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a b s t r a c t 

Primary central nervous system (CNS) germ cell tumors (GCT) are a rare heterogenous group of cancers, arising 

most commonly in the second decade of life. Through several clinical trials conducted around the world by var- 

ious groups, the treatment approach for CNS GCT has advanced substantially with generally improved overall 

outcomes. In recent years, the goal of clinical trials has been focused on reduction of the radiotherapy burden and 

minimization of long-term toxicity. This review summarizes the current diagnostic and treatment regimens for 

CNS GCT, examines the controversies associated with these approaches, gaps in contemporary knowledge, and 

underscores the challenges we face. We also explore future directions in the management of CNS GCT with the ul- 

timate overall aim of preserving curative outcomes, identifying novel biomarkers, and mitigating neurocognitive, 

endocrine, and psychological toxicity through prospective clinical studies. 

Introduction 

Central nervous system (CNS) germ cell tumors (GCT) are rare ma- 

lignant tumors seen in adolescents and young adults (AYA) with a me- 

dian age of 16 years [1] . In Western countries, CNS GCT accounts for 

approximately 3-5% of all primary CNS tumors in children [2 , 3] . The 

incidence is substantially higher in Asian countries such as Japan and 

Taiwan, where they account for 10-15% of all pediatric CNS tumors. 

The exact genetic and/or environmental reasons for this variance are 

yet to be identified [3 , 4] . CNS GCT are more common in males, espe- 

cially among pineal primary GCR. On the other hand, suprasellar GCT 

show a slight female preponderance [1 , 5] . 

CNS GCT are classified into germinoma and non-germinomatous 

GCT (NGGCT), where germinoma account for 2/3 of all CNS GCT [2 , 3] . 

NGGCT include yolk sac (endodermal sinus) tumor, choriocarcinoma, 

embryonal carcinoma, teratoma, or mixed GCT. CNS GCT predomi- 

nantly present in midline structures, favoring the pineal or suprasellar 

region [6] . A smaller proportion present as concurrent suprasellar and 
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pineal bifocal lesions, while 5-10% are non-midline basal ganglia and 

thalamic lesions. 

Pathogenesis and genomic landscape of CNS GCT 

While the pathogenesis of CNS GCT is unknown, the embryonic 

cell theory proposes that they arise from pluripotent embryonic cells 

that evaded normal neural tube development. The more recent germ 

cell theory supports aberrant primordial germ cell (PGC) migration 

to the developing fetal genital ridge [7 , 8] . Pure germinomas and mi- 

grating PGCs share the unique characteristic feature of global DNA 

hypomethylation, possibly indicating the cell of origin for these tu- 

mors [9 , 10] . Germinoma cells molecularly resemble pluripotent hu- 

man embryonic stem cells with upregulation of self-renewal genes 

such as OCT4, NANOG, and KLF4. BAK1 deletions may also play 

a role in GCT formation by impairing apoptosis of mis-migrated 

PGCs due to down regulation of the KIT/KITLG signalling pathway 

[11] . 
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Takami et al reported that germinoma had a transcriptomic profile 

representative of PGCs with high meiosis/mitosis potentials (PIWIL1, 

DAZL, DDX4, NANOS3, and ERVW-1 and cancer-testis antigen ( CTA) 

genes such as MAGEB1, MAGEB16 , and MAGEC2) [12] . NGGCT are 

characterized by neuronal differentiation, epithelial-mesenchymal tran- 

sition, or over-expression of Wnt/ 𝛽-catenin pathway associated genes 

[13 , 14] . Emerging techniques such as single-cell-RNA-sequencing could 

further help dissect their intratumoral heterogeneity [15] . 

Recently, chromosome 12p gain has been shown to predict outcomes 

in GCTs, with shorter progression-free survival (PFS) and overall sur- 

vival (OS). They are present in 30% of CNS GCTs, more frequently in 

NGGCT ( ∼50%). Additionally, 12p copy number status was shown to 

be shared among different histological components in mixed GCTs, sug- 

gesting 12p gain as an early event in tumorigenesis [16] . 

