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In brief

High-coverage whole-genome

sequencing (WGS) of the expanded 1000

Genomes Project (1kGP) cohort including

602 trios led to the discovery of additional

rare non-coding single-nucleotide

variants (SNVs), as well as coding and

non-coding short insertions and deletions

(INDELs) and structural variants (SVs)

spanning the allele frequency spectrum

compared to the original 1kGP resource

based primarily on low-coverage WGS.
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SUMMARY

The 1000 Genomes Project (1kGP) is the largest fully open resource of whole-genome sequencing (WGS)
data consented for public distribution without access or use restrictions. The final, phase 3 release of the
1kGP included 2,504 unrelated samples from 26 populations and was based primarily on low-coverage
WGS. Here, we present a high-coverage 3,202-sample WGS 1kGP resource, which now includes 602 com-
plete trios, sequenced to a depth of 30X using Illumina. We performed single-nucleotide variant (SNV) and
short insertion and deletion (INDEL) discovery and generated a comprehensive set of structural variants
(SVs) by integrating multiple analytic methods through a machine learning model. We show gains in sensi-
tivity and precision of variant calls compared to phase 3, especially among rare SNVs as well as INDELs
and SVs spanning frequency spectrum. We also generated an improved reference imputation panel, making
variants discovered here accessible for association studies.

INTRODUCTION

The 1000 Genomes Project (1kGP) was the first large-scale

whole-genome sequencing (WGS) effort to deliver a catalog of

human genetic variation (Sudmant et al., 2015; The 1000 Ge-

nomes Project Consortium, 2010, 2012, 2015). The project

sampled participants from 26 populations across five continental

regions of the world. It culminated in 2015 with publication of

the final, phase 3 variant call set (Sudmant et al., 2015; The

1000 Genomes Project Consortium, 2015) consisting of 2,504

unrelated samples, a subset of which is from the HapMap collec-

tion (The International HapMap 3 Consortium, 2010). The phase

3 call set was generated based on the combination of low-

coverage WGS (mean depth 7.4X), high-coverage whole-exome

sequencing (WES, mean depth 65.7X), and microarray genotyp-

ing data from lymphoblastoid cell line (LCL) samples. It included

84.7 million single-nucleotide variants (SNVs), and 3.6 million

short insertions and deletions (INDELs), as well as a separate

set of 68,818 structural variants (SVs; alterations R50 bp). The

1kGP resources have been collectively cited over 18,000 times

to date and have been utilized for foundational applications

such as genotype (GT) imputation, expression quantitative trait

loci (eQTL) mapping, variant pathogenicity prioritization, popula-

tion history, and evolutionary genetics studies (Almeida et al.,

2014; Hara et al., 2014; Horikoshi et al., 2015; Huang et al.,

2015; Khurana et al., 2013; Kircher et al., 2014; Lappalainen et

al., 2013; Ritchie et al., 2014; The CARDIoGRAMplusC4D Con-

sortium, 2015; Zheng-Bradley and Flicek, 2017). While the phase
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3 dataset captured the vast majority of common SNVs (minor-

allele frequency [MAF] >1%) in the population (>99%) (The

1000 Genomes Project Consortium, 2015), detection of rare

SNVs (MAF %1%) as well as INDELs and SVs across the entire

frequency spectrum was limited due to low sequencing

coverage outside of the coding genome as well as shortcomings

in INDEL and SV discovery algorithms that existed at the time of

phase 3 data analysis.

Here, we present high-coverageWGS and comprehensive an-

alyses of the original 2,504 1kGP samples, aswell as of 698 addi-

tional related samples that now complete 602 trios in the 1kGP

cohort. We sequenced LCL-derived DNA from the expanded

cohort of 3,202 samples to a targeted depth of 30X genome

coverage using Illumina NovaSeq 6000 instruments. We aligned

reads to the GRCh38 reference and performed SNV/INDEL

calling using GATK HaplotypeCaller (Poplin et al., 2017). We

also discovered and genotyped a comprehensive set of SVs,

including insertions (INSs), deletions (DELs), duplications

(DUPs), inversions (INVs), and multiallelic copy number variants

(mCNVs), by integrating multiple algorithms and analytic pipe-

lines, including GATK-SV (Collins et al., 2020), svtools (Larson

et al., 2019), and Absinthe (Corvelo et al., 2021). Comparison

with previous low-coverage sequencing performed in phase 3

of the 1kGP demonstrates significant improvements in sensitivity

and precision of variant calls, highlighting that the resequencing

effort and expansion of the cohort to include trios brought signif-

icant value to the resource.

One of the major applications of the phase 3 1kGP call set has

been its widespread use as a reference panel for variant imputa-

tion in sparse, array-based genotyping data with a goal of

improving the statistical power of downstream genome-wide as-

sociation studies (GWAS) and facilitating fine-mapping of causal

variants. As part of this publication, we release an improved

reference imputation panel based on the high-coverage WGS

consisting of SNV, INDEL, and SV calls across the 3,202 1kGP

samples, including full trios.

Since the completion of phase 3, much larger WGS datasets

have been released such as the Genome Aggregation Database

(gnomAD; 76,156 WGS samples) (Karczewski et al., 2020),

Trans-Omics for Precision Medicine (TOPMed, �180,000 sam-

ples) (Taliun et al., 2021), All of Us (�100,000 samples), or the

UK Biobank (UKBB, 200,000 samples) (Halldorsson et al.,

2022). Unlike the 1kGP, these resources have restrictions on

public data sharing as they are often linked to clinical data, which

amplifies privacy concerns. In contrast, samples within the 1kGP

cohort have been consented for full public release of genetic in-

formation, which allows for unrestricted sharing of the complete

sample-level GT data. This enables granting access to a down-

loadable reference imputation panel, as well as use of the data-

set for methods development and benchmarking, among other

applications. A small subset of the 602 pedigrees that are now

part of the expanded 1kGP cohort have been sequenced previ-

ously as part of various efforts, such as Platinum Genomes

(Eberle et al., 2017), Complete Genomics (The 1000 Genomes

Project Consortium, 2015), and the Human Genome Structural

Variation Consortium (HGSVC) (Chaisson et al., 2019; Ebert

et al., 2021); however, we have sequenced nearly all 1kGP trios

at high coverage and jointly analyzed them for the discovery and

genotyping of genomic variation across the size and frequency

spectrum. We make all the data generated publicly available

without restriction and envision it becoming the de facto public

resource for the worldwide genomics and genetics community.

RESULTS

Small variation across the 3,202 1kGP samples
Using the Illumina NovaSeq 6000 System, we performedWGS of

the original 2,504 1kGP unrelated samples and an additional 698

related samples. This completed 602 parent-child trios in the

1kGP cohort and brought the total number of sequenced and

jointly genotyped samples to 3,202 (Figure 1A; Table S1). At

the cohort level, we discovered a total of 117,175,809 small

variant loci, which represent 125,484,020 distinct alternate al-

leles, including 111,048,944 SNVs and 14,435,076 INDELs (Ta-

ble 1). Across all SNVs and INDELs, there are 58,379,163

(47.6%) singletons (allele count [AC] = 1), 45,931,977 (37.5%)

rare (allele frequency [AF]% 1%), and 18,212,589 (14.9%) com-

mon (AF > 1%) alleles, as defined using AF estimates based on

unrelated samples in the cohort (Figure 1B). Out of all small var-

iants, 7,473,575 (5.9%) represent novel alleles, defined here as

not reported in SNP database (dbSNP) build 155 (Sherry et al.,

1999) (Figure 1B). 92.7% of novel variants are singletons, and

most are specific to a single super-population ancestry, with

the highest fraction being specific to the South Asian ancestry

(SAS, 27%), followed by African (AFR, 25%), and East Asian

(EAS, 19%) ancestry group (Figure 1B). Although AFR genomes

have more variants than SAS, recent large-scale WGS efforts to

sequence more AFR genomes, such as TOPMed (�51,000 AFR

genomes compared to �15,000 SAS and EAS genomes com-

bined), which now accounts for most variants in dbSNP (Taliun

et al., 2021), are likely contributing to the slightly lower proportion

of novel variants discovered here being specific to the AFR

ancestry group. Overall, 6.6% (n = 7,676,044) of small variant

loci are multiallelic across the 3,202-sample cohort. These multi-

allelic loci contain 6,937,157 SNV and 9,022,437 INDEL alleles of

which 6.9% SNVs and 5.6% INDELs are novel.

To better characterize our variant calls, we divided the

genome into easy- and difficult-to-sequence regions (see

STAR Methods), as defined by the Genome in a Bottle (GIAB)

Consortium (Krusche et al., 2019). The difficult regions constitute

only 20% of the genome but they contain a disproportionately

high fraction of all multiallelic sites (74.8% compared to 22.4%

of all biallelic sites). Additionally, difficult regions are also en-

riched for INDEL loci, containing 64.3% of INDEL as compared

to 23.1% of SNV loci. The enrichment for multiallelic and

INDEL calls in difficult regions is consistent with expectation,

as these regions mostly consist of low complexity and repetitive

elements where alignment of sequencing reads is particularly

challenging and where INDELs are known to typically form

(Montgomery et al., 2013).

At the sample level, we called an average of 4,952,915 small

variants (Table 1). As expected, the average number of variant

sites was the highest in the individuals from populations with

AFR ancestry, while individuals belonging to the admixed popu-

lations with American ancestry (AMR) displayed the highest vari-

ability in the number of variants (Figures 1C and S1A–S1C).
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Predicted functional consequence of small variants
To assess functional consequences of SNVs and INDELs in the

high-coverage call set, we annotated them using the Ensembl

Variant Effect Predictor (VEP) (McLaren et al., 2016). Across

the unrelated samples, we found a total of 605,896 missense,

384,451 synonymous, and 36,520 predicted loss-of-function

(pLoF) mutations, defined here as stop-gain (n = 12,181), frame-

shift (n = 10,850), and splice mutations (n = 13,489) (Figure 1D).

Depending on the functional consequence category, 86%–97%

and 67%–95% of predicted functional SNVs and INDELs,

respectively, are rare (MAF %1%), with 1%–7% SNVs and

5%–32% INDELs being novel (i.e., absent from dbSNP build

155) (Figure 1D). At the sample level, we found on average

10,625 missense, 11,956 synonymous, 76 stop-gain, 195 frame-

shift, and 314 splice mutations without applying MAF filtering

(Figures 1D; Table S3). At MAF %1%, each sample carries on

average 11 stop-gain, 18 essential splice, and 14 frameshift mu-

tations. These cohort- and sample-level counts are consistent

with previous reports (Karczewski et al., 2020; Taliun et al.,

2021). As expected, AFR samples carry the highest counts of

variants across all functional categories as compared to other

populations (Figure S1G; Table S3), with magnitudes of differ-

ence between populations being similar across high- and low-

impact functional categories (Figure S1H).

False discovery rate among small variants
We determined the false discovery rate (FDR) of the high-

coverage call set by comparing GT calls in sample NA12878 to

the GIAB NA12878 truth set v3.3.2 (Zook et al., 2019) in the

high confidence regions of the genome. Using this approach,

the estimated FDR is 0.3% for SNVs and 1.15% for INDELs.

We observed �10-fold lower FDR (= 1 � precision) in the easy

as compared to difficult subsets of the high confidence regions

for both SNVs (0.10% versus 1.40%, respectively) and INDELs

(0.17% versus 1.54%) (Figures 1E and S1D). In the easy regions,

sensitivity of SNV and INDEL calls reached 99.89% and 99.14%,

respectively, whereas in difficult regions it was 99.13% for SNVs

and 97.53% for INDELs (Figures 1E and S1D).

Figure 1. SNV/INDEL discovery in the high-coverage WGS data across the 3,202 1kGP samples

(A) Counts of samples stratified by sex and super-population. Original: 2,504 original 1kGP samples. New: 698 newly added samples.

(B) Cohort-level alternate allele counts of SNVs and INDELs across the 3,202 samples, stratified by AF bins. Novel/known: sites absent from/present in dbSNP

build 155. AF was estimated based on the 2,504 unrelated samples. Pie chart: breakdown of all novel variants by the super-population ancestry. Gray area in the

pie chart: novel sites that were called in more than one super-population.

(C) Count of small variant loci per genome, stratified by population. See also Figures S1A–S1C.

(D) Predicted functional SNVs and INDELs (autosomes). Top row: cohort-level counts (purple bar plot) overlaid with distributions of sample-level counts (boxplots)

across the 2,504 unrelated samples. Middle row: fraction of rare (MAF %1%) SNVs and INDELs among the predicted functional sites. Bottom row: fraction of

novel SNVs and INDELs among the predicted functional sites. See also Figures S1G and S1H.

(E) Precision versus recall computed relative to the GIAB truth set v3.3.2, stratified by easy and difficult regions of the genome. See also Figure S1D.

Super-population ancestry labels: EUR, European; AFR, African; EAS, East Asian; SAS, South Asian; AMR, American. Descriptions of population labels are in

Table S1.
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We separately analyzed the subset of small variants that tends

to be themost enriched for false positive calls, namely the single-

tons (variantswith AC=1 across the entire 3,202-sample cohort).

