
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

1-10-2023 

Gene regulatory network reconfiguration in direct lineage Gene regulatory network reconfiguration in direct lineage 

reprogramming reprogramming 

Kenji Kamimoto 

Mohd Tayyab Adil 

Kunal Jindal 

Christy M Hoffmann 

Wenjun Kong 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=


Authors Authors 
Kenji Kamimoto, Mohd Tayyab Adil, Kunal Jindal, Christy M Hoffmann, Wenjun Kong, Xue Yang, and 
Samantha A Morris 



Stem Cell Reports
Article

Gene regulatory network reconfiguration in direct lineage reprogramming

Kenji Kamimoto,1,2,3 Mohd Tayyab Adil,1,2,3 Kunal Jindal,1,2,3 ChristyM. Hoffmann,1,2,3 Wenjun Kong,1,2,3,4

Xue Yang,1,2,3 and Samantha A. Morris1,2,3,*
1Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO

63110, USA
2Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA
3Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110,

USA
4Present address: Calico Life Sciences LLC, South San Francisco, CA, 94080, USA

*Correspondence: s.morris@wustl.edu

https://doi.org/10.1016/j.stemcr.2022.11.010

SUMMARY

In direct lineage conversion, transcription factor (TF) overexpression reconfigures gene regulatory networks (GRNs) to reprogram cell

identity. We previously developed CellOracle, a computational method to infer GRNs from single-cell transcriptome and epigenome

data. Using inferred GRNs, CellOracle simulates gene expression changes in response to TF perturbation, enabling in silico interrogation

of network reconfiguration. Here, we combineCellOracle analysis with lineage tracing of fibroblast to induced endodermprogenitor (iEP)

conversion, a prototypical direct reprogramming paradigm. By linking early network state to reprogramming outcome, we reveal distinct

network configurations underlying successful and failed fate conversion. Via in silico simulation of TF perturbation, we identify new fac-

tors to coax cells into successfully converting their identity, uncovering a central role for the AP-1 subunit Fos with the Hippo signaling

effector, Yap1. Together, these results demonstrate the efficacy of CellOracle to infer and interpret cell-type-specific GRN configurations,

providing new mechanistic insights into lineage reprogramming.

INTRODUCTION

Direct lineage reprogramming aims to transform cell iden-

tity between fully differentiated somatic states via the

forced expression of select transcription factors (TFs). Using

this approach, fibroblasts have been directly converted into

many clinically valuable cell types (Cohen and Melton,

2011). These protocols are currently limited, though,

because only a fraction of cells convert to the target cell

type and remain developmentally immature or incom-

pletely specified (Morris and Daley, 2013). Therefore, the

resulting cells are generally unsuitable for therapeutic

application and have limited utility for disease modeling

and drug screening in vitro.

A comprehensive characterization of cell identity is crucial

to improve reprogramming methods. Gene regulatory net-

works (GRNs) represent the complex, dynamicmolecular in-

teractions that act as critical determinants of cell identity.

These networks describe the intricate interplay between

transcriptional regulators and multiple cis-regulatory DNA

sequences, resulting in theprecise spatial and temporal regu-

lation of gene expression (Davidson and Erwin, 2006). Sys-

tematically delineating GRN structures enables a logic map

of regulatory factor cause-effect relationships to be mapped.

In turn, this knowledge supports a better understanding of

how cell identity is determined and maintained, informing

new strategies for cellular reprogramming.

We previously described CellOracle, a computational

pipeline for GRN inference via integrating different

single-cell data modalities (Kamimoto et al., 2020).

CellOracle overcomes current challenges in GRN inference

by using single-cell transcriptomic and chromatin accessi-

bility profiles, integrating prior biological knowledge via

regulatory sequence analysis to infer TF-target gene interac-

tions. We designed CellOracle to apply inferred GRNs to

simulate gene expression changes in response to TF pertur-

bation. This unique feature enables inferred GRN configu-

rations to be interrogated in silico, facilitating their inter-

pretation. We have benchmarked CellOracle against

ground-truth TF-gene interactions, demonstrating its effi-

cacy to recapitulate known regulatory changes across he-

matopoiesis (Kamimoto et al., 2020). Further, we have

applied CellOracle to predict TFs regulating medium spiny

neuron maturation in human fetal striatum development

(Bocchi et al., 2021). Other groups have successfully used

the method to investigate mouse and human T cell differ-

entiation (Chopp et al., 2020; Nie et al., 2022), T cell

dysfunction in glioblastoma (Ravi et al., 2022), and

pharyngeal organ development (Magaletta et al., 2022).

Here, we apply CellOracle to interrogate GRN reconfigura-

tion during direct lineage reprogramming of fibroblasts to

induced endoderm progenitors (iEPs), a prototypical TF-

mediated fate conversion. Via single-cell lineage tracing,

we previously demonstrated that this protocol comprises

two distinct trajectories leading to reprogrammed and

dead-end fates (Biddy et al., 2018). We expand on this line-

age tracing strategy to experimentally define state-fate rela-

tionships, supporting the inference of early network states
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associated with defined reprogramming outcomes. These

analyses reveal the early GRN configurations associated

with the successful conversion of cell identity. Using princi-

ples of graph theory to identify critical regulatory nodes in

conjunction with in silico simulation predicts several novel

regulators of reprogramming,whichwe experimentally vali-

date. We also demonstrate that one of these TFs, Fos, plays

roles in both iEP reprogramming and maintenance, where

interrogation of inferred Fos targets reveals a role for AP1-

Yap1. We validate these findings to demonstrate that Fos

and Yap1 overexpression significantly enhances reprogram-

ming efficiency. Together, these results demonstrate the effi-

cacy of CellOracle to infer and interpret cell-type-specific

GRN configurations at high resolution, enabling new

mechanistic insights into reprogramming. CellOracle code

and documentation are available at https://github.com/

morris-lab/CellOracle.