Although chromosomal instability is characteristic of all CNS GCT, 

somatic KIT/RAS and PI3K/ AKT1 mutations have been described more 

frequently in germinoma [17] , while MAPK pathway alterations fa- 

vor thalamic CNS GCT [18] . Germinomas express genes linked to 

immune response such as CCL18, CD72, and IL6R, consistent with cyto- 

toxic T-lymphocyte infiltration [19] . Germinomas can overexpress PD- 

L1, whereas tumor-infiltrating leukocytes express PD-1. These could po- 

tentiate tumor growth by suppressing antitumoral immune response and 

in turn, provide novel therapeutic targets [20 , 21] . Segregation into GCT 

histological subtypes through unsupervised hierarchical transcriptomic 

clustering has been recently demonstrated. Although some germino- 

mas showed immune-cell infiltration, NGGCT had significantly higher 

immune-cell infiltration, indicating an immune-suppression phenotype 

[12] . Furthermore, integrated transcriptome/methylation analysis clus- 

tered germinoma/seminoma and non-germinoma/non-seminoma sepa- 

rately, with two distinct germinoma subgroups based on tumor content 

and MAPK pathway alterations. Group 1 had noticeably lower tumor 

content and enriched for immune-related genes compared to Group 2. 

Although the difference in PFS (75% versus 100%) was not statistically 

significant, it was concordant with previous reports of the prognostic 

value of tumor content in germinoma and may influence risk stratifica- 

tion and treatment in the future [12 , 22 , 23] . Germinomas overexpressing 

CTAs were associated with high tumor content, which could be consid- 

ered as a novel germinoma characteristic (p < .0001) [12] . 

Constitutive sex chromosomal abnormalities such as Klinefelter’s 

syndrome (47, XXY) and Down syndrome are associated with a higher 

risk of CNS GCT while germline associations with JMJD1C, encoding 

histone deacetylase and a co-activator of the androgen receptor, have 

been reported in Japanese children with CNS GCT [17] . 

Diagnosis 

Clinical presentation 

Pineal tumors are associated with increased intracranial pressure due 

to obstructive hydrocephalus, presenting with early morning headaches, 

blurred vision, somnolence, ataxia and emesis in older children and 

growing head circumference in infants. Parinaud’s syndrome (upward 

gaze palsy, nystagmus and pupillary hyporeflexia) is common in pineal 

tumors [24] . Suprasellar tumors present with hypothalamic-pituitary 

axis dysfunction, and endocrinopathies such as diabetes insipidus, pre- 

cocious puberty, growth failure and hypopituitarism [24] . Basal ganglia 

GCT are associated with hemiparesis/motor weakness, cranial neuropa- 

thy, and neurocognitive dysfunction, with a symptom interval lasting 

months-to-years [25] . Pineal or basal ganglia germinoma can present 

with occult suprasellar disease resulting in endocrinopathies, primarily 

diabetes insipidus [26 , 27] . 

Diagnostic imaging 

MRI of the brain and spine with and without contrast is the study 

of choice. CT scan, however, is superior in identifying calcification and 

intracranial hemorrhage [28] . In general, germinomas have a homoge- 

nous appearance and enhance diffusely with contrast, while NGGCT are 

more heterogenous and can present with hemorrhage, especially com- 

mon with choriocarcinoma [28 , 29] . Despite imaging characteristics, dis- 

tinguishing germinoma from NGGCT remains a challenge if based solely 

on MRI features. 

Controversies in neuroradiological tumor evaluation 

The heterogeneity in neuroradiological criteria to measure CNS GCT 

and response to therapy between multiple cooperative groups such as 

Children’s Oncology Group (COG) and International Society of Paedi- 

atric Oncology (SIOP), has led to significant challenges in consensus 

agreement on the most appropriate assessment methods [30] . Variation 

in appraising solid and cystic components in bidirectional or volumetric 

dimensions in diverse intracranial sites (pineal, hypophyseal, basal gan- 

glia, thalamic and spinal) or the pituitary bright spot for indications of 

diabetes insipidus, with conventional or novel sequencing approaches, 

creates inconsistency in defining complete response (CR), stability, or 

progression. 