Due to themixednatureof theexpanded1kGPcohort,whichnow

includes both unrelated aswell as related samples, the number of

singletons per genome varies depending on the sample’s relat-

edness status, with children having the fewest singletons (mean

of 1,340) followedbyparents (meanof 12,365) and then unrelated

samples (mean of 23,197) in the cohort (Figure S1E). Singletons

among children represent putative de novo mutations (DNMs).

The expected number of germline DNMs is�100 per child (Jóns-

son et al., 2017; Kong et al., 2012), which suggests that themean

numberof singletons amongchildrenexceeds theexpectationby

about a factor of 10, although this varies rather widely from sam-

ple to sample (Figure S1E). Given that all 1kGP samples are

derived from LCLs of various ages, these additional singletons

likely represent somatic artifacts from cell-line propagation (Ng

et al., 2021), as well as some false positive calls. As evidence of

the presence of somatic artifacts, we observed aneuploidy of al-

losomes in 0.94% of the samples and sub-chromosomal level

mosaic CNVs on multiple autosomes (Figure S2). This agrees

with findings from the Polaris project (Illumina Inc., 2019).

For singletons in sample NA12878, the estimated FDR is

1.01% based on comparison to the GIAB truth set v3.3.2

(Zook et al., 2019). This is consistent with an independent esti-

mation based on NA12878 from the jointly genotyped set of

just the 2,504 unrelated samples where FDR is 0.98% (see

STAR Methods; Figure S1F). Additionally, we evaluated single-

tons against the recently released GIAB truth set v4.2.1 (Wagner

et al., 2022). Thanks to inclusion of additional technologies such

as PacBio-HiFi and 10X Genomics, the GIAB v4.2.1 truth set ex-

cludes some of the calls believed to be mosaic variants that

arose due to cell-line propagation that were present in the

GIAB v3.3.2 truth set. Based on this comparison, the FDR among

singletons is 5.93% (analysis based on NA12878 from the 3,202-

sample joint call set) or 5.78% (analysis based on NA12878 from

the 2,504-sample joint call set) (see STARMethods; Figure S1F).

This indicates that �5% of singleton calls in the high-coverage

call set appear to be truly present in the cell lines but may not

represent true population variants or even real DNMs in the orig-

inal donors, highlighting potential shortcomings of using cell

lines derived DNA for this study.

Structural variation across the 3,202 1kGP samples
We generated an SV call set across all 3,202 1kGP samples with

short-read WGS data. These SV GTs were discovered and inte-

grated from three analytic pipelines: GATK-SV (Collins et al.,

2020), svtools (Abel et al., 2020), and Absinthe (Corvelo et al.,

2021) (see STAR Methods) (Figure S3; Table S4). This final

ensemble call set included 173,366 loci, composed of 90,259

DELs, 28,242 DUPs, 673 mCNVs, 49,693 INSs, 920 INVs, 3,568

complex SVs (CPXs), and 11 inter-chromosomal translocations

(CTXs; Figure 2A; Table 1). The size and allele frequency distribu-

tion of SVs followed expectations; mobile element signatures

were observed for ALU (200–300 bp), SVA (1–2 kb), and LINE1

(5–6 kb) variants (Figure 2B). Most SVs were rare, and SV allele

frequencies were inversely correlated with SV size (Figure 2C).

On average, �9,679 SVs were discovered in each genome (see

Figure 2D; Table 1). The distribution of SVs observed per individ-

ual followed expectations for ancestry with the greatest number

of SVs per genome derived from AFR populations (Figure 2E; Ta-

ble 1) (Campbell and Tishkoff, 2008). The precision of the SV call

setwasalsoquite high,with adenovoSV rate of 3.5% (Figure 2F).

Comparison of the small variant calls to the 1kGP phase
3 call set
To quantify the improvements in the high-coverage resource, we

compared our small variant calls against the original phase 3 call

set. For consistency, we restricted this comparison to variants

discovered in the original 2,504 samples (see STAR Methods).

The 2,504-sample high-coverage call set includes 96,950,998

SNVs and 13,132,415 INDELs across the autosomes. This

Table 1. Summary of variant counts in the high-coverage 1kGP call set at the cohort and sample level

Variant type

# variants across 3,202 samples Average # variants per sample

Total All AFR EUR SAS EAS AMR

Total small variants 125,484,020 4,952,915 5,623,313 4,645,189 4,736,023 4,651,279 4,754,817

SNV 111,048,944 4,080,992 4,653,521 3,818,951 3,896,324 3,822,328 3,911,413

IN-DEL 8,010,854 451,277 503,995 426,940 433,635 428,078 435,976

IN-INS 6,424,222 420,646 465,797 399,298 406,064 400,873 407,428

Total SVs 173,366 9,679 10,742 9,176 9,304 9,251 9,363

DEL 90,259 4,232 4,715 4,001 4,066 4,035 4,089

DUP 28,242 1,207 1,322 1,153 1,168 1,155 1,178

mCNV 673 425 433 422 419 425 419

INS 49,693 3,534 3,971 3,329 3,378 3,361 3,403

INV 920 68 71 66 67 67 66

CPX 3,568 213 230 205 206 208 208

CTX 11 0 0 0 0 0 0

Super-population ancestry labels: EUR, European; AFR, African; EAS, East Asian; SAS, South Asian; AMR, American. Small variant types: SNV, single-

nucleotide variant; IN-DEL, short deletion; IN-INS, short insertion. SV types: DEL, deletion; DUP, duplication; mCNV, multiallelic copy number variant;

INS, insertion; INV, inversion; CPX, complex SV; CTX, inter-chromosomal translocation.
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represents a 1.24-fold cohort-level increase in the number of

SNVs and 4.05-fold increase in the number of INDELs compared

to the phase 3 call set. Of the 10,322,838 INDELs that were

called in the high-coverage call set but not in phase 3 (labeled

henceforth as ‘‘new’’), 60% were in homopolymer and tandem

repeat regions (compared to only 10.5% of 22,455,268 new

SNVs). The newly discovered INDELs are positioned across

6,511,277 distinct loci, a ratio of new INDEL alleles to new loci

of 1.58, in comparison to INDELs that were previously discov-

ered in phase 3, which are mostly biallelic with ratio of alleles

to loci equal to 1.04. Among SNVs, we observed the largest gains

in the number of singletons and rare alleles (AF % 1%) in the

high-coverage relative to the phase 3 call set. As expected, the

number of common (AF > 1%) SNVs was similar across both

call sets (Figure 3A). In the case of INDELs, we observed gains

across the entire AF spectrum (Figure 3B). The highest increase

(676-fold) was in the singleton category where the phase 3 call

set contains only 4,437 singleton INDELs. The low number of ul-

tra-rare INDEL calls in the phase 3 set can be attributed to more

stringent filtering applied to INDELs as compared to biallelic

SNVs (The 1000 Genomes Project Consortium, 2015) and limita-

tions of low-coverage sequencing. The increase in the number of

rare and common INDELs in the high-coverage versus phase 3

call set was also significant (Figure 3B). Additionally, we called

significantly more INDELs above 50 bp in length (Figure S4A).

At the per-sample level, we observed a 1.05-fold average in-

crease in the number of SNVs and 1.47-fold increase in the num-

ber of INDELs in the high-coverage call set (Figures 3E and 3F).

Overall, we recalled 98.3% of the phase 3 small variants in the

high-coverage call set with recall rate being higher in the easy

versus difficult regions (Figures 3A and 3B). Shared variants dis-

played high correlation of AF between the high-coverage and

phase 3 call sets (Figure S4C).

The FDR of the 2,504-sample high-coverage call set is 0.1% for

SNVs and 1.1% for INDELs as compared to 0.6% for SNVs and

12.4% for INDELs in the phase 3 call set. In a stratified analysis,

we observed significantly lower FDR across the entire AF

spectrum, in both easy and difficult genomic regions, in the

high-coverage as compared to the phase 3 call set (Figures 3C,

3D, and S4B). This trend was particularly pronounced among

rare (AF % 1%) SNVs and INDELs in the difficult regions of the

genome.

Figure 2. SV discovery in the high-coverage WGS data across the 3,202 1kGP samples

(A–C) The count (A), size distribution (B), and allele frequency distribution (C) of each SV class.

(D–F) The mean per sample count of SVs by variant class (D) and ancestral population (E) is also provided, as well as inheritance and transmission rates (F) of all

SVs. In (F), child inheritance rate refers to the proportion of SVs in a child inherited from the parents. Parental transmission rate refers to the proportion of SVs in

parents’ genomes that are transmitted and displayed here are all informative SVs that are only heterozygous in one parental genome. Vertical colored lines in each

row represent the mean value, whereas numbers on the right margin represent median SV counts across the children or families.

SV Classes: DEL, deletion; DUP, duplication; mCNV, multiallelic copy number variant; INS, insertion; INV, inversion; CPX, complex SV; CTX, inter-chromosomal

translocation. Super-population ancestry labels: EUR, European; AFR, African; EAS, East Asian; SAS, South Asian; AMR, American. Descriptions of population

labels are in Table S1. See also Figure S3.
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We observed 1.01- to 1.40-fold increase in the number of

SNVs falling into various functional categories in the high-

coverage as compared to the phase 3 call set at the cohort

level (Figure 3G). This increase was especially pronounced

(R1.2-fold) in the intronic, regulatory, transcription factor bind-

ing site (TFBS), intergenic, and untranslated region (UTR)

Figure 3. Comparison of small variant calls to the phase 3 call set

(A and B) Number of SNVs (A) and INDELs (B) across the 2,504 samples in phase 3 and high-coverage datasets, stratified by AF bins and regions of the genome.

Secondary y axis: % of autosomal phase 3 variants recalled in the high-coverage call set across SNVs (A) and INDELs (B) in easy and difficult regions of the

genome. See also Figure S4C.

(C and D) Comparison of FDR across SNVs (C) and INDELs (D) between the high-coverage and phase 3 call sets, stratified by AF bins and regions of the genome.

See also Figure S4B.

(E and F) Sample-level SNV (E) and INDEL (F) counts in the phase 3 versus high-coverage call sets, stratified by 1kGP super-population ancestry. EUR, European;

AFR, African; EAS, East Asian; SAS, South Asian; AMR, American. Reported counts are at a locus level.

(G and H) Comparison of predicted functional SNV (G) and INDEL (H) counts in the high-coverage versus phase 3 call set. Log2(ratio) denotes ratio of variant

counts in the high-coverage versus phase 3 call set. Top row: cohort-level comparison. Middle row: sample-level comparison. Bottom row: comparison of

FDR. Red asterisks mark categories with fewer than 100 sites in sample NA12878 (i.e., categories where FDR estimation is less reliable). See also

Figures S4D and S4E.

FDR in (C), (D), (G), and (H) was estimated based on comparison of calls in sample NA12878 to the GIAB truth set v3.3.2. (A), (B), and (E–H): chromosomes (chr)

1–22; (C) and (D): chr1–22 and X.
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variant categories. The rather insignificant increase in the num-

ber of SNVs in protein-coding categories (1.01- to 1.13-fold;

Figure 3G) was expected since variant discovery in the phase

3 call set was based on high-coverage WES in addition to

low-coverage WGS. We observed a more significant increase

(2.5- to 5-fold) in the number of predicted functional INDELs

in the high-coverage versus phase 3 call set at the cohort level

(Figure 3H). At the sample level, the ratios of predicted func-

tional SNV counts in the high-coverage versus phase 3 call

set were close to 1 with well-controlled FDR in both call sets

across nearly all categories. In the case of INDELs, the sam-

ple-level ratios were higher than for SNVs across most func-

tional categories, reaching over 1.5 in case of inframe DELs

as well as intergenic and intronic INDELs, consistent with a

larger proportion of common INDELs relative to SNVs among

new loci discovered in the high-coverage call set. We observed

that relative differences in INDEL gains across coding versus

non-coding categories are not as clear as in the case of

SNVs. This is consistent with the fact that overall gains in

INDEL calling in the high-coverage call set are not only due

to increased coverage, as it is in case of SNVs, but also

due to substantial improvements in calling algorithms, which

apply to coding regions as well.

Comparison of the SV calls to the 1kGP phase 3 call set
The ensemble SV call set was compared to the 1kGP phase 3

SVs (Sudmant et al., 2015) on the 2,504 shared samples to

assess improvements brought by high-coverage sequencing

and genotyping capabilities of updated analytic pipelines. The

current ensemble SV call set discovered over 2-fold more SV

sites than phase 3 (169,713 versus 68,697) and encompassed

87.7% of the phase 3 SV calls (Figure 4A). This increased sensi-

tivity and high overlapwith phase 3SVswas consistent across all

SV classes (Figure 4A), with an average of 9,655 SVs detected

Figure 4. Comparison of the ensemble SV calls to the phase 3 call set

(A) Count of SV sites in the current ensemble SV call set and phase 3 SV call set and their overlap. Numbers next to each bar represent the counts of SV sites in

each dataset.

(B) The distribution of SV counts per sample in both call sets and their average overlap, displayed in the Venn diagram.

(C) Count of genes altered by SVs in both datasets. pLoF, predicted loss of function; CG, complete copy gain; IED, intragenic exon duplication.