RESULTS

CellOracle GRN inference applied to direct lineage

reprogramming

CellOracle is designed to infer GRN configurations,

revealing how networks are rewired during the establish-

ment of defined cellular identities and states, highlighting

known and putative regulatory factors of fate commitment

(Kamimoto et al., 2020). In the first step of the CellOracle

pipeline, single-cell assay for transposase-accessible chro-

matin using sequencing (scATAC-seq) is used to assemble a

‘‘base’’ GRN structure, representing a list of all potential reg-

ulatory genes associated with each defined DNA sequence

(Figures 1A and 1B). The second step in the CellOracle pipe-

line uses single-cell RNA sequencing (scRNA-seq) data to

convert the base GRN into context-dependent GRN config-

urations for each defined cell cluster. Removal of inactive

connections refines the base GRN structure, selecting the

active edges that represent regulatory connections associ-

ated with a specific cell type or state (Figures 1C, 1D, and

S1A). Here, we apply CellOracle to infer GRN reconfigura-

tion during TF-mediated direct lineage reprogramming.

The generation of induced endoderm progenitors (iEPs)

frommouse embryonic fibroblasts (MEFs) represents a pro-

totypical lineage reprogramming protocol, which, like

most conversion strategies, is inefficient and lacks fidelity.

Initially reported as hepatocyte-like cells that functionally

engraft the liver (Sekiya and Suzuki, 2011), we demon-

strated that these cells also harbor intestinal identity and

can functionally engraft the colon, prompting their re-

designation as iEPs (Guo et al., 2019; Morris et al., 2014).

More recently, we have shown that iEPs transcriptionally

resemble injured biliary epithelial cells (BECs) and exhibit

BEC-like behavior in 3D-culture models (Kong et al.,

2022). Building on these findings, our single-cell lineage

tracing revealed two distinct trajectories: one to a success-

fully reprogrammed iEP state, and one to a dead-end,

mesenchymal-like state (Figure 1E; Biddy et al., 2018).

Our previously published MEF to iEP reprogramming

scRNA-seq dataset consists of eight time points collected

over 28 days (n = 27,663 cells) (Biddy et al., 2018). We re-

processed this dataset using partition-based graph abstrac-

tion (PAGA; Wolf et al., 2019), manually annotating 15

clusters based on marker gene expression, identifying the

expected trajectories (Figures 1F and S1B–S1D). Relative

to reprogrammed cells, dead-end cells only weakly express

iEP markers, Cdh1 and Apoa1, accompanied by higher

expression levels of fibroblast markers, such as Col1a2

(Figures 1F, S1B, and S1C). Using CellOracle with a base

GRN generated using a mouse scATAC-seq atlas (Cusano-

vich et al., 2018), we inferred GRN configurations for

each cluster, calculating network connectivity scores to

analyze GRN dynamics during reprogramming.

Analysis of network reconfiguration during

reprogramming

We initially assess the network configuration associated

with the exogenous reprogramming TFs, Hnf4a and Foxa1,

Figure 1. Application of CellOracle to assess reprogramming GRN dynamics
(A and B) Overview of CellOracle. (A) First, CellOracle uses scATAC-seq data to identify accessible regulatory elements, which are scanned
for TF binding motifs, generating a Base GRN—a list of potential regulatory connections between a TF and its target genes (B).
(C) Using single-cell expression data, active connections are identified from all potential connections in the base GRN.
(D) Cell type- and state-specific GRN configurations are constructed by pruning insignificant or weak connections.
(E) Hnf4a and Foxa1-mediated fibroblast to iEP reprogramming.
(F) (Left) Force-directed graph: 15 clusters of cells are grouped into five cell types; fibroblasts (Fib), early transition (Early), transition
(Tran), dead-end, and reprogrammed iEPs (iEP). (Right) Projection of Apoa1 (iEP marker) and Col1a2 (fibroblast marker) expression.
(G) CellOracle analysis. Heatmap (left) and boxplot (right) of network edge strength between Hnf4a-Foxa1 and its target genes. ***p < 0.001.
(H) Degree and eigenvector centrality scores for Hnf4a-Foxa1.
(I) Hnf4a-Foxa1 network cartography terms for each cluster.
(J and K) Scatterplots of degree centrality scores between specific clusters.
(J) Degree centrality score comparison between Fib_1 cluster GRN and other early and transition reprogramming cluster GRNs.
(K) Degree centrality score comparison between iEP_1 and Dead-end_0 cluster GRNs.
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focusing on the strength of their connections to target

genes. Hnf4a and Foxa1 receive a combined score in these

analyses since they are expressed as a single transcript that

produces two independent factors via 2A-peptide-mediated

cleavage. Network strength scores show significantly stron-

ger connectivity of Hnf4a-Foxa1 to its inferred target genes

in early reprogramming, followed by decreasing connection

strength (Early_2 versus iEP_2: p < 0.001,Wilcoxon test; Fig-

ure 1G). We next evaluated the inferred GRN structures us-

ing traditional graph theory methods. We examined (1) de-

gree centrality of each gene, a straightforward measure

reporting how many edges are directly connected to a

node; and (2) eigenvector centrality, a measure of influence

via connectivity to other well-connected genes (Klein et al.,

2012). Hnf4a-Foxa1 receives high degree and eigenvector

centrality scores in the early conversion stages, gradually

decreasing as reprogramming progress (Figure 1H). In agree-

ment with a central role for the transgenes early in reprog-

ramming, network cartography analysis (Guimerà andAma-

ral, 2005) classified Hnf4a-Foxa1 as a prominent "connector

hub" in the early_2 cluster network configuration (Figures 1I

and S1E). Together, these analyses show that Hnf4a-Foxa1

network configuration connectivity and strength peak in

early reprogramming phases.