While reasonably straightforward to assess solitary lesions, bifocal 

or multifocal disease pose a significant challenge. Should an ‘overall 

assessment’ (e.g., partial response defined by 50% reduction in the sum 

of 2D and 3D measurements of up to 4 target lesions) be sufficient? Or 

should an additional response assessment for individual target lesions 

be considered to optimise radiotherapy fields or dosimetry? 

Future trials should incorporate such questions to be prospectively 

evaluated. A consensus statement by COG and SIOP proposes several 

recommendations that may help homogenise practice, facilitate direct 

comparability of data and inform future standards of care [31] . 

Utility of tumor markers in the diagnosis of CNS GCT 

GCT can secrete protein markers into the blood and cerebrospinal 

fluid (CSF), which can be measured and utilized for diagnostic and 

therapeutic monitoring. The commonest tumor markers used clinically 

are alpha-fetoprotein (AFP) and beta-human chorionic gonadotropin 

(HCG 𝛽). 

A CNS mass with serum AFP elevation above institutional standards 

(or > 10ng/mL in serum or > 2ng/mL in CSF) is considered diagnostic for 

a CNS NGGCT, without requiring a biopsy, with a caveat of physiological 

AFP elevation from embryonic development in young children less than 

2 years of age. 

HCG 𝛽 elevation in the presence of a CNS mass is considered diag- 

nostic for a GCT, but could represent either histology, since germinoma, 

choriocarcinoma, embryonal carcinoma and immature teratoma can all 

secrete HCG 𝛽 at varying levels [32 , 33] . 

PLAP (fetal isoenzyme of alkaline phosphatase), shown to be rela- 

tively sensitive and specific for germinoma and thought to be beneficial 

when AFP and HCG 𝛽 are negative in serum and CSF [34] . Unfortunately, 

PLAP testing is not readily available in many institutions and its use re- 

mains mostly experimental. 

An emerging biomarker tool is microRNAs (miRNAs). Serum and 

CSF miR-371a-373p and miR-302/367 clusters detected in patients with 

NGGCT have demonstrated higher sensitivity and specificity than stan- 

dard tumor markers in testicular GCT, with potential diagnostic and 

prognostic benefit [35 , 36] . 27 novel miRNA candidates with differen- 

tial expression amongst subtypes were identified but overexpression of 

miR-214-3p in NGGCT cells were associated with cisplatin resistance 

through repression of BCL2-like pro-apoptotic proteins. [37] A recent 

study evaluated the diagnostic suitability of miR-371a, miR-372, miR- 

367 and miR-302d in serum and CSF, particularly in tumor marker- 

negative germinoma, providing further evidence of the feasibility, va- 

lidity and accessibility of serum as a less invasive biomarker than CSF. 

This could allow differentiating CNS GCT from other tumors with similar 
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radiological findings, monitoring therapy response and identifying early 

relapse during follow-up [38] . 

Lastly, KIT and NRAS ctDNA (circulating tumor DNA) and CSF 

metabolites can serve as promising novel biomarkers for CNS-GCTs and 

could differentiate germinomas from NGGCTs [39] , but require prospec- 

tive validation prior to clinical adoption. 

Controversies in the utility of tumor markers in CNS GCT 

A midline CNS tumor with low-level HCG 𝛽 elevation can be suffi- 

cient evidence for germinoma diagnosis, although the exact threshold 

of HCG 𝛽 elevation is debatable. Stringent European diagnostic criteria 

for germinoma allow only HCG 𝛽 elevation up to 50 mIU/mL while > 50 

mIU/mL is treated as an NGGCT [40] . In contrast, the COG allows HCG 𝛽

levels up to 100 mIU/mL to be treated as germinoma, including bi-focal 

disease [41] . Interestingly, all five germinoma patients with HCG 𝛽 up 

to 200 mIU/mL treated on the latest Brazilian clinical trial are cur- 

rently alive, without tumor recurrence (personal communication with 

Dr. Andrea Cappellano). Conducting clinical trials across different co- 

operative groups using similar tumor marker cut-offs may help address 

this dilemma. 

