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Understanding the contribution
of metabolism to
Mycobacterium tuberculosis
drug tolerance

Amanda N. Samuels †, Erin R. Wang †, Gregory A. Harrison †,
Joy C. Valenta and Christina L. Stallings*

Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis,
MO, United States

Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly

arduous. One challenge to effectively treating tuberculosis is that drug

efficacy in vivo often fails to match drug efficacy in vitro. This is due to

multiple reasons, including inadequate drug concentrations reaching Mtb at

the site of infection and physiological changes of Mtb in response to host

derived stresses that render the bacteria more tolerant to antibiotics. To more

effectively and efficiently treat tuberculosis, it is necessary to better understand

the physiologic state ofMtb that promotes drug tolerance in the host. Towards

this end, multiple studies have converged on bacterial central carbon

metabolism as a critical contributor to Mtb drug tolerance. In this review, we

present the evidence that changes in central carbon metabolism can promote

drug tolerance, depending on the environment surroundingMtb. We posit that

these metabolic pathways could be potential drug targets to stymie the

development of drug tolerance and enhance the efficacy of current

antimicrobial therapy.
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Mtb infections are recalcitrant to
antibiotic therapy

Tuberculosis, an infection caused by the pathogenMycobacterium tuberculosis (Mtb)

is one of the leading causes of death world-wide by an infectious agent (WHO, 2021).

Standard of care treatment for drug sensitiveMtb infections requires at least 6 months of

antibiotic therapy with 4 or more antibiotics (WHO, 2017). Infection with Mtb mutants

that are resistant to the frontline antibiotics isoniazid and rifampicin constituted

approximately half a million tuberculosis cases in 2019 (WHO, 2021) and contributes
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to treatment failure (Chen et al., 2020). The treatment regimen

for patients harboring drug resistant Mtb is even longer and

more expensive than drug sensitive cases and has an increased

risk of adverse side effects (Nahid et al., 2019; WHO, 2021;

Ghazy et al., 2022). Overall, the emergence and prevalence of

Mtb drug resistance threatens treatment efficacy globally.

In addition, treatment failure and relapse can occur even in

the absence of drug resistance. Dating as far back as the 1950’s, it

is documented that Mtb can be recovered from some patients

after antibiotic treatment, with a fraction of these isolates

remaining drug sensitive in vitro (Hobby, 1955; Wallace and

Sutherland, 1955). In a 2014 study, 8% of patients that were

treated with the standard of care isoniazid, rifampin,

pyrazinamide, and ethambutol for 8 weeks followed by 18

weeks of isoniazid and rifampicin had an unfavorable outcome

(Gillespie et al., 2014). The most common unfavorable outcome

was relapse, which was differentiated from patients re-infected

with another strain by using 24-locus mycobacterial-

interspersed-repetitive-unit analysis to confirm that the strains

isolated during relapse were the same as the primary infection

(Gillespie et al., 2014). In this study, only 25% of the patients

receiving the standard of care that relapsed after conversion to

culture-negative status were suspected to have acquired drug

resistance (Gillespie et al., 2014). Shortening the antibiotic

regimen results in even further increased rates of treatment

failure and relapse (Gillespie et al., 2014; Jindani et al., 2014).

Another study collected serial Mtb isolates from tuberculosis

patients that had relapsed infection after antibiotic treatment,

where relapse was defined by paired isolates exhibiting 0-6 single

nucleotide polymorphisms by whole genome sequencing

(Bryant et al., 2013). In this study, all the relapsed Mtb isolates

were drug sensitive in vitro (Bryant et al., 2013). Collectively, this

data support that a reservoir of drug sensitive Mtb can persist in

the host despite antibiotic therapy, contributing to treatment

failure in some patients.

