ponents can be viewed in Fig. S1 and at https://www.fmrib.ox.ac. 
uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html . 

2.3. Extracting subject-specific amplitudes and temporal synchrony 

2.3.1. Network amplitude 

In stage 1 of dual regression, subject-specific network timeseries ( 𝑫 ) 
are extracted as the following: 

𝑿 = 𝑮 𝑫 + 𝑬 (1) 

𝑫 = 

(
𝑮 

𝑇 𝑮 

)−1 
𝑮 

𝑇 𝑿 (2) 

where 𝑿 = [ 𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 

] 𝑇 ∈ ℝ 

𝑁×𝑇 is the fMRI data matrix of a sin- 
gle participant, 𝒙 𝑖 ∈ ℝ 

𝑇×1 ( 𝑖 = 1 , 2 , … , 𝑁) is the BOLD timeseries of 
voxel 𝑖 , 𝑮 = [ 𝒈 1 , 𝒈 2 , … , 𝒈 𝐾 ] ∈ ℝ 

𝑁×𝐾 is the 𝐾 group spatial maps, 
𝑬 ∈ ℝ 

𝑁×𝑇 is the residuals, 𝑫 = [ 𝒅 1 , 𝒅 2 , … , 𝒅 𝐾 ] 𝑇 ∈ ℝ 

𝐾×𝑇 is the ma- 
trix of 𝐾 network timeseries, and 𝑁 and 𝑇 are the number of voxels and 
time points, respectively. 

The amplitude of each network is defined as the standard deviation 
of its timeseries, 𝑎 𝑘 = 

√
𝑣𝑎𝑟 ( 𝒅 𝑘 ) . The term ( 𝑮 

𝑇 𝑮 ) −1 in Eq. (2) is typically 
close to being a diagonal matrix (because of the independence assump- 
tion between sources in ICA), and essentially plays a role to scale each 
row in the term, 𝑮 

𝑇 𝑿 ∈ ℝ 

𝐾×𝑇 . As the group ICA spatial maps 𝑮 are 
common across participants, the scaling effects of ( 𝑮 

𝑇 𝑮 ) −1 are common 
across all participants, and therefore they do not contribute to relative 
intersubject differences in the network amplitudes. Each row of 𝑮 

𝑇 𝑿 is 
a timeseries of network 𝑘 (before multiplying ( 𝑮 

𝑇 𝑮 ) −1 ), and can be ex- 
pressed as 𝒈 𝑇 

𝑘 
𝑿 ∈ ℝ 

1×𝑇 , where 𝒈 𝑘 = [ 𝑔 𝑘 (1) , 𝑔 𝑘 (2) , … , 𝑔 𝑘 ( 𝑁)] 𝑇 ∈ ℝ 

𝑁×1 

is the vectorized 𝑘 th group spatial map. It can be further expressed as 

𝒈 𝑇 
𝑘 
𝑿 = 𝑔 𝑘 ( 1 ) ⋅ 𝒙 𝑇 1 + 𝑔 𝑘 ( 2 ) ⋅ 𝒙 𝑇 2 + …+ 𝑔 𝑘 ( 𝑁 ) ⋅ 𝒙 𝑇 

𝑁 

(3) 

which is a weighted sum of the BOLD timeseries 𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 

, and 
the weights are the elements in the 𝑘 th group spatial map. 

As the intersubject variability in network amplitudes is determined 
by the term 𝒈 𝑇 

𝑘 
𝑿 , examination of Eq. (3) provides a clue to understand- 

ing two main factors contributing to the variability: 

(1) The degree of temporal synchrony across the BOLD timeseries 
“within ” the group spatial map 𝒈 𝑘 . 

(2) The amplitudes of the BOLD voxels’ timeseries ( 𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 

). 

Fig. 2 describes how these two factors affect the network amplitude. 
The second factor is apparent ( Fig. 2 B): it is easy to conjecture that high 
BOLD fluctuation amplitudes would give rise to high network ampli- 
tudes. Although it is not clear at first glance, it can be seen from Fig. 2 A 

that high BOLD fluctuations alone cannot generate high network ampli- 
tudes: even if the amplitudes of BOLD fluctuations were to double, the 
final amplitude of the RSN timeseries could be small if the two fluctua- 
tions are not temporally synchronised, or they are temporally synchro- 
nised when they are expected to be anticorrelated according to the group 
spatial map. In short, network amplitude becomes larger when the BOLD 

fluctuations of the brain regions involved in the network are temporally 
synchronised and the BOLD fluctuation amplitudes themselves are high. 
Below, we attempt to dissociate these two factors by separately estimat- 
ing and investigating “temporal synchrony ” and BOLD amplitudes. 

2.3.2. Temporal synchrony 

Let 𝑿̂ = [ ̂𝒙 1 , 𝒙̂ 2 , … , 𝒙̂ 𝑁 

] 𝑇 ∈ ℝ 

𝑁×𝑇 be a matrix of temporally nor- 
malized fMRI data ( Fig. 1 C). The temporally normalized BOLD time- 
series of voxel 𝑖 is computed as 𝒙̂ 𝑖 = 𝒛 𝑖 , where 𝒛 𝑖 = ( 𝒙 𝑖 − 𝜇𝑖 )∕ 𝜎𝑖 and 𝜇𝑖 
and 𝜎𝑖 are the mean and standard deviation of 𝒙 𝑖 . Similar to Eq. (2) , 𝑫̂ 

are computed using the spatial regression (dual regression stage 1): 

𝑿̂ = 𝑮 ̂𝑫 + 𝑬 (4) 

𝑫̂ = 

(
𝑮 

𝑇 𝑮 

)−1 
𝑮 

𝑇 𝑿̂ (5) 

3 
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Fig. 1. (A) Schematics of temporal concatenation group-ICA. Group-ICA decomposes the temporally concatenated fMRI data from participants into a set of indepen- 
dent spatial maps and a set of corresponding timeseries. The ICA dimension ( K ) was set to 25 in this study. The spatial maps from group ICA are used in the first stage 
of dual regression to derive subject-specific network timeseries, which are then subsequently used in the second stage of the dual regression to obtain subject-specific 
spatial maps. (B) Traditional dual regression stage 1. Network timeseries ( D ) are obtained using the original fMRI data, where the BOLD signal in each voxel ( 𝑥 𝑖 ) 
fluctuates with standard deviation 𝜎𝑖 . Network amplitudes are defined as the standard deviations of the estimated network timeseries. 𝐸 denotes residuals. (C) New, 
distinct network timeseries ( ̂𝐷 ) are obtained using temporally normalized fMRI data, where the standard deviation of the BOLD signal is set to 1 for every voxel. 
Temporal synchrony of each network is defined as the standard deviation of each of these new network timeseries. 

Temporal synchrony is defined as the standard deviation of the time- 

series in 𝑫̂ : 𝑎̂ 𝑘 = 

√ 

var ( ̂𝒅 𝑘 ) ( 𝑘 = 1 , … , 𝐾) . Comparing Eq. (5) with 

Eq. (2) , the term ( 𝑮 

𝑇 𝑮 ) −1 remains the same, and 𝑮 

𝑇 𝑿 is replaced with 
𝑮 

𝑇 𝑿̂ in which each row is a weighted sum of the normalized BOLD 

timeseries 𝒙̂ 1 , 𝒙̂ 2 , … , 𝒙̂ 𝑁 

that have variance equal to one. Therefore, 
the temporal synchrony is not influenced by the variance of the BOLD 

timeseries, but only affected by their temporal covariations (synchroni- 
sation with each other) and the ICA weights. In other words, the tempo- 
ral synchrony 𝑎̂ 𝑘 will be large when the voxels contributing strongly 
to the group spatial map ( 𝒈 𝑘 ) fluctuate in a synchronised way over 
time. 

2.3.3. BOLD amplitude 

A BOLD amplitude is defined for each network to represent the aver- 
age BOLD fluctuation amplitudes of the voxels that contribute strongly 
to the network. A threshold of |𝑍| = 3.29 ( 𝑃 ( |𝑍| > 3 . 29) = 10 −3 ) was 
used to create binary masks 𝑴 = [ 𝒎 1 , 𝒎 2 , … , 𝒎 𝐾 ] ∈ ℝ 

𝑁×𝐾 to select 
the voxels for each network, where 𝒎 𝑘 ∈ 𝑅 

𝑁×1 is a binary mask of net- 

work 𝑘 . The elements of 𝒎 𝑘 are 

𝑚 𝑘 ( 𝑖 ) = 1 , 𝐢𝐟 ||𝑔 𝑘 ( 𝑖 ) || > 3 . 29 

𝑚 𝑘 ( 𝑖 ) = 0 , 𝐨𝐭 𝐡𝐞𝐫 𝐰𝐢𝐬𝐞 . 
(7) 

The BOLD amplitude of network 𝑘 is then defined as 𝑎̇ 𝑘 = 

1 ∑𝑁 
𝑖 =1 𝑚 𝑘 ( 𝑖 ) 

𝒎 

𝑇 
𝑘 
𝒗 where 𝒗 = [ 

√
var ( 𝒙 1 ) , … , 

√
var ( 𝒙 𝑁 

) ] 
𝑇 
∈ ℝ 

𝑁×1 is a vector 

of the BOLD fluctuation amplitudes of 𝑁 voxels. 
The BOLD amplitude defined here is similar to the average of ALFFs 

over the thresholded regions in a network. Instead of using the binary 
mask 𝒎 𝑘 , we also tried two different weighted-averaging methods to 
obtain BOLD amplitudes (sum of standard deviation: 𝑎̇ 𝑘 = 

1 
𝑁 

𝒈 𝑇 
𝑘 
𝒗 ; root 

sum of variance: 𝑎̇ 𝑘 = 

√ 

( 𝒈 𝑘 ◦𝒈 𝑘 ) 𝑇 ( 𝒗 ◦𝒗 ) ) and found that they gave similar 
results (Fig. S3A). 

2.4. Between-network FC 

The FC matrix 𝑪 = [ 𝒄 1 , 𝒄 2 , … , 𝒄 𝐾 ] ∈ ℝ 

21×21 was computed by cal- 
culating partial correlation coefficients between the network timeseries. 
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Fig. 2. Effects of temporal synchrony and amplitudes of BOLD signals on network amplitude computed in dual regression Stage 1. The timeseries 𝒅 𝑘 of network 
𝑘 corresponds to row 𝑘 of ( 𝑮 

𝑇 𝑮 ) −1 𝑮 

𝑇 𝑿 . ( 𝑮 

𝑇 𝑮 ) −1 does not affect intersubject differences in the network amplitude, and therefore is greyed out in the figure. A 

simplified example of 𝒈 𝑇 
𝑘 
𝑿 is presented below using two voxels. For illustration purpose, in the toy example, 𝑥 1 ( 𝑡 ) and 𝑥 2 ( 𝑡 ) are described as voxel timeseries of the 

same frequency that are perfectly aligned with a phase difference of 0. (A) Effect of temporal synchrony of BOLD signals. The network amplitude decreases due to 
the phase differences ( 𝜃) between the two timeseries denoted in green. The network amplitude is also small when the two voxels are expected to be anticorrelated 
based on the ICA weights (denoted in green) but their timeseries are positively correlated. (B) Effect of amplitudes of BOLD signals. As the BOLD signal amplitudes 
become half (denoted in green) – assuming the synchrony is unchanged – the network amplitude decreases by half. 

It was then subsequently used to calculate three types of summary con- 
nectivity strength for each network ( Fig. 3 ), namely absolute, positive, 
and negative FC defined as below: 

For each network 𝑘, 

• Absolute FC: mean of |𝒄 𝑘 | 
• Positive FC: mean of positive FC in 𝒄 𝑘 
• Negative FC: mean of negative FC in 𝒄 𝑘 

(The diagonal elements in 𝑪 were excluded from these calculations). 

2.5. Clustering analysis of network amplitude 

A hierarchical clustering analysis was performed to transform the 
network amplitude data into a low-dimensional space, such that the low- 
dimensional representation retains meaningful properties of the original 
data for further analyses. 

A correlation matrix ( ∈ ℝ 

21×21 ) was computed from the net- 
work amplitude matrix ( ∈ ℝ 

participant ×21 ), and Ward’s cluster- 
ing was performed on the correlation matrix using FSLNets 
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Fig. 3. (A) Within-subject correlation. For each participant, the FC matrix is computed from network timeseries using partial correlation. Absolute values of the 
FC matrix are taken and averaged (across all other networks) for each network to compute the absolute FC. Similarly, positive and negative FC are computed 
using positive and negative elements in 𝐶, respectively. A Pearson correlation coefficient, 𝑟 , is computed between network amplitudes and each of the absolute, 
positive, negative FC. The violin plots on the right-hand side shows the distributions of the correlation coefficients computed for 37,842 participants. (B) Correlation 
across participants. Top: illustrative scatter plots for network 1 (default mode network) amplitudes and each of the absolute, positive, and negative FC of network 1 
computed from 37,842 participants are shown along with their correlation coefficients. Bottom: the bar graphs show the correlations obtained for all 21 networks. 

( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets ), to discover a hier- 
archical structure of the similarity of the networks based on the 
intersubject covariation matrix. Based on the clustering result (which 
found one “sensory ” cluster, and one “cognitive ” one, similar to the 
clusters found in Bijsterbosch et al. (2017) , we derived sensory ampli- 
tude ∈ ℝ 

participant ×1 and cognitive amplitude ∈ ℝ 

participant ×1 by taking 
the mean of the network amplitudes in each cluster. 

2.6. Non-imaging variables 

UKB data include a wide range of non-imaging variables cover- 
ing demographic, health, and lifestyle information on the participants 

( https://www.ukbiobank.ac.uk/ ). In this work, a subset of non-imaging 
variables was selected using the following criteria to investigate their 
associations with network amplitudes: 

• For cancer illness, non-cancer illness, treatment/medication, opera- 
tive procedures, diagnoses variables: variables were selected if the 
number of the participants having a given condition was greater than 
1% of the total participants included in our study. 