Whilst these thresholds are considered standard practice in respec- 

tive countries, with minimal adverse impact on outcomes, diagnosing 

a CNS germinoma without surgical biopsy remains controversial. In 

Japan, upfront surgical biopsy/resection is recommended for all pa- 

tients with CNS GCT for pathological confirmation, since entities such as 

Langerhans cell histiocytosis have been reported to secrete low levels of 

HCG 𝛽 [42] . The Japanese also uniquely classify CNS GCT into good, in- 

termediate, and poor prognostic groups based on diagnostic histopathol- 

ogy and tumor markers [43] . 

Histopathology in CNS GCT 

Sole reliance on traditional non-invasive diagnostic modalities such 

as clinical features, radiology, and tumor markers, although indispens- 

able to management, has limitations. Histopathology provides an ad- 

ditional layer of diagnostic certainty, as there are reports of marker- 

positive germinoma, such as HCG 𝛽-secreting syncytiotrophoblastic gi- 

ant cells (STGC), marker-negative-NGGCT, and misdiagnosis as GCT in 

the literature [44] . 

CNS germinoma is morphologically similar to dysgerminoma (in the 

ovaries) and seminoma (in the testis), characterized by large monomor- 

phic cells with clear cytoplasm, separated by thin fibrous septa into 

lobules, with prominent lymphocytic infiltrate and typical positive im- 

munohistochemical (IHC) staining for PLAP, OCT4, SALL4 and c-kit. 

NGGCTs constitute several subtypes with varied histological features. 

Teratoma demonstrate some/all three embryonal layers (mesoderm, en- 

doderm, ectoderm). Yolk sac (endodermal sinus) tumor are typically 

large, polygonal cells with well-defined borders with positive AFP on 

IHC. Embryonal carcinomas are large, highly irregular, pleomorphic 

cells with high mitotic/proliferative rate and necrosis, with unique 

membranous staining for CD30. Lastly, choriocarcinoma are highly ma- 

lignant tumors that display extensive hemorrhage with necrosis with 

HCG 𝛽 positivity on IHC. 

Controversies in histopathologic diagnosis in CNS GCT 

Even with the combined information from imaging, tumor mark- 

ers and histopathology/IHC, diagnostic dilemma can still occur. 

Histopathology without an adequate and representative biopsy speci- 

men can increase the risk of misrepresenting the entire tumor and mis- 

diagnosis [45 , 46] . While emerging technology such as DNA methylation 

profiling and genome sequencing can help facilitate an integrated diag- 

nosis, these technologies are similarly limited by sampling error. Novel 

approaches such as CSF miRNA, could potentially help address these 

issues and refine our diagnostic approach. 

Disease staging of CNS GCT 

Approximately 15% of CNS GCT can have leptomeningeal disease at 

diagnosis [24] . Therefore, MRI of the brain and spine is critical for ap- 

propriate staging. Additionally, CSF should be collected for cytological 

analysis whenever a lumbar puncture can be safely performed. Lumbar 

puncture is considered standard-of-care for staging (as opposed to in- 

traventricular CSF sampling) [47] . Patients with positive CSF cytology 

are typically considered to have metastatic disease, even with a normal 

MRI of the spine [47] . While there is no established staging system for 

CNS GCT, most physicians utilize the TM/Chang system employed for 

other CNS tumors. 

Controversies in staging of CNS GCT 

The role of CSF cytology in staging CNS GCT is widely accepted, 

where positivity is treated as metastatic disease. Positive CSF cytology 

did not correlate with the presence of spinal disease on MRI, and that 

avoiding craniospinal irradiation (CSI) in germinoma patients with pos- 

itive CSF cytology without spinal lesions on imaging still achieved ex- 

cellent PFS, comparable to those treated with CSI [48] . While intriguing 

and potentially clinically significant, these results need validation in a 

larger cohort, as it would represent significant deviation from current 

North American and European practice. 

Treatment 

Role of surgery 

Tissue diagnosis 

In cases of tumor marker elevation within specific parameters and 

diagnostic for either germinoma or NGGCT, invasive surgery for tis- 

sue biopsy could potentially be avoided. Negative or inconclusive/non- 

diagnostic tumor markers, however, would be a compelling indication 

for obtaining tissue and establishing a histological diagnosis. 