Factors that contribute to Mtb
surviving antibiotic treatment in vivo

Multiple factors have been identified that enable Mtb to

persist in the host during antibiotic treatment without acquiring

a drug resistance mutation. One factor is the pathology that

develops within the lung duringMtb infection. During infection,

the interaction between Mtb and the host immune response can

result in the development of a granuloma, which is made up of

host immune cells, Mtb, and tissue debris (Ehlers and Schaible,

2013). Antibiotic penetration into the granuloma can be limited

based on the chemical properties of the antibiotic, which creates

a challenge for efficient delivery of the antibiotic to the various

sites where Mtb resides (Kjellsson et al., 2012; Prideaux et al.,

2015; Sarathy et al., 2018). In addition, Mtb can reside within

various compartments inside innate immune cells, which can

impact antibiotic efficacy. For example, pyrazinamide

preferentially accumulates and is maximally active against Mtb

in acidified compartments within the macrophage (Santucci

et al., 2021; Santucci et al., 2022).

In addition to the host response impacting antibiotic

accessibility to Mtb, the pathogen itself changes its physiology

in response to the host environment, resulting in phenotypic

drug tolerance. Importantly, drug tolerance is different from

drug resistance in that a drug tolerant population can survive in

the presence of an antibiotic but cannot grow until the antibiotic

pressure is removed, whereas a drug resistant population can

both survive and replicate in the presence of an antibiotic. In

unstressed axenic culture conditions, Mtb populations display a

basal level of heterogeneity such that a subpopulation of bacteria

is transiently tolerant to antibiotics (Aldridge et al., 2012;

Manina et al., 2015; Rego et al., 2017). Because of this drug

tolerant subpopulation, treatment with a bactericidal antibiotic,

such as isoniazid or rifampicin, leads to a significant decrease in

viable bacteria, but fails to sterilize the culture (Jain et al., 2016;

Sukheja et al., 2017; Vilcheze et al., 2017). Some of the drug

susceptibility heterogeneity results from Mtb’s asymmetric cell

division (Aldridge et al., 2012; Rego et al., 2017). Deletion of the

gene lamA/mmpS3 leads to a loss of asymmetric cell elongation

and cell size heterogeneity in Mycobacterium smegmatis, and an

Mtb lamA/mmpS3 mutant is more susceptible to killing by

rifampicin and vancomycin, suggesting that asymmetric cell

elongation and cell size heterogeneity contributes to the

emergence of drug tolerant subpopulations (Rego et al., 2017).

In addition, there are stochastic differences in gene expression

within mycobacterial cultures that can affect antibiotic

susceptibility. For example, mycobacteria exhibit stochastic

variation in the expression of katG, which is required to

activate the pro-drug isoniazid, leading to a small population

of bacteria with transiently low katG expression that can survive

exposure to isoniazid (Wakamoto et al., 2013).

The proportion of drug tolerant Mtb is higher in vivo when

compared to the small population that exists at basal levels in

unstressed axenic cultures. Mtb directly isolated from patient

sputum samples exhibited a nearly 10-fold reduction in killing

by streptomycin, isoniazid, ethambutol, or rifampicin in

comparison to when those same isolates were passaged

through normal culture conditions (Turapov et al., 2016). Mtb

in caseum isolated from infected rabbit granulomas also

exhibited a >100-fold increase in the minimum bactericidal

concentration for rifampicin and isoniazid compared to Mtb

growing in vitro (Sarathy et al., 2018). Therefore, the Mtb

population at the site of infection is enriched for drug tolerant

cells, indicating that the host environment causes the Mtb

population to shift towards a more drug tolerant state.

Understanding the mechanistic basis for this enhanced drug

tolerance is essential for developing therapies that target theMtb

population that is recalcitrant to treatment.
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Stresses encountered in the host
promote drug tolerance

During infection of macrophages, Mtb may be exposed to

low pH, nitrosative stress, oxidative stress, osmotic changes,

carbohydrate limitation, and cell envelope damage

(Schnappinger et al., 2003; Tan et al., 2013; Larrouy-Maumus

et al., 2016; Pisu et al., 2020). The environment within

granulomas also poses additional stresses on Mtb, where

granulomas can be hypoxic (Via et al., 2008), contain host

factors that sequester iron (Kurthkoti et al., 2017), and harbor

host enzymes that produce reactive oxygen species (Marakalala

et al., 2016). Despite this harsh host environment, Mtb can

survive due to its robust stress response capabilities. Mtb

responds transcriptionally and metabolically to survive

exposure to hypoxia (Wayne and Hayes, 1996), nitric oxide

(Voskuil et al., 2003), reactive oxygen species (Voskuil et al.,

2011), carbon limitation (Loebel et al., 1933; Betts et al., 2002;