• Other non-imaging variables: variables were selected if the number 
of non-missing records was greater than 50% of the total participants 
included in the study. Missing values were imputed based on soft- 
shrinkage SVD data reconstruction (nets_impute.m in FSLNets). The 
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imputed data were used in the multiple linear regression analysis 
( Section 2.11 ), and the original data before imputation were used 
elsewhere. 

With these criteria, a total of 4897 non-imaging variables 
were considered in this study. All the non-imaging variable 
names were kept the same as those used in the UKB showcase 
(https://biobank.ndph.ox.ac.uk/showcase/) to make it easier to 
identify them in the showcase for further information. 

2.7. Confounding variables 

For the UKB data, a recent study identified potential confounding 
factors to be considered when assessing associations between imaging 
and non-imaging variables ( Alfaro-Almagro et al., 2021 ). Out of the full 
set of 602 confounding variables reported, we chose the optimal set of 
184 confounds as proposed in ( Alfaro-Almagro et al., 2018 ), consisting 
of 36 variables related to head motion to compensate for motion-related 
artifacts, 30 variables related to head size and scan position (to account 
for differences in the positions of the head and RF coil relative to the 
scanner), and 118 variables related to acquisition site and acquisition 
date/time, that can be important confounds in a multi-site study. Age 
and sex were not included in this set of confounding variables, as they 
were variables of interest in this study. The complete list of the selected 
confounds is provided in Table S1. 

The confound-adjusted imaging and non-imaging variables were 
obtained via a regression-based unconfounding procedure ( Alfaro- 
Almagro et al., 2021 ). 

2.8. Genome-wide associations studies 

Following the approach used in ( Elliott et al., 2018 ; Smith et al., 
2021 ), a genome-wide association study (GWAS) was carried out for 
these three measures for each network: network amplitude, temporal 
synchrony, and BOLD amplitude. 

The second UKB release of imputed genetic data comprising over 90 
million structural variants was used in this work. We estimated genetic 
effects with respect to the number of copies of the non-reference allele. 
Variants with minor allele frequency (MAF) below 1% or an imputa- 
tion information score below 0.3 were first eliminated. Then, we used 
a maximal subset of unrelated participants with recent British ancestry 
determined using the variable in.white.British.ancestry, to minimize con- 
founding effects of population structure and relatedness on the GWAS. 

This QC filtering resulted in a total of 20,381,043 single-nucleotide 
polymorphisms (SNPs) and 33,287 participants (samples), which we 
partitioned at random into 22,172 participant discovery samples and 
11,115 participant replication samples. GWAS was carried out using 
BGENIE v1.2 ( https://jmarchini.org/bgenie/ ). 

After running GWAS, the genetic variants significantly associated 
with the three different measures were determined using the standard 
GWAS 𝑃 -value threshold of − log 10 𝑃 = 7 . 5 ( Elliott et al., 2018 ) in the 
discovery sample results. 

To better understand the genetic effects of the identified genetic vari- 
ants on the observed phenotypic variations, we referred to the genotype- 
tissue expression (GTEx) database (GTEx Consortium, 2017 ) that pro- 
vides catalogs of expression quantitative trait loci (eQTLs) in 44 human 
tissues that have been made publicly available. 

2.9. Relationships between network amplitude and individual traits 

To establish relationships between network amplitude and non- 
imaging variables, we computed Pearson correlation coefficients be- 
tween the sensory or cognitive amplitude and each of the 4897 
non-imaging variables. The significance level adjusted for multiple 
testing across non-imaging variables using Bonferroni correction is 
0 . 05∕4 , 897 = 1 . 02 × 10 −5 . We used, however a more stringent thresh- 
old of 𝑃 = 10 −20 , to determine significant correlations to ensure at 

least a modest strength of association (approximately corresponding to 
| 𝑟 | > 0 . 05 ). To find associations independent of age, we also computed 
the Pearson correlation coefficients between the sensory or cognitive 
amplitude and non-imaging variables after regressing out age from the 
amplitudes and variables. Statistical tests ( Pearson and Filon, 1898 )) for 
the comparison between two correlations were done using the R pack- 
age ‘cocor’ ( Diedenhofen and Musch, 2015 ). 

2.10. Comparisons of amplitudes 

Correlations between the network amplitudes, temporal synchrony, 
and BOLD amplitudes (see Section 2.3 ) across participants were com- 
puted for every network, to investigate how similarly they covary across 
participants. 

Further, to investigate which voxels drive the similarity (if present) 
of the intersubject variations between the network amplitudes and tem- 
poral synchrony, we set a threshold value for the group ICA maps, to 
determine a subset of the voxels to include, when computing the tem- 
poral synchrony. By varying the threshold value, we computed (1) the 
temporal correlation between the network timeseries ( ̂𝑫 in Fig. 1 C) and 
the one computed from the thresholded voxels, (2) the correlation be- 
tween the original temporal synchrony and the one obtained from the 
thresholded voxels across participants, and (3) the correlation between 
the original network amplitudes and temporal synchrony obtained from 

the thresholded voxels across participants. 

2.11. Multiple linear regression analysis 

Relationships between non-imaging variables and each of the net- 
work amplitudes, temporal synchrony, and BOLD amplitudes were in- 
vestigated using multiple linear regression analyses. We first selected 
a small subset of non-imaging variables from Table 3 that are most 
strongly correlated with sensory and/or cognitive amplitudes: systolic 
blood pressure, body fat %, haemoglobin concentration, and sleep dura- 
tion. Note that we selected a representative variable from each category 
that is commonly used in the literature (e.g., systolic blood pressure 
from cardiovascular variables, body fat % from body composition vari- 
ables). Age and sex (coded as 0 and 1 for female and male, respectively) 
were included as variables of interest along with age 2 and interaction 
terms between age and sex (age × sex and age 2 × sex) to model age and 
sex effects more comprehensively. A multiple linear regression analysis 
was performed with the non-imaging variables as independent variables 
and an imaging variable as the dependent variable. A total of 63 ( = 21 
networks × network amplitude/temporal synchrony/BOLD amplitude) 
multiple linear regression analyses were performed. All the dependent 
and independent variables (except for the sex variable) were normalised 
before fitting the model. 

3. Results 

3.1. Intersubject variability of network amplitude 

We first focus on associations between the network amplitudes and 
phenotypes from three different domains: (1) FC, (2) non-imaging vari- 
ables, and (3) genetics. 

3.1.1. Associations between network amplitude and FC 

Fig. 3 A shows the distribution of the within-subject correlations be- 
tween the network amplitudes and absolute/positive/negative FC across 
21 networks. For most of the participants, the network amplitudes and 
absolute FC were strongly correlated ( 𝑟 = 0.91 ± 0.044; mean ± stan- 
dard deviation (SD)), indicating that networks with greater amplitudes 
tend to have stronger FC with other networks. Similarly, the network 
amplitudes were strongly correlated with positive ( 𝑟 = 0.71 ± 0.12) and 
negative ( 𝑟 = -0.75 ± 0.11) FC. 
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Fig. 4. Ward’s clustering shows a clear separation of the sen- 
sory networks (green) and cognitive networks (purple). The or- 
der of networks and dendrogram are presented on the top along 
with the correlation matrix ( ∈ ℝ 

21×21 ) computed from the net- 
work amplitude matrix ( ∈ ℝ 

participant ×21 ). Each network is la- 
beled with the conventional functional network name on the 
left ( Beckmann et al., 2005 ; Damoiseaux et al., 2006 ; Lee et al., 
2013 ; Veer et al., 2010 ). 

This correlation between amplitude and FC across participants is pre- 
sented for each network in Fig. 3 B. The correlation between the am- 
plitude and absolute FC was significant for every network (Bonferroni 
corrected 𝑃 < 0.001; 𝑟 = 0.57 ± 0.14), indicating that participants with 
larger network amplitudes tend to also show stronger FC. Strong cor- 
relations ( 𝑟 > 0.7) were observed for networks 19, 12, 11, 4, 8, and 
10 (descending order of the correlation strength), which are the visual 
(4, 8, 19) and motor (10, 11, 12) networks ( Beckmann et al., 2005 ; 
Damoiseaux et al., 2006 ; Lee et al., 2013 ; Veer et al., 2010 ). Similarly, 
the correlations were found to be significant for all 21 networks (Bon- 
ferroni corrected 𝑃 < 0.001) when the positive ( 𝑟 = 0.36 ± 0.19) or 
negative ( 𝑟 = -0.48 ± 0.11) FC was used separately. In line with what 
we observed for the absolute FC, these correlations were consistently 
the strongest for the visual (4, 8, 19) and motor (10, 11) networks. 

3.1.2. Relevance of network amplitude to non-imaging variables 

The clustering result revealed two distinct groups of networks as 
shown in Fig. 4 . The first group contained visual (2, 4, 8, 19), motor (10, 
11, 12), cerebellum (15), auditory (17), and subcortical (18) networks, 
whereas the second group included the default mode (1), its more lim- 
bic (7) and precuneal component (20), the salience (14), attention (3), 
right and left fronto-parietal (5, 6), language-related (9, 13, 21), and ex- 
ecutive control (16) networks. The hierarchical structure shows that the 
amplitudes of the networks with similar functions (e.g., visual) covary 
– i.e., vary across the participants in a similar manner – clearly sepa- 
rating the networks into two, mainly sensory and cognitive, clusters. In 
the remainder of this work, we refer to the first and second groups as 
“sensory ” and “cognitive ” groups based on the functional properties of 
the networks they contain. 

Table 1 shows the top 50 non-imaging variables most significantly 
correlated with the sensory and cognitive amplitudes. Age was found to 
be most strongly correlated with both amplitudes. Cardiovascular fac- 
tors, body composition, blood count, lung function (e.g., forced expira- 
tory volume (FEV)), and sex-related variables (e.g., testosterone) were 
the next significant variables associated with sensory and cognitive am- 
plitudes. 

To visualize the correlation profiles of the sensory and cognitive net- 
works with the entire set of non-imaging variables, the 𝑃 values were 
converted into − log 10 𝑃 and displayed as Manhattan plots in Fig. 5 A and 
B. The plots show that variables in the categories of age, cardiovas- 
cular measures, general physical measures, and blood count are most 
strongly correlated with both amplitudes. Differences in the correla- 
tion profiles between the sensory and cognitive networks are plotted in 
Fig. 5 C, demonstrating that physical measures and cardiac and vascu- 
lar variables are particularly more strongly associated with the sensory 
network than cognitive network. This trend was also observed when we 
examined the correlation profiles across each network (Fig. S2; Table 
S2). 

To examine the differences in more detail, we investigated statisti- 
cally detectable differences between cognitive and sensory amplitudes 
with respect to the magnitude of the correlations. In Table 2 , we listed 
a total of 110 non-imaging variables that showed significantly differ- 
ent correlations between the sensory and cognitive amplitudes. Most 
of the cardiovascular and physical measures were more strongly corre- 
lated with the sensory amplitude, whereas 25 variables including year 
ended full time education, carotid artery thickness, touchscreen dura- 
tion, and cognitive test performance showed higher correlations with 
the cognitive amplitude. There was no difference between the sensory 
and cognitive amplitudes in their correlation strengths with age. 

To assess correlations independent of age, we computed the Pearson 
correlation coefficients after regressing out age from the amplitudes and 
the non-imaging variables. Table 3 shows that the same measures are 
still most strongly associated with the sensory and cognitive amplitudes 
independent of age. A total of 92 variables were correlated with the 
sensory and cognitive amplitudes with significantly different strengths 
independent of age ( Table 4 ). Similar to the results in Table 2 , most 
of the variables in Table 4 were cardiovascular measures, physical mea- 
sures, blood count, and lung function, and they showed higher corre- 
lations with the sensory amplitude. Only three variables, year ended 
full time education (which was fairly highly correlated with age ended 
education, 𝑟 = 0.470, 𝑃 = 1.0E-300), touchscreen duration, and left ven- 
tricular (LV) stroke volume showed stronger correlations with the cog- 
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Table 1 

List of top 50 non-imaging variables that are most significantly associated with each of the sensory and cognitive amplitudes (no age deconfounding). Unadjusted 
𝑃 values are displayed. 