CSF Diversion 

Pineal GCT often present with obstructive hydrocephalus, which re- 

quires CSF diversion either through an endoscopic third ventriculostomy 

(preferred) or a ventricular shunt placement (risk for peritoneal seed- 

ing). Occasionally, it is possible to avoid these procedures after an initial 

external ventricular drain (EVD) placement if chemotherapy is initiated 

promptly, as CNS GCT are commonly chemotherapy-sensitive and may 

shrink sufficiently for resumption of normal CSF flow in days/weeks. Im- 

portantly, when CSF diversion such as ETV is performed, simultaneous 

tumor biopsy has been shown to be safe and is generally recommended 

when clinically feasible [49] . 

Second-look surgery 

For patients with incomplete response to chemotherapy, there is 

a definitive role for second-look surgery. This is either to achieve CR 

prior to radiation therapy (RT), evaluate for growing teratoma syndrome 

(GTS)/fibrosis/scar, or to intensify therapy before moving to RT in cases 

with viable tumor. 

Controversies in surgical management of CNS GCT 

While surgery of the residual primary mass after induction 

chemotherapy in NGGCT is highly recommended, the role of second- 

look surgery in germinoma is less clear. Out of 11 patients who un- 

derwent second-look surgery after finishing chemotherapy on COG 

ACNS1123 stratum 2, none had viable germinoma elements [41] . Fur- 

thermore, outcomes for germinoma patients with residual disease after 

radio-chemotherapy on SIOP CNS GCT 96 were not statistically different 

to those without residual disease, which questions the utility of a higher 

dose RT for residual germinoma [40] . Second-look surgery should be 
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strongly considered in germinoma and NGGCT, if discordance occurs 

between tumor marker and radiographic response, which could suggest 

GTS. 

While there is a growing preference for endoscopic techniques, 

there are case reports suggesting an association between surgical tracts 

(biopsy/endoscopy tract, EVD) and site of disease relapse [50–52] . 

Moreover, in the COG Phase II trial of response-based RT for patients 

with localized germinoma, 3 of 8 relapses (37.5%) occurred along a sur- 

gical tract [53] . These findings raise the question of including surgical 

tracts in the RT field. A secondary analysis of the COG ACNS1123 data 

is underway and may help answer this question. 

Role of chemotherapy and radiation therapy 

Standard-of-care strategies comprise of surgery, chemotherapy, and 

RT with a focus on treatment reduction and minimising toxicity seque- 

lae. There is, however, considerable variation in North American, Euro- 

pean, and Asian approaches. 

Germinoma 

Historically, CSI alone has achieved high cure rates for both localized 

and metastatic disease [54] . Chemotherapy-only approaches have also 

been tried. While effective, they did not produce durable remission and 

historically led to a less than 50% cure rate [55 , 56] . In recent years, 

neoadjuvant chemotherapy has been successfully incorporated in the 

treatment regimens for germinoma, with the intention of reducing the 

dose and field of RT, especially for those with localized disease [40 , 57] . 

Clinical trials by large cooperative groups such as COG and SIOP 

have endeavoured to refine chemo-irradiation strategies for localised 

disease. Early single institution studies demonstrated excellent radio- 

logical responses to cyclophosphamide or carboplatin monotherapy and 

dropping tumor bed boost from 50 Gy to 30 Gy, with preserved OS 

[58 , 59] . A subsequent COG clinical trial demonstrated a 3-year EFS 

of 92% ± 8% in 12 evaluable patients receiving alternating induc- 

tion chemotherapy cycles of cisplatin-etoposide and cyclophosphamide- 

vincristine followed by 30.4Gy focal RT [60] . 