Next, we analyzed the Hnf4a-Foxa1 network configura-

tion in later conversion, following bifurcation into reprog-

rammed and dead-end trajectories (Figures 1F and S1B–

S1D). The reprogrammed clusters (iEP_0, iEP_1, iEP_2)

exhibit stronger network connectivity scores relative to

the dead-end clusters 1 and 2 (Figure 1G; iEP versus dead-

end; p < 0.001, Wilcoxon test). We also identify a smaller

dead-end cluster (Dead-end_0); cells within this cluster

only weakly initiate reprogramming, retaining robust

fibroblast gene expression signatures and expressing signif-

icantly lower levels of reprogramming initiation markers

such as Apoa1 (Figure S1C; p < 0.001, permutation test).

This cluster also exhibits significantly lower Hnf4a-Foxa1

connectivity scores relative to Dead-end_1 and 2 (Fig-

ure 1G; p < 0.001, Wilcoxon test), accompanied by lower

degree centrality and eigenvector centrality scores (Fig-

ure 1H). However, CellTag lineage data reveal that most

cells (93% of tracked cells) on this unique path derive

from a single clone, representing a rare reprogramming

event captured due to clonal expansion (Figure S1F).

Wenext turned to global GRN reconfiguration to identify

candidate TFs initiating reprogramming. Comparing de-

gree centrality scores between fibroblast and early reprog-

ramming clusters reveals differential connectivity of a

handful of key TFs. For example, Hes1, Eno1, Fos, Foxq1,

and Zfp57 receive relatively high degree centrality scores

in the early reprogramming clusters, whereas Klf2 and

Egr1 degree centrality increases in later transition stages

(Figure 1J). These factors remain highly connected on the

reprogramming trajectory relative to the dead-end (Fig-

ure 1K), suggesting that the GRN configurations control-

ling reprogramming outcome are remodeled at the initia-

tion of fate conversion.

Altogether, reprogramming network analysis suggests

that Hnf4a-Foxa1 function peaks at conversion initiation.

These early, critical changes in GRN configuration deter-

mine reprogramming outcome, with dysregulation or loss

of this program leading to dead-ends, where cells either

do not successfully initiate or complete reprogramming.

This hypothesis is consistent with our previous CellTag

lineage tracing, showing the establishment of reprogram-

ming outcomes from early stages of the conversion process

(Biddy et al., 2018). We next performed new experimental

lineage tracing targeting cells at reprogramming initiation

to further investigate how early GRN configuration relates

to the successful generation of iEPs.

Clonal tracing links early network state to

reprogramming fate

Barcoding and tracking cells via scRNA-seq represents a

powerful method to investigate how the early molecular

state of a cell relates to its eventual fate (Biddy et al.,

2018; Jindal et al., 2022; Weinreb et al., 2020). Cells are

labeled with combinations of heritable random barcodes,

CellTags, delivered using lentivirus, enabling cells to be

uniquely labeled and tracked over time; cells sharing iden-

tical barcodes are identified as clonal relatives; thus, early

cell state can be directly linked to reprogramming outcome

(Biddy et al., 2018; Kong et al., 2020; Figure 2A). However,

our previous lineage tracing study was not designed to

maximize the capture of clones early in reprogramming;

thus, we did not meet the minimum cell number required

for accurate GRN inference (50 cells; Kamimoto et al.,

2020). Here, we performed new lineage tracing experi-

ments to associate early-stage cells with reprogramming

outcome.

Cells were reprogrammed with Hnf4a-Foxa1, as above,

and CellTagged at the end of the reprogramming TF trans-

duction period. After 4 days of expansion (reprogramming

day 4), we collected 25% of the cell population for scRNA-

seq, reseeding the remaining cells. A total of 24,799 cells

were sequenced: 8,440 on day 4, 4,836 on day 10, and

11,523 on day 28 (Figures 2B and 2C). Using our previous

method to score cell identity alongwith establishedmarker

gene expression (Biddy et al., 2018), we identify reprog-

rammed and dead-end fates (reprogrammed n = 1,895;

dead-end n = 6,324; Figures 2D, S2A, and S2B). Next, using

clonal information, we identify the day 4 clones whose day

10 and day 28 descendants are significantly enriched

or depleted of successfully reprogrammed cells. From

CellTag processing (supplemental experimental proced-

ures), we recovered 1,158 clones, containing a total of

100 Stem Cell Reports j Vol. 18 j 97–112 j January 10, 2023
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10,927 cells across all time points. Using randomized

testing, we identified two groups of day 4 cells: iEP-en-

riched (55 cells in nine clones) and iEP-depleted (50 cells

in 43 clones), from which reprogramming and dead-end

trajectories stem (Figures 2F and 2G), reproducing our

earlier observations (Biddy et al., 2018).

Pooling the day 4 clones by outcome, we meet the mini-

mum number of cells required for GRN inference (Fig-

ure S2C). We first compared the global GRN configurations

for each of these states relative to MEFs to assess early

GRN reconfiguration on each trajectory. For example,

comparing degree centrality between day 4 cells destined

to reprogram and native fibroblasts agrees with our above

analysis comparing early transition to fibroblast states (Fig-

ure 1J), showing high connectivity of similar factors, such

as Klf9, and Mef2a, in fibroblasts and Fos and Foxq1 in day

4 reprogrammed-destined clones (Figure 2H, left). Addi-

tional highly connected TFs also emerge in this reprogram-

ming group, including the known induced pluripotency fac-

tor, Klf4 (Takahashi and Yamanaka, 2006), and Klf5, Mybl2,

and Foxk2. The appearance of several additional factors

here is likely due to assessing the early cells with known re-

programming descendants rather than the early reprogram-

ming cluster as a whole, in which many cells will not suc-

cessfully reprogram, highlighting how these state-fate

experiments can further dissect population heterogeneity.