Sensory amplitude Cognitive amplitude 

𝒓 𝑷 Non-imaging variable 𝒓 𝑷 Non-imaging variable 

-0.244 < 1E-300 Age -0.247 < 1E-300 Age 
-0.208 1.1E-291 Cardiac index during PWA 0.230 1.2E-251 Year ended full time education 
-0.197 7.7E-274 Cardiac output during PWA -0.159 3.0E-183 Central systolic blood pressure during PWA 
-0.185 7.8E-250 Systolic brachial blood pressure -0.157 2.1E-180 Systolic brachial blood pressure 
-0.183 2.5E-243 Central systolic blood pressure during 

PWA 
-0.152 2.2E-167 Central pulse pressure during PWA 

-0.179 3.9E-231 Peripheral pulse pressure during PWA -0.151 9.9E-166 Peripheral pulse pressure during PWA 
-0.179 6.8E-231 Central pulse pressure during PWA -0.157 1.1E-165 Cardiac index during PWA 
0.159 8.0E-203 Leg fat-free mass (right) -0.150 7.8E-158 Cardiac output during PWA 
0.157 9.8E-198 Arm fat-free mass (right) -0.150 4.5E-157 Stroke volume during PWA 
-0.153 2.1E-196 Current employment status -0.127 1.4E-134 Current employment status 
0.203 3.3E-195 Year ended full time education -0.171 3.3E-131 Ever had breast cancer screening / mammogram 

0.156 5.0E-193 Whole body water mass -0.136 3.5E-126 Systolic blood pressure, automated reading 
-0.163 2.4E-185 Stroke volume during PWA 0.117 5.7E-112 Father still alive 
0.143 1.1E-170 Whole body fat-free mass 0.113 9.5E-106 Mother still alive 
0.151 2.7E-169 Forced expiratory volume in 1 s (FEV1) 0.108 2.9E-97 Own or rent accommodation lived in 
0.141 5.9E-167 Hand grip strength (left) -0.107 5.0E-97 Touchscreen duration 
0.140 3.7E-164 Hand grip strength (right) -0.129 1.6E-93 Interpolated Age of participant when non-cancer illness 

first diagnosed 
-0.155 3.9E-162 Systolic blood pressure, automated 

reading 
-0.110 1.2E-88 Mean arterial pressure during PWA 

0.146 2.0E-158 Forced vital capacity (FVC) 0.107 6.7E-88 Average total household income before tax 
0.136 8.7E-155 Arm predicted mass (left) 0.110 1.1E-87 Total peripheral resistance during PWA 
0.136 1.7E-154 Arm fat-free mass (left) -0.103 4.9E-86 Mean carotid IMT (intima-medial thickness) at 150 degrees 
-0.137 1.1E-149 Impedance of arm (left) -0.108 1.9E-84 End systolic pressure during PWA 
0.143 7.3E-147 Total peripheral resistance during PWA -0.100 9.2E-84 Ever had bowel cancer screening 
-0.135 3.0E-146 Impedance of arm (right) 0.102 2.2E-83 Haemoglobin concentration 
0.124 7.7E-126 Mother still alive 0.099 5.1E-79 Haematocrit percentage 
0.122 1.4E-123 Weekly usage of mobile phone in last 3 

months 
-0.096 2.5E-78 Length of time at current address 

-0.130 5.6E-122 Mean arterial pressure during PWA 0.097 3.3E-76 Red blood cell (erythrocyte) count 
0.137 1.1E-121 Forced expiratory volume in 1 s (FEV1), 

Best measure 
0.100 2.3E-75 Forced expiratory volume in 1 s (FEV1) 

0.120 3.7E-121 Own or rent accommodation lived in -0.097 3.0E-75 Mean carotid IMT (intima-medial thickness) at 120 degrees 
-0.128 3.1E-119 End systolic pressure during PWA -0.096 1.9E-74 Minimum carotid IMT (intima-medial thickness) at 150 

degrees 
0.126 4.0E-115 Testosterone -0.128 4.0E-74 Had menopause 
-0.118 7.2E-115 Ever had bowel cancer screening -0.096 4.4E-74 Maximum carotid IMT (intima-medial thickness) at 150 

degrees 
-0.158 1.2E-112 Ever had breast cancer screening / 

mammogram 

0.094 4.0E-73 Weight 

-0.116 3.2E-112 Work/job satisfaction 0.092 1.4E-72 Weight (pre-imaging) 
0.120 6.0E-112 Peak expiratory flow (PEF) -0.092 4.0E-71 Wears glasses or contact lenses 
-0.116 1.3E-111 Leg fat percentage (right) 0.093 2.9E-70 Hand grip strength (left) 
0.127 3.4E-105 Forced vital capacity (FVC), Best measure 0.092 1.3E-69 Hand grip strength (right) 
0.113 2.2E-104 Seated height -0.088 4.1E-65 Mean time to correctly identify matches 
0.111 1.0E-102 Hands-free device/speakerphone use with 

mobile phone in last 3 month 
-0.089 7.3E-65 Mean carotid IMT (intima-medial thickness) at 210 degrees 

-0.110 9.8E-102 Impedance of whole body 0.088 8.9E-65 Length of mobile phone use 
0.114 6.5E-99 Average total household income before 

tax 
0.107 1.6E-64 Number of symbol digit matches attempted 

0.110 1.4E-97 Red blood cell (erythrocyte) count 0.106 2.3E-63 Number of symbol digit matches made correctly 
0.107 8.5E-97 Number in household -0.093 8.0E-63 Central augmentation pressure during PWA 
-0.107 4.0E-95 Body fat percentage 0.086 8.7E-63 Leg fat-free mass (right) 
0.106 2.1E-94 Weight (pre-imaging) -0.088 4.5E-62 Maximum carotid IMT (intima-medial thickness) at 120 

degrees 
0.109 5.1E-92 Body surface area 0.090 3.6E-61 Forced vital capacity (FVC) 
-0.103 1.6E-89 Sleep duration -0.087 7.0E-61 Minimum carotid IMT (intima-medial thickness) at 120 

degrees 
0.105 1.1E-88 Haemoglobin concentration -0.087 1.7E-60 Duration to first press of snap-button in each round 
-0.107 2.6E-88 Average heart rate 0.086 8.3E-60 Arm fat-free mass (right) 
0.103 3.4E-87 Weight 0.083 3.3E-58 Hands-free device/speakerphone use with mobile phone in 

last 3 month 
a Year the participants first finished full-time education (school, college or university). See https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id = 22501 for more 
detail. 

9 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22501


S. Lee, J.D. Bijsterbosch, F.A. Almagro et al. NeuroImage 265 (2023) 119779 

Table 2 

List of non-imaging variables with significant differences in their associations with the sensory and with the cognitive network amplitudes (no 
age deconfounding). Unadjusted 𝑃 values are displayed. Variables more strongly associated with cognitive amplitude than sensory amplitude 
are denoted in bold. 

𝒓 (sensory) 𝑷 (sensory) 𝒓 (cognitive) 𝑷 (cognitive) 𝑷 𝐝𝐢𝐟𝐟 Non-imaging variable 

-0.208 1.1E-291 -0.157 1.1E-165 < 1E-300 Cardiac index during PWA 
0.203 3.3E-195 0.230 1.2E-251 1.1E-10 Year ended full time education 

-0.197 7.7E-274 -0.150 7.8E-158 < 1E-300 Cardiac output during PWA 
-0.185 7.8E-250 -0.157 2.1E-180 6.7E-11 Systolic brachial blood pressure 
-0.183 2.5E-243 -0.159 3.0E-183 1.2E-08 Central systolic blood pressure during PWA 
-0.179 6.8E-231 -0.152 2.2E-167 4.4E-10 Central pulse pressure during PWA 
-0.179 3.9E-231 -0.151 9.9E-166 1.2E-10 Peripheral pulse pressure during PWA 
-0.153 2.1E-196 -0.127 1.4E-134 5.E-10 Current employment status 
0.159 8.0E-203 0.086 1.2E-59 < 1E-300 Leg fat-free mass (right) 
0.157 9.8E-198 0.086 8.3E-60 < 1E-300 Arm fat-free mass (right) 
0.151 2.7E-169 0.100 2.3E-75 < 1E-300 Forced expiratory volume in 1 s (FEV1) 
0.156 5.0E-193 0.078 1.8E-49 < 1E-300 Whole body water mass 
0.143 7.3E-147 0.110 1.1E-87 1.8E-14 Total peripheral resistance during PWA 
0.140 3.7E-164 0.086 2.2E-62 < 1E-300 Hand grip strength (right) 
0.141 5.9E-167 0.080 9.9E-55 < 1E-300 Hand grip strength (left) 
0.146 2.0E-158 0.090 3.6E-61 < 1E-300 Forced vital capacity (FVC) 
0.143 1.1E-170 0.075 2.0E-47 < 1E-300 Whole body fat-free mass 
-0.130 5.6E-122 -0.110 1.2E-88 5.9E-06 Mean arterial pressure during PWA 
0.120 3.7E-121 0.101 1.3E-85 5.6E-06 Own or rent accommodation lived in 
-0.128 3.1E-119 -0.108 1.9E-84 1.5E-06 End systolic pressure during PWA 
0.136 8.7E-155 0.071 2.0E-42 < 1E-300 Arm predicted mass (left) 
0.136 1.7E-154 0.070 2.9E-42 < 1E-300 Arm fat-free mass (left) 
0.122 1.4E-123 0.081 1.0E-55 < 1E-300 Weekly usage of mobile phone in last 3 months 
0.137 1.1E-121 0.093 2.4E-56 < 1E-300 Forced expiratory volume in 1 s (FEV1), Best measure 
-0.137 1.1E-149 -0.051 2.2E-22 < 1E-300 Impedance of arm (left) 
-0.135 3.0E-146 -0.053 4.4E-24 < 1E-300 Impedance of arm (right) 
-0.116 3.2E-112 -0.081 1.5E-55 4.4E-16 Work/job satisfaction 
0.111 1.0E-102 0.083 3.3E-58 7.4E-11 Hands-free device/speakerphone use with mobile phone in last 3 month 
0.120 6.0E-112 0.070 6.9E-39 < 1E-300 Peak expiratory flow (PEF) 
0.109 5.1E-92 0.085 3.9E-56 1.3E-08 Body surface area 
0.127 3.4E-105 0.080 1.6E-42 < 1E-300 Forced vital capacity (FVC), Best measure 
0.126 4.0E-115 0.061 2.2E-28 < 1E-300 Testosterone 
0.107 8.5E-97 0.072 2.2E-44 2.2E-16 Number in household 
0.113 2.2E-104 0.062 2.4E-32 < 1E-300 Seated height 
-0.071 2.1E-41 -0.103 4.9E-86 4.93E-14 Mean carotid IMT (intima-medial thickness) at 150 degrees 

0.098 3.1E-78 0.077 9.4E-49 9.5E-07 Creatinine (enzymatic) in urine 
0.099 2.8E-80 0.074 2.2E-45 4.5E-09 Sitting height 
0.098 2.5E-78 0.074 4.0E-46 5.8E-08 Sodium in urine 
-0.048 1.0E-20 -0.107 5.0E-97 < 1E-300 Touchscreen duration 

-0.116 1.3E-111 -0.022 2.8E-05 < 1E-300 Leg fat percentage (right) 
-0.110 9.8E-102 -0.039 9.4E-14 < 1E-300 Impedance of whole body 
-0.065 3.0E-35 -0.097 3.0E-75 3.0E-13 Mean carotid IMT (intima-medial thickness) at 120 degrees 

-0.066 2.2E-36 -0.096 4.4E-74 7.8E-12 Maximum carotid IMT (intima-medial thickness) at 150 degrees 

-0.064 3.2E-34 -0.096 1.9E-74 1.6E-13 Minimum carotid IMT (intima-medial thickness) at 150 degrees 

-0.103 1.6E-89 -0.041 2.1E-15 < 1E-300 Sleep duration 
0.098 1.8E-76 0.058 2.0E-28 < 1E-300 Drive faster than motorway speed limit 
-0.095 9.3E-65 -0.071 2.4E-37 4.5E-08 SHBG 
-0.107 4.0E-95 -0.020 1.3E-04 < 1E-300 Body fat percentage 
0.094 4.0E-75 0.053 2.3E-24 < 1E-300 Number of vehicles in household 
-0.107 2.6E-88 -0.034 4.1E-10 < 1E-300 Average heart rate 
0.096 9.9E-60 0.075 9.9E-37 6.3E-07 Heel broadband ultrasound attenuation (left) 
-0.063 6.9E-33 -0.088 4.5E-62 1.1E-08 Maximum carotid IMT (intima-medial thickness) at 120 degrees 

0.091 4.3E-70 0.049 1.9E-21 < 1E-300 Time spent driving 
-0.055 6.1E-26 -0.089 7.3E-65 2.7E-15 Mean carotid IMT (intima-medial thickness) at 210 degrees 

0.103 1.4E-63 0.066 6.2E-27 < 1E-300 Length of working week for main job 
0.101 1.2E-65 0.060 1.3E-24 < 1E-300 Average weekly beer plus cider intake 
0.094 3.6E-72 0.044 3.4E-17 < 1E-300 Standing height 
-0.104 2.7E-86 0.007 1.7E-01 < 1E-300 Leg fat percentage (left) 
0.092 7.9E-55 0.069 2.0E-31 8.1E-08 Heel broadband ultrasound attenuation (right) 
-0.055 2.4E-25 -0.087 7.0E-61 1.3E-13 Minimum carotid IMT (intima-medial thickness) at 120 degrees 

0.089 3.9E-68 0.040 3.6E-15 < 1E-300 Height 
-0.051 2.4E-22 -0.084 2.3E-57 2.1E-14 Mean carotid IMT (intima-medial thickness) at 240 degrees 

-0.086 5.5E-54 -0.058 5.8E-25 2.7E-11 Apolipoprotein A 
-0.099 6.0E-72 -0.026 2.2E-06 < 1E-300 Heart rate during PWA 
0.056 7.9E-27 0.078 5.7E-50 5.2E-07 Body mass index (BMI) 

-0.052 9.3E-23 -0.081 2.1E-53 1.1E-11 Maximum carotid IMT (intima-medial thickness) at 210 degrees 

-0.084 1.8E-51 -0.057 1.8E-24 2.9E-10 HDL cholesterol 
-0.049 6.0E-21 -0.082 9.1E-55 3.9E-14 Minimum carotid IMT (intima-medial thickness) at 210 degrees 

-0.090 1.6E-68 -0.009 7.2E-02 < 1E-300 Arm fat percentage (right) 
-0.093 3.0E-64 -0.020 2.6E-04 < 1E-300 Number of beats in waveform average for PWA 
-0.089 6.2E-66 -0.006 2.5E-01 < 1E-300 Arm fat percentage (left) 
-0.064 1.0E-23 -0.087 4.5E-43 4.7E-08 Duration spent answering each puzzle 

-0.046 2.6E-18 -0.077 2.9E-48 6.3E-13 Maximum carotid IMT (intima-medial thickness) at 240 degrees 

( continued on next page ) 
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Table 2 ( continued ) 