(D) Count of genes altered by SVs across ancestral populations.

See also Figure S5.
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per genome in the current ensemble call set compared to 3,431

SVs in the phase 3 call set (Figure 4B).

Precision of the high-coverage ensemble call set and 1kGP

phase 3 calls was evaluated using long-read WGS on the 15

shared samples that had matched PacBio sequencing (Ebert

et al., 2021; Sudmant et al., 2015). Two methods were applied

for this evaluation: direct validation of SV through long reads us-

ing VaPoR (Zhao et al., 2017) and cross comparison of SV

against assembly-based variants (Ebert et al., 2021). Results

from both methods indicated comparable or higher precision

across variant classes in the high-coverage ensemble calls

compared to the phase 3 dataset (Table S5).

The high-coverage SV call set provided significant added

value in terms of the discovery of SVs that alter gene function

by comparison to the phase 3 SV dataset. Consistent with a pre-

vious large-population study from short-read WGS that pre-

dicted disruption of 180 genes by SVs in each genome (Collins

et al., 2020), as well as a recent study from the HGSVC using

long-readWGS and complementary technologies that estimated

189 SVs per genome that altered protein coding genes (Ebert

et al., 2021), we observed that biallelic SVs in each genome re-

sulted in alteration of 162 genes per genome, including pLoFs

of 97 protein coding genes, complete copy gain (CG) of 50

genes, and duplications of intragenic exons (IED) of 15 genes.

Notably, the functional impact of IEDs has been previously

shown to be correlated with negative selection against pLoF

point mutations (Collins et al., 2020). This represents a consider-

able increase in the estimates from the phase 3 call set that pre-

dicted an average of 32 genes disrupted by SVs per genome

(30 pLoFs, 1 CG, and 1 IEDs; Figures 4C and S5). The high-

coverage 1kGP dataset also offered an estimate of the popula-

tion diversity of functional SV variation, where AFR populations

had most SVs per genome (Figure 4D), and similar patterns

were observed when evaluating pLoF, CG, and IED SVs that

altered protein coding sequences individually (Figure S5).

Haplotype phasing
In addition to the small variant and SV call sets, we also gener-

ated an integrated haplotype-resolved SNV/INDEL/SV call set

that can be used as a reference panel for imputation. We first

performed haplotype phasing of high-quality non-singleton

SNVs and INDELs (see Figure 5A and STAR Methods) across

the 3,202-sample 1kGP cohort using statistical phasing with

pedigree-based correction (see STAR Methods). Next, we

used the phased SNV/INDEL call set as a haplotype scaffold

onto which we phased high-quality non-singleton SV calls (Fig-

ure 6A). mCNV, CTX, and CPX SV types were excluded from

the integrated reference panel due to being either ultra rare

(CTX) or multiallelic and challenging to represent as distinct

events for phasing (mCNV, CPX). The resulting integrated haplo-

type-resolved panel consists of 73,452,337 SNVs/INDELs and

102,459 SVs (DELs, INSs, DUPs, INVs) across autosomes and

chromosome X (Figures 5 and 6A; Table S6).

We evaluated phasing accuracy of the SNV/INDEL haplotype

scaffold by computing switch error rate (SER) in sample

NA12878 (child in the 1kGP cohort) relative to the gold standard

phasing truth set, i.e. Platinum Genome NA12878 call set gener-

ated by Illumina (Eberle et al., 2017). The SER across all auto-

somes was 0.07% (across 2,338,955 assessed heterozygous

[HET] SNV/INDEL pairs), indicating high accuracy of phasing.

As expected, chromosome X displayed higher SER as compared

to autosomes (SER = 0.49%, 73,794 HET pairs; Figure S6A). We

did not observe a significant difference in phasing accuracy be-

tween SNVs and INDELs, other than on chromosome X (Fig-

ure S6B). We observed an expected increase in SER with

decrease in MAF, but the SER remained low throughout

the entire MAF spectrum, reaching a maximum of 1.14% in

the %0.1% MAF bin across autosomes (Figure 5B).

To assess phasing accuracy of parental and unrelated sam-

ples in the haplotype scaffold, we used the haplotype-resolved

call set from the HGSVC (Ebert et al., 2021), which includes

phased SNV calls for 34 1kGP samples (19 children, 6 parents,

9 unrelated), as a phasing truth set. Based on this comparison

and consistent with the expectation, phasing accuracy of chil-

dren in the cohort is the highest (average autosomal SER =

0.09%) followed by parents (SER = 0.22%) and unrelated sam-

ples (SER = 0.79%) (Figure 5C). When compared against statis-

tical phasing of just the 2,504 high-coverage unrelated samples,

inclusion of trios (1) improved phasing accuracy of child samples

from �35-fold in the %0.1% bin to �6.5-fold in the 10%–50%

MAF bin, (2) improved phasing accuracy of parental samples

�3- to 4.2-fold on average across MAF spectrum, and (3) had

no significant effect on phasing accuracy of unrelated samples

(Figure S6C).

We compared the phasing accuracy of the high-coverage

SNV/INDEL haplotype scaffold to the phase 3 panel, which

was phased using statistical phasing with family-based scaffold

built from genotyping array data (The 1000 Genomes Project

Consortium, 2015). The overall SER across autosomal SNVs

and INDELs of the NA12878 sample in the phase 3 panel was

0.76% (2,238,400 HET pairs) relative to the Platinum Genome

truth set, which is 10-fold higher than the corresponding SER

in the high-coverage panel. The SER on chromosome X was

2.6-fold higher than the corresponding SER in the high-coverage

panel. The significantly lower SER in the high-coverage as

compared to the phase 3 panel was observed across all four

MAF bins (Figure 5B), with magnitude of decrease ranging

from 3.6-fold in the case of the most common MAF bin up to

34-fold in the rarest MAF bin. Phasing accuracy of the 2,504-

sample phase 3 dataset was slightly better than that of the

2,504-sample high-coverage dataset (Figure 5B) because the

latter dataset was phased using statistical phasing alone without

the family-based scaffold. Compared to the 10-fold improve-

ment in phasing accuracy of a child sample in the high-coverage

versus phase 3 panel, parental and unrelated samples showed

2.2-fold and 1.3-fold average improvement, respectively, in the

high-coverage panel across autosomes (relative to the HGSVC

[Ebert et al., 2021] SNV phasing truth set).

To evaluate phasing accuracy of SVs that we phased on top of

the SNV/INDEL scaffold, we computed a fraction of SVswith flip-

ped phase relative to the HGSVC call set (Ebert et al., 2021)

across the 34 shared 1kGP samples (see STAR Methods). We

restricted the analysis to DELs with 100% reciprocal overlap

with the truth set (�92 HET DELs per sample on average; �4%

of total HET sites) and INSswith exactly matching breakpoint po-

sition (�293 HET INSs per sample on average, �19% of total
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HET sites) (Figure S7A). Based on that, 0.24% of assessed INSs

and 0.89% of assessed DELs had flipped phase per sample on

average across the autosomes indicating high accuracy of

phasing (Figure 6B).

As an orthogonal validation of SV phasing accuracy that (1) is

independent of the truth set, (2) interrogates a higher fraction of

HET sites, and (3) evaluates all four phased SV types, we

computed the parental flip rate of phased heterozygous SV

GTs across the 602 child samples (see STAR Methods). Using

this strategy, we were able to assess phasing accuracy of

�76%–78% HET DEL/INS/DUP (n = �1,392 DELs, �1,089

INSs, and �220 DUPs per sample on average) and �66% (n =

�14) HET INV sites per child on average (Figure S7B). Based

on that, the average parental flip rate of phased SVs across chil-

dren was 0.65% for INSs, 0.99% for DELs, 1.63% for DUPs, and

1.20% for INVs across all autosomes (Figure 6C), providing

further support for high accuracy of phasing across all SV types.

For comparison, the average parental flip rate of phased HET

SNVs/INDELs is 0.19% across autosomes.

Imputation performance
We imputed a set of 110 diverse samples (Table S7) from the

SimonsGenomeDiversity Project (SGDP) (Mallick et al., 2016) us-

ing the integrated high-coverage panel and evaluated the accu-

racy of imputed GTs by computing the squared Pearson correla-

tion coefficient (r2) between imputed allelic dosages and dosages

from WGS-based truth sets (see STAR Methods) across multiple

AF bins. We observed significantly higher mean imputation accu-

racy in easy as compared to the difficult-to-sequence regions of

the genome for both SNVs and INDELs imputed using the high-

coverage panel (Figures 5D and S6D–S6G).

Next, we compared the SNV/INDEL imputation performance

of the high-coverage panel to the phase 3 panel across shared

loci. SNV imputation performance was comparable across the

Figure 5. Small variant phasing and imputation performance

(A) Counts of small variants passing specified filtering criteria (chr1–22 and X; top 10 combinations of filtering criteria in terms of variant counts are shown). PASS,

sites that passed VQSR; Miss., genotype missingness; HWE, Hardy-Weinberg Equilibrium exact test p value > 1e-10 in at least one of the five 1kGP super-

populations; ME, mendelian error rate across complete trios; MAC, minor allele count. See also Table S6.

(B) Haplotype phasing accuracy of the high-coverage and the phase 3 1kGP panel. SER, switch error rate relative to the Platinum Genome truth set. Two

additional phasing conditions (dashed lines) are shown for the high-coverage panel for evaluation purposes only: (1) diamonds: SER obtained when phasing

NA12878 without parents included in the cohort. (2) Triangles: SER obtained when phasing NA12878 with parents included but without the pedigree-based

correction (duohmm) applied. See also Figures S6A and S6B.

(C) Haplotype phasing accuracy of the high-coverage panel, stratified by relationship status. SER was computed relative to the HGSVC SNV call set (Ebert et al.,

2021). See also Figure S6C.

(D) Imputation accuracy of SNV and INDEL genotypes imputed using the high-coverage panel, stratified by genomic regions. Mean r2, squared Pearson corre-

lation coefficient averaged over 110 SGDP samples. See also Figures S6D–S6G.

(E) Comparison of the imputation accuracy between the high-coverage and phase 3 panels for SNVs and INDELs, stratified by super-population ancestry. EUR,

European; AFR, African; EAS, East Asian; SAS, South Asian; AMR, American. The comparison was restricted to sites that are shared between the two panels.

(B–E) are based on autosomes.
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panels (Figure 5E). Imputation of INDELs with the high-coverage

panel displayed superior accuracy across all five super-popula-

tion ancestry groups across the entire AF spectrum (Figure 5E).

SNV and INDEL GT discordance rates based on imputed dos-

ages converted to hard-called GTs showed improved imputation

performance with the high-coverage versus phase 3 panel

(Figure S6M).

When evaluating SNV/INDEL imputation performance across

all samples within a super-population ancestry group, we

observe that accuracy can vary greatly depending on the spe-

cific ancestry of the sample (Figures S6H–S6L). Given that the

1kGP focused on ascertaining demographically large popula-

tions (Sudmant et al., 2015; The 1000 Genomes Project Con-

sortium, 2015), diversity of the SGDP samples spanning 60 (as

compared to 26 in 1kGP) different populations (Mallick et al.,

2016) is not fully represented by the haplotypes available on

the 1kGP panel, affecting imputation accuracy of certain popula-

tions, as seen in southern AFR samples (Figure S6L).

We evaluated counts of small variants imputed using both

panels at two info score (metric of imputation confidence from

the imputation software) thresholds across three MAF bins:

very rare (MAF < 0.5%), rare (0.5 % MAF < 5%), and common

(MAF R 5%). We observed that more variants were imputed at

both info >0.4 and info >0.8 thresholds across all three MAF

bins when using the high-coverage compared to the phase 3

panel (Figure S6N), with counts in the common MAF bin being

most comparable, especially in case of SNVs. INDEL imputation

with the high-coverage panel yielded higher counts across all

MAF categories, even in the common bin in which we imputed

�1.7-fold more INDELs compared to phase 3.

Figure 6. SV phasing and imputation performance

(A) Cohort-level counts of filtered SVs included in the integrated haplotype-resolved panel, stratified by the SV type (chr1–22 and X).

(B) Distribution of sample-level flip rate of phased HET DELs and INSs that were evaluated for phasing accuracy against the HGSVC truth set.

(C) Distribution of sample-level parental flip rate of phased HET SVs, stratified by SV type.

(D) SV imputation performance of the high-coverage panel in the SGDP study dataset, stratified by SV type. Mean r2, squared Pearson correlation coefficient

between imputed allelic dosages and dosages from the SV ‘‘truth set,’’ averaged over the 110 SGDP samples (except for the AF = 0.5% bin: 100 and 92 samples

for INSs and DELs, respectively).

(E) Counts of SVs imputed in the SGDP study dataset using the high-coverage reference panel at info >0.4 (left) and info >0.8 (right) across three MAF bins (MAF

based on 110 imputed SGDP samples).