Indeed, the state-fate experimental design allows us to

compare those early cells destined to reprogram versus

early cells that fail to reprogram, for which clonal informa-

tion is essential. A comparison of these two groups reveals

subtle differences in GRN configuration, with Klf6, Tbx5,

Tfapb2, and Foxs1 demonstrating higher connectivity in

cells failing to reprogram, in contrast to Fos, Klf5, and

Junb in cells destined to attain full iEP identity (Figure 2H,

right). Differential expression analysis between day 4 re-

programming and dead-end groups did not identify these

TFs (Table S3). CoSpar, a computational tool designed to

identify lineage-specific gene markers based on single-cell

lineage tracing data (Wang et al., 2022b), identified only

Foxs1 and Junb. Overall, this new experimental state-fate

analysis reveals the highly connected fibroblast TFs de-

coupled upon reprogramming initiation, representing po-

tential targets to extinguish fibroblast identity. Further,

we identify many TFs that are highly connected early on

the successful reprogramming trajectory, representing po-

tential candidates to improve iEP yield. We next use

CellOracle’s in silico perturbation function to identify puta-

tive regulators of reprogramming in a systematic, unbiased

manner.

Systematic in silico simulation of TF knockout to

identify novel regulators of iEP reprogramming

While network structure can point to how gene regulation

changes during reprogramming, it offers a static picture

that does not necessarily provide functional insight.

CellOracle bridges this gap by using its unique GRN infer-

ence model to interrogate networks to gain mechanistic

insight into how specific TFs regulate cell identity

(Kamimoto et al., 2020). CellOracle simulates the transi-

tion of cell identity following candidate TF perturbation

(knockout [KO] or overexpression), using cluster-specific

GRNs to model subsequent expression changes in regu-

lated genes. The simulated values are then converted into

a transition vector map and visualized in the dimensional

reduction space, enabling an intuitive interpretation of

how a candidate TF regulates cell identity (Kamimoto

et al., 2020); Figures 3A–3C and S3A–S3C; supplemental

experimental procedures).

In silico TF perturbation comprises four steps: (1) GRN

configurations are constructed (as in Figure 1A). (2) Using

these GRN models, shifts in target gene expression in

response to TF perturbation are calculated. This step applies

the GRNmodel as a function to propagate the shift in gene

expression rather than the absolute gene expression value,

Figure 2. Lineage tracing links early network state to reprogramming outcome
(A) Overview of CellTag-based clonal tracking. Cells are transduced with the random CellTag lentiviral library so that each cell expresses
three to four CellTags, resulting in a unique, heritable barcode signature. CellTags are transcribed and captured during single-cell profiling,
enabling clonally related cells to be tracked throughout an experiment.
(B) Experimental strategy to capture state-fate relationships. MEFs are transduced with Hnf4a-Foxa1 for 48 h, then transduced with
CellTags. The end of this period is considered reprogramming day 0. Cells are expanded, and 25% of the population is profiled at day 4; this
is termed the state population. The remaining cells are reseeded and profiled again on days 10 and 28 to capture reprogramming fate.
(C) Captured state-fate cells. Time point information projected onto the Uniform Manifold Approximation and Projection (UMAP)
embedding. A total of 24,799 cells were sequenced: 8,440 on day 4, 4,836 on day 10, and 11,523 on day 28.
(D) Projection of fibroblast, iEP, and dead-end identity scores and (E) fate annotations onto the UMAP embedding.
(F) A randomized test identified day 4 state clones whose day 10 and 28 fate sisters were iEP-enriched or iEP-depleted. (Top) Kernel density
estimation of iEP-enriched day 4 state clones and their day 10 and 28 fates, outlining the reprogramming trajectory (n = 1,347 cells).
(Bottom) iEP-depleted state-fate cells outlining the dead-end trajectory (n = 4,802 cells).
(G) Projection of iEP-enriched and iEP-depleted clones onto the UMAP embedding.
(H) Comparison of degree centrality scores between native fibroblasts and day 4 reprogrammed-destined cells (left) and day 4 re-
programmed- and dead-end-destined cells (right).
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representing TF-to-target gene signal flow. This signal is

propagated iteratively to calculate the broad, downstream

effects of TF perturbation, allowing the global transcrip-

tional shift to be estimated (Figures S3A and S3B). (3) The

probability of a cell identity transition is estimated by

comparing this gene expression shift with the gene expres-

sion of local neighbors (Figure S3C). (4) The transition

probability is converted into a weighted local average vec-

tor to represent the simulated directionality of cell state

transition for each cell upon candidate TF perturbation.

This final step converts the simulation results into a 2D vec-

tor map, enabling robust predictions by mitigating the ef-

fect of errors or noise derived from scRNA-seq data and

the preceding simulation (Figures 3B middle; S3C). The re-

sulting small-length vectors allow the directionality of cell

identity transitions to be feasibly predicted rather than in-

terpreting long-ranging terminal effects from initial states.

To enable the simulation results to be assessed systemat-

ically and unbiasedly, we consider the changes in cell iden-

tity induced by reprogramming, together with the pre-

dicted effects from the perturbation. Taking the relatively

densely sampled time course from Biddy et al. (2018), we

use semi-supervised Monocle analysis (Trapnell et al.,

2014) to order cells in pseudotime based on the expression

of the fibroblast marker Col1a2 and the iEP marker Apoa1,

capturing the distinctive reprogramming and dead-end tra-

jectories as distinguished by their respective lineage-

restricted clones (n = 48,515 cells, two independent

biological replicates; Figures 3A and S3D). We use the pseu-

dotime information to calculate a vector gradient, repre-

senting the direction of reprogramming as a vector field

(Figures 3B, left; S3E; supplemental experimental proced-

ures). We then quantify the similarity between the reprog-

ramming and perturbation simulation vector fields by

calculating their inner-product value, which we term

perturbation score (Figure 3B). A negative perturbation

score implies that the TF perturbation blocks reprogram-

ming (Figure 3C, magenta). Conversely, a positive pertur-

bation score indicates that reprogramming is promoted

following TF perturbation (Figure 3C, green). By calcu-

lating the sum of the negative perturbation scores, we

rank TFs by their potential to regulate the reprogramming

process, where a greater negative score indicates that re-

programming is impaired upon KO of the candidate TF. Us-

ing these metrics, we can interpret perturbation effects on

cell fate quantitatively and objectively.