𝒓 (sensory) 𝑷 (sensory) 𝒓 (cognitive) 𝑷 (cognitive) 𝑷 𝐝𝐢𝐟𝐟 Non-imaging variable 

0.086 9.1E-59 0.019 3.5E-04 < 1E-300 Creatinine 
-0.084 1.2E-59 -0.013 9.6E-03 < 1E-300 Trunk fat percentage 
-0.044 3.9E-17 -0.074 5.1E-45 3.9E-12 Minimum carotid IMT (intima-medial thickness) at 240 degrees 

0.080 1.3E-50 0.026 9.8E-07 < 1E-300 LV end systolic volume 
-0.083 2.3E-51 -0.018 9.7E-04 < 1E-300 Ventricular rate 
-0.066 3.7E-37 -0.044 3.3E-17 2.6E-07 Time spent watching television (TV) 
-0.079 6.8E-53 0.003 5.7E-01 < 1E-300 Leg fat mass (right) 
0.072 2.2E-41 0.036 1.9E-11 < 1E-300 Urate 
-0.055 4.2E-18 -0.078 1.5E-34 1.4E-07 Interval between previous point and current one in numeric path (trail #1) 

0.054 1.9E-17 0.077 3.5E-33 2.0E-07 Amount of alcohol drunk on a typical drinking day 

0.078 9.4E-48 0.012 2.7E-02 < 1E-300 LV end diastolic volume 
0.054 2.4E-17 0.074 1.5E-31 2.3E-06 Number of puzzles correctly solved 

-0.072 6.0E-44 -0.016 2.2E-03 < 1E-300 Impedance of leg (right) 
-0.086 7.6E-35 -0.049 3.9E-12 < 1E-300 QTC interval 
-0.069 1.2E-40 -0.016 1.5E-03 < 1E-300 Impedance of leg (left) 
0.065 2.5E-35 0.030 1.3E-08 2.2E-16 Risk taking 
-0.062 6.8E-33 -0.033 1.5E-10 3.2E-11 Taking other prescription medications 
0.079 3.8E-29 0.051 3.2E-13 1.6E-10 Heel Broadband ultrasound attenuation, direct entry 
0.078 8.8E-29 0.051 2.9E-13 4.2E-10 Heel bone mineral density (BMD) T-score, automated 
0.074 6.2E-26 0.048 6.2E-12 2.5E-09 Speed of sound through heel 
0.086 1.8E-34 0.019 7.2E-03 < 1E-300 RR interval 
0.064 2.2E-35 -0.006 2.2E-01 < 1E-300 Distance (Euclidean) to coast 
-0.055 7.4E-25 -0.035 6.3E-11 3.6E-06 Cholesterol 
0.082 2.4E-31 0.020 3.7E-03 < 1E-300 PP interval 
0.037 6.9E-09 0.065 6.2E-25 3.9E-11 Number of puzzles attempted 

-0.029 3.5E-08 -0.055 6.7E-25 3.6E-09 Cystatin C 

0.058 4.7E-25 0.024 2.1E-05 3.3E-15 Pulse wave reflection index 
-0.076 1.8E-27 -0.012 8.0E-02 < 1E-300 QRS num 

0.059 2.1E-28 -0.002 7.0E-01 < 1E-300 LV stroke volume 
-0.024 4.6E-06 -0.051 3.1E-22 5.3E-10 Time spend outdoors in summer 

-0.061 1.3E-26 -0.007 2.1E-01 < 1E-300 Pulse rate, automated reading 
-0.003 6.2E-01 0.057 6.7E-27 < 1E-300 Trunk fat mass 

-0.020 2.2E-04 -0.053 4.9E-23 2.2E-14 Urea 

0.053 2.8E-25 0.010 4.2E-02 < 1E-300 Operation code (1218 - vasectomy) 
-0.006 2.8E-01 0.055 9.6E-26 < 1E-300 Arm fat mass (right) 

0.053 4.2E-25 0.006 2.6E-01 < 1E-300 Skin colour 
-0.048 7.2E-21 0.011 3.6E-02 < 1E-300 Whole body fat mass 

Fig. 5. Manhattan plots showing the associations between 4,897 non-imaging variables and sensory/cognitive amplitude. The association strengths are presented 
as the Pearson correlation P values that have been converted to − log 10 𝑃 (note: subscripts s and c indicate sensory and cognitive, respectively). The horizontal lines 
indicate − log 10 𝑃 = 20 . The non-imaging variables are categorized into 15 groups, which are denoted with different colours for visualization. (A) Associations between 
sensory amplitude and non-imaging variables. (B) Associations between cognitive amplitude and non-imaging variables. (C) Differences in the correlation 𝑃 values 
between sensory and cognitive amplitudes. Variables with positive − log 10 ( 𝑃 𝑠 ∕ 𝑃 𝑐 ) have stronger associations with the sensory amplitude than cognitive amplitude. 
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Table 3 

List of top 50 non-imaging variables that are most strongly associated with each of the sensory and cognitive amplitudes (after age deconfounding). Unadjusted 𝑃 
values are displayed. 

Sensory amplitude Cognitive amplitude 

𝒓 𝑷 Non-imaging variable 𝒓 𝑷 Non-imaging variable 

-0.161 1.8E-173 Cardiac index during PWA 0.117 7.2E-111 Haemoglobin concentration 
-0.156 6.7E-170 Cardiac output during PWA 0.116 1.0E-107 Haematocrit percentage 
-0.141 4.6E-146 Systolic brachial blood pressure -0.111 5.0E-91 Systolic brachial blood pressure 
-0.131 1.5E-142 Impedance of arm (right) -0.109 5.2E-87 Central systolic blood pressure during PWA 
-0.130 1.4E-141 Impedance of arm (left) 0.099 1.1E-79 Red blood cell (erythrocyte) count 
-0.136 6.6E-134 Central systolic blood pressure 

during PWA 
-0.105 7.2E-78 Cardiac output during PWA 

-0.131 2.5E-123 Peripheral pulse pressure during 
PWA 

-0.106 2.1E-76 Cardiac index during PWA 

0.130 6.1E-123 Testosterone -0.100 1.4E-73 Peripheral pulse pressure during PWA 
0.121 1.6E-121 Arm fat-free mass (right) -0.099 1.3E-69 Stroke volume during PWA 
0.121 4.3E-121 Arm predicted mass (left) -0.097 1.2E-68 Central pulse pressure during PWA 
0.120 2.9E-120 Arm fat-free mass (left) -0.086 5.6E-54 Mean arterial pressure during PWA 
-0.121 3.6E-117 Leg fat percentage (left) -0.083 7.4E-54 Cardiac output 
-0.119 3.8E-117 Impedance of whole body -0.082 8.0E-47 Systolic blood pressure, automated reading 
0.121 9.2E-117 Haemoglobin concentration -0.074 7.6E-41 End systolic pressure during PWA 
-0.121 2.3E-116 Leg fat percentage (right) -0.070 1.6E-40 Volume of serum held by UKB 
-0.126 1.0E-115 Central pulse pressure during 

PWA 
0.074 2.5E-40 Total peripheral resistance during PWA 

0.117 1.9E-114 Whole body fat-free mass -0.063 2.4E-33 Volume of Li-Hep plasma held by UKB 
0.119 1.7E-113 Haematocrit percentage 0.061 5.2E-32 Creatinine (enzymatic) in urine 
0.117 1.2E-109 Whole body water mass 0.079 1.2E-30 Year ended full time education 
0.114 1.1E-108 Leg fat-free mass (right) 0.064 1.3E-30 Testosterone 
0.113 1.6E-107 Hand grip strength (left) -0.058 1.5E-29 Touchscreen duration 
0.112 2.3E-106 Hand grip strength (right) -0.057 1.0E-28 Impedance of arm (right) 
-0.115 5.3E-105 Body fat percentage 0.056 2.3E-27 Hand grip strength (right) 
0.113 5.0E-102 Red blood cell (erythrocyte) 

count 
-0.058 3.0E-27 LV stroke volume 

-0.108 9.4E-93 Arm fat percentage (left) -0.056 5.1E-27 Impedance of arm (left) 
-0.114 2.8E-91 Stroke volume during PWA 0.063 1.1E-26 Heel quantitative ultrasound index (QUI), direct entry (left) 
-0.104 3.9E-91 Arm fat percentage (right) 0.063 1.1E-26 Speed of sound through heel (left) 
-0.108 1.9E-89 Average heart rate 0.056 3.6E-25 Average total household income before tax 
-0.103 8.9E-86 Leg fat mass (right) -0.053 1.2E-24 Treatment/medication code (1140879802 - amlodipine) 
0.109 1.5E-85 Total peripheral resistance during 

PWA 
0.054 2.1E-24 Urate 

0.103 2.0E-84 Creatinine 0.052 4.4E-24 Arm predicted mass (left) 
-0.106 4.4E-82 Mean arterial pressure during 

PWA 
0.053 5.6E-24 Hand grip strength (left) 

-0.103 3.1E-78 Heart rate during PWA 0.052 1.0E-23 Arm fat-free mass (left) 
-0.102 1.1E-71 Systolic blood pressure, 

automated reading 
0.052 1.3E-23 Sodium in urine 

-0.097 6.5E-69 Number of beats in waveform 

average for PWA 
0.058 3.6E-23 Speed of sound through heel (right) 

-0.096 1.1E-67 End systolic pressure during PWA 0.058 6.6E-23 Heel quantitative ultrasound index (QUI), direct entry 
(right) 

-0.089 2.5E-66 Sleep duration 0.051 8.1E-23 Arm fat-free mass (right) 
0.091 6.4E-66 Urate 0.058 9.5E-23 Heel broadband ultrasound attenuation (left) 
0.090 6.0E-61 Forced vital capacity (FVC) -0.050 9.6E-23 Non-cancer illness code, self-reported (1065 - 

hypertension) 
-0.085 8.8E-59 Trunk fat percentage -0.054 6.5E-22 SHBG 
0.083 1.5E-57 Creatinine (enzymatic) in urine 0.049 2.6E-21 Waist circumference 
0.085 2.3E-57 Peak expiratory flow (PEF) -0.047 9.8E-20 Vascular/heart problems diagnosed by doctor (4 - High 

blood pressure) 
0.087 7.5E-57 Forced expiratory volume in 1 s 

(FEV1) 
-0.049 1.1E-19 LV ejection fraction 

-0.083 1.4E-51 Ventricular rate -0.048 1.1E-19 Volume of EDTA2 plasma held by UKB 
-0.076 3.7E-49 Impedance of leg (right) 0.047 1.9E-19 Weight 
0.077 5.6E-49 Sodium in urine -0.047 2.3E-19 Volume of EDTA1 plasma held by UKB 
0.076 3.8E-48 Seated height -0.046 4.7E-19 Diagnoses - secondary ICD10 (I10 - I10 Essential (primary) 

hypertension) 
-0.074 3.1E-46 Impedance of leg (left) 0.046 6.3E-19 Weight (pre-imaging) 
0.073 9.8E-45 Hands-free device/speakerphone 

use with mobile phone in last 3 
month 

0.046 1.0E-18 Whole body fat-free mass 

-0.078 2.0E-44 SHBG 0.046 1.3E-18 Leg fat-free mass (right) 
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Table 4 

List of non-imaging variables with significant differences in the associations with the sensory and cognitive amplitudes after regressing out age (after age decon- 
founding). Unadjusted 𝑃 values are displayed. Variables more strongly associated with cognitive amplitude than sensory amplitude are denoted in bold. 