(B–E) are based on autosomes. SV types: DEL, deletions; INS, insertions; DUP, duplications; INV, inversions.
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We separately evaluated imputation of the four SV types

included in the integrated high-coverage panel (DELs, INSs,

DUPs, INVs) into the SGDP samples. Similarly to what we

observed for small variants (Figure S6N), 32% (n = 32,827) of

SVs on the panel were imputed at info >0.4 (compared to

34% in case of SNVs/INDELs) and 24% (n = 24,454) of SVs

were imputed at info >0.8 (compared to 27% in case of

SNVs/INDELs) (Figure 6E). As expected, increasing the info

threshold from0.4 to0.8most substantially decreased thecounts

of very rare SVs. To evaluate the accuracy of imputed SVGTs,we

first created an SV ‘‘truth set’’ by genotyping the catalog of SVs

(DELs and INSs) from the HGSVC (Ebert et al., 2021) across the

SGDP samples (see STAR Methods). Assessment of SV imputa-

tion accuracy (mean r2) across all SGDP samples was limited to

only 10.3% (n = 3,253) and 8.4% (n = 4,320) of imputed INSs

andDELs (Figure S7C), respectively, due to the rather small over-

lap between SVs discovered in the long-read-based HGSVC call

set across 34 1kGP samples and those discovered in the short-

read-based high-coverage 1kGP call set (Figure S7D). DELs

and INSs showed comparable imputation accuracy to small var-

iants at MAF > 5% (with INSs being comparable even at

MAF > 2%) but lower accuracy at rarer MAF bins when evaluated

against the HGSVC truth set (Figure 6D). While limited to a small

evaluation set, these findings suggest that the high-coverage

1kGP SVs are accurately imputed, particularly at higher AFs,

and that SV imputation performance follows the observed trend

in the imputation of SNVs/INDELs at more common AF bins.

DISCUSSION

We present results from high-coverage WGS of the expanded

1kGP cohort, consisting of 2,504 original samples as well as

additional 698 related samples, completing 602 trios in the

cohort. We called 111,048,944 SNVs, 14,435,076 INDELs, and

173,366 SVs across the 3,202 samples using state-of-the-art

methods. When compared to the low-coverage phase 3 1kGP

dataset from 2015, the variant counts in the high-coverage call

set reflect an estimated average increase of 190,885 SNVs

(1.05-fold), 268,182 INDELs (1.47-fold), and 5,835 (2.81-fold)

SVs per genome and a cohort-level increase of over 18.6 million

SNVs (1.24-fold), 9.8 million INDELs (4.05-fold), and �100 thou-

sand SVs (2.47-fold) across the original 2,504 unrelated sam-

ples. Our goal was not to dissect all the factors that likely influ-

enced variant discovery in the high-coverage and phase 3

datasets but instead to provide an extensive assessment of

gains that the technological advancements collectively brought

to the high-coverage resource relative to phase 3.

As expected, given that the phase 3 dataset identified nearly

all commonSNVs (MAF > 1%) in the population, the vastmajority

of the SNVs identified here but not in phase 3 fall in the rare MAF

spectrum (%1%). Additionally, most new SNVs discovered here

are non-coding as phase 3 included deeply sequenced WES in

addition to low-coverage WGS data. Consistent with the fact

that high-coverage sequencing and current variant callers bring

greater improvements to INDEL as compared to SNV calling, we

observed gains in INDEL counts across the entire MAF spectrum

with gains in the rare end of the spectrum being the most

pronounced.

The SVs presented here provide a significant increase in dis-

covery power over the phase 3 call set. These data also have

the benefit of extensive algorithm and variant assessment

through a family-based design that permits evaluation of inher-

itance as well as scrutiny against orthogonal technologies. The

de novo SV rate of 3.5% provided here is a reasonable, if imper-

fect, proxy for FDR. This proxy includes false positive SVs in the

children, true de novo variants that are accurately predicted SVs

(estimated to be �0.2%–0.5% from prior short-read WGS data-

sets [Collins et al., 2020; Turner et al., 2017; Werling et al.,

2018]) and either false negative SVs in the parents or inaccurate

breakpoint estimates in either the parent or child. It also in-

cludes somatic variants that arise in the cell lines over time,

which we expect to be low by comparison to the above but

nonetheless will contribute a fraction of variants to the de

novo estimates. Notably, multiple properties of this SV call

set, including SV counts, size and frequency distributions, and

inheritance rates, are comparable to a previous study that uti-

lized these methods on WGS from blood-derived samples and

applied extensive molecular validation of de novo SV predic-

tions (Werling et al., 2018). We performed manual inspection

of all large CNVs (>50 kb, n = 4,180) and benchmarked large in-

versions against strand sequencing (Strand-seq) (>5 kb, n =

250) to assess orthogonal support. Notably, an important

advance from the SV discovery in this dataset is the updated

prediction of functional alterations from SVs in each human

genome, which greatly exceeds estimates in the phase 3 call

set (162 versus 32 genes altered per genome) and approaches

predictions from long-read WGS datasets (�189 genes altered;

Ebert et al., 2021). The data presented here, coupled with the

independent long-read WGS, Strand-seq, and optical mapping

datasets on 34 of these samples from the HGSVC (Ebert et al.,

2021), provide a valuable open access SV resource for methods

development and genomic studies.

In addition to the SNV/INDEL and SV call sets, we also gener-

ated an improved haplotype-resolved reference imputation

panel that can be used to impute high-quality SNVs, INDELs,

and SVs into study datasets. Inclusion of 602 trios in the panel

led to up to an order of magnitude greater accuracy of SNV/

INDEL phasing relative to the phase 3 panel due to both an in-

crease in long-range haplotype sharing between related sam-

ples and pedigree-based correction applied to child samples af-

ter statistical phasing to ensure consistency of phased

haplotypes with the pedigree structure.

Most existing reference imputation panels, such as the HRC

(The Haplotype Reference Consortium, 2016) and TOPMed (Ta-

liun et al., 2021), do not yet include SVs due to challenges that SV

calling and phasing present. Also, evaluation of SV phasing ac-

curacy has been difficult so far due to unavailability of well-es-

tablished haplotype-resolved SV truth sets, similar to Platinum

Genomes (Eberle et al., 2017) or the GIAB (Wagner et al., 2022;

Zook et al., 2019), that exist for SNVs/INDELs. The recently pub-

lished SV call set from the HGSVC (Ebert et al., 2021) allowed us

to circumvent the latter issue and provided amuch needed refer-

ence for evaluation of SV phasing accuracy. Additionally, with

the inclusion of trios in the expanded cohort, it is now possible

to use inheritance patterns as an orthogonal way of validating

phasing accuracy. Thanks to these developments, we were
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able to phase four SV types (DELs, INSs, DUPs, INVs) on top of

the SNV/INDEL haplotype scaffold with high accuracy.

The lack of high-confidence genotyped SV call sets presented

a challenge when attempting to evaluate the SV imputation per-

formance of the high-coverage 1kGP panel. The fact that the

HGSVC SV call set (Ebert et al., 2021) is both haplotype and

sequence resolved (facilitated by long-read technology) enabled

its use as a catalog of structural variation in the population for

building an SV ‘‘truth set’’ in an independent SGDP study data-

set. Evaluation of the SV imputation performance with such a

truth set suggested high accuracy of imputed GTs, which was

comparable to small variants, especially at MAF >5%.

For more than a decade, the 1kGP collection has been a key

resource in the field of genomics. These datasets have produced

scientific insights into population genetics and genome biology,

as well as provided an openly sharable resource that has been

widely used in methods development and testing as well as for

technical validation. By generating high-coverage sequencing

data for the complete phase 3 set of individuals and completing

602 trios with additional samples, we have updated this critical

resourcewith benchmarks and standards for the next generation

of large-scale international WGS initiatives. The higher coverage

plus advances in sequencing and analytic methods greatly

expanded the discovery of all rare variants and of INDELs and

SVs across the frequency spectrum. The addition of many rare

non-coding variants absent from the phase 3 set should enable

different types of population genetic studies on the cohort. Our

phased panel leveraging pedigree correction provides improve-

ments in power across the board but particularly in the imputa-

tion of many more common INDELs and SVs, making these

accessible through imputation for association studies. Impor-

tantly, this panel is fully public and can be freely downloaded

and used in combination with other panels and for use with

any target dataset. Although many larger sequencing projects

have now been conducted, the open nature of the 1kGP samples

will continue to make this a foundational resource for the com-

munity in the years to come.

Limitations of the study
A direct comparison of the high-coverage 1kGP SNV/INDEL

dataset to the phase 3 set was impossible due to differences

in genomic reference builds that were used for variant calling

during generation of the two call sets. To enable a locus-level

comparison, we lifted-over the phase 3 dataset from the

GRCh37 to the GRCh38 reference, which was successful for

99.9% of phase 3 SNVs/INDELs (the phase 3 SV call set is

available on GRCh38). The assessment of FDR across SNVs/

INDELs that fall within the difficult regions was limited as

compared to the easy-to-sequence regions. This is because

only 53.6% of difficult regions fall within the GIAB v3.3.2 high

confidence regions of the genome compared to 91.1% of

easy regions.

Consistent with previous analyses on a subset of these data

(Zhao et al., 2021), SV discovery in short-read WGS displays

limited sensitivity compared to assembly-based long-read

methods in highly repetitive genomic regions, and this impact

is most significant for insertions and SVs localized to simple

repeats and segmental duplications (Ebert et al., 2021).

Furthermore, we have not specifically included simple tandem

repeats (STRs) in this SV call set, a subset of which can

be captured in short-read sequencing though accurate

genome-wide discovery that remains a considerable challenge

(Dashnow et al., 2018; Dolzhenko et al., 2019; Mousavi

et al., 2019).

The relatively small overlap of SVs between the 1kGP and the

HGSVC (Ebert et al., 2021) call sets, due to limited ascertainment

of SVs in short-read 1kGP data and inability to call low frequency

variants across a small number of samples in the HGSVC long-

read data, limited the number of SVs we could confidently eval-

uate from the high-coverage imputation panel. The SV truth set

we built by genotyping the SGDP samples might be biased to-

ward sites that are easier to GT and potentially easier to impute

as it is composed of high-confidence GTs that were concordant

between two SV genotypers.

In terms of the resource itself, the biggest limitation to

consider is its LCL cell-line origin. We estimate that �5% of sin-

gletons in the high-coverage call set are truly present in the cell

lines but may not represent true population variants in the orig-

inal donors, which is important to consider when using the call

set, e.g., as germline point of reference for cancer studies or

as a resource for studying de novo mutations across the trios

in the cohort.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

TruSeq DNA PCR-Free High Throughput

Library Prep Kit

Illumina Cat#20015963

KAPA Library Quantification Kits -

Complete kit (Universal)

Roche Cat#07960140001

HS NGS Fragment Kit Agilent Cat#DNF-474-0500

Quant-iT PicoGreen dsDNA Assay Kit Life Technologies Cat#P7589

IDT for Illumina – TruSeq DNA UD Indexes

(Illumina, 20,022,370)

Illumina Cat#20022370

SPRIselect Beads Beckman Coulter Cat#B23318

PhiX v3 Control Illumina Cat#FC-110-3001

NovaSeq 6000 S4 Reagent Kit (300 cycles) Illumina Cat#20012866

NovaSeq Xp Kit (4-lane) Illumina Cat#20021663

Deposited data

raw sequence data FASTQ files This paper EMBL-EBI: PRJEB31736, EMBL-EBI: PRJEB36890

CRAM alignment files This paper EMBL-EBI: PRJEB31736, EMBL-EBI: PRJEB36890

CRAM alignment files This paper AnVIL: https://app.terra.bio/#workspaces/anvil-

datastorage/1000G-high-coverage-2019/

CRAM alignment files This paper NCBI: https://ftp-trace.ncbi.nlm.nih.gov/

1000genomes/ftp/1000G_2504_high_coverage/

CRAM alignment files This paper s3://1000genomes/1000G_2504_high_coverage/

GVCFs This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/20190425_NYGC_

GATK/raw_calls_updated/

SNV/INDEL VCFs This paper EMBL-EBI: PRJEB55077

SNV/INDEL VCFs This paper dbSNP: https://www.ncbi.nlm.nih.gov/SNP/snp_

viewTable.cgi?handle=1000G_HIGH_COVERAGE

(dbSNP: 1000G_HIGH_COVERAGE)

SNV/INDEL VCFs This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/20201028_3202_raw_

GT_with_annot/

SNV/INDEL VCFs (2,504-sample subset

generated for evaluation purposes)

This paper EMBL-EBI: PRJEB55077

SNV/INDEL VCFs (2,504-sample subset

generated for evaluation purposes)

This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/20190425_NYGC_GATK/

Phased SNV/INDEL/SV VCFs This paper EMBL-EBI: PRJEB55077

Phased SNV/INDEL/SV VCFs This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/20220422_3202_

phased_SNV_INDEL_SV/

SV VCF This paper EMBL-EBI: PRJEB55077

SV VCF This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/20210124.SV_

Illumina_Integration/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SV VCF This paper dbVar: nstd206

lifted-over GRCh38 phase 3 1kGP

SNV/INDEL VCFs

This paper EMBL-EBI: PRJEB55077

lifted-over GRCh38 phase 3 1kGP

SNV/INDEL VCFs

This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/phase3_liftover_nygc_dir/

Sample metadata file with pedigree

and sex information

This paper IGSR: http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/data_collections/1000G_2504_high_

coverage/working/1kGP.3202_samples.