We used this approach to perform a systematic in silico

simulation of TF KOs during iEP generation to identify

novel reprogramming regulators (Figure S3F). Following

GRN inference for each of the seven Monocle states identi-

fied (Figure S3D), we performed KO simulations for all TFs

with inferred connections to at least one other gene

(‘‘active’’ TFs, n = 180), calculating the sum of the negative

perturbation scores to rank TFs by the predicted inhibition

of reprogramming following their KO. This in silico screen

prioritizes factors for experimental validation. In the top-

ranked TFs, many factors are shared between independent

biological replicates ((Figure 3D; Pearson’s, r = 0.72). The

Hnf4a-Foxa1 transgene is ranked top, as expected since

these factors are driving the reprogramming process.

Only half of the remaining top-ranked factors are differen-

tially expressed in reprogrammed cells (Table S1). Further,

only three of these prioritized TFs (Jun, Junb, Hes1) were

identified by orthogonal analysis using CoSpar (Wang

et al., 2022b) (Table S3), highlighting the utility of

CellOracle to recover novel candidate regulators.

For experimental validation, we further prioritized candi-

date genes based on GRN degree centrality, enrichment of

gene expression along the entire reprogramming trajec-

tory, and ranking agreement across biological replicates,

yielding eight candidates: Eno1, Fos, Fosb, Foxd2, Id1, Klf2,

Klf4, and Klf15 (Figure 3E). For all TFs, CellOracle predicts

impaired reprogramming following their KO. We per-

formed an initial screen for all eight TFs, using a short

hairpin RNA (shRNA)-based strategy to knock down

each TF during reprogramming (confirmed by qRT-PCR;

Figure 3. Systematic in silico simulation of TF KO to identify novel regulators of iEP reprogramming
(A) Monocle-based pseudotemporal ordering of 48,515 cells from Biddy et al. (2018), two independent biological replicates.
(B) Schematic for perturbation score calculations. CellOracle calculates a perturbation score by comparing the direction of the simulated
cell state transition with the direction of cell differentiation. First, the pseudotime data is summarized by grid points and converted into a
2D gradient vector field. The results of the perturbation simulation are converted into the same vector field format, and the inner product
of these vectors is calculated to produce a perturbation score.
(C) A positive perturbation score (green) suggests that the perturbation is predicted to promote reprogramming. In contrast, the negative
perturbation score (magenta) represents impaired reprogramming.
(D) Ranked list of TFs based on the sum of the negative perturbation score.
(E) Representative examples of TF KO simulation (top row). Expression of respective genes (bottom row).
(F) Experimental validation of candidate TFs: colony-formation assay.
(G) Colony quantification. n = 5 independent biological replicates for non-targeting scramble shRNA control, Fosb, Id1; n = 4 independent
biological replicates for Eno1, Klf4; n = 3 independent biological replicates for Fos; unpaired t test with Welch’s correction, two-tailed;
*p < 0.05, **p < 0.01.
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Figure S3G), followed by colony-formation assay to

quantify clusters of successfully reprogrammed cells based

on E-cadherin expression. From this initial screen, reprog-

ramming was impaired following the knockdown of six

of the eight TFs (Eno1, Fos, Fosb, Id1, Klf4, and Klf15),

with 20%–50% fewer colonies formed (Figures S3H and

S3I).We selected Eno1, Fos, Fosb, Id1, andKlf4 for additional

colony-formation assays, confirming that their knock-

down significantly reduces reprogramming efficiency (n =

5 independent biological replicates for non-targeting

scramble shRNA control, Fosb, Id1; n = 4 for Eno1, Klf4;

n = 3 for Fos; unpaired t test with Welch’s correction,

two-tailed; *p < 0.05, **p < 0.01; Figures 3F and 3G).

Overall, our systematic perturbation simulation and

experimental validation revealed several novel regulators

of MEF to iEP reprogramming. Of these TFs, we identified

Fos as a positive regulator of reprogramming. Further, our

above state-fate analysis identified Fos as a highly connected

factor in day 4 reprogrammed-destined clones, suggesting a

role for this TF from the early stages of cell fate conversion.

Indeed, we noted an enrichment of genes associated with

the activator protein-1 TF (AP-1), a dimeric complex primar-

ily containing members of the FOS and JUN factor families

(Eferl and Wagner, 2003). AP-1 establishes cell-type-specific

enhancers and gene expression programs (Vierbuchen

et al., 2017) and reconfigures enhancers during reprogram-

ming to pluripotency (Knaupp et al., 2017). As part of the

AP-1 complex, Fos plays broad roles in proliferation, differ-

entiation, and apoptosis, both in development and tumori-

genesis (Eferl and Wagner, 2003; Jochum et al., 2001). We

next focused on further in silico simulation and experi-

mental validation of Fos, a core component of AP-1.

The AP-1 TF subunit Fos is central to reprogramming

initiation and maintenance of iEP identity

Comparing degree centrality scores between fibroblast and

early reprogramming clusters, Fos receives relatively high

degree and eigenvector centrality scores, along with

connector hub classification (Figures 1J, 4A, 4B, and S4A).

Clonal analysis of early ancestors destined to reprogram

successfully agrees with a central role for Fos (Figure 2H).

Indeed, perturbation simulation and reduced reprogram-

ming efficiency following experimental knockdown (Fig-

ures 3 and S3) led us to select Fos for deeper mechanistic

investigation as a candidate gene playing a critical role in

initiating iEP conversion.