Gengenbacher et al., 2010), iron limitation (Kurthkoti et al.,

2017), and low pH (Baker et al., 2014). Importantly, when

exposed to stress in vitro, such as hypoxia, low pH, changes in

osmolarity, or nutrient limitation, the proportion of drug

tolerant Mtb increases, leading to higher minimal inhibitory

concentrations or minimum bactericidal concentrations for

several antibiotics (Wayne and Hayes, 1996; Deb et al., 2009;

Gengenbacher et al., 2010; Larrouy-Maumus et al., 2016; Sarathy

et al., 2018; Baker and Abramovitch, 2018; Xie et al., 2005).

These data support that exposure to host derived stresses

contributes to the increased Mtb antibiotic tolerance observed

during infection.

Mtb stress responses are complex and involve multiple

transcriptional, proteomic, and metabolic changes aimed at

promoting pathogen survival. The resulting increase in drug

tolerance that emerges in these conditions is indisputably

multifactorial. Recent reviews have focused on the role of

transcriptional adaptation (Kundu and Basu, 2021), the

stringent response (Sharma et al., 2021), bacterial respiration

(Hasenoehrl et al., 2021), and drug efflux in Mtb drug tolerance

(Remm et al., 2021). In this review, we will focus on the role of

fluctuations in central carbon metabolism in promoting drug

tolerance of Mtb and discuss how continued dissection of the

link between central carbon metabolism and drug tolerance will

provide novel therapeutic approaches to target drug

tolerant Mtb.

Carbon metabolism in Mtb

Mtb grown in vitro can metabolize multiple carbon sources,

even simultaneously (de Carvalho et al., 2010). Some of the most

common carbon sources used to culture Mtb include glucose,

glycerol, and oleic acid (Larsen et al., 2007). Glucose and other

sugars are metabolized primarily through glycolysis and the

pentose phosphate pathway to generate ATP and reducing

equivalents (Figure 1). Glycerol is also used to generate ATP

and reducing equivalents through glycolysis, or it can be

anabolized via gluconeogenesis to synthesize sugars. To

assimilate into these pathways, glycerol must first be converted

to glycerol-3-phosphate by GlpK and then oxidized to

dihydroxyacetone phosphate (DHAP)(Figure 1). Oleic acid

and other even-chain fatty acids are catabolized to acetyl-CoA,

which enters the tricarboxylic acid (TCA) cycle (Figure 1). The

TCA cycle is critical for the generation of the reducing

equivalents NADH and NADPH, as well as biosynthetic

precursors for multiple other pathways, including synthesis of

several amino acids. In particular, a-ketoglutarate can be

converted to glutamate, which is a precursor for glutamine,

arginine, and proline synthesis, and oxaloacetate can be

converted to aspartate, which serves as a precursor for the

synthesis of several amino acids including asparagine,

methionine, lysine, threonine, and isoleucine. Mutants that are

auxotrophic for one or more of these amino acids, including

glutamine (Lee et al., 2006), arginine (Gordhan et al., 2002),

aspartate (Jansen et al., 2020), methionine (Berney et al., 2015;

Hasenoehrl et al., 2019), lysine (Pavelka et al., 2003), and

threonine (Hasenoehrl et al., 2019) are severely attenuated

during infection, demonstrating that the ability to synthesize

these amino acids from TCA cycle intermediates is critical for

Mtb to establish and maintain infection in the host. The

essentiality of de novo amino acid biosynthesis during

infection is particularly surprising because Mtb can assimilate

nitrogen from asparagine, aspartate, glutamate, glutamine,

leucine, alanine, and glycine during growth in macrophages in

vitro (Gouzy et al., 2014; Borah et al., 2019). Mtb can also divert

carbon from the CO2-generating steps of the TCA cycle via the

glyoxylate shunt pathway (Muñoz-Elıás and Mckinney, 2005).