pedigree_info.txt

Experimental models: Cell lines

genomic DNA from 3,202 samples from the

1000 Genomes Project

Coriell Institute for Medical Research Data S1

Software and algorithms

Absinthe github.com/nygenome/absinthe github.com/nygenome/absinthe

BCFtools v1.9, 1.12, and v1.15 Li (2011), Danecek et al. (2021) http://samtools.github.io/bcftools/bcftools.html

BWA-MEM v0.7.15 Li (2013) http://bio-bwa.sourceforge.net/

bedtools v2.26.0 Quinlan and Hall (2010) https://github.com/arq5x/bedtools2

CrossMap v0.5.3 Zhao et al. (2014) https://github.com/liguowang/CrossMap

Eagle v2.4.1 Loh et al. (2016) https://alkesgroup.broadinstitute.org/Eagle/

FastQC v0.11.3 https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

GATK v3.5 and v4.1 Van der Auwera and O’Connor (2020) https://gatk.broadinstitute.org/hc/en-us

GATK-SV Collins et al. (2020) https://github.com/talkowski-lab/svtk

hap.py v0.3.12 github.com/Illumina/hap.py github.com/Illumina/hap.py

IMPUTE v2.3.2 Howie et al. (2009) https://mathgen.stats.ox.ac.uk/impute/

impute_v2.html

KING v2.2.3 Manichaikul et al. (2010) https://www.kingrelatedness.com/

PanGenie v1.0.0 Ebler et al. (2022) https://github.com/eblerjana/pangenie

Paragraph v2.2b and v2.4a Chen et al. (2019) https://github.com/Illumina/paragraph

Picard v2.4.1 Van der Auwera and O’Connor (2020) https://broadinstitute.github.io/picard/index.html

Plink v1.90 and v2.0 Chang et al. (2015) https://www.cog-genomics.org/plink/1.9/

QCTOOL v2.0.2 https://www.well.ox.ac.uk/

�gav/qctool_v2

https://www.well.ox.ac.uk/�gav/qctool_v2

R v3.6.1 https://www.r-project.org/ https://www.r-project.org/

RTG Tools v3.8.2 Cleary et al. (2015) https://github.com/RealTimeGenomics/rtg-tools

Samtools v1.3.1 Li et al. (2009) http://www.htslib.org/

SHAPEIT v2.r904 Delaneau et al. (2011) https://mathgen.stats.ox.ac.uk/genetics_

software/shapeit/shapeit.html

SHAPEIT4 v4.2.2 Delaneau et al. (2019) https://odelaneau.github.io/shapeit4/

svtools Larson et al. (2019) https://github.com/hall-lab/svtools

Variant Effect Predictor (VEP) v104 McLaren et al. (2016) https://useast.ensembl.org/info/docs/tools/

vep/index.html

VCFtools v0.1.12 Danecek et al. (2011) https://vcftools.github.io/index.html

VerifyBamID Jun et al. (2012) https://genome.sph.umich.edu/wiki/VerifyBamID

WhatsHap v0.18 Martin et al. (2016) https://whatshap.readthedocs.io/en/latest/

LUMPY Layer et al. (2014) https://github.com/arq5x/lumpy-sv

Manta Chen et al. (2016) https://github.com/Illumina/manta

Wham Kronenberg et al. (2015) https://github.com/zeeev/wham

MELT Gardner et al. (2017) https://melt.igs.umaryland.edu/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Requests for further information and resources should be directed to andwill be fulfilled by the lead contact, Michael Zody (mczody@

nygenome.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data are shared via the International GenomeSample Resource (IGSR) (Fairley et al., 2020). Data can be accessed both through

awebsite specific to this collection of data (https://www.internationalgenome.org/data-portal/data-collection/30x-grch38) and

via displays integrating the data with other datasets generated both on the 1000 Genomes Project samples and additional

openly consented samples. Within the IGSR data portal, files can be browsed by sample, sequencing technology, and popu-

lation. Direct links to the IGSR FTP locations sharing FASTQs, CRAMs, GVCFs, SNV/INDEL VCFs, SV VCF, haplotype-resolved

SNV/INDEL/SV VCFs, and a samplemetadata file listing pedigree and sex information for the 3,202 sequenced samples can be

found on the collection page. The data are also available at several other repositories including The European Bioinformatics

Institute at the European Molecular Biology Laboratory (EMBL-EBI), the SNP database (dbSNP), and the database of Genomic

Structural Variation (dbVar), where they can be browsed at the variant level, with accession numbers listed in the key resource

table. The GRCh38 lifted-over version of the phase 3 1kGP SNV/INDEL call set, generated as part of this paper to facilitate

comparative analysis, has been deposited at EMBL-EBI and IGSR FTP.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

1000 Genomes Project cohort
As part of this publication, we sequenced 3,202 lymphoblastoid cell line (LCL) samples from the 1kGP collection, including 1,598

males and 1,604 females. The 3,202 samples were drawn from 26 populations (listed in Table S1) across the following 5 continental

ancestry groups: African (AFR, n = 893), European (EUR, n = 633), East Asian (EAS, n = 601), South Asian (SAS, n = 585), and Amer-

ican (AMR, n = 490) (Figures 1A and 1Table S1). Among the 3,202 samples, there are 602 father-mother-child trios (including 2 trios

that are part of a multi-generational family, and 10 trios that were split from 5 quads for the purpose of pedigree-based correction

applied after haplotype phasing) and 6 parent-child duos. All reported relationships were confirmed in IBD analysis using KING

v2.2.3 (Manichaikul et al., 2010). All cell lines sequenced for this paper were obtained from Coriell Institute for Medical Research

(NHGRI and NIGMS cell repositories). The following cell lines/DNA samples were obtained from the NIGMS Human Genetic Cell Re-

pository at the Coriell Institute for Medical Research: [NA06984, NA06985, NA06986, NA06989, NA06991, NA06993, NA06994,

NA06995, NA06997, NA07000, NA07014, NA07019, NA07022, NA07029, NA07031, NA07034, NA07037, NA07045, NA07048,

NA07051, NA07055, NA07056, NA07340, NA07345, NA07346, NA07347, NA07348, NA07349, NA07357, NA07435, NA10830,

NA10831, NA10835, NA10836, NA10837, NA10838, NA10839, NA10840, NA10842, NA10843, NA10845, NA10846, NA10847,

NA10850, NA10851, NA10852, NA10853, NA10854, NA10855, NA10856, NA10857, NA10859, NA10860, NA10861, NA10863,

NA10864, NA10865, NA11829, NA11830, NA11831, NA11832, NA11839, NA11840, NA11843, NA11881, NA11882, NA11891,

NA11892, NA11893, NA11894, NA11917, NA11918, NA11919, NA11920, NA11930, NA11931, NA11932, NA11933, NA11992,

NA11993, NA11994, NA11995, NA12003, NA12004, NA12005, NA12006, NA12043, NA12044, NA12045, NA12046, NA12056,

NA12057, NA12058, NA12144, NA12145, NA12146, NA12154, NA12155, NA12156, NA12234, NA12239, NA12248, NA12249,

NA12264, NA12272, NA12273, NA12274, NA12275, NA12282, NA12283, NA12286, NA12287, NA12329, NA12335, NA12336,

NA12340, NA12341, NA12342, NA12343, NA12344, NA12347, NA12348, NA12375, NA12376, NA12383, NA12386, NA12399,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

cn.MOPS Klambauer et al. (2012) https://bioconductor.org/packages/release/

bioc/html/cn.mops.html

CNVNator Abyzov et al. (2011) https://github.com/abyzovlab/CNVnator

GATK-gCNV https://github.com/

broadinstitute/gatk

https://github.com/broadinstitute/gatk

VaPoR Zhao et al. (2017) https://github.com/mills-lab/vapor
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NA12400, NA12413, NA12414, NA12485, NA12489, NA12546, NA12707, NA12708, NA12716, NA12717, NA12718, NA12739,

NA12740, NA12748, NA12749, NA12750, NA12751, NA12752, NA12753, NA12760, NA12761, NA12762, NA12763, NA12766,

NA12767, NA12775, NA12776, NA12777, NA12778, NA12801, NA12802, NA12812, NA12813, NA12814, NA12815, NA12817,

NA12818, NA12827, NA12828, NA12829, NA12830, NA12832, NA12842, NA12843, NA12864, NA12865, NA12872, NA12873,

NA12874, NA12875, NA12877, NA12878, NA12889, NA12890, NA12891, NA12892].

METHOD DETAILS

WGS library preparation and sequencing
DNA extracted from LCLs was ordered from the Coriell Institute for Medical Research for each of the 3,202 1kGP samples. Whole-

genome sequencing (WGS) libraries were prepared using the TruSeqDNA PCR-Free High Throughput Library Prep Kit in accordance

with the manufacturer’s instructions. Briefly, 1ug of DNAwas sheared using a Covaris LE220 sonicator (adaptive focused acoustics).

DNA fragments underwent bead-based size selection (SPRIselect, Beckman Coulter) and were subsequently end-repaired, adeny-

lated, and ligated to Illumina sequencing adapters (IDT for Illumina – TruSeqDNAUD Indexes (Illumina)). Final libraries were evaluated

using fluorescent-based assays including measuring concentration with Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies),

qPCR with the Universal KAPA Library Quantification Kit and Fragment Analyzer (HS NGS Fragment Kit, Agilent) or BioAnalyzer

(Agilent 2100). Libraries were sequenced on an Illumina NovaSeq 6000 system using 2 x 150bp cycles (NovaSeq 6000 S4 Reagent

kit; NovaSeq Xp Kit; PhiX v3 Control (Illumina)).

Quality control of sequence data
We ran several quality control (QC) tools to look for quality issues, sample swaps, and contamination issues. We ran FastQC (An-

drews, 2019) v0.11.3 on the raw sequence data to assess yield and raw base qualities. We ran Picard (Broad Institute, 2019)

v2.4.1 CollectMultipleMetrics and CollectWGSMetrics on the aligned BAM to collect alignment and insert size metrics. Picard

CollectGcBiasMetrics was run to compute normalized coverage across multiple GC bins. Read duplication metrics were quantified

by running Picard MarkDuplicates on the BAM.

All the samples had at least 27X mean coverage across the genome (average per sample coverage: 34X, range: 27X-71X) and at

least 91% of the bases at base quality score 30 or higher. The median insert size per sample was 433 bp. The mean duplicate rate

across the samples was 9%but there were 5 samples (HG00619, HG00982, HG02151, HG02573 and HG04039) that had a duplicate

rate greater than 20%. Higher duplication rate is a known issue with Illumina’s patterned flow cell that uses exclusion amplification

clustering method to increase data output, but this chemistry is very sensitive to library loading concentrations. Higher loading con-

centrations can lead to low throughput because of polyclonal clusters being formed in the nanowells of the patterned flow cell,

whereas low concentration can lead to pad hopping which increases the duplication rate. VerifyBamID (Jun et al., 2012) was run

in chip-free mode to estimate the likelihood of sample contamination. None of the samples exceeded the 2% cut-off that we use

for contamination (mean contamination across all the samples was 0.018% with a maximum of 1.36%).

To make sure there were no sample mix-ups we ran genotype concordance against genotyping chip data. For that, we used the

chip data that was released with phase 3. We did not find chip data for 15 samples in phase 3 so for those we ran Infinium

CoreExome-24 v1.3 chip and performed genotype concordance. All the samples had >97% genotype concordance.

SNV/INDEL discovery using GATK
Read alignment to the human reference genome GRCh38 using BWA-MEM v0.7.15 (Li, 2013), duplicate marking using Picard

MarkDuplicates v2.4.1 (Broad Institute, 2019), and Base Quality Score Recalibration (BQSR) using GATK (McKenna et al., 2010)

v3.5 BaseRecalibrator were performed according to the functional equivalence pipeline standard developed for the Centers for Com-

mon Disease Genomics project (Regier et al., 2018). SAM to BAM and BAM to CRAM file conversions were performed using Sam-

tools v1.3.1 (Li et al., 2009). SNV and INDEL calling was performed usingGATK (McKenna et al., 2010; Van der Auwera andO’Connor,

2020) v3.5, as described below. For variant discovery we used HaplotypeCaller in GVCF mode (Poplin et al., 2017) with sex-depen-

dent ploidy settings on chromosome X and Y. Specifically, variant discovery on chromosome X was performed using diploid settings

in females, diploid settings in pseudoautosomal (PAR) regions in males, and haploid settings in non-PAR regions in males. Variant

discovery on chromosome Y was performed with haploid settings in males and was skipped entirely in females. We combined

GVCFs in batches of �200 samples using GATK CombineGVCFs and jointly genotyped all 3,202 samples with GenotypeGVCFs.

We then used VariantRecalibrator to train the Variant Quality Score Recalibration (VQSR) model using ‘‘maxGaussians 8’’ and

‘‘maxGaussians 4’’ parameters for SNVs and INDELs, respectively. We applied the VQSR model to the joint call set using

ApplyRecalibration with truth sensitivity levels of 99.8% for SNVs and 99.0% for INDELs.