Chemoradiotherapy – role of focal RT 

The SFOP TGM-TC-90 study demonstrated germinoma recurrence in 

10 of 60 cases, 8 in periventricular location, after local RT of 40Gy with 

a 2-cm margin [61] . The SIOP CNS GCT 96 trial treated 65 patients with 

localized disease with two alternating courses of carboplatin-etoposide 

with ifosfamide-etoposide (CarboPEI), followed by 40 Gy focal radio- 

therapy, demonstrating no 5-year OS or EFS differences, but a PFS of 

88% ± 4%. Six of the 7 relapses were ventricular, outside the primary 

RT field. Forty-five metastatic patients had an EFS and OS of 98% ± 

2.3%, in response to 24 Gy CSI with 16Gy focal boosts to primary tu- 

mor and metastatic sites [40] . The SIOP CNS GCT II trial thus adopted 

24 Gy whole ventricular irradiation (WVI) instead of focal irradiation 

for patients in CR after CarboPEI. Interim results report an EFS of 98% 

at 4 years for these 58 patients, prompting consideration as standard 

consolidation treatment for localised germinoma [62] . 

Chemoradiotherapy – role of WVI 

Two early Japanese studies indicated equivalent efficacy and 

tolerability of post-RT chemotherapy regimen (cisplatin-vinblastine- 

bleomycin and cisplatin-etoposide), with whole brain irradiation (WBI) 

of 50Gy resulting in recurrences and significant hypothalamic dysfunc- 

tion [63] . A University of Tokyo study demonstrated efficacy of pre- 

RT cisplatin-carboplatin combination in neuro-hypophyseal germino- 

mas and intermediate-risk patients but not in the poor-prognosis group, 

with WBI of 30Gy, 30-62Gy and 50-55Gy doses respectively. Matsu- 

tani et al. then utilized extended local RT of 24Gy following CARE (car- 

boplatin/etoposide) chemotherapy without the need for WBI, resulting 

in 10-year OS of 98%, reducing neurocognitive damage and improv- 

ing quality of life [64] . The current Japanese study (iRCTs031180223) 

has completed enrolment, utilising 23.4Gy and CARE chemotherapy ap- 

proach [65] . Chemotherapy followed by 21.6-25.5 Gy WVI and local 

30-30.6 Gy boost appeared to be effective in localized pure CNS germi- 

noma with neurocognitive preservation in a multi-institutional Amer- 

ican study [66] . The COG conducted a response-based dose-reduction 

trial (ACNS1123; Stratum 2) for patients with localized germinoma with 

18Gy WVI and 12Gy tumor bed boost for patients in a CR after 4 courses 

of carboplatin-etoposide [53] . Seventy-four patients achieved a 3-year 

PFS of 94.4% ± 2.7%. Interestingly, a Canadian retrospective study 

demonstrated an EFS of 96% and OS of 100% with carboplatin and 

etoposide induction followed by 24Gy WVI without a boost [67] . 

Chemoradiotherapy for Bi-focal, non-midline, and metastatic germinoma 

Bifocal germinomas, by consensus, are treated as locoregional 

(pineal and suprasellar) rather than metastatic tumors, only if it meets 

specific tumor marker criteria (which varies by study) and has clas- 

sic radiological appearance [68] . In smaller studies, when treated with 

combined chemoradiotherapy approach similar to those for localized 

disease, bifocal germinomas have a 3-year PFS and OS of 100% [69] . 

However, data from Japan has shown that not all bifocal lesions are 

germinomas ∼ 3.4% have NGGCT elements, which raises the question 

whether biopsies should be considered for bifocal germinomas [70] . 

Basal ganglia/thalamus germinomas (BGTGs) are more challenging to 

treat, due to their rarity and poorly defined imaging characteristics. CSI, 

WBI, WVI, and focal RT have all been utilized with unclear consensus 

on standard of care [71] . However, recent studies suggest modest out- 

come for these patients, even when treated without spine or whole brain 

RT, supporting the role for reduced dosed and field RT [25 , 72] . These 

findings remain to be validated, and the inclusion of these patients in 

prospective clinical trials should be an essential undertaking. Successful 

treatment of metastatic germinoma requires CSI. While European stan- 

dard of care is 24Gy CSI with 16Gy boost to primary and metastatic 

sites without chemotherapy, another group reported successful treat- 

ment with pre-RT chemotherapy without a boost dose [73] . Further- 

more, the latest trial in Korea (SMC-G13) has demonstrated the success 

of utilizing neoadjuvant chemotherapy followed by 18 Gy CSI and 12 

Gy boost [74] . 