The glyoxylate shunt enables growth on fatty acids as a sole

carbon source because it prevents loss of carbon via CO2,

allowing for net gain of carbon from acetyl-CoA. This carbon

can then be routed to other essential biosynthetic pathways such

as amino acid synthesis or gluconeogenesis to generate cell wall

precursors. In contrast, carbon sources that feed into glycolysis

can be used to re-generate TCA cycle intermediates, allowing for

carbon to leave the TCA cycle for biosynthesis and also be

replenished independent of the glyoxylate shunt.

As opposed to in vitro cultures where Mtb can utilize

multiple different carbon sources, Mtb isolated directly from

infected mouse lungs was found to preferentially metabolize

fatty acids over other carbon sources such as glucose or glycerol

(Segal and Bloch, 1956). In humans, direct RNA-sequencing of

Mtb from patient sputum revealed up-regulation of transcripts

encoding enzymes required for cholesterol degradation (Lai

et al., 2021). Furthermore, the Mtb-specific cholesterol

byproduct 4-cholesten-3-one is increased in patients with

active tuberculosis, suggesting that Mtb actively metabolizes

Samuels et al. 10.3389/fcimb.2022.958555

Frontiers in Cellular and Infection Microbiology frontiersin.org03

https://doi.org/10.3389/fcimb.2022.958555
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


cholesterol during infection (Chandra et al., 2022). These data

indicate that Mtb carbon metabolism is shifted in the host to

preferentially rely on lipids over carbohydrate carbon sources.

The preferential use of lipids by Mtb during infection is

further supported by experiments using Mtb mutants in

metabolic pathways, which demonstrate that Mtb requires the

glyoxylate shunt to colonize mice and requires cholesterol

uptake and catabolism to maintain infection (Muñoz-Elıás and

Mckinney, 2005; Pandey and Sassetti, 2008; Nesbitt et al., 2010).

This is consistent with data showing that gluconeogenesis, which

allows TCA cycle intermediates to be used to generate essential

cell wall precursors, is more important than glycolysis for Mtb

growth in the host. While a mutant that lacks hexose kinase

activity, the first step of glycolysis, is only slightly attenuated

later during infection (Marrero et al., 2013), mutants lacking

enzymes required for gluconeogenesis are unable to grow in

mice at all (Marrero et al., 2013; Puckett et al., 2014; Trujillo

et al., 2014; Ganapathy et al., 2015). These findings demonstrate

that Mtb relies on gluconeogenic substrates, such as lipids, for

growth during infection, rather than sugars or glycerol.

Therefore, the host environment, which induces a higher

proportion of drug tolerant Mtb, also leads to a shift in Mtb

metabolic requirements compared to unstressed in vitro

culturing conditions.

The impact of lipid metabolism in
Mtb on drug tolerance

Triacylglycerols (TAG) and cholesterol are abundant lipid

carbon sources available to Mtb during infection (Kim et al.,

2010). Mtb liberates free fatty acids from TAG Deb et al.,2006,

which are oxidized to acetyl-CoA, and degrades cholesterol

through a series of reactions to pyruvate, acetyl-CoA, succinyl-

CoA, and propionyl-CoA (Wilburn et al., 2018). The majority of

cholesterol degradation products can directly feed into the TCA

cycle or serve as substrates for gluconeogenesis. The exception is

propionyl-CoA, which is toxic to the bacteria if it is not

metabolized further (Munoz-Elias et al., 2006; Eoh and Rhee,

2014). Propionyl-CoA can be coupled with oxaloacetate through

the methylcitrate cycle (MCC) to be detoxified to succinate and

FIGURE 1

Core central carbon metabolism pathways that impact Mtb drug sensitivity. Carbon sources that feed into Mtb central carbon metabolism are
listed in blue boxes. Carbon flowing down the pathway from glucose toward pyruvate, indicated by the downward pointing arrows, is glycolysis,
whereas the reverse pathway, indicated by upward pointing arrows, is gluconeogenesis (green background). Even-chain lipids feed into the TCA
cycle (red background). Odd-chain lipids, cholesterol, and branched-chain amino acids feed into the MCC and methylmalonyl-CoA pathways
(yellow background). Genes discussed in the text that impact antibiotic sensitivity are indicated on the pathway.
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pyruvate (Figure 1) (Munoz-Elias et al., 2006; Eoh and Rhee,