Evaluation of small variant calls
BCFtools v1.9 (Li, 2011) was used to split multiallelic variants intomultiple rows and left-normalize INDELs before counting variants at

the cohort level. Per sample variant metrics were collected using the GATK VariantEval tool (Van der Auwera and O’Connor, 2020).

Mixed and complex variants and multi-nucleotide polymorphisms (MNPs) were not included in the breakdown of sample-level small

variants. As part of QC, we estimated SNV density using the SNVDensity tool from VCFtools v0.1.12 (Danecek et al., 2011) in bins of
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1000 bp across the callable genome, defined here as the GRCh38 reference excluding gaps (‘‘N’’s in the GRCh38 reference

sequence). The mean SNV density across the callable genome is 39.46 per 1 kb of sequence (Table S2). Chromosome 19 (43.21

SNVs per 1 kb) has the highest density overall across all chromosomes, whereas Chromosome X (30.16 SNVs per 1 kb) displays

the lowest density across all chromosomes, followed by chromosome 1 (36.46 SNVs per 1 kb) among the autosomes which is in

agreement with previous reports based on WGS data (Telenti et al., 2016).

We evaluated small variant calls separately in easy- and difficult-to-sequence regions of the genome, using stratification intervals

defined by the GIAB (Krusche et al., 2019) and obtained from https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-

stratifications/v2.0/GRCh38/union/.

Difficult regions include (i) tandem repeats and homopolymers longer than 6 bp (�40% of difficult regions), (ii) segmental duplica-

tions (�26%of difficult regions), (iii) low (<25%) and high (>65%) GC content regions and "bad promoters" (�39%of difficult regions),

and (iv) regions with lowmappability (�39%of difficult regions) with some overlap between categories (https://ftp-trace.ncbi.nlm.nih.

gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/v2.0-GRCh38-Union-README.txt). Any region in the GRCh38

reference that did not fall into a difficult region was classified as easy. INDELs spanning any of the easy/difficult interval borders

were classified as difficult. The easy and difficult regions make up 80 and 20% of the reference genome, respectively.

FDR was estimated both genome-wide and in easy vs. difficult regions of the genome by comparing variant calls in sample

NA12878 from the 3,202-sample high-coverage call set to the GIAB NA12878 SNV/INDEL truth set v3.3.2 (Zook et al., 2019). The

VCF files were compared using hap.py (v0.3.12; https://github.com/Illumina/hap.py) with the rtg-tools (v3.8.2) (Cleary et al., 2015)

vcfeval comparison engine. All FDR calculations were restricted to the high confidence regions of the genome (consisting of

86.2% easy- and 13.8% difficult-to-sequence regions), as defined by the GIAB.

In addition to estimating FDR across all small variants and small variants in easy vs. difficult regions of the genome, we also esti-

mated it among just the singletons. Due to the mixed nature of the expanded 1kGP cohort, which now includes both related and un-

related samples, the number of singletons (sites with AC = 1 across the 3,202 samples) per sample varies depending on the sample’s

relatedness status, with children having the fewest singletons, followed by parents, and unrelated samples in the cohort (Figure S1E).

Weobserved anearly bimodal distribution of per-genomesingleton counts amongchildrenwithmodesat 444 and1,108 and themean

of 1,340, and a unimodal distribution among parents aswell as unrelated sampleswithmeans at 12,365 and 23,197, respectively (Fig-

ure S1E). These differences are due to ‘‘private’’ variants (i.e. inherited variants that are private to a single family) which are not being

counted as singletons in children, while 50 and 100% of them are being counted as singletons in each of the parents and in unrelated

samples, respectively. In the high-coverage call set, each child in a trio carries on average 19,795 inherited autosomal heterozygous

variants that are shared only with one or both parents across all samples in the cohort. These variants can be further broken down into

siteswith AC=2 (mean = 19,658), AC=3 (mean = 135), andAC=4 (mean= 1.75) within a trio. Themean number of variants private to a

family per child in a trio closely matches the difference between themean per-genome singleton count in child vs. unrelated samples,

in agreementwith theexpectation (FigureS1E). Approximately half of these�20,000sitesare sharedbetween thechild and themother

and theother half between thechild and the father, hence themeansingleton count inparents is halfway inbetween themeansingleton

count in child and unrelated samples. Since NA12878 is a child in the expanded 1kGP cohort, we jointly assessed both its de novo

variants (n = 2,404) as well as inherited heterozygous variants that are private to the NA12878 trio (n = 15,131) to estimate FDR among

singletons. To ensure that this approach for FDRestimation is not biaseddue to inclusion ofNA12878’s parents in joint genotyping,we

also computed FDRamong singletons in NA12878 froman independent jointly genotyped high-coverage call set consisting of just the

original 2,504 1kGP unrelated samples. Both of the FDR singleton analyses were restricted to the high confidence regions of the

genome, as defined by either the GIAB v3.3.2 (Zook et al., 2019) or GIAB v4.2.1 (Wagner et al., 2022) truth sets.

Counts of assessed singletons in both FDR analyses

Functional consequence of small variants
We annotated small variant calls with predicted functional consequence using the Ensembl Variant Effect Predictor (VEP) v104 tool

(McLaren et al., 2016). For each site, we chose one functional consequence per allele-gene combination (using ‘‘–pick_allele_gene’’

parameter) with default ordering of selection criteria. To avoid bias coming from families and to facilitate comparison to the phase 3

call set, cohort- and sample-level counts per predicted functional categories were reported based on the 2,504-sample jointly

genotyped high-coverage call set which includes unrelated samples only (see Methods subsection below). Only variants that

passed VQSR, had GT missingness rate of <5%, and were in Hardy-Weinberg Equilibrium (HWE exact test p value > 1e-10 in at least

one of the five super-populations) were considered in summary counts. No other filtering criteria were applied unless specifically noted.

Source of the evaluated

NA12878 variant calls Total count

# Evaluated sites w/in the GIAB

v3.3.2 high confidence regions

# Evaluated sites w/in the

GIAB v4.2.1 high confidence regions

High-coverage

3,202-sample joint GT-ing

2,404 DNMs +15,131

private variants

1,348 DNMs +12,737 private

variants

967 DNMs +

13,696 private variants

High-coverage

2,504-sample joint GT-ing

16,837 singletons 13,876 singletons 14,354 singletons
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Comparison of SNV/INDELs to the phase 3 set
To enable comparison of the high-coverage against the phase 3 call set, we lifted-over the SNV/INDEL calls in the phase 3

call set from the GRCh37 to GRCh38 reference build using CrossMap v0.5.3 (Zhao et al., 2014). As input to the lift-over, we

used the phase 3 VCFs available on the 1000 Genomes FTP, http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

Prior to the lift-over, we split multiallelic sites into separate rows. A small fraction of phase 3 loci (0.1%) failed the lift-over

step due to the following reasons: 1) no hit found (unmapped GRCh37 variants); 2) loci mapping to multiple locations in the

GRCh38 (multiple hits); 3) the reference allele matches the alternate allele after the lift-over (REF = ALT allele in the

GRCh38). Additionally, we excluded variants that were lifted-over to a chromosome that was different from the original chro-

mosome in GRCh37 (chromosome mismatch) or if the reference allele contained non-canonical nucleotide bases (non-canon-

ical REF). Using this approach we were able to successfully lift-over 99.9% of phase 3 small variant loci (see table below). The

resulting GRCh38 phase 3 call set that was used for the comparison was restricted to autosomes and contained 78,324,761

SNVs and 3,244,241 INDELs.

Table summarizing lift-over failures in the small variant phase 3 call set, consisting of 81,646,103 SNV/INDELs total

We restricted the comparison of the high-coverage vs. phase 3 calls to the 2,504 samples in common to the two cohorts.

For that purpose, we generated an independent jointly genotyped high-coverage call set, including only the 2,504

original samples (deposited in EMBL-EBI and IGSR FTP, see key resources table). Difference in FDR estimation between the

2,504- vs. 3,202-sample high-coverage call set (0.1% vs. 0.3% for SNVs, respectively) is due to between-run variability caused

by the non-deterministic nature of the VQSR step of the GATK SNV/INDEL calling pipeline (number of false positive SNVs across

VQSR PASS sites: 4,098 vs. 9,227; number of false positive SNVs across all called sites: 22,807 vs. 22,994, in the 2,504- vs. 3,202-

sample joint genotyping, respectively). The comparison of high-coverage vs. phase 3 small variant call set was restricted to au-

tosomes only. AF correlation across SNV and INDEL sites that are shared between the high-coverage and the phase 3 call set was

calculated using Pearson correlation coefficient obtained using the cor() function in R.

To compare the counts of small variants per functional consequence category between the high-coverage and phase 3 call set, we

annotated the GRCh38 lifted-over version of the phase 3 call set with the Ensembl VEP (the same way as described for the high-

coverage call set above), and computed ratios of cohort- and sample-level counts in the high-coverage call set vs. phase 3 call

set (filtered using the same criteria as described for the high-coverage call set above). To assess FDR across SNVs and INDELs

in each functional category, we compared predicted functional SNVs and INDELs in the high-coverage and phase 3 call sets to

the GIAB NA12878 truth set v3.3.2 (Zook et al., 2019). The FDR calculation was restricted to the high confidence regions of the

genome, as defined by the GIAB.

SV discovery using GATK-SV
GATK-SV involved an ensemble SV discovery and refinement pipeline for WGS data. The technical details of the method were pre-

viously described in Collins et al. (Collins et al., 2020) for application to the genome aggregation database (gnomAD) for SV discovery,

and further described in analyses from the HGSVC (Ebert et al., 2021). In this study, the samemethods were applied to all 3,202 sam-

ples for SV discovery. In brief, SVs discovered by Manta (Chen et al., 2016), Wham (Kronenberg et al., 2015), MELT (Gardner et al.,

2017), cn.MOPS (Klambauer et al., 2012), and GATK-gCNV (https://github.com/broadinstitute/gatk) were integrated, genotyped

across all samples, resolved for complex SVs, and annotated for variant class and functional impact. The FDR was previously as-

sessed from analyses in quartet families, which yielded a 97% molecular validation rate for de novo SV predictions (Werling et al.,

2018), as well as a 94% validation rate compared to long-read sequencing (Collins et al., 2020).

SV discovery using svtools
The svtools (Larson et al., 2019) method was previously described in (Abel et al., 2020) and applied for SV discovery across 17,795

genomes from the Centers for Common Disease Genomics (CCDG) program (Abel et al., 2020). The workflow combines per-sample

variant discovery with lumpy (Layer et al., 2014) andmanta (Chen et al., 2016) with resolution-aware cross-samplemerging. The set of

merged variants is then genotyped with svtyper (Chiang et al., 2015), followed by copy-number annotation with CNVnator (Abyzov

Failure reason Count

REF = ALT allele in the GRCh38 27,889

Unmapped GRCh37 variants 15,856

Multiple hits 420

Chromosome mismatch 32,919

Non-canonical REF 17

Total lift-over failures 77,101 (0.1%)
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et al., 2011) and reclassification of variants based on concordance of read-depth with breakpoint orientation. All parameter settings

and versions are as implemented in the wdl-based workflow (https://github.com/hall-lab/sv-pipeline).

Large insertion discovery using Absinthe
On a per-sample basis, insertions with a minimum length of 100bp were discovered through de novo assembly of unmapped and

discordant read pairs using Absinthe (Corvelo et al., 2021), and then genotyped using Paragraph (Chen et al., 2019), respecting

sex-specific ploidies. Insertion calls from all 3,202 samples that were positively genotyped with a PASS filter flag were then clustered

by genomic location and aligned using MAFFT (Katoh and Standley, 2013). For each locus, the most consensual allele was selected.

Variants from the resulting merged call set were then re-genotyped with Paragraph v2.2b (Chen et al., 2019) on all 3,202 individuals.

To produce the final call set only variants with 1) genotyping PASS filter rateR80%; 2) Mendelian Error Rate%5% for complete trio

calls; and 3) HWE Chi-square test p value > 1 3 10�6 in at least one of the 5 super-populations were kept.

Integration of SV call sets
We conducted a series of analyses to benchmark SVs from each of the three methods described above, including their FDR as indi-

cated by inheritance rates and support from orthogonal technologies, as well as their breakpoint precision estimated by the deviation

of their SV breakpoints from long-read assemblies in three genomes from analyses in the HGSVC (Chaisson et al., 2019). We also

compared the three call sets to decide on the optimal integration strategy to maximize sensitivity and minimize FDR in the final

ensemble call set (Figure S3, Table S5). Details of the comparison and integration strategies are described separately for insertions

and all other variant classes below.