Controversies in medical management of germinoma 

The above discussion highlights the heterogeneity of management 

approaches across continental groups and raises several questions about 

the optimal treatment strategy; duration of chemotherapy (4 versus 6 

induction cycles), field of RT (focal versus WVI), RT doses (18 versus 

24Gy), RT boost (yes or no). 

Non-germinomatous germ cell tumors 

Compared to germinoma, NGGCT are associated with poorer progno- 

sis and higher rates of recurrence. Previously attempted single modality 

treatment with either full-dose CSI or chemotherapy-only approaches 

were less effective and associated with unacceptably high rates of dis- 

ease recurrence [55 , 75-77 ]. Although it is clear that a multi-modality 

approach with induction chemotherapy followed by RT is key to out- 

comes [47] , chemotherapy choices and RT field/dose remain undefined. 

As CSI and WBI are associated with significant long-term toxicity, the 

current landscape of clinical trials has been focused on de-escalation 

of RT exposure with risk stratification based on disease stage and re- 

sponse to induction chemotherapy. For patients with metastatic disease, 

chemotherapy followed by CSI is widely considered as the optimal ther- 

apy. Nevertheless, for patients with localized disease, the ideal treat- 

ment approach remains unclear. 
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Chemoradiotherapy for localized disease 

Several publications suggested that the use of chemotherapy and fo- 

cal RT for patients with localized NGGCT was effective, resulting in 

PFS of 80-85% [78] . Similarly, in the SIOP CNS GCT-96 trial, local- 

ized disease was treated with four cycles of induction chemotherapy 

followed by focal (IF) RT to 54 Gy, leading to a 5-year PFS and OS of 

72% ± 4% and 82% ± 4%, respectively [79] . For “intermediate risk ” pa- 

tients, the Japanese group reported an excellent 5-year OS rate of 89% 

with chemotherapy followed by WVI. In contrast, the COG ACNS0122 

study treated all patients (including patients with localized disease) 

with six cycles of induction chemotherapy followed 36 Gy CSI + IF 

boost to 54 Gy, with excellent outcomes [80] . Considering these data, 

COG ACNS1123 stratum 1 was developed, utilizing the same induction 

chemotherapy backbone as ACNS0122, but with a response-based RT 

plan. This study treated good responders to induction chemotherapy 

with WVI of 30.6 Gy, followed by focal 23.4 Gy boost. Despite excellent 

outcomes, this study was closed prematurely as it met early stopping 

rules, which is further discussed in the controversy section below. 

Chemoradiotherapy for metastatic disease 

For patients with metastatic disease, chemotherapy followed by CSI 

is considered standard-of-care. In the ACNS0122 study, 25 patients with 

metastatic disease had a 5-year EFS and OS of 84% ± 4% and 93% ± 

3%, respectively [80] . In the SIOP CNS GCT-96, patients with metastatic 

NGGCT received four courses of chemotherapy consisting of cisplatin, 

ifosfamide, and etoposide followed by 30 Gy CSI and boost for the pri- 

mary disease site. The five-year PFS and OS were 68% ± 9% and 75% ± 

8%, respectively [79] . Based on these results, while there is no univer- 

sally accepted treatment approach, induction chemotherapy followed 

by 36 Gy CSI with a boost to 54 Gy is generally considered standard-of- 

care. 

Controversies in field and dose of RT for CNS NGGCT 

There is significant heterogeneity in management approaches across 

continental groups, which raises several questions regarding opti- 

mal chemoradiation strategies; chemotherapy drugs/doses and RT 

field/dose. In addition, the standard-of-care treatment approach for lo- 

calized NGGCT remains unclear. As stated above, ACNS1123 unfortu- 

nately closed prematurely as it met early stopping rules, although in 

retrospect, two patients were later found to have been ineligible to re- 

ceive reduced-dose RT. Nevertheless, the 3-year PFS and OS for patients 

who were eligible for this dose-reduced RT plan were 87.8% and 92.4%, 

respectively [81] . While these outcomes are excellent with PFS similar 

to those treated with CSI on ACNS0122, it was noted that there was an 

increased number of spinal relapses among the small number of patients 

who had disease recurrence. This ultimately prompted the initiation of 

ACNS2021, which aims to determine if the re-inclusion of spinal canal 

RT will decrease the number of spinal/metastatic recurrences while 

maintaining the outcomes previously reported on the ACNS0122 trial. 