During MEF to iEP reprogramming, Fos is gradually and

significantly upregulated (Figures 4C and 4D; p < 0.001,

permutation test, one sided). Several Jun AP-1 subunits

are also expressed in iEPs, classifying as connectors and

connector hubs across various reprogramming stages

(Figures S4C–S4E). Fos and Jun are among a battery of genes

reported to be upregulated in a cell-subpopulation-specific

manner in response to cell dissociation-induced stress,

potentially leading to experimental artifacts (van den Brink

et al., 2017). Considering this report, we performed qRT-

PCR for Fos on dissociated and undissociated cells. This

orthogonal validation confirms an 8-fold upregulation

(p < 0.01, t test, one sided) of Fos in iEPs, relative to MEFs,

revealing no significant changes in gene expression in cells

that are dissociated and lysed versus cells lysed directly on

the plate (Figure S4F). Further, analysis of unspliced and

spliced FosmRNA levels reveals an accumulation of spliced

Fos transcripts in reprogrammed cells (la Manno et al.,

2018). This observation suggests that these transcripts

accumulated over time rather than by rapid induction of

expression by cell dissociation (Figure S4G).

To further investigate the role of Fos, we simulated its

overexpression. In these analyses, to assess the in silico

perturbation of a specific candidate, we use aMarkov simu-

lation to predict how cell identity shifts within the overall

cell population, visualizing the results as a Sankey diagram.

Overexpression simulation for Fos predicts a major cell

state shift from the early transition to transition clusters,

Figure 4. CellOracle analysis and experimental validation of Fos in establishing and maintaining iEP identity
(A) Degree centrality, betweenness centrality, and eigenvector centrality of Fos for each cluster.
(B) Network cartography terms of Fos for each cluster.
(C) Fos expression projected onto the force-directed graph.
(D) Violin plot of Fos expression across reprogramming stages. ***p < 0.001.
(E and F) (E) Fos gene overexpression simulation with reprogramming GRN configurations. (Left) The projection of simulated cell transitions
onto the force-directed graph. The Sankey diagram summarizes the simulation of cell transitions between cell clusters. For overexpression
simulation, Fos expressionwas set to 1.476, representing itsmaximumvalue in the imputed gene expressionmatrix (F) Fos geneKO simulation.
(G) Colony-formation assay with addition of Fos to Hnf4a-Foxa1. (Left) E-cadherin immunohistochemistry. (Right) Boxplot of colony
numbers (n = 6 technical replicates, two independent biological replicates; ***p < 0.001, t test, one sided).
(H) qPCR for Fos and iEP marker expression (Apoa1 and Chd1) following addition of Fos to Hnf4a-Foxa1 (n = 3 independent biological
replicates; ***p < 0.001, **p < 0.01, t test, one sided).
(I) Fos gene KO simulation in expanded, long-term cultured iEPs.
(J) CRISPR-Cas9 Fos KO in expanded iEP cells. (Left) Kernel density estimation was applied with the t-SNE (t-distributed stochastic
neighbor embedding) to compare cell density between control guide RNAs and guide RNAs targeting Fos. (Right) Quantification of changes
in cell ratio following Fos KO.
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in addition to predicting shifts in identity fromdead-end to

reprogrammed clusters (Figure 4E). In contrast, the simula-

tion of Fos KO produces the opposite results. (Figure 4F).

We experimentally validated this simulation by adding

Fos to the iEP reprogramming cocktail. As expected, we

see a significant increase in the number of iEP colonies

formed (n = 10, p < 0.001, t test, one sided; Figure 4G),

increasing reprogramming efficiency more than 2-fold,

accompanied by significant increases in iEP marker expres-

sion as measured by qRT-PCR (n = 3, p < 0.001, t test, one

sided; Figure 4H).

Turning our attention to the later stages of reprogram-

ming, Fos continues to receive relatively high network

scores in the iEP GRN configurations (Figure 4A). Fos also

classifies as a connector hub (Figure 4B) in iEPs, suggesting

a role for Fos in the stabilization and maintenance of

the reprogrammed fate. To test this hypothesis, we use

CellOracle to perform KO simulation, followed by experi-

mental KO validation in an established iEP cell line. Here,

we leverage the ability to culture iEPs, long term, where

they retain a range of phenotypes (from fibroblast-like to

iEP states; Figure S4H) and functional engraftment poten-

tial (Guo et al., 2019; Morris et al., 2014). Simulation of

Fos KO using these long-term cultured iEP GRN configura-

tions predicts the loss of iEP identity upon Fos KO (Fig-

ure 4I). To test this prediction, we used CRISPR-Cas9 to

knock out Fos in established iEPs. Quantitative comparison

of the cell proportions between control andKOgroups con-

firms that fully reprogrammed iEPs regress toward an inter-

mediate state upon Fos KO, confirming a role for this factor

in maintaining iEP identity (Figure 4J), in addition to the

establishment of iEPs, as we demonstrate in our systematic

simulation and experimental validation in Figure 3.

Fos target inference uncovers a role for the Hippo

signaling effector Yap1 in reprogramming

To gain further insight into Fos regulation of reprogram-

ming, we interrogated a list of the top 50 inferred Fos tar-

gets (Figure 5A; Table S2). We also assembled a list of genes

predicted to be downregulated following Fos KO simula-

tion (Figure S5A). From this analysis, we noted the presence

of direct targets of YAP1, a central downstream transducer

of the Hippo signaling pathway (Ramos and Camargo,

2012). These targets include Cyr61, Amotl2, Gadd45g, and

Ctgf. Previous associations between Yap1 and Fos support

these observations; YAP1 is recruited to the same genomic

regions as FOS via complex formation with AP-1 (Zanco-

nato et al., 2015).Moreover, AP-1 is required for YAP1-regu-

lated gene expression and liver overgrowth caused by Yap

overexpression, where FOS induction contributes to the

expression of YAP/TAZ downstream target genes (Koo

et al., 2020).