𝒓 (sensory) 𝑷 (sensory) 𝒓 (cognitive) 𝑷 (cognitive) 𝑷 𝐝𝐢𝐟𝐟 Non-imaging variable 

-0.161 1.8E-173 -0.106 2.1E-76 < 1E-300 Cardiac index during PWA 
-0.156 6.7E-170 -0.105 7.2E-78 < 1E-300 Cardiac output during PWA 
-0.141 4.6E-146 -0.111 5.0E-91 2.0E-12 Systolic brachial blood pressure 
-0.136 6.6E-134 -0.109 5.2E-87 4.5E-10 Central systolic blood pressure during PWA 
-0.131 2.5E-123 -0.100 1.4E-73 2.0E-12 Peripheral pulse pressure during PWA 
-0.126 1.0E-115 -0.097 1.2E-68 5.9E-12 Central pulse pressure during PWA 
-0.131 1.5E-142 -0.057 1.0E-28 < 1E-300 Impedance of arm (right) 
-0.130 1.4E-141 -0.056 5.1E-27 < 1E-300 Impedance of arm (left) 
0.130 6.1E-123 0.064 1.3E-30 < 1E-300 Testosterone 
0.121 4.3E-121 0.052 4.4E-24 < 1E-300 Arm predicted mass (left) 
0.121 1.6E-121 0.051 8.1E-23 < 1E-300 Arm fat-free mass (right) 
0.120 2.9E-120 0.052 1.0E-23 < 1E-300 Arm fat-free mass (left) 
-0.106 4.4E-82 -0.086 5.6E-54 1.7E-06 Mean arterial pressure during PWA 
-0.119 3.8E-117 -0.045 4.3E-18 < 1E-300 Impedance of whole body 
0.112 2.3E-106 0.056 2.3E-27 < 1E-300 Hand grip strength (right) 
0.117 1.9E-114 0.046 1.0E-18 < 1E-300 Whole body fat-free mass 
0.113 1.6E-107 0.049 9.6E-22 < 1E-300 Hand grip strength (left) 
0.114 1.1E-108 0.046 1.3E-18 < 1E-300 Leg fat-free mass (right) 
0.109 1.5E-85 0.074 2.5E-40 4.4E-16 Total peripheral resistance during PWA 
0.117 1.2E-109 0.035 1.9E-11 < 1E-300 Whole body water mass 
-0.117 4.5E-114 -0.020 8.2E-05 < 1E-300 Leg fat percentage (right) 
-0.121 3.6E-117 -0.007 0.18 < 1E-300 Leg fat percentage (left) 
-0.102 1.1E-71 -0.082 8.0E-47 2.7E-06 Systolic blood pressure, automated reading 
-0.096 1.1E-67 -0.074 7.6E-41 2.6E-07 End systolic pressure during PWA 
-0.115 5.3E-105 -0.002 0.72 < 1E-300 Body fat percentage 
-0.108 1.9E-89 -0.032 1.9E-09 < 1E-300 Average heart rate 
-0.105 1.2E-91 -0.020 1.1E-04 < 1E-300 Arm fat percentage (left) 
-0.104 3.9E-91 -0.021 3.8E-05 < 1E-300 Arm fat percentage (right) 
0.103 2.0E-84 0.035 7.9E-11 < 1E-300 Creatinine 
0.091 6.4E-66 0.054 2.1E-24 < 1E-300 Urate 
0.083 1.5E-57 0.061 5.2E-32 3.4E-07 Creatinine (enzymatic) in urine 
-0.103 8.9E-86 -0.004 0.48 < 1E-300 Leg fat mass (right) 
-0.103 3.1E-78 -0.029 2.2E-07 < 1E-300 Heart rate during PWA 
-0.097 6.5E-69 -0.022 8.5E-05 < 1E-300 Number of beats in waveform average for PWA 
0.077 5.6E-49 0.052 1.3E-23 1.3E-08 Sodium in urine 
-0.089 2.5E-66 -0.024 3.1E-06 < 1E-300 Sleep duration 
0.090 6.0E-61 0.029 1.6E-07 < 1E-300 Forced vital capacity (FVC) 
0.085 2.3E-57 0.032 1.3E-09 < 1E-300 Peak expiratory flow (PEF) 
-0.078 2.1E-44 -0.054 6.5E-22 1.6E-08 SHBG 
0.080 2.3E-42 0.058 9.5E-23 1.7E-07 Heel broadband ultrasound attenuation (left) 
0.087 7.5E-57 0.030 3.6E-08 < 1E-300 Forced expiratory volume in 1 s (FEV1) 
-0.085 8.9E-59 0.012 0.023 < 1E-300 Trunk fat percentage 
0.076 6.1E-38 0.052 1.9E-18 2.0E-08 Heel broadband ultrasound attenuation (right) 
-0.083 1.4E-51 -0.017 2.6E-04 < 1E-300 Ventricular rate 
0.076 3.8E-48 0.022 2.2E-05 < 1E-300 Seated height 
-0.076 3.7E-49 -0.019 3.1E-04 < 1E-300 Impedance of leg (right) 
0.073 9.8E-45 0.029 1.3E-08 < 1E-300 Hands-free device/speakerphone use with mobile phone in last 3 month 
0.064 4.3E-35 0.043 7.3E-17 1.6E-06 Length of mobile phone use 
0.068 2.5E-36 0.042 4.8E-15 2.8E-09 Body surface area 
0.081 3.5E-43 0.032 8.0E-08 < 1E-300 Forced expiratory volume in 1 s (FEV1), best measure 
0.062 7.2E-34 0.043 5.5E-17 7.5E-06 Weight 
-0.074 3.1E-46 -0.020 1.3E-04 < 1E-300 Impedance of leg (left) 
0.079 1.0E-40 0.036 6.6E-10 < 1E-300 Average weekly beer plus cider intake 
0.081 2.3E-43 0.030 4.4E-07 < 1E-300 Forced vital capacity (FVC), best measure 
0.070 5.5E-40 0.029 5.1E-08 < 1E-300 Drive faster than motorway speed limit 
0.077 3.5E-36 0.038 5.0E-10 < 1E-300 Length of working week for main job 
0.068 4.0E-39 0.024 4.9E-06 < 1E-300 Weekly usage of mobile phone in last 3 months 
-0.065 1.3E-30 -0.043 3.6E-14 2.2E-07 Central augmentation pressure during PWA 
0.069 1.1E-41 0.015 4.1E-03 < 1E-300 Standing height 
0.066 8.5E-37 0.028 7.7E-08 < 1E-300 Sitting height 
0.068 2.4E-40 0.017 7.8E-04 < 1E-300 Height 
-0.062 2.5E-29 -0.034 6.3E-10 6.5E-11 HDL cholesterol 
-0.065 2.0E-34 0.016 1.8E-03 < 1E-300 Whole body fat mass 
0.086 7.1E-35 0.018 0.013 < 1E-300 RR interval 
-0.058 1.6E-29 -0.025 8.2E-07 2.8E-14 Current employment status 
0.060 4.6E-30 0.024 7.6E-06 < 1E-300 Risk taking 
0.029 3.4E-05 0.079 1.3E-30 < 1E-300 Year ended full time education 

0.061 5.2E-32 -0.011 0.028 < 1E-300 Daytime dozing / sleeping (narcolepsy) 
0.081 3.7E-31 0.018 8.8E-03 < 1E-300 PP interval 
-0.058 4.3E-29 -0.019 2.0E-04 < 1E-300 Worrier / anxious feelings 
-0.057 8.4E-28 -0.023 1.2E-05 2.4E-15 Nervous feelings 
-0.059 7.0E-26 -0.029 2.6E-07 3.7E-12 Apolipoprotein A 

( continued on next page ) 
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Table 4 ( continued ) 

𝒓 (sensory) 𝑷 (sensory) 𝒓 (cognitive) 𝑷 (cognitive) 𝑷 𝐝𝐢𝐟𝐟 Non-imaging variable 

0.059 7.5E-30 0.014 6.5E-03 < 1E-300 Number of vehicles in household 
-0.057 2.6E-28 -0.018 3.8E-04 < 1E-300 Work/job satisfaction 
0.059 1.6E-26 0.025 1.0E-05 6.7E-16 Pulse wave reflection index 
0.057 1.2E-28 0.013 0.014 < 1E-300 Time spent driving 
0.056 1.8E-27 -0.016 1.4E-03 < 1E-300 Distance (Euclidean) to coast 
-0.078 6.2E-29 -0.013 0.072 < 1E-300 QRS num 

0.003 0.51 -0.058 1.5E-29 < 1E-300 Touchscreen duration 

-0.064 7.6E-29 -0.008 0.14 < 1E-300 Pulse rate, automated reading 
-0.071 6.7E-24 -0.032 5.3E-06 < 1E-300 QTC interval 
0.067 1.1E-21 0.039 3.7E-08 3.4E-11 Heel Broadband ultrasound attenuation, direct entry 
0.055 7.6E-27 0.011 0.032 < 1E-300 Operation code (1218 - vasectomy) 
0.007 0.20 -0.058 3.0E-27 < 1E-300 LV stroke volume 

-0.054 1.0E-24 -0.012 0.023 < 1E-300 Platelet crit 
0.055 3.2E-26 0.000 0.97 < 1E-300 Getting up in morning 
-0.052 4.7E-23 -0.015 4.5E-03 < 1E-300 Platelet count 
-0.056 6.4E-24 -0.011 0.052 < 1E-300 Neuroticism score 
-0.050 1.3E-22 -0.007 0.16 < 1E-300 Seen doctor (GP) for nerves, anxiety, tension or depression 
0.050 1.9E-22 0.001 0.79 < 1E-300 Skin colour 
0.052 3.2E-22 -0.004 0.47 < 1E-300 LV end systolic volume 
-0.054 2.7E-22 0.000 0.96 < 1E-300 Pulse rate 

Table 5 

Loci significantly associated with network amplitude (bold font indicates statistical significance after Bonferroni correction across networks). 

Network 

index 

Network 

name 

Chr Position RSID A1 A2 Beta − log 10 𝑷 Nearest 

gene 

Location GTEx eQTL 

12 Motor 2 114089551 rs2863957 C A -0.12 23.97 PAX8 Intergenic AC016745.3, 

RP11-480C16.1, 

CBWD2, FOXD4L1 

13 Language 10 134312221 rs753165483 CACAA C 0.076 13.63 INPP5A Intergenic - 

1 DMN 10 96026184 rs11289753 CA C 0.067 11.11 PLCE1 Intron - 

14 Salience 10 96009182 rs543302184 T TA 0.062 9.43 PLCE1 Intron - 

20 DMN 11 69964074 rs2509142 T C -0.061 9.42 ANO1 Intron ANO1, PPFIA1 

8 Visual 19 45424351 rs814573 A T -0.080 9.34 APOC1 Intergenic - 

14 DMN 10 134323564 rs11591553 G A -0.061 9.16 INPP5A Intergenic LINC01165, 

INPP5A 

6 Fronto- 
parietal 

10 134303568 rs773501199 GTCCC G 0.063 8.80 INPP5A Intergenic - 

10 Motor 2 114083120 rs6737318 A G -0.070 8.63 PAX8 Intergenic AC016745.3, 

RP11-480C16.1, 

CBWD2, FOXD4L1 

20 DMN 19 45424351 rs814573 A T -0.076 8.53 APOC1 Intergenic - 
12 Motor 4 117917153 rs35575786 C T -0.14 8.13 TRAM1L1 Intergenic - 
7 DMN 11 70002987 rs3781658 G A -0.057 8.11 ANO1 Intron ANO1 

16 Executive 
control 

10 134280157 rs11596664 C T -0.057 8.02 PWWP2B Intergenic INPP5A, LINC01165, 

RP11-432J24.5 

6 Fronto- 
parietal 

10 96039597 rs2274224 G C 0.056 7.97 PLCE1 Exon PLCE1-AS1, NOC3L 

3 Attention 10 96012950 rs7080472 G T 0.056 7.93 PLCE1 Intron PLCE1-AS1, NOC3L 

21 Language 18 55536924 rs6566908 G A -0.056 7.93 ATP8B1 Intergenic - 
12 Motor 9 87336518 rs111867627 A C -0.121 7.87 NTRK2 Intron - 
15 Cerebellum 9 87242552 rs148603475 C T -0.095 7.6 NTRK2 Intergenic - 
8 Visual 7 108987486 rs848866 C T 0.063 7.57 FLJ00325 Intergenic - 

nitive amplitudes than with the sensory amplitudes independent of age 
( Table 4 ). 

3.1.3. Associations of network amplitudes with genetic phenotypes 

We carried out a separate GWAS for the 21 network amplitudes using 
20,381,043 SNPs as described in Material and methods. The summarised 
GWAS results are presented in Table 5 , and separate Manhattan plots 
for every GWAS are provided in Fig. S6. In total, we found 18 peak 
associations above the standard GWAS 𝑃 value threshold of − log 10 𝑃 = 

7 . 5 from the discovery sample of 22,172 participants. Applying a further 
Bonferroni correction to account for multiple testing across these 21 
GWAS (one for each network), seven of these associations passed the 
corrected threshold of − log 10 𝑃 = − lo g 10 ( 10 −7 . 5 ∕21 ) = 8 . 82 . 

The amplitude of network 12 was significantly associated with the 
locus rs2863957 ( − log 10 𝑃 = 23 . 97 ), ∼50 kb from PAX8 and ∼100 kb 
from CBWD2 , and an eQTL of CBWD2 and FOXD4L1 in particu- 

lar. The amplitudes of networks 1 and 14 were found to be signifi- 
cantly associated with the variants rs11289753 ( − log 10 𝑃 = 11 . 11 ) and 
rs543302184 ( − log 10 𝑃 = 9 . 43 ), respectively, two indels in an intron of 
PLCE1 . Network 13 and 14 amplitudes showed significant associations 
with rs753165483 ( − log 10 𝑃 = 13 . 6 ) and rs11591553 ( − log 10 𝑃 = 9 . 16 ), 
two variants located ∼30 kb and ∼40 kb from INPP5A , respectively. Net- 
work 20 amplitude was associated with rs2509142 ( − log 10 𝑃 = 9 . 43 ), in 
an intron – and an eQTL – of ANO1 . Finally, rs814573, a variant less 
than 2kb from APOC1 , was significantly associated with the amplitude 
of network 8 ( − log 10 𝑃 = 9 . 34 ). 

3.2. Origins of network amplitude 

So far, we have demonstrated how variations in network amplitudes 
across participants are closely linked to FC and to various non-imaging 
and genetic variables. The results suggest a potential use of network am- 
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Fig. 6. (A) Correlations between network amplitude and temporal synchrony across participants. (B) Correlations between network amplitude and BOLD amplitude 
across participants. The networks are color-coded such that green and purple colours represent sensory and cognitive networks, respectively, based on the clustering 
analysis result in Fig. 4 . (C) Full (below diagonal) and partial (above diagonal) correlations of the network amplitudes, temporal synchrony, and BOLD amplitudes. 
The correlation between network amplitude and temporal synchrony is high for every network (diagonal elements in the red box) even after removing all other 
information (diagonal elements in the blue box). The networks are presented in the same order as in panels (A) and (B). 

plitudes as a valuable biomarker for health and disease in population- 
based research. It is important, however, to gain a better understand- 
ing of what network amplitude tells us about RSNs. Here, we provide 
new insights into network timeseries and amplitude, demonstrating that 
network amplitude mainly represents the level of temporal synchrony 
between the brain regions in a given network. 

For each network, temporal synchrony and BOLD amplitude were de- 
fined as described in Section 2.3 . Temporal synchrony was defined as the 
standard deviation of the new RSN timeseries generated by dual regres- 
sion using voxel-wise temporally normalized fMRI data and therefore 
represents the degree of within-network phase synchronisation across 
voxels after removing raw voxel-wise signal amplitude ( Fig. 1 C). On 
the other hand, BOLD amplitude represents the mean BOLD fluctuation 
amplitudes (standard deviations) of voxels contributing strongly (| 𝑍| 
> 3.29) to the network, and therefore represents “raw ” within-network 
signal amplitude across voxels after removing synchronisation effects. 