Future plans 

Advancements in cancer genomics have led to improved understand- 

ing of the molecular underpinnings of cancers, including those of CNS 

GCTs. Activating mutations in the MAPK pathway (including KIT and 

RAS) and the PI3K/mTOR pathway are common genetic aberrations in 

CNS GCTs [17 , 18] . Interestingly, KIT overexpression is seen in the ma- 

jority of pure germinomas, and virtually absent from NGGCTs without 

a germinomatous component. With the recent development of molecu- 

larly selective inhibitors for many targets including KIT and RAS, CNS 

germinoma is a particularly intriguing disease for targeted therapy ap- 

proaches. However, the role of targeted inhibition in CNS NGGCTs 

remains unclear given their intra-tumor heterogeneity, and lack of clear 

molecular targets [82] . 

Novel therapeutic approaches can potentially augment the current 

therapeutic paradigm for CNS GCT. In addition to targeted therapy, im- 

mune checkpoint inhibitors may play a role, especially in NGGCT [21] . 

These approaches could eventually decrease or eliminate the need for 

cytotoxic chemotherapy, and in turn reduce the risk of oto-/nephro- 

toxicity, serious allergic reactions, secondary malignancy, and infertil- 

ity. Avoiding chemotherapy-driven hospital admissions may also have a 

significant positive impact on the AYA population’s quality of life. While 

promising, the development of clinical trials utilizing these novel thera- 

pies (such as RAS, mTOR, and KIT inhibitors) must overcome numerous 

challenges prior to their initiation. 

A key challenge faced by researchers studying primary CNS GCTs 

is the lack of an established in-vitro & in-vivo model. Numerous at- 

tempts at establishing GCT cell lines that stably express mutant-KIT have 

been attempted without success. While Tcam2 (seminoma cell line with 

BRAFV600E mutation) and YST1 cells (malignant schwannoma cell line) 

have been used as surrogates, neither are ideal models for primary CNS 

GCT [82] . Although the current standard-of-care for germinoma leads to 

excellent outcomes (albeit with significant toxicities), efforts should be 

focused on safely incorporating novel therapy approaches into clinical 

trials by utilizing the robust data for targeted agents (e.g. KIT inhibitors) 

that had been shown to cross the blood-brain-barrier in other tumors. 

To this end, the Pacific Pediatric Neuro-Oncology Consortium 

(PNOC) GCT working group, comprised of neuro-oncologists from North 

America, Australia, Europe, Africa, the Middle East, and Asia, led by 

Drs. Mohamed Abdelbaki and Girish Dhall, is focused on the design 

and conduct of prospective studies to investigate the biology of CNS 

GCTs, the role of CSF miRNA as biomarkers, and to elucidate the prog- 

nostic role of genetic aberrations. Clinical trial concepts are also be- 

ing explored, to investigate the roles of immunotherapeutic approaches. 

In addition, since RT is the mainstay of CNS GCT therapy, consider- 

ation for prospective neuroprotective measures to preserve long-term 

cognitive and endocrine function will be included in upcoming trials. 

The working group has also initiated retrospective international multi- 

institutional studies to examine the association of treatment modali- 

ties on outcomes in residual disease in germinomas, primary metastatic 

germinomas and recurrent/relapsed GCTs that may help update fu- 

ture practice. Interim analyses of these have been presented at ISPNO 

2022. 

This review from the group highlights current gaps in diagnostic, 

therapeutic and biomarker monitoring approaches for GCTs that could 

be filled by safely incorporating novel molecular methodologies such 

as genomic, miRNA, epigenetic, tumor microenvironment and pharma- 

cogenomics profiling into future prospective clinical trials, to inform 

standards of care that offer optimal molecularly-selective personalized 

therapy for all stages of disease presentations, resulting in better sur- 

vival outcomes, reduced burden of treatment toxicity and improving 

quality of life for our patients, with a cross-continental collaborative 

approach. 
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