Together, this evidence suggests that Fos may play a role

in reprogramming via an AP-1-Yap1-mediatedmechanism.

Since Yap1 does not directly bind to DNA, we cannot

deploy CellOracle to perform perturbation simulations,

highlighting a limitation of our approach. However, in

lieu of this analysis, we again turn to our previous reprog-

ramming data (Biddy et al., 2018). Using an established

active signature of Yap1 (Dong et al., 2007), we find signif-

icant enrichment of this signature as reprogramming pro-

gresses (Figures S5B and S5C; p < 0.001, permutation test,

one-sided). Together, these results suggest a role for the

Hippo signaling component Yap1 in reprogramming,

potentially affected via its interactions with Fos/AP-1.

Indeed, the Hippo signaling axis plays a role in liver regen-

eration (Pepe-Mooney et al., 2019) and regeneration of the

colonic epithelium (Yui et al., 2018), in line with the

known potential of iEPs to functionally engraft the liver

and intestine (Guo et al., 2019; Morris et al., 2014; Sekiya

and Suzuki, 2011). Further, we have recently demonstrated

that iEPs transcriptionally resemble injured BECs (Kong

et al., 2022), the target of YAP signaling in the context of

liver regeneration (Pepe-Mooney et al., 2019).

To test the role of Yap1 in iEP reprogramming, we first

performed colony-formation assays. We find that the addi-

tion of Yap1 to the Hnf4a-Foxa1 cocktail significantly en-

hances reprogramming efficiency, where the addition of

Fos and Yap1 together increase colony formation almost

3-fold, accompanied by significant increases in iEP marker

Figure 5. Inferred Fos targets reveal a role for the Hippo signaling effector, Yap1, in reprogramming
(A) Heatmap of expression of the top 50 inferred Fos targets across reprogramming. Established YAP1 targets are highlighted in red.
(B) Colony-formation assay with the addition of Yap1 and Fos to Hnf4a-Foxa1. (Left) E-cadherin immunohistochemistry. (Right) Boxplot
of colony numbers (n = 6 independent biological replicates; ***p < 0.001, t-test, one sided).
(C) Brightfield and epifluorescence images of cells reprogrammed with Hnf4a-Foxa1 or Hnf4a-Foxa1-Fos-Yap1. Scale bar, 500 mm.
(D) scRNA-seq of cells reprogrammed with Hnf4a-Foxa1 (n = 7,414 cells), Hnf4a-Foxa1-Fos (n = 8,771 cells), Hnf4a-Foxa1-Yap1 (n = 8,549
cells), and Hnf4a-Foxa1-Fos-Yap1 (n = 10,507 cells), profiled at day 20. Projection of fibroblast and iEP identity scores onto the UMAP
embedding.
(E) Kernel density estimation of cell density for each reprogramming cocktail from (D).
(F) Violin plot of iEP identity scores for each reprogramming cocktail. ****p < 0.0001, Wilcoxon test.
(G) Unsupervised cell type classification for each reprogramming cocktail, using normal and injured mouse liver as a reference. BEC, biliary
epithelial cells. *p < 0.0001, randomized test.
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expression (Figures 5B, S5D, and S5E, p < 0.001, t test,

one sided). Further, we note the formation of extremely

dense colonies (Figure 5C). To further characterize this

distinctive phenotype, we performed scRNA-seq on cells

reprogrammed with Hnf4a-Foxa1 (n = 7,414 cells),

Hnf4a-Foxa1-Yap1 (n = 8,549 cells), Hnf4a-Foxa1-Fos (n =

8,771 cells), and Hnf4a-Foxa1-Yap1-Fos (n = 10,507 cells),

profiled at day 20 (Figure S5F).

We scored cells using established markers of MEFs and

iEPs (Biddy et al., 2018), revealing a significant increase

in reprogramming efficiency, particularly following the

addition of Yap1 (p < 0.0001, Wilcoxon test; Figures 5F

and S5F), which is also accompanied by a reduction in

fibroblast marker expression (Figure S5G). We further clas-

sify cell identity using our unsupervised method for

cell-type classification, Capybara (Kong et al., 2022). In

agreement with our previous reports, using a healthy

and regenerating liver atlas, iEPs generated with

Hnf4a-Foxa1 alone classify mainly as stromal cells (Fig-

ure 5G). However, following the addition of Fos and

Yap1, a significant population (p < 0.0001, randomized

test) of injured BECs emerges, in similar proportions to

those observed in long-term cultured iEPs (Kong et al.,

2022). We also observe a significant expansion of a normal

BEC population, from �4% to �12%–35%, upon the addi-

tion of Yap1 to the reprogramming cocktail (p < 0.0001,

randomized test), where endogenous Fos expression is

also upregulated (Figure S5G).We observed a similar expan-

sion of the normal BEC population when long-term iEPs

were cultured in a 3D Matrigel sandwich culture (Kong

et al., 2022). Here, our results are consistent with these pre-

vious observations and point to the molecular regulation

driving changes in cell identity. In summary, CellOracle

analysis and in silico prediction, combined with experi-

mental validation, have revealed several new factors and

putative regulatory mechanisms to enhance the efficiency

and fidelity of reprogramming.

DISCUSSION

Our application of CellOracle to iEP reprogramming has re-

vealed new insight into this lineage conversion paradigm.

Using CellTag-based lineage tracing, we had previously

demonstrated the existence of distinct conversion trajec-

tories: one path leading to successfully reprogrammed cells

and a route to a dead-end state, accompanied by fibroblast

gene re-expression (Biddy et al., 2018). From lineage anal-

ysis, we found that sister cells follow the same reprogram-

ming trajectories, suggesting that conversion outcome is

established shortly after overexpression of the reprogram-

ming TFs. The network analysis we present in this study,

powered by CellOracle, supports these earlier observations,

revealing GRN reconfiguration within the first few days of

reprogramming.