3.2.1. Network amplitude is mainly due to temporal synchronisation within 

the RSNs 

We found strikingly high correlations ( 𝑟 = 0.89 ± 0.02) between net- 
work amplitude and temporal synchrony across participants ( Fig. 6 A). 
On average, 80% of the intersubject variance of the network amplitudes 
was explained by temporal synchrony. In contrast, the correlations be- 
tween network and BOLD amplitudes were much lower ( 𝑟 = 0.38 ± 0.09) 
( Fig. 6 B), and hence approximately 16% of the intersubject variance of 

the network amplitudes was explained by the BOLD amplitudes. Partial 
correlations between network amplitude and temporal synchrony across 
participants (in the upper triangle of Fig. 6 C) further supports the more 
direct link between network amplitudes and temporal synchrony, com- 
pared with the weaker link with BOLD amplitudes. The results remained 
very similar even if we used the BOLD amplitudes computed using the 
weighted-averaging methods (Fig. S3B). 

These results demonstrate that temporal synchrony across voxels 
(within the brain regions involved in a given network) is the main deter- 
minant of the network amplitude, and the network amplitude is much 
less sensitive to the scale of the raw BOLD fluctuations of each voxel. 
This finding has significant implications for interpreting changes in net- 
work amplitude in that if, for instance, network amplitude decreases 
with age, it indicates that age is primarily associated with less syn- 
chronous signal fluctuations of the voxels in the network. 

We further investigated whether temporal synchrony is determined 
more by a subset of the voxels contributing most strongly to the network 
or by all the voxels within the network. 

The first panel in Fig. S4A shows that, when including only the vox- 
els passing the group ICA map threshold of 3.29 ( 𝑃 ( |𝑍| = 3 . 29 ) = 10 −3 ), 
the new RSN timeseries themselves (generated using temporally normal- 
ized fMRI data) remain highly similar ( 𝑟 = 0.90 ± 0.023 across the 21 
networks) to the original, unthresholded timeseries. We found that the 
temporal correlations remain high ( 𝑟 = 0.87 ± 0.026 and 0.85 ± 0.031) 
when increasing the threshold to > 4.42 and > 5.33 (corresponding to 
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Fig. 7. (A) Within-subject (across networks) correlations (left) and correlations across participants (right) between temporal synchrony and (ab- 
solute/positive/negative) FC. (B) Within-subject correlations (left) and correlations across participants (right) between BOLD amplitudes and (abso- 
lute/positive/negative) FC. Detailed descriptions of the plots and procedures to compute the correlation coefficients are provided in Fig. 3 . Most of the 𝑃 values of 
the correlations in (A) and (B) survived the Bonferroni correction ( 𝑃 corr < 0.001). The few that did not survive correction are denoted as ns. 

𝑃 < 10 −5 and 𝑃 < 10 −7 , respectively), indicating that the temporal 
synchrony is determined by a subset of the voxels highly involved in 
the network. 

The correlations between the participants’ original temporal syn- 
chrony and the temporal synchrony obtained from a subset of voxels 
passing a threshold of 3.29, 4.42, and 5.33 were 𝑟 = 0.94 ± 0.021, 0.93 
± 0.029, and 0.91 ± 0.037, respectively (Fig. S2B). 

Finally, the correlations between the participants’ original, unthresh- 
olded network amplitude and temporal synchrony obtained from thresh- 
olded maps remained also relatively high ( 𝑟 = 0.85 ± 0.036, 0.83 ± 

0.043, and 0.82 ± 0.050) as the threshold increased to 3.29, 4.42 and 
5.33, respectively (Fig. S4C). 

3.2.2. Relationship of temporal synchrony and bold amplitude with FC 

As network amplitude reflects mainly temporal synchrony, and, to a 
lower extent, BOLD amplitude, it is likely that the correlations between 
the network amplitudes and FC described previously in Section 3.1.1 are 
driven by these two factors. We thus revisited the FC analyses and ex- 
amined the within-subject correlations between the temporal synchrony 
and FC, and between the BOLD amplitudes and FC. In addition, cor- 
relations of FC with temporal synchrony and BOLD amplitudes across 
participants were examined. 

Fig. 7 A shows that, similar to the results presented in Fig. 3 A, there 
were strong within-subject correlations between the variations in the 
temporal synchrony and FC across the networks (absolute FC: 𝑟 = 0.91 
± 0.05; positive FC: 𝑟 = 0.68 ± 0.12; negative FC: 𝑟 = -0.77 ± 0.10). 
We also found a significant ( 𝑃 < 0.001) correlation between temporal 
synchrony and FC across participants for every network and all FC types 
(i.e., absolute, positive, and negative). 

In contrast, Fig. 7 B shows that the within-subject correlations of FC 

with BOLD amplitudes were markedly low (absolute FC: 𝑟 = 0.12 ± 0.23; 

positive FC: 𝑟 = 0.20 ± 0.24; negative FC: 𝑟 = -0.03 ± 0.21), in particular 
when compared with within-subject correlations obtained between the 
network amplitudes and FC. The correlations across participants were 
also much weaker overall except for the visual networks (2, 4, 8, 19) 
and motor networks (10, 11, 12). 

The high similarity between network amplitude/FC correlations 
( Fig. 3 A) and temporal synchrony/FC correlations ( Fig. 7 A) strongly 
suggests that the relationship between network amplitude and FC is 
mainly driven by the similar temporal patterns of the voxels within the 
networks. 

3.2.3. Relationship with key non-imaging variables revisited 

As described in Section 2.11 , key non-imaging variables (systolic 
blood pressure, body fat %, haemoglobin concentration, sleep duration, 
age, sex) were selected as those that are most strongly correlated with 
sensory and/or cognitive amplitudes. We found that both temporal syn- 
chrony and BOLD amplitudes decreased with age ( Fig. 8 A). The age ef- 
fects on the BOLD amplitudes were relatively consistent across the net- 
works, whereas the magnitude of age effects on the temporal synchrony 
was different depending on the networks. In particular, the subcortical 
network (18) appears to be the most sensitive to age. It can be seen 
from the figure that the differential age effects across the networks can 
be similarly found in the network amplitude results. 

Male participants showed significantly higher BOLD amplitudes than 
female participants for all networks ( Fig. 8 B). On the other hand, sex ef- 
fects on the temporal synchrony were the opposite for the sensory and 
cognitive networks: male participants had greater temporal synchrony 
for the sensory networks, whereas female participants had greater tem- 
poral synchrony for the cognitive networks. It is worth noting that the 
sex differences in the network amplitudes indicate male participants 
have greater amplitudes for all networks due to the higher BOLD fluc- 
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Fig. 8. Regression coefficients (beta) estimated from the multiple linear regressions to analyze the relationship between a network amplitude/temporal syn- 
chrony/BOLD amplitude and non-imaging variables. In total, 63 multiple linear regression analyses were conducted with the same non-imaging variables (systolic 
blood pressure, body fat %, haemoglobin concentration, sleep duration, age, sex, age × sex, age 2 , and age 2 × sex; variables were normalized except for sex coded 
as 0 and 1 for female and male) as predictors. Each of the normalized network amplitudes, temporal synchrony, and BOLD amplitudes of the 21 networks was used 
as the dependent variable. The estimated regression coefficients from the multiple linear regression analyses are arranged according to amplitude types (columns) 
and predictors (rows). For brevity, only the beta coefficients for (A) age, (B) sex, (C) systolic blood pressure, (D) body fat %, and (E) sleep duration are presented. 
The networks are colour coded such that green and purple colours represent sensory and cognitive networks, respectively, based on the clustering analysis result in 
Fig. 4 . Bonferroni-corrected 𝑃 values for the beta coefficients are indicated: ∗ : 𝑃 < 0.05, ∗ ∗ : 𝑃 < 0.01, ∗ ∗ ∗ : 𝑃 < 0.001. 

17 



S. Lee, J.D. Bijsterbosch, F.A. Almagro et al. NeuroImage 265 (2023) 119779 

Table 6 

Loci significantly associated with temporal synchrony (bold font indicates statistical significance after Bonferroni correction). Genetic variants that overlap with 
those found significantly associated with network amplitude ( Table 5 ) are in blue. 

Network 

index 

Network 

name 

Chr Position RSID A1 A2 Beta − log 10 𝑷 Nearest 

gene 

Location GTEX eQTL 

12 Motor 2 114089551 rs2863957 C A -0.128 26.81 PAX8 Intergenic AC016745.3, 

RP11-480C16.1, 

CBWD2, FOXD4L1 

13 Language 10 134312221 rs753165483 CACAA C 0.071 12.02 INPP5A Intergenic - 

10 Motor 2 114083120 rs6737318 A G -0.074 9.38 PAX8 Intergenic AC016745.3, 

RP11-480C16.1, 

CBWD2, FOXD4L1 

1 DMN 10 96026184 rs11289753 CA C 0.059 8.85 PLCE1 Intron - 

14 DMN 10 96009182 rs543302184 T TA 0.059 8.59 PLCE1 Intron - 
12 Motor 4 117920021 rs35436103 C A -0.140 8.33 TRAM1L1 Intergenic - 
21 Language 18 55536924 rs6566908 G A -0.056 8.04 NEDD4L Intergenic - 
18 Subcortical 10 96012950 rs7080472 G T 0.057 8.02 PLCE1 Intron PLCE1-AS1, NOC3L 

17 Auditory 19 10180320 rs7359864 A C 0.067 7.88 C3P1 Intergenic C3P1 

20 DMN 19 45424351 rs814573 A T -0.073 7.79 APOC1 Intergenic - 
14 Salience 10 134323564 rs11591553 G A -0.055 7.72 INPP5A Intergenic LINC01165, INPP5A 

8 Visual 7 108987486 rs848866 C T 0.063 7.67 FLJ00325 Intergenic - 
11 Motor 2 114077218 rs62158166 G C -0.065 7.56 PAX8 Intergenic AC016745.3, 

RP11-480C16.1, 

CBWD2, FOXD4L1 

13 Language 4 189241215 rs111786429 C T -0.130 7.53 TRIML2 Intergenic 

tuation amplitudes, and the intriguing differential sex effects seen in 
temporal synchrony could be missed if looking at network amplitudes 
alone. 

Fig. 8 C shows that systolic blood pressure is negatively associated 
with both temporal synchrony and BOLD amplitudes of the entire net- 
works. While the magnitude of the blood pressure effect was relatively 
consistent across the networks, blood pressure appeared to have differ- 
ential effects on temporal synchrony. 

Interestingly, body fat % had opposite effects on the sensory and 
cognitive networks ( Fig. 8 D). As the body fat % increased, temporal 
synchrony and BOLD amplitudes decreased for most of the sensory net- 
works (visual and motor networks). In contrast, most of the cognitive 
networks showed an increase in the temporal synchrony and BOLD am- 
plitudes as body fat % increases. 

Sleep effects on the temporal synchrony also showed differences be- 
tween the sensory and cognitive networks ( Fig. 8 E). There were greater 
decreases in the temporal synchrony and BOLD amplitudes for the sen- 
sory networks compared with the cognitive networks as sleep duration 
increases. 

The regression coefficients for haemoglobin concentration, age × sex, 
age 2 , and age 2 × sex are shown in Fig. S5. Haemoglobin concentration 
was found to be positively associated with network amplitudes, tem- 
poral synchrony, and BOLD amplitudes for all networks. In contrary, 
for age 2 and interactions between age and sex (Fig. S5B–D), the effects 
were found to be similar between the network amplitudes and temporal 
synchrony, but different for the BOLD amplitudes. 

3.2.4. GWAS revisited 

We carried out additional GWAS for the temporal synchrony and 
(separately) BOLD amplitude, for each network independently (i.e., 42 
GWASs in total), to shed light on whether the genetic association with 
the amplitudes are shared with those discovered for the network ampli- 
tudes. All the results are provided as separate Manhattan plots in Fig. 
S6. 

Table 6 lists the variants significantly associated with temporal syn- 
chrony. The results show that a large subset of the loci in Table 6 (in 
blue) overlap with those associated with the network amplitudes 
( Table 5 ). 

Table 7 shows many significant associations between BOLD ampli- 
tudes and variants near or in genes (in particular VCAN, IFITM2, and 

CC2D2A ), and the variants were found to be different from those asso- 
ciated with network amplitudes or temporal synchrony. In fact, not a 

single significant locus was shared with those found for network ampli- 
tudes or temporal synchrony. 

4. Discussion 

Temporal fluctuations of RSNs have been extensively utilized to esti- 
mate FC (functional connectivity), i.e., temporal correlations within and 
between functional networks. The amplitudes of these temporal fluc- 
tuations, however, have been commonly overlooked, and fundamental 
questions about amplitudes remain unanswered. In this work, we aimed 
to gain a better understanding of the amplitudes, identifying key factors 
that drive intersubject differences in amplitudes. In addition, we exam- 
ined how variations in amplitudes are related to important demographic 
variability in health and disease, as well as genetic phenotypes using 
UKB data collected from a large cohort (N = 37,982). 

We found that network amplitude largely reflects how synchronously 
functionally linked brain regions (within a network) activate together, 
and the “raw ” magnitude of the regions’ activity fluctuations is relatively 
less important in driving the apparent network amplitudes. Approxi- 
mately 80% of the intersubject variability in the network amplitudes 
was found to be explained by temporal synchrony, which is computed 
from the fMRI data after setting all voxels’ BOLD fluctuation amplitudes 
to one (hence removing amplitude at the voxel level). By contrast, BOLD 

fluctuation amplitude (which is designed to ignore changes in synchro- 
nisation across a network) was found to explain only 16% of the inter- 
subject variability of network amplitudes. The significance of this find- 
ing is that it presents a new perspective on network amplitudes, one 
that is different from the common assumption of the amplitudes rep- 
resenting “network-level ” BOLD fluctuation amplitudes. This indicates 
that individuals with smaller network amplitude do not necessarily have 
smaller BOLD fluctuation amplitudes, but rather tend to have brain re- 
gions that activate together less synchronously. Hence, network ampli- 
tudes and ALFF (which is similar to our measure of “BOLD amplitude ”
although ALFF may provide some denoising through the removal of in- 
coherent high frequency signal) represent quite different properties of 
spontaneous fluctuations of brain activity. We emphasize that, despite 
the significant contribution of temporal synchrony, it should be noted 
that network amplitude is not entirely driven by temporal synchrony, 
but rather by the sum of temporal synchrony and BOLD amplitude. As 
prior studies demonstrated that BOLD signal variability relates to many 
common FC metrics ( Duff et al., 2018 ; Garrett et al., 2013 ), network am- 
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Table 7 

Loci significantly associated with BOLD amplitudes (bold font indicates statistical significance after Bonferroni correction). Note: no genetic variant overlaps with 
those found significantly associated with network amplitudes ( Table 5 ). 