2014). However, the MCC is dispensable for infection (Munoz-

Elias et al., 2006), which may be because the environment

encountered in the host enables propionyl-CoA detoxification

through two alternative pathways. Specifically, the presence of

exogenous even-chain fatty acids would enable Mtb to detoxify

propionyl-CoA through incorporation into methyl-branched

lipids, and access to vitamin B12 would enable detoxification

of propionyl-CoA to succinyl-CoA (Jain et al., 2007; Savvi et al.,

2008; Lee et al., 2013). Therefore, access to lipids or to vitamin

B12 may obviate the need for the MCC during growth in the

host even though the bacteria are catabolizing cholesterol.

Metabolism of cholesterol and the production of propionyl-

CoA are associated with increasedMtb drug tolerance (Figure 2).

Mtb grown in media containing cholesterol as a sole carbon

source or containing mixed carbon sources including propionate

exhibits decreased sensitivity to rifampicin (Koh et al., 2022).

Exposure to propionate also activates PrpR, a regulator that

induces expression of the prpDC operon, which encodes MCC

enzymes PrpD and PrpC (Figure 1) (Masiewicz et al., 2012).

Mutants with reduced or no PrpR activity, which are presumed

to accumulate propionyl-CoA due to decreased expression of

prpDC, exhibit slower growth in media containing propionate

and increased tolerance to isoniazid, rifampicin, and ofloxacin

(Hicks et al., 2018). Supplementing the prpR mutants with

vitamin B12 enables shunting of propionyl-CoA to succinyl-

CoA via methylmalonyl-CoA and is sufficient to rescue the

growth defect in propionate media and reverse the drug

tolerance of the mutants, supporting that accumulation of

MCC intermediates contributes to drug tolerance (Hicks et al.,

2018). The prpR mutants are similarly less sensitive to killing by

antibiotics during in vitro infection of human macrophages

(Hicks et al., 2018). Consistent with a role for PrpR-mediated

regulation of the MCC in drug tolerance, mutations in prpR

were enriched in drug resistant clinical isolates (Hicks et al.,

2018). Since prpR mutations are associated with but do not

confer drug resistance, it is possible these mutations promote a

drug tolerance phenotype during infection, allowing the bacteria

to survive and subsequently acquire drug resistance mutations.

Consistent with decreased MCC activity promoting drug

tolerance, knocking down expression of Icl1, which performs

the final enzymatic step in the MCC, leads to accumulation of

MCC intermediates in Mtb cultured in propionate media and

causes nearly 10-fold less killing by isoniazid (Quinonez et al.,

2022). In addition, exposure of Mtb to exogenous

methylisocitrate, an MCC intermediate, is sufficient to

FIGURE 2

Role of Central Carbon Metabolism in Promoting Antibiotic Tolerance. Hypoxic stress, cholesterol metabolism, glycerol assimilation, low pH,
and shunting of the TCA cycle via the glyoxylate shunt can each impact antibiotic tolerance of Mtb. Hypoxia: Exposure of Mtb to hypoxia leads
to decreased levels of phosphoenolpyruvate (PEP) and an accumulation of triacylglycerol (TAG), both of which lead to an increase in drug
tolerance. Cholesterol: Cholesterol is catabolized to acetyl-CoA, succinyl-CoA, pyruvate, and propionyl-CoA. Propionyl-CoA is detoxified
through multiple pathways, including assimilation into branched chain lipids, conversion to succinyl-CoA through a vitamin B12-dependent
pathway, or through the methylcitrate cycle (MCC) in which methylisocitrate (2-MIC) is an intermediate. Supplementation with cholesterol,
propionate, or 2-MIC promotes antibiotic tolerance, and mutant strains that accumulate elevated levels of propionyl-CoA or 2-MIC are more
tolerant to antibiotics. Glycerol Assimilation: Glycerol is assimilated into glycolysis and gluconeogenesis through phosphorylation by GlpK. Loss
of glycerol catabolism leads to increased drug tolerance, suggesting that glycerol assimilation antagonizes antibiotic tolerance. Furthermore,
Mtb in low pH is unable to efficiently catabolize glycerol, likely due to defects in glycolysis, resulting in increased antibiotic tolerance. Glyoxylate
Shunt Activity: Mutants that lack the glyoxylate shunt are more sensitive to antibiotics, suggesting that rerouting carbon through the glyoxylate
shunt promotes antibiotic tolerance.
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decrease killing by isoniazid (Quinonez et al., 2022). Collectively,