From our analysis of early GRN rewiring, we find that

Mef2a and Klf6 are highly connected in fibroblasts and

that these connections are largely decommissioned in suc-

cessfully converting cells. Although better known as a car-

diac factor (Filomena and Bang, 2018),Mef2a expression is

enriched in the dead-end population, whereas Klf6 is en-

riched in early transition states, followed by its downregu-

lation as reprogramming progresses. In this study, we have

mainly focused on the TFs associated with installing new

cell identities. Fromour clonal analysis of GRN reconfigura-

tion in reprogrammed-destined cells, we find many previ-

ously unreported regulators of iEP reprogramming, such

as Klf5, Mybl2, Foxq1, Fos, and Junb. The recovery of these

factors is likely due to the clonal analysis, which further

breaks down population heterogeneity to target those

rare cells that successfully reprogram.

To explore the role of these factors in reprogramming, we

leverage the unique feature of CellOracle: simulation of cell

identity transition following candidate TF perturbation

(KO or overexpression). From systematic in silico KO simu-

lation and experimental validation, we identified five new

regulators of iEP reprogramming: Id1, Fosb, Fos, Eno1, and

Klf4. Klf4 is one of the previously described core pluripo-

tency reprogramming factors (Takahashi and Yamanaka,

2006). The reduction of iEP reprogramming efficiency

following its knockdown also suggests that Klf4 plays a

role in this direct lineage conversion paradigm. Similarly,

Id1 has also been shown to play a positive role in reprog-

ramming to pluripotency (Hayashi et al., 2016), suggesting

parallels with direct lineage conversion. We also noted the

involvement of several AP-1 factors, both fromour network

analyses and in silico simulations, including Fos, Fosb, Fosl2,

and Junb. The FOS-JUN-AP1 complex has been reported to

regulate reprogramming to pluripotency (Xing et al., 2020)

and direct reprogramming to cardiomyocytes (Wang et al.,

2022a); thus, we selected Fos for further investigation.

The CellOracle analyses presented here provide new

mechanistic insight into the reprogramming process,

revealing a role for the Fos-Yap1 axis, which we experi-

mentally validated. In a parallel study, we found that

iEPs resemble post-injury BECs (Kong et al., 2022).

Considering that Yap1 plays a central role in liver regen-

eration (Pepe-Mooney et al., 2019), these results raise the

possibility that iEPs represent a regenerative cell type, ex-

plaining their Yap1 activity, self-renewal in vitro, and ca-

pacity to functionally engraft the liver (Sekiya and Su-

zuki, 2011) and intestine (Guo et al., 2019; Morris

et al., 2014). Indeed, our unsupervised cell type classifica-

tion of iEPs reprogrammed with the addition of Fos and

Yap to the Hnf4a-Foxa1 reprogramming cocktail suggests

that these factors can directly expand the injured and
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normal BEC populations, supporting the notion that

iEPs may resemble a regenerative population. Altogether,

these new mechanistic insights have been enabled by

CellOracle analysis, placing it as a powerful tool for the

dissection of cell identity, aiding improvements in re-

programming efficiency and fidelity.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures can be found in the supple-

mental information.

Resource availability

Corresponding author

Samantha A. Morris, s.morris@wustl.edu.

Materials availability

Pooled CellTag libraries have been deposited at Addgene: https://

www.addgene.org/pooled-library/morris-lab-celltag/

Data and code availability

All source data, including sequencing reads and single-cell expres-

sion matrices, are available from the Gene Expression Omnibus

(GEO) under accession codes GSE99915 (Biddy et al., 2018) and

GSE217675 for the new scRNA-seq data presented in this manu-

script. CellOracle code, documentation, and tutorials are available

on GitHub: (https://github.com/morris-lab/CellOracle).

Computational methods
CellOracle code is open source and available on GitHub: (https://

github.com/morris-lab/CellOracle). For alignment, digital gene

expression matrix generation, the Cell Ranger v6.0.1 pipeline

(https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest) was used to process data generated

using the 10x Chromium platform. For clone calling, we used

our CellTag analysis pipeline: https://github.com/morris-lab/

newCloneCalling. Cell type classification was performed using

Capybara: https://github.com/morris-lab/Capybara.

Experimental methods
MEFs were derived from E13.5 C57BL/6J embryos (the Jackson lab-

oratory: 000664). Retroviral particles were produced by transfect-

ing 293T-17 cells (ATCC: CRL-11268) with the pGCDN-Sam

construct containing Hnf4a-t2a-Foxa1/Fos/Yap1, along with pack-

aging construct pCL-Eco (Imgenex). Lentiviral particles were pro-

duced with the envelope construct pCMV-VSV-G (Addgene

plasmid 8454), the packaging construct pCMV-dR8.2 dvpr (Addg-

ene plasmid 8455), and the shRNA expression vector for the

respective candidate TF to be knocked down. For generation of

the complex CellTag library, lentiviral particles were produced by

transfecting 293T-17 cells (ATCC: CRL-11268) with the pSMAL-

CellTag construct, along with packaging constructs pCMV-dR8.2

dvpr (Addgene plasmid 8455) and pCMV-VSVG (Addgene plasmid

8454). For iEP reprogramming, MEFs (< passage 6) were converted

to iEPs as in Biddy et al. (2018), modified from (Sekiya and Suzuki,

2011). Colony-formation assays were performed as in Biddy et al.

(2018). Perturb-seq was performed as previously described (Adam-

son et al., 2016). Single-cell libraries were prepared using the 10x

Genomics Chromium platform.
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Supplemental information can be found online at https://doi.org/
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