Network 

index 

Network name Chr Position RSID A1 A2 Beta − log 10 𝑷 Nearest 

gene 

Location GTEx eQTL 

20 DMN 5 82741694 rs10058141 G A -0.072 12.46 VCAN Intergenic - 

5 Fronto-parietal 5 82728981 rs9293338 T A -0.073 12.38 VCAN Intergenic - 

3 Attention 5 82728981 rs9293338 T A -0.071 11.63 VCAN Intergenic - 

7 DMN 5 82840259 rs309556 T C -0.125 11.29 VCAN Intron - 

21 Language 5 82741694 rs10058141 G A -0.068 11.25 VCAN Intergenic - 

9 Language 5 82742118 rs12188947 A C -0.067 10.95 VCAN Intergenic - 

6 Fronto-parietal 5 82741694 rs10058141 G A -0.067 10.85 VCAN Intergenic - 

9 Language 11 307808 rs7481219 A G 0.070 10.67 IFITM2 Intergenic - 

13 Language 5 82741694 rs10058141 G A -0.066 10.46 VCAN Intergenic - 

18 Subcortical 5 82741694 rs10058141 G A -0.066 10.40 VCAN Intergenic - 

16 Executive Control 5 82741694 rs10058141 G A -0.065 10.20 VCAN Intergenic - 

12 Motor 5 82840259 rs309556 T C -0.117 10.04 VCAN Intron - 

2 Visual 5 82840259 rs309556 T C -0.117 9.92 VCAN Intron - 

16 Executive Control 4 15552198 rs2041671 T C -0.069 9.77 CC2D2A Intron RP11- 

799M12.2, 

CC2D2A, 

FBXL5 

6 Fronto-parietal 4 15552198 rs2041671 T C -0.069 9.65 CC2D2A Intron RP11- 

799M12.2, 

CC2D2A, 

FBXL5 

4 Visual 5 82840259 rs309556 T C -0.113 9.31 VCAN Intron - 

5 Fronto-parietal 11 307808 rs7481219 A G 0.065 9.28 IFITM2 Intergenic - 

21 Language 4 15552198 rs2041671 T C -0.067 9.26 CC2D2A Intron RP11- 

799M12.2, 

CC2D2A, 

FBXL5 

12 Motor 4 15552198 rs2041671 T C -0.067 9.21 CC2D2A Intron RP11- 

799M12.2, 

CC2D2A, 

FBXL5 

10 Motor 5 82861251 rs72284621 TGAGA T -0.076 9.18 VCAN Intron - 

13 Language 4 15552198 rs2041671 T C -0.067 9.12 CC2D2A Intron RP11- 

799M12.2, 

CC2D2A, 

FBXL5 

21 Language 11 308290 rs1058900 T C 0.062 9.11 IFITM2 Exon IFITM3, RP11- 

326C3.13, 

IFITM2 

5 Fronto-parietal 4 15548550 rs16892140 T C -0.067 9.08 CC2D2A Intron RP11- 

799M12.2, 

CC2D2A, 

FBXL5 

15 Cerebellum 4 15552198 rs2041671 T C -0.067 9.06 CC2D2A Intron - 

6 Fronto-parietal 11 308290 rs1058900 T C 0.061 8.94 IFITM2 Exon IFITM3, RP11- 

326C3.13, 

IFITM2 

9 Language 10 134302745 rs4497325 G A 0.059 8.90 INPP5A Intergenic INPP5A, 

LINC01165 

1 DMN 5 82741694 rs10058141 G A -0.060 8.85 VCAN Intergenic - 

20 DMN 7 120965464 rs10668066 G GCACC 0.069 8.80 WNT16 Exon FAM3C, WNT16, 

CPED1 

17 Auditory 5 82742118 rs12188947 A C -0.060 8.77 VCAN Intergenic - 

11 Motor 5 82861251 rs72284621 TGAGA T -0.074 8.74 VCAN Intron - 

10 Motor 4 15552198 rs2041671 T C -0.065 8.66 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

18 Subcortical 4 15556403 rs3822298 A G -0.065 8.63 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

1 DMN 4 15552198 rs2041671 T C -0.065 8.61 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

14 Salience 5 82741694 rs10058141 G A -0.059 8.55 VCAN Intergenic - 

2 Visual 4 15552198 rs2041671 T C -0.064 8.53 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

3 Attention 4 15548550 rs16892140 T C -0.064 8.51 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

16 Executive Control 10 100134036 rs7096654 C T 0.059 8.47 PYROXD2 Intergenic PYROXD2 

1 DMN 10 100134036 rs7096654 C T 0.059 8.41 PYROXD2 Intergenic PYROXD2 

14 Salience 4 15552198 rs2041671 T C -0.063 8.14 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

7 DMN 9 32471327 rs17217231 T C 0.110 8.14 DDX58 Intron ACO1 

( continued on next page ) 
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Table 7 ( continued ) 

Network 

index 

Network name Chr Position RSID A1 A2 Beta − log 10 𝑷 Nearest 

gene 

Location GTEx eQTL 

16 Executive Control 11 308290 rs1058900 T C 0.058 8.08 IFITM2 Exon IFITM3, 

RP11-326C3.13, 

IFITM2 

20 DMN 10 100176104 rs3830025 A G -0.065 7.96 HPS1 Exon PYROXD2 

17 Auditory 4 15593692 rs13142069 C T 0.056 7.91 CC2D2A Intron RP11-799M12.2 

7 DMN 12 89776284 rs770083 T C 0.055 7.79 DUSP6 Intergenic RP11-981P6.1, 

POC1B-AS1, 

POC1B 

9 Language 13 97950019 rs9513231 T A 0.171 7.77 MBNL2 Intron - 

3 Attention 9 32462124 rs10970989 T C 0.106 7.75 DDX58 Intron ACO1 

3 Attention 10 100176104 rs3830025 A G -0.064 7.73 HPS1 Exon PYROXD2 

15 Cerebellum 20 25278464 rs111759013 A AGTGGG -0.055 7.67 PYGB, 

ABHD12 

Exon Intron PYGB, ABHD12, 

NINL, ENTPD6, 

RP5-965G21.4 

13 Language 11 307808 rs7481219 A G 0.058 7.67 IFITM2 Intergenic - 

7 DMN 4 15552198 rs2041671 T C -0.061 7.65 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

10 Motor 9 32454348 rs1360171 T A 0.100 7.64 ACO1 Exon ACO1 

9 Language 10 100167436 rs45523432 T C -0.064 7.63 PYROXD2 Intron - 

13 Language 10 100134036 rs7096654 C T 0.056 7.62 PYROXD2 Intergenic PYROXD2 

9 Language 9 32465289 rs10970992 T C 0.106 7.61 DDX58 Intron ACO1 

5 Fronto-parietal 9 32465289 rs10970992 T C 0.106 7.60 DDX58 Intron ACO1 

6 Fronto-parietal 10 100134036 rs7096654 C T 0.056 7.57 PYROXD2 Intergenic PYROXD2 

11 Motor 4 15592864 rs7684446 C T 0.055 7.55 CC2D2A Intron RP11-799M12.2, 

CC2D2A, FBXL5 

5 Fronto-parietal 17 15074430 rs72811130 C T 0.182 7.51 PMP22 Intergenic - 

plitude also reflects BOLD signal variability to some degree as demon- 
strated in this work (e.g., Figs. 2 B and 6 B). 

Our finding that most variance of network amplitude is accounted for 
by temporal synchrony within a network brings up important points as 
to how network amplitude relates to so-called within-network FC. There 
are methodological variations in computing within-network FC, but 
broadly speaking, it can be assessed (1) at an ROI-ROI level by comput- 
ing the pairwise correlations between the specified ROIs that comprise 
the network ( Godwin et al., 2017 ; Hausman et al., 2020 ; Siegel et al., 
2016 ), (2) at a voxelwise level by computing the average correlations of 
a voxel with the rest of all within-network voxels ( Du et al., 2020 ), or 
(3) at a voxelwise level by using a dual regression spatial map obtained 
by multiple temporal regression of voxel timeseries against the network 
timeseries ( Bijsterbosch et al., 2019 ; Nickerson et al., 2017 ). Network 
amplitude is conceptually and fundamentally different from the within- 
network FC obtained using the ROI-ROI approach as timeseries of every 
voxel in the fMRI data (as opposed to voxels within an ROI) are con- 
sidered in the computation of network amplitude. For the same reason, 
and because a group-ICA map is utilized to weigh voxels, it is also differ- 
ent from the second approach. The third approach (i.e., dual regression 
spatial map) is presumably most relevant to network amplitude, but it 
would need further discussions in future studies as to how the voxelwise 
connectivity could be summarised into a single value and how it relates 
to network amplitude. 

There could be several potential causes for between-subject vari- 
ability in within-network temporal synchrony, including (1) the “true ”
variability in within-network synchrony resulting from more (or less) 
complex and heterogeneous functional organizations within a network, 
(2) changes in overlap between networks (and the interaction of this 
overlap – especially high in the DMN for instance (39% of its voxels) 
– with subject misalignment with group average network estimates), 
and (3) changes in noise level (e.g., more noise would make voxels ap- 
pear less correlated with each other). The first case can be partially 
inferred from the investigation of the relationships between temporal 
synchrony and within-network connectivity, and this could have impor- 
tant clinical implications, since prior studies have shown that changes in 
within-network connectivity are closely associated with brain states and 
pathologies ( Boveroux et al., 2010 ; Hilland et al., 2018 ; Li et al., 2017 ; 

von dem Hagen et al., 2013 ). One way to measure within-network con- 
nectivity is to use spatial maps obtained at the stage 2 of dual regression 
(particularly when normalising the variance of the timeseries created by 
stage 1, so that it is not then reflected in the stage 2 spatial maps). Ev- 
idence for variability due to differences in network overlap has been 
identified in prior studies ( Bijsterbosch et al., 2019 , 2018 ) showing that 
network-related metrics such as between-network functional connectiv- 
ity are strongly influenced by the shape and exact location of functional 
regions of individuals. Temporal synchrony would in some sense also 
reflect individuals’ spatial configuration of functional brain regions, rel- 
ative to the group average. Nevertheless, our result demonstrating the 
clear sex difference in the temporal synchrony between sensory and cog- 
nitive networks ( Fig. 8 B) suggests that temporal synchrony is likely not 
merely a product of subject misalignment. 

We found that, within each participant, network amplitude is highly 
correlated with the mean strength of the FC that this network has with 
the other networks ( Fig. 3 ). The covariations were markedly high and 
had a narrow distribution across participants, suggesting that this may 
be an intrinsic characteristic of the resting-state brain, that is consis- 
tent between different individuals. The same trend was observed with 
temporal synchrony ( Fig. 7 A), whereas the FC and BOLD fluctuation 
amplitudes were uncorrelated ( Fig. 7 B), indicating that it is the tempo- 
ral synchrony of networks that has high correlation with the between- 
network FC strength (note: when we used full correlation FC instead 
of partial correlation FC, the level of FC associations in Fig. 3 A and 
B were slightly lower overall). In line with this, it has been reported 
that within-subject changes in FC between the first and second scans 
collected from the same participants could be entirely attributed to the 
changes in the network amplitudes ( Bijsterbosch et al., 2017 ). Taken to- 
gether, our findings show that there is a close relationship between the 
temporal coherency within a network and its FC with other networks, 
and this warrants further research to elucidate the potential underlying 
causes. 

Clustering networks, on the basis of the intersubject covariance 
structure of the network amplitudes, showed a clear separation of 
the networks into sensory and cognitive groups ( Fig. 4 ). This re- 
sult corresponds to the similar clustering result reported previously 
( Bijsterbosch et al., 2017 ) obtained from a different study cohort (819 
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HCP and 5,847 UKB participants). Fig. S7 shows that the same clus- 
tering result can be obtained from temporal synchrony, but not from 

BOLD fluctuation amplitudes, indicating that the hierarchical structure 
(where functionally related networks are clustered together) is driven 
by the temporal synchronisation. Our clustering result is aligned with 
the results from prior studies that conducted comprehensive analyses 
of the organization of large-scale functional networks in human. In 
Margulies et al. (2016) , the authors used the principal gradient derived 
from the resting-state functional connectome matrices of 820 individ- 
uals and revealed a spectrum between unimodal and transmodal brain 
regions. The topography of our sensory and cognitive clusters resem- 
bles a binarized version of this unimodal-transmodal functional gradi- 
ent. Similar work later confirmed that large-scale networks defined from 

between- and within-network functional connectivity ( Schaefer et al., 
2018 ; Yeo et al., 2011 ) are embedded between unimodal primary sen- 
sory and motor areas and transmodal areas serving higher-order cogni- 
tion ( Bazinet et al., 2021 ; Huntenburg et al., 2018 ). 