these studies suggest that accumulation of propionyl-CoA or

MCC intermediates leads to antibiotic tolerance.

Propionyl-CoA accumulation slows Mtb growth and slow

growth rate has been associated with drug tolerance (Wayne and

Hayes, 1996; Baek et al., 2011). Therefore, reduced growth rate

could explain how cholesterol metabolism decreases antibiotic

sensitivity. Another possible contributor to cholesterol-induced

drug tolerance could be the changes to cell wall lipids that occur

during propionyl-CoA metabolism. Growth on propionyl-CoA-

generating carbon sources causes Mtb to synthesize branched

lipids such as phthiocerol dimycocerosate (PDIM) and

sulfolipid-1 with increased chain lengths (Jain et al., 2007;

Yang et al., 2009; Griffin et al., 2012; Borah et al., 2021; Koh

et al., 2022). PDIM is a major structural lipid intercalated in the

outerMtb envelope and has been shown to create a barrier that is

particularly impenetrable to polar molecules (Wang et al., 2020).

Thus, it is possible that alterations to PDIM chain length during

growth on cholesterol or propionate may impact the

permeability of the Mtb cell envelope, which could explain the

altered antibiotic sensitivity.

Mtb metabolism during hypoxia and
the association with drug tolerance

During exposure to hypoxia,Mtb exhibits decreased levels of

phosphoenolpyruvate (PEP) (Figure 2), an intermediate in

glycolysis and gluconeogenesis, which is likely caused by

decreased synthesis of PEP from oxaloacetate (Lim et al.,

2021) (Figure 1). Supplementing hypoxic Mtb with exogenous

PEP enhances killing by isoniazid (Lim et al., 2021), suggesting

that the decrease in PEP during hypoxia contributes to hypoxia-

induced drug tolerance. Notably, supplementation with pyruvate

does not have the same effect, suggesting that this effect is

specific for PEP, and access to additional carbon alone is not

sufficient to sensitizeMtb to isoniazid. PEP supplementation also

promotes Mtb sensitivity to D-cycloserine, a cell wall

biosynthesis inhibitor, in aerated conditions, suggesting that

the effect of PEP on drug tolerance is not specific for hypoxia

(Lim et al., 2021). In addition to feeding into glycolysis and/or

gluconeogenesis, PEP can also feed into the TCA cycle by

conversion into oxaloacetate, can serve as a substrate for

synthesis of the peptidoglycan precursor N-acetylmuramic

acid, and is a substrate for the shikimate pathway (Lim et al.,

2021). Which of these pathways contributes to the PEP-

dependent drug sensitivity is still unknown.

During hypoxia, there is also decreased flux through several

NAD(P)H-generating steps of the TCA cycle, likely to prevent

production of NAD(P)H in conditions that these cofactors

cannot be re-oxidized. This altered flux is caused by re-routing

of acetyl-CoA to fatty acid and subsequent TAG biosynthesis

(Baek et al., 2011), increased glyoxylate shunt activation (Eoh

and Rhee, 2013), and reversal of several steps in the TCA cycle to

generate succinate from oxaloacetate (Watanabe et al., 2011;

Zimmermann et al., 2015). Deletion of the TAG biosynthesis

gene tgs1 or overexpression of the citrate synthase gene citA

prevented re-rerouting of acetyl-CoA to fatty acid and TAG

biosynthesis during hypoxia and iron starvation (Baek et al.,

2011). These mutants failed to arrest growth and exhibited

enhanced sensitivity to isoniazid, streptomycin, ciprofloxacin,

and ethambutol in hypoxic and iron starvation conditions (Baek

et al., 2011). The Dtgs1 and citA-overexpressing strains were also

significantly more sensitive to killing by isoniazid in a mouse

model of infection, supporting that the re-routing of acetyl-CoA

to fatty acid biosynthesis promotes drug tolerance (Figure 2)