Integration of insertions
We compared the de novo rate of variant calls from each pipeline for insertions, yielding results of 4.1% for GATK-SV, 25.8% for

svtools, and 2.4% for Absinthe. Given these results we restricted integration of insertions to GATK-SV and Absinthe. Each insertion

pair was considered concordant if the insertion points werewithin 100 bp. The FDR of each insertion call set was estimated from three

measurements: 1) de novo rate of SVs observed in the 602 trios; 2) proportion of SVs that were not validated by VaPoR (Zhao et al.,

2017), an algorithm that evaluates SV quality by directly comparing raw PacBio reads against the reference genome, and 3) propor-

tion of SVs that were not overlapped by SVs from PacBio assemblies in the same genome (Figure S3D). Precision of an insertion call

was estimated by the distance of the insertion point to the closest PacBio insertion and the difference between the length of inserted

sequence versus the length of the closest PacBio insertion calculated as an odds ratio. Both insertion call sets display less than 5%

FDR based on inheritance and PacBio support, and the call sets were thusmerged for all subsequent analyses (Figure S3D). Notably,

as Absinthe showed higher precision than GATK-SV, as measured from both the coordinates of the insertion point and the length of

inserted sequences (Figure S3H, I), we retained the Absinthe record for insertions that were shared by both methods.

Integration of SVs other than insertions
To consider a pair of SVs of the same variant class other than insertions as concordant, 50% reciprocal overlap was required for SVs

larger than 5 kb and 10% reciprocal overlap was required for variants under 5 kb. The FDR across variant calls was evaluated using

the same measurements as described above. For deletions, duplications, and inversions, we observed low FDR (<5%) among var-

iants that were shared by GATK-SV and svtools, but significantly higher FDR in the subsets that were uniquely discovered by either

algorithm (Figure S3E-G). To restrict the final call set to high-quality variants, a machine learning model (lightGBM (Ke et al., 2017))

was trained on each SV class. Three samples that were previously analyzed in the HGSVC studies (HG00514, HG00733, NA19240)

(Chaisson et al., 2019; Ebert et al., 2021) were selected to train the model. The truth data was defined by SVs that were uni-parentally

inherited, shared by GATK-SV and svtools, supported by VaPoR, and overlapped by PacBio call sets. The false training subset was

selected as SVs that appeared as de novo in offspring genomes, specifically discovered by either GATK-SV or svtools, not supported

by VaPoR, and not overlapped by PacBio call sets. Multiple features were included in the model, including the sequencing depth of

each SV, the depth of the 1 kb region around each SV, the count of aberrant pair ends (PE) within 150 bp of each SV, the count of split

reads (SR) within 100 bp of each breakpoints, the size, allele fraction and genomic location (split into short repeats, segmental du-

plications, all remaining repeat masked regions, and the remaining unique sequences) of each SV, and the fraction of offspring

harboring a de novo variant among trios in which the SV is observed. Each SV per genome was assigned a ‘boost score’ by the

lightGBMmodel, and SVs with >0.448 boost score were labeled as ‘PASS’ in the model (Figure S3M, S3N). This threshold was spe-

cifically selected to retain an estimated FDR <5%. Call set specific SVs that failed the lightGBM model in less than 48% of all exam-

ined samples were included in the final integrated call set (Figure S3N).

To design strategies to merge SVs shared by GATK-SV and svtools, the precision of SV calls was evaluated by examining the dis-

tance between breakpoint coordinates of SVs to matched calls in the PacBio call set. Comparable breakpoint precision was

observed for GATK-SV and svtools (Figure S3J-L). Thus, for SVs in each sample, the variant with the greatest number of split reads

for each breakpoint was selected, or if equivalent then the variant with the higher boost score was retained, then for each locus the SV

observed in the greatest number of samples was retained as final.
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Inclusion of SVs exclusively from GATK-SV
Other minority SVs types, including mCNVs, CPX and CTX, were specifically detected by GATK-SV, so we performed in-depth

manual inspection to ensure their quality before including them in the final integration call set. The depth profile across all 3,202 sam-

ples around each mCNV was plotted for manual review, and mCNVs that did not show clear stratification among samples were

labeled as ‘Manual_LQ’ in the filter column even if they showed clear deviation from the normal copy number of 2. For CTX, the aber-

rantly aligned read-pairs across each breakpoint were manually examined, and variants that lacked sufficient support were labeled

as ‘Manual_LQ’ in the final call set.

Comparison of SVs to the phase 3 call set
We compared the quality of SVs from the high-coverage WGS to the 1kGP phase 3 SV call set reported by Sudmant et al. (2015).

Phase 3 SVs aligned against GRCh38 were obtained from the 1kGP ftp site: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/

integrated_sv_map/supporting/GRCh38_positions/. It should be noted that 121 SVs failed lift-over and were removed from the

GRCh38 VCF, so a total of 68,697 SV sites were included in this comparison instead of 68,818 which was reported in Sudmant

et al. (2015). When comparing SVs, we required 10% or higher reciprocal overlap for CNVs and INVs under 5 kb to be considered

concordant, and 50% or higher reciprocal overlap for CNVs and INVs that are over 5 kb. We consider insertion pairs with insertion

point within 100bp as concordant.

Generation of SNV/INDEL haplotype scaffold
To filter the SNV/INDEL call set for haplotype phasing, we first annotated the call set with HWE exact test p values (Wigginton et al.,

2005), stratified by super-population, using the BCFtools v1.9 fill-tags plugin (Li, 2011). Next, we split multiallelic sites into separate

rows and left-normalized representation of INDELs using BCFtools norm tool (Li, 2011). To ensure distinct start position of all variant

loci, required for phasing, we shifted positions of multiallelic sites by a minimum possible number of bp using an in-house script. The

positions were shifted back to the original ones after phasing. The following criteria were used to filter SNVs and INDELs for phasing:

FILTER (column in the VCF) = PASS, GT missingness rate <5%, HWE exact test p value > 1e-10 in at least one super-population,

mendelian error rate (MER) % 5%, and minor allele count (MAC) R 2 (singletons were removed because they are not informative

for phasing). Filtering was done using BCFtools v1.9 (Li, 2011), except for MER filtration which was done using plink v1.90 (Chang

et al., 2015) after VCF to plink conversion (required to run phasing). For VCF to plink conversion we used plink v2.0 (Chang et al.,

2015). For haplotype phasing we used statistical phasing with pedigree-based correction, as implemented in SHAPEIT-duohmm

v2.r904 (Delaneau et al., 2011; O’Connell et al., 2014). Phasing with SHAPEIT-duohmm was performed per chromosome using

default settings, except for the window size parameter "-W’’ which was increased from 2Mb (default) to 5Mb to account for increased

amounts of shared IBD due to pedigrees being present in the dataset (as recommended in the SHAPEIT manual). SHAPEIT-duohmm

supports phasing of autosomal variants only. Therefore, to phase variants on chromosome X, we used statistical phasing as imple-

mented in the Eagle v2.4.1 software (Loh et al., 2016). Phasing with Eagle was performed using default parameters. No shifting of

positions for multiallelic sites was needed as Eagle supports phasing of variants with the same start site. SHAPEIT set a small fraction

of rare sites (116,417 SNVs and 57,655 INDELs; 0.24% small sites total) into sites with MAC <2 (monomorphic or singleton) during

phasing. We removed these sites from the haplotype scaffold by running another round of MAC R2 filtering using BCFtools v1.9

which resulted in 73,452,337 small variants (63,993,320 SNVs and 9,459,017 INDELs) in the final panel. Phasing accuracy evaluation

was performed using the WhatsHap tool v0.18 (Martin et al., 2016). As a measure of phasing accuracy we used switch error rate

(SER), which is defined as:

SER=
number of switch errors

number of assessed HET pairs

In all of the SNV/INDEL phasing evaluations, SER was computed across pairs of consecutive heterozygous sites either in sample

NA12878 (child in a trio in the expanded 3,202-sample cohort) relative to the Platinum Genome NA12878 gold standard truth set

(Eberle et al., 2017) or in a subset of 34 1kGP samples included in the HGSVC call set (Ebert et al., 2021) which we used as a phasing

truth set to expand evaluations of phasing accuracy to samples across all relationship types present in the cohort.

Phasing of SVs
SV calls were filtered using the same criteria as described above for SNVs and INDELs. The filtered SV VCF was integrated with the

phased SNV/INDEL haplotype scaffold VCF using BCFtools v1.12 concat with ‘‘–allow-overlaps’’ option (Danecek et al., 2021). Four

types of SVs (DEL, INS, DUP, and INV) were phased on top of the SNV/INDEL haplotype scaffold using SHAPEIT4 v4.2.2 (Delaneau

et al., 2019) with ‘‘–scaffold’’ and ‘‘–sequencing’’ options. mCNV, CTX, and CPX SV types were excluded from phasing due to being

either ultra rare (CTX) or multiallelic and challenging to represent as distinct events for phasing (mCNV, CPX). SHAPEIT4 produced

diploid output across the entire chromosome X in all samples. To ensure proper ploidy of male samples in the phased panel, we con-

verted ‘‘0|1’’, ‘‘1|0’’, and ‘‘1|1’’ GTs into a haploid representation (i.e. ‘‘1’’) in non-PAR regions of chromosome X inmales. The strategy

we adopted for evaluation of phasing accuracy of SVs is based on the following considerations: 1) since there are a lot more SNV/

INDELs than SVs in the genome, analysis of SER genome-wide across all variant types would be dominated by SNV/INDELs and

would not be informative for evaluating accuracy of SV phasing; 2) since distances between SVs along the genome are significantly
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greater than between SNV/INDELs, assessment of SER across pairs of consecutive HET SVs (analogous to how one does assess-

ment of SNV/INDEL phasing) is by definition biased to produce significantly higher SER for SVs than for SNVs. This is because the

greater the distance between two assessed HET sites the greater the chance of encountering a switch error. While the haplotype

scaffold exhibits low switch error rate (�0.09% across child haplotypes, �0.22% across parental haplotypes, and �0.89% across

unrelated sample haplotypes), there are�1,358 small variants between every pair of DELs and�2,257 small variants between every

pair of INS, on average (given 73,452,337 small variants, 54,074 DELs, and 32,548 INS in the panel). These numbers get even larger if

we restrict the analysis only to HETSVs present in the truth set. This suggests that even at the lowest average SER of 0.09%observed

across child haplotypes, we expect for there to be at least one switch error between any two DELs or INSs in the scaffold itself, sta-

tistically speaking. Considering the two factors outlined above, we assessed phasing accuracy of SVs using two orthogonal ap-

proaches. In the first one, we computed the flip rate only for pairs of SVs and their flanking SNVs on both sides. We defined flip

rate as the fraction of SVs that have flipped phase relative to the SV–flanking-SNV pairs from the HGSVC call set (Ebert et al.,

2021) which we used as the truth set. To avoid issues stemming from improper matching of SVs between the evaluation call set

and the truth set, we restricted the analysis to DELs with 100% reciprocal overlap with the truth set and INSs with exactly matching

breakpoint position. In the second approach, which is independent of the truth set, we computed the parental flip rate of phased SV

GTs across the 602 child samples in the cohort for each of the four SV types.We define parental flip rate as a fraction of phasedGTs in

a child sample that are inconsistent with inheritance patterns based on the comparison to parents, considering only sites with un-

ambiguous trio phase (excluding sites where child, father, and mother are all HET and sites with de novos).

Imputation performance evaluation
To evaluate the imputation performance of the high-coverage reference panel, we imputed 110 samples from 60 diverse populations,

listed in Table S7, from the Simons Genome Diversity Project (SGDP) (Mallick et al., 2016). To create a pseudo-GWAS input dataset

from the SGDPWGS data, we extracted genotypes at all sites included on the Illumina Infinium Omni2.5-8 v1.4 array from the jointly

genotyped SNV/INDEL SGDP call set generated using the GATK Best Practices workflow (Poplin et al., 2017). We performed quality

control (QC) of the dataset using standard pre-imputation filters, removing sites which did not meet the following criteria: genotype

call rate ofR95%, MAF >1%, and HWE (exact test p valueR 13 10�4). We used plink v1.9 (Chang et al., 2015) for all QC steps, and

analysis was restricted to the autosomes. We imputed the data passing quality control with the phase 3 and the high-coverage refer-

ence panels, separately. We used the lifted-over GRCh38 phase 3 call set (described above) for all phase 3 panel evaluations and

excluded anymonomorphic or singleton sites for consistency with the high-coverage panel, resulting in 47,016,818 SNV/INDEL sites

in the phase 3 imputation panel. The high-coverage panel contains 73,452,337 SNV/INDEL and 102,459 SV sites. Before imputation,

we used SHAPEIT v2.r904 (Delaneau et al., 2011) to perform a strand check and remove any problematic sites as determined by

aligning with the respective panel. Pre-phasing was also performed using SHAPEIT and the reference panel used for imputation

(either the phase 3 or the high-coverage panel). We then imputed the pre-phased data using IMPUTE v2.3.2 (Howie et al., 2009) soft-

ware with default parameters. Following imputation, we concatenated the imputed intervals to create an autosome-wide imputed

dataset. To assess how confidently we are imputing variants in the SGDP study set, we used metrics calculated on this dataset,

IMPUTE reported MAF and info values (which are estimated using expected AF in the imputed set), to determine counts of imputed

variants across various MAF thresholds and info cutoffs (Figures S6N, 6E). We evaluated imputation using all 110 samples with 22

samples from each of the five super-population ancestry groups (EUR, AFR, SAS, EAS, and AMR), the maximum number of samples

available across all populations, and compared imputed dosages with truth set dosages stratified by AF (calculated using allele

counts of unrelated samples from the high-coverage panel; Figures 5D-E, S6D-L, 6D). For the SNV/INDEL imputation accuracy,

we used the jointly genotypedWGSSGDP data, restricted to polymorphic sites, as the truth set. The SV truth set used for evaluations

is described below (see ‘‘Generation of the SV truth set’’). We converted the imputed posterior genotype probabilities produced by

IMPUTE v2.3.2 to dosages using QCTOOL v2.0.2 (https://www.well.ox.ac.uk/�gav/qctool_v2/), and the truth set genotypes to dos-

ages using BCFtools v1.9 (Li, 2011).We then computed the correlation between the imputed dosages and the truth set dosages for all

non-missing sites using a squared Pearson correlation coefficient (r2; squared output of the cor() function in R) across various AF bins.