Several non-imaging variables were identified to have significant 
between-subject associations with sensory and cognitive network am- 
plitudes ( Tables 1–4 ). Age was the most correlated variable, followed 
by cardiovascular factors, physical measures (e.g., arm fat-free mass, 
% body fat), and lung function factors, and their relationships with the 
amplitudes remained significant after controlling for age. Examining the 
associations with 4897 non-imaging variables for each network ampli- 
tude (Fig. S2; Table S2) instead of the sensory/cognitive cluster am- 
plitude, age, cardiovascular factors, and physical measures tend to be 
most strongly associated with network amplitudes, especially for the 
networks clustered into the sensory group. It should be noted that, given 
complex interplays between demographics, physical health, and brain 
function, there are many possible factors underlying the relationships 
with the network amplitudes. It would require more advanced analyses 
with properly controlled potentially mediating factors to obtain more ac- 
curate interpretations of these relationships, which is outside the scope 
of the main objectives of the present work. Instead, we describe below 

some of the key non-imaging variables and discuss potential reasons for 
their associations with the amplitudes. 

The cardiovascular variables listed in Tables 1–4 are greatly affected 
by vascular ageing (e.g., arterial stiffness) and important risk factors for 
cardiovascular diseases ( Zieman et al., 2005 ). In this regard, the results 
indicate that compromised vascular health contributes in part to the de- 
crease of the sensory and cognitive amplitudes. Numerous studies have 
shown poor vascular health results in deterioration of brain structure 
and function ( Kelly and Rothwell, 2020 ). A meta-analysis study of blood 
pressure levels and brain volume has reported that 93% of the 28 stud- 
ies reviewed found significant associations between high blood pressure 
and both global and regional brain volume reductions ( Beauchet et al., 
2013 ). Also, a recent study conducted on 616 healthy older participants 
(60–80 years) showed that, after controlling for covariates, higher blood 
pressure was still found to be associated with the decrease in volume 
and thickness of the grey matter covering most areas of the neocortex 
and cerebellum ( Kharabian Masouleh et al., 2018 ). High blood pres- 
sure has also been implicated in increase in white matter hyperintensi- 
ties ( de Leeuw et al., 2002 ; Debette et al., 2011 ; Dufouil et al., 2001 ; 
Gottesman et al., 2010 ; Guo et al., 2009 ). Interestingly, the effects of 
high blood pressure on brain function can appear early in its course 
without any changes in brain structure or cognition ( Naumczyk et al., 
2017 ). It has been reported that healthy young adults who have a family 
history of hypertension showed significantly lower BOLD responses dur- 
ing a working memory task compared to those without family history of 
hypertension ( Haley et al., 2008 ), indicating that some brain function 
can be altered in the individuals at risk before any clinical symptoms. 

Forced expiratory volume (FEV) and forced vital capacity (FVC) rep- 
resent the volume of air a person can exhale during a forced breath, 
and the total amount of air exhaled during the FEV test, respectively. 
They are important metrics of lung function and are known to decline 
with age at a faster rate in males ( Thomas et al., 2019 ). The associa- 

tions between the lung and brain have been extensively explored in the 
adults with chronic obstructive pulmonary disease, and it is found that 
reduced lung function leads to structural and functional changes in the 
brain, cognitive impairment, and accelerated ageing ( Cook et al., 1989 ; 
Dodd, 2015 ; Esser et al., 2016 ). Notably, growing evidence points to- 
wards similar relationships between lung function and brain in healthy 
older adults ( Emery et al., 2012 ). Examining 469 healthy participants 
aged 60–64 years, a study has found that low FEV and FVC are signifi- 
cant predictors for subcortical atrophy ( Sachdev et al., 2006 ), and low 

FEV is additionally associated with overall brain atrophy in males. On 
the other hand, higher FVC was found to be positively correlated with 
information processing speed in females and fine motor speed in males. 
The implications of lung function in cognitive performance are also re- 
ported in a longitudinal study ( Albert et al., 1995 ) that followed 1192 
elderly people (70–79 years). It was found that pulmonary peak expira- 
tory flow rate was the second-best predictor, after education level, for 
cognitive decline. Higher lung function is also found to relate to better 
cognition in children ( Suglia et al., 2008 ), suggesting the possibility of 
lifespan effects of lung function on the brain. 

Both sensory and cognitive network amplitudes were found to have 
positive relationships with lean body mass variables. In normal age- 
ing, body composition changes due to decreased metabolic rate, result- 
ing in reduced muscle mass and increased fat mass ( St-Onge and Gal- 
lagher, 2010 ). We found that the relationships between lean body mass 
and network amplitudes remained after controlling for age, which sug- 
gests that the associations are independent of direct age effects. The 
relationships, therefore, may reflect effects of other common covariates 
such as physical activity ( Bherer et al., 2013 ; Crespillo-Jurado et al., 
2019 ; Spartano et al., 2019 ), medical conditions (e.g., hypertension) 
( Won et al., 2017 ), and lifestyles (e.g., alcohol consumption and 
sleep duration) ( Won et al., 2017 ), as well as shared genetic causes 
( Hübel et al., 2019 ; Peters et al., 2020 ; Schnurr et al., 2016 ). 

The types of non-imaging variables associated with either the sen- 
sory or cognitive network amplitudes appeared to often match with 
generally-considered sensory or cognitive traits ( Tables 1–4 ). For in- 
stance, the cardiovascular and lung function variables are slightly, but 
significantly, more associated with the sensory than cognitive ampli- 
tudes. This possibly reflects that the brain’s cardiovascular and respira- 
tory regulatory mechanisms are more closely related to sensory systems 
( Dampney, 2016 ) in order to relay and process information on stimuli 
from the external environment ( Azzalini et al., 2019 ). On the other hand, 
we found that year-ended full time education and several cognitive task 
scores were more strongly correlated with the cognitive amplitude. This 
further supports that network amplitudes contain some behaviourally 
meaningful information rather than being merely a by-product of some 
physiological and non-neural processes. 

Dissociating temporal synchrony and BOLD fluctuation amplitudes 
reveals additional important information regarding the relationships 
found between the network amplitudes and non-imaging variables. The 
multiple regression results ( Figs. 8 and S3) showed that age, blood pres- 
sure, body fat %, sleep duration, and haemoglobin concentration are 
associated with temporal synchrony and BOLD amplitudes similarly in 
terms of the direction of the effects. However, the profile of the effect 
sizes across various networks were markedly different, in that associa- 
tions with BOLD amplitudes were relatively consistent across networks, 
whereas associations with temporal synchronisation were quite varied 
across networks. 

One of the most interesting results was related to sex effects 
( Fig. 8 B). While BOLD amplitude was consistently higher for male 
participants across all networks, temporal synchrony was higher for 
male participants only in the sensory networks and female partici- 
pants showed higher temporal synchrony for cognitive networks. The 
majority of prior studies report sex differences in within-network FC 

( Allen et al., 2011 ; Biswal et al., 2010 ; Filippi et al., 2013 ), between- 
network FC ( Allen et al., 2011 ; Filippi et al., 2013 ; Ritchie et al., 2018 ; 
Satterthwaite et al., 2015 ), and fALFF ( Biswal et al., 2010 ) and both 
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global and regional cerebral blood flow (CBF) ( Bell et al., 2006 ). How- 
ever, across these studies, there is a lack of consensus with respect to 
which functional networks exhibit sex differences and the directions 
of the differences. For instance, sex differences in functional network 
connectivity were found to be more prominent in sensory networks 
in ( Allen et al., 2011 ), whereas the differences were much greater in 
cognitive networks in ( Filippi et al., 2013 ). The sex differences found 
in this work are most similar to the results in Allen et al. (2011) , 
where males showed greater FC within and between motor and sensory- 
related networks compared with females. The study also found greater 
low-frequency ( < 0.05 Hz) BOLD signal amplitudes in males in senso- 
rimotor and attention-related networks. However, unlike our results, 
they did not find sex-related differences in the other networks, possi- 
bly due to a different age group (12–71 years) and analysis methods, 
and a smaller sample size (N = 603). Our results are also supported by 
Filippi et al. (2013) , which identified several brain regions with stronger 
FC in cognitive networks in females, compared with males. These brain 
regions included the cingulate cortex, dorsolateral prefrontal cortex, and 
inferior frontal gyrus, which have been associated with working and 
episodic memory ( Leech and Sharp, 2014 ), decision-making processes 
( Heekeren et al., 2006 ), and language ( Bokde et al., 2001 ). Future stud- 
ies may wish to examine whether the differential sex effects on the tem- 
poral synchrony and BOLD amplitudes are associated with sex-related 
cognitive abilities ( Halpern, 2012 ; Weiss et al., 2003 ). 

While there was no genetic overlap between network amplitudes 
and BOLD amplitudes, several genetic variants were identified in 
both the GWAS of network amplitude and temporal synchronisation 
( Table 6 ): rs2,863,957, rs6,737,318, rs11,289,753, rs753,165,483 and 
rs543,302,184. 

The first two of these genetic variants (rs2,863,957 and rs6,737,318) 
are associated with network amplitudes of motor networks #10 and 
#12. They are highly correlated ( 𝑟 2 = 1.0) and located in intergenic 
regions between CBWD2 and PAX8 . Both loci are in particular eQTLs of 
CBWD2 and FOXD4L1 in the thyroid and associated with sleep duration 
in a GWAS conducted in a recent UKB study ( Dashti et al., 2019 ). Sev- 
eral other variants located between CBWD2 and PAX8 (e.g., rs7,556,815 
and rs62,158,206), also eQTLs of CBWD2 and FOXD4L1 in the thyroid, 
were found to be associated with sleep duration in UKB GWAS stud- 
ies ( Dashti et al., 2019 ; Doherty et al., 2018 ; Jansen et al., 2019 ) and 
the Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) Consortium GWAS study ( Gottlieb et al., 2015 ). In line with 
these loci being associated with both sleep duration and network am- 
plitude (and temporal synchrony), we found significant correlations be- 
tween sleep duration and the network amplitudes (network 10: 𝑟 = - 
0.10, 𝑃 = 4.5E-83; network 12: 𝑟 = -0.11, 𝑃 = 2.2E-94) and sleep dura- 
tion and temporal synchrony (network 10: 𝑟 = -0.09, 𝑃 = 4.9E-67; net- 
work 12: 𝑟 = -0.10, 𝑃 = 8.6E-82) (see also Fig. 8 E). Given the close rela- 
tionship between the thyroid and sleep ( Green et al., 2021 ; Pereira and 
Andersen, 2014 ) and that the genetic variants significantly associated 
with both network amplitudes and temporal synchrony are modulating 
expression of several genes in the thyroid, our results might point at a 
neurophysiological origin for the association we found between network 
amplitude (and temporal synchrony) and sleep. 

The locus rs11289753 has been reported to be significantly cor- 
related with body fat distribution ( Rask-Andersen et al., 2019 ) and 
plateletcrit ( Astle et al., 2016 ) in recent UKB studies. It is in an intron 
of PLCE1 , which is involved in lipid metabolism and regulation of im- 
munity and inflammation ( Geurts et al., 2015 ). Accordingly, we found 
significant associations between body fat % and the network amplitude 
( 𝑟 = 0.04, 𝑃 = 3.0E-16) and temporal synchrony ( 𝑟 = 0.09, 𝑃 = 3.0E-83) 
of network 1 (DMN; see also Fig. 8 E). This might offer a potential neu- 
robiological mechanism underlying the associations between the DMN 

and obesity-related metabolic alterations ( Figley et al., 2016 ). 
The GWAS of BOLD amplitudes identified genetic variants distinctive 

from those described above ( Table 7 and Fig. S6), most of those could 
be related to brain development and myelination, suggesting perhaps 

that the foundations of BOLD amplitudes are set very early in life. For 
instance, among the significant variants, two (rs309,556, rs72,284,621) 
are located in introns of VCAN , which plays a central role in brain de- 
velopment, synaptic plasticity and myelin repair ( Elliott et al., 2018 ; 
Lau et al., 2013 ; Schwartz and Domowicz, 2018 ; Wade et al., 2013 ), 
and was found in a previous GWAS to relate to most of the white mat- 
ter structural connectivity ( Elliott et al., 2018 ). The genetic variant 
rs1,058,900 is located in an exon of IFITM2 , whose role has been noted 
in schizophrenia ( Hwang et al., 2013 ; Saetre et al., 2007 ; Volk et al., 
2015 ). rs2,041,671 and rs16,892,140 are located in introns and eQTL 
of CC2D2A , whose expression is considerably higher in fetal brain than 
adult brain ( Gorden et al., 2008 ), and whose mutation has been linked 
to patients with Joubert syndrome ( Doherty, 2009 ; Gorden et al., 2008 ), 
further indicating its important role during brain development. 

Taken together, the GWAS overlaps between network amplitudes 
and temporal synchrony provide further evidence that a “network’s am- 
plitude ” largely reflects its within-network temporal synchrony. To our 
knowledge, our results for the first time demonstrate the differential ge- 
netic mechanisms involved in the temporal synchronisation and BOLD 

fluctuation amplitudes of RSNs. Further investigation should shed light 
on the genetic architecture of human brain function, and implications 
in brain disorders. 

5. Conclusions 

This work highlights that, while network amplitude reflects both 
temporal coherence of spontaneous fluctuations of brain regions in- 
volved in networks, and the regions’ fluctuation amplitudes, a greater 
emphasis should be placed on the former. Crucially, intersubject vari- 
ability in network amplitude needs to be understood taking into ac- 
count this temporal coherence, particularly when examining relation- 
ships with demographic, behavioural, and genetic phenotypes. For in- 
stance, we demonstrated that cognitive network amplitudes are higher 
in males than females due to the higher fluctuations of raw BOLD sig- 
nals, and females in fact have higher temporal coherency of the cogni- 
tive networks than males ( Fig. 8 B). This finding would not have been 
discovered by looking at the network amplitudes alone. Several analyt- 
ical choices such as ICA dimensions and bandpass filtering can greatly 
affect network amplitude estimates, and future research is warranted 
to investigate their effects and further validate network amplitude as a 
valuable metric of brain neurophysiology. 
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