To determine the GT discordance rate between the imputed SNVs/INDELs and the truth set, we performed hard-calling with a ge-

notype probability threshold of 0.90, setting all sites below this to missing using QCTOOL v2.0.2. Evaluation was restricted to sites

shared across both the high-coverage and phase 3 panels. GT discordance is reported as the ‘‘1 minus precision’’ (obtained using

RTG vcfeval (Cleary et al., 2015)) for each SGDP sample (n = 110). Precision was assessed using amean of 3,178,927 ± 260,507 sites

per sample from the phase 3 panel, and a mean of 3,231,687 ± 258,912 sites from the high-coverage panel. In the SNV/INDEL eval-

uation of the high-coverage panel stratified by variant type and genomic regions (Figure 5D), we assessed 45,124,785 SNVs and

2,185,638 INDELs in easy regions, and 13,352,708 SNVs and 3,806,176 INDELs in difficult regions. To compare SNV/INDEL impu-

tation accuracy between the phase 3 and the high-coverage panels, we restricted evaluations to sites that are shared between the

two panels, defined as sites with matching CHROM:POS:REF:ALT (40,088,294 SNVs and 2,249,447 INDELs; Figure 5E). SV impu-

tation accuracy (r2) was assessed using the same approach described above for SNVs/INDELs (SV truth set described below). All

imputed SVs were in HWE (exact test p value < 1e-10).
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Generation of the SV truth set
To develop an SV truth set for use in imputation evaluations, SV-DELs and SV-INSs from the HGSVC freeze 4 (Ebert et al., 2021) were

re-genotyped in the subset of 110 samples from the SGDP (Mallick et al., 2016) and sample NA24385 added as a control (sequenced

internally using Illumina NovaSeq 6000) using both PanGenie v1.0.0 (Ebler et al., 2022) and Paragraph v2.4a (Chen et al., 2019).

PanGenie was run with default parameters while Paragraph was run with one additional parameter (-M) set to 5 times the mean

coverage of the sample. Genotypes from PanGenie were filtered for ‘high-gq’ (genotype quality R200) sites and then integrated

with the PASS filter Paragraph genotypes into a single VCF with sites having discordant genotypes in the two callers converted to

missing. To evaluate the quality of the integrated genotypes we applied the same approach to NA24385 and orthogonally validated

the concordant genotypes (‘test set’) using the assembly based genotypes for NA24385 from the HGSVC (‘validation set’). The

resulting genotype concordance, defined as the number of correct genotypes divided by the total number of sites in the validation

(assembly) set, was 98.1% and the non-reference precision, defined as the number of correct heterozygous genotypes plus the num-

ber of correct homozygous alt genotypes divided by the total number of non-reference sites called in the test set, was 94.3%. The

per-sample VCFs were then merged with BCFtools v1.15 (Danecek et al., 2021) into a multi-sample VCF, tagged with allele

frequencies using bcftools and filtered to remove sites with missing alleles across all samples. The remaining SVs, having a valid ge-

notype in at least one individual, were matched to SV-DELs and SV-INSs from the 1kGP high-coverage imputation panel. This was

done to identify shared SV sites that could then be used to assess the accuracy of SV genotypes that were separately imputed using

the high-coverage panel into the SGDP samples, as described in the section above. To identify corresponding SV events, both

HGSVC and 1kGP VCF sites were converted to BED format by adding and subtracting a set window size (50 bp) from the SV start

position. BED files were then compared using bedtools v2.26.0 (Quinlan and Hall, 2010) intersect with the ‘‘wao’’ parameter resulting

in overlapping variants with a maximum distance of 100bp. Variant overlaps were then refined using a minimum length ratio of 80%

(length of shorter SV/length of longer SV) to avoid matches between short and long SVs. Any sites that were monomorphic or devi-

ating fromHWE (exact test p value < 1e-10) in themulti-sample VCFwere excluded, producing a final SV truth set of 7,573 sites (4,320

DELs and 3,253 INS).

External datasets
The following external datasets were used for evaluation purposes throughout the manuscript as described in the Results and STAR

Methods sections above

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of exact analyses, statistical tests, and tools can be found in the main text and Methods.

Dataset Reference Link

Sample information

(downloaded file format)

GIAB v3.3.2 (Zook et al., 2019) https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

release/NA12878_HG001/NISTv3.3.2/GRCh38/

Sample NA12878 (VCF and BED)

GIAB v4.2.1 (Wagner et al., 2022) https://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/release/NA12878_HG001/NISTv4.2.1/GRCh38/

Sample NA12878 (VCF and BED)

GIAB genome

stratification

region files v2.0

(Krusche et al., 2019) https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

release/genome-stratifications/v2.0/GRCh38/union/

NA (BED)

Platinum Genome (Eberle et al., 2017) https://www.illumina.com/platinumgenomes.html Sample NA12878 (VCF)

1kGP phase 3 (The 1000 Genomes

Project Consortium, 2015)

http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/release/20130502/

2,504 1kGP samples (VCF)

1kGP phase 3

GRCh38 SVs

(Sudmant et al., 2015) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

phase3/integrated_sv_map/supporting/

GRCh38_positions/

2,504 1kGP samples (VCF)

HGSVC (Ebert et al., 2021) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/HGSVC2/release/

34 1kGP samples and

sample NA24385 (VCF)

SGDP (Mallick et al., 2016) https://www.ebi.ac.uk/ena/browser/view/

PRJEB9586

110 SGDP samples listed in

Table S7 (FastQ)
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Supplemental figures
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Figure S1. Evaluation of small variant calls, related to Figure 1

Sample-level counts of SNVs (A) and INDELs (B), stratified by super-population. (C) Sample-level Het/Hom ratios across small variants, stratified by super-pop-

ulation. (D) Counts of true positive (TP), false positive (FP), and false negative (FN) SNV and INDEL calls in easy and difficult regions of the genome (GIAB v3.3.2

high confidence regions only). (E) Sample-level singleton (sites with AC = 1 across 3,202 samples) counts, stratified by relatedness status. (F) Counts of true

positive (TP) and false positive (FP) singletons in NA12878 relative to either the GIAB v3.3.2 or GIAB v4.2.1 truth set (GIAB high confidence regions only). Due

to the presence of NA12878’s parental samples in the expanded cohort, the analysis using the 3,202-sample 1kGP call set is based on both de novos and in-

herited variants private to the NA12878 trio. (G) Sample-level counts of predicted functional small variants, stratified by super-population. Reported counts are

across the 2,504 unrelated samples only. (H)Distributions of log2(ratios) of sample-level counts from (G) normalized by themean count across the 2,504 unrelated

samples. Super-population ancestry labels: European (EUR), African (AFR), East Asian (EAS), South Asian (SAS), American (AMR). Descriptions of population

labels are in Table S1. Panels E, G, H are based on autosomes
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Figure S2. Ploidy of each chromosome across the 3,202 samples, related to Figure 1

(A) Ploidy of allosomes. (B)Copy number (CN) of each chromosome. Each dot represents a copy number of the 1Mbp bin in a sample. Blue dots are samples with

copy gain and red dots represent copy loss
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Figure S3. Benchmark of GATK-SV, svtools, and Absinthe, related to Figure 2

(A) Overlap of insertion sites between GATK-SV and Absinthe call sets. (B) Overlap of SV other than insertions between the GATK-SV and svtools call set. (C)

Overlap of SV sites of each type between GATK-SV, svtools, and Absinthe. (D) Overlap of insertions in each genome between GATK-SV and Absinthe. (E-G)

Overlap of deletions (E), duplications (F), inversion and complex SVs (G) in each genome between GATK-SV and svtools. The integers in (D-G) represent count of

SVs per sample, followed by proportion of SVs validated by VaPoR/proportion of SVs assessable by VaPoR in the second row, proportion of SVs supported by

PacBio SVs in Ebert et al., (2021)/proportion of SVs supported by PacBio SVs in Chaisson et al. (2019) in the third row, and transmission rate/rate of biparentally

inherited SVs in the fourth row. (H-I) Precision of the insertion breakpoint (H) and length (I) assessed against PacBio assemblies. (J-K) Precision of the SV break-

points in GATK-SV (J) and svtools (K) call sets assessed against PacBio assemblies. (L) Breakpoint distance of SVs shared by GATK-SV and svtools. (M-N) de

novo rate of SVs in GATK-SV (M) and svtools (N) call set when filtered at different boost score cutoffs. (O) False positives and false negatives in the GATK-SV and

svtools call sets when filtered at different boost score cutoffs
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(legend on next page)
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Figure S4. Comparison of small variant calls to the phase 3 call set, related to Figure 3

(A) Length of INDELs in the high-coverage as compared to the phase 3 call sets. (B)Number of true positive (TP), false positive (FP), and false negative (FN) SNVs

and INDELs in the high-coverage vs. phase 3 call set, stratified by easy and difficult regions of the genome (GIAB v3.3.2 high confidence regions only). (C) Com-

parison of allele frequencies in the high-coverage vs. the phase 3 call set across shared loci, stratified by variant type and regions of the genome. r: Pearson

correlation coefficient. Number of false positive (FP), true positive (TP), and unassessed (NA; sites outside of the GIAB v3.3.2 high confidence regions of the

genome) predicted functional SNVs (D) and INDELs (E) in sample NA12878, defined based on the comparison against the GIAB NA12878 truth set v3.3.2. There

were no stop-loss INDELs in sample NA12878 hence no plot for that category in E. See also Figures 3G and 3H (bottom row). Panels A, C, D, E: chr1-22; panel B:

chr1-22 and X
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Figure S5. Comparison of gene interruptive SVs in the high-coverage ensemble versus phase 3 1kGP call sets, related to Figure 4

(A) Count of genes interrupted as predicted loss of function (pLoF), (B) intragenic exon duplications (IED), and (C) complete copy gain (CG) by SVs in the high-

coverage ensemble call set and 1kGP phase 3 SV call set. Super-population ancestry labels: European (EUR), African (AFR), East Asian (EAS), South Asian (SAS),

American (AMR)
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Figure S6. SNV/INDEL phasing and imputation performance, related to Figure 5

SER: switch error rate stratified by (A) chromosome and (B) variant type. Note: SER on chr21 in the 0.1–1%MAF bin is equal to 0 (i.e. no switch errors found). This

is a fluctuation due to low variant counts per MAF bin in sample NA12878 as chromosomes get smaller. Chromosome X is shown separately in (B) as it was

phased using a different strategy than autosomes (statistical phasing vs. statistical phasing with pedigree-based correction, respectively). (C) Impact of inclusion

of trios on the phasing accuracy of the 1kGP high-coverage call set, stratified by relationship status in the 3,202-sample cohort. log10(SER ratio) refers to the ratio

of SER in the phasing run including trios (n = 3,202 samples) vs. phasing run without trios (n = 2,504 samples), computed relative to the HGSVC truth set (1 child,

5 parents, 9 unrelated samples). Imputation accuracy of the high-coverage panel stratified by super-population for SNVs (D, E) and INDELs (F, G) in easy and

difficult regions of the genome. Imputation accuracy was estimated as described in Figure 5D. (H-L) Imputation accuracy of the high-coverage panel for each of

the five super-populations, stratified by the population. (M) Genotype discordance rates for SNVs and INDELs imputed using the high-coverage and phase 3

panels stratified by super-population. (N) Counts of SNVs and INDELs imputed in the SGDP study dataset using the high-coverage vs. the phase 3 reference

panel at info >0.4 (left) and info >0.8 (right) across three MAF bins (MAF based on the 110 imputed SGDP samples). Panels C-N are based on autosomes
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Figure S7. SV phasing and imputation performance, related to Figure 6

(A) Distribution of sample-level fractions of HET SVs (DELs and INSs) that were assessed for phasing accuracy against the HGSVC truth set in Figure 6B. (B)

Distribution of sample-level fractions of HET SVs (DELs, INSs, DUPs, INVs) that were assessed for phasing accuracy using parental flip rate as shown in Figure 6C.

(C) Fraction of SV sites (DELs and INSs; out of all DELs and INSs included in the high-coverage panel) that was included in the imputation performance evaluation

against the HGSVC truth set shown in Figure 6D. (D) Upset plot showing site-level overlap of DELs and INSs discovered in the high-coverage 1kGP call set with

those discovered in the long-read-basedHGSVC call set used as the truth set. Overlap criteria: breakpoint position within +/�50 bp from the start site in the 1kGP

call set and 80% length overlap. SV types: DEL: deletions, INS: insertions, DUP: duplications, INV: inversions
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