(Baek et al., 2011). Redirecting carbon away from the TCA cycle

can also promote drug tolerance in aerated conditions. The

glyoxylate shunt enables bypassing of two NAD(P)H- and CO2-

generating steps of the TCA cycle. In addition to promoting

growth on lipids by conserving carbon, the glyoxylate shunt may

also decrease the generation of NAD(P)H during growth on

glucose, preventing oxidative stress caused by electron transport

chain activity (Nandakumar et al., 2014). A Dicl1/icl2 double

mutant, which lacks the first step of the glyoxylate shunt,

exhibits >10-fold enhanced killing by isoniazid, rifampicin, or

streptomycin compared to the wild-type strain during aerobic

growth on glucose (Nandakumar et al., 2014). Therefore,

diverting carbon through the glyoxylate shunt can promote

Mtb drug tolerance (Figure 2), likely by alleviating oxidative

stress caused by TCA cycle and downstream electron transport

chain activity. These studies demonstrate that by re-routing

carbon away from the TCA cycle, Mtb becomes more tolerant

to antibiotics.

Glycerol metabolism and low
pH-induced drug tolerance

Mtb is unable to grow on glycerol as the sole carbon

source in low pH (Baker et al., 2014). This is likely due to

inefficient assimilation of glycerol into lower glycolysis

caused by decrea sed g lyce ra ldehyde-3 -phospha te

dehydrogenase activity in low pH (Gouzy et al., 2021)

(Figure 1). This nonpermissive growth condition results in

acidic pH-induced drug tolerance (Figure 2), whereas growth

on pyruvate, which enables Mtb growth in low pH, prevents

the pH-induced drug tolerance (Baker and Abramovitch,

2018) . Glycerol i s ass imi lated into glycolys is and

gluconeogenesis through phosphorylation by GlpK and

subsequent conversion to DHAP (Figure 1). In media

containing glycerol and other carbon sources, a DglpK
mutant exhibited decreased sensitivity to isoniazid and

rifampicin compared to wild-type Mtb, further supporting
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that decreasing glycerol metabolism increases drug tolerance

(Bellerose et al., 2019; Safi et al., 2019). glpK is dispensable in

the mouse model of Mtb infection, suggesting that glycerol is

not a primary carbon source in mice (Pethe et al., 2010).

However, free glycerol is detectable in infected mouse lungs,

suggesting Mtb would have access to glycerol in the host (Safi

et al., 2019). Furthermore, a DglpK mutant survived better

than wild-type Mtb during treatment with pyrazinamide or

any drug combination involving pyrazinamide, but not

during isoniazid or rifampicin monotherapy, in a mouse

model of infection (Bellerose et al., 2019). Therefore, the

inability to metabolize glycerol during infection in mice

promotes Mtb drug tolerance specifically to pyrazinamide.

Since the glpk mutant does not exhibit increased tolerance to

pyrazinamide in vitro, the pyrazinamide-specific tolerance in

the glpK mutant is dependent upon the microenvironment

within the host (Bellerose et al., 2019). Multiple groups have

also identified glpK mutations in Mtb clinical isolates

(Bellerose et al., 2019; Safi et al., 2019; Vargas and Farhat,

2020), and in some datasets these mutants are more

commonly found in drug resistant isolates than in drug

sensitive isolates (Bellerose et al., 2019; Safi et al., 2019).

The glpK mutations are associated with but do not confer

drug resistance themselves. However, if these mutations

promote drug tolerance, they may enable Mtb to survive

during antibiotic therapy, extending the time wherein Mtb

may acquire a drug resistance mutation.

Drug tolerance is often conditional

In this review, we have highlighted studies demonstrating

that Mtb undergoes changes in carbon metabolism in response

to host derived stresses that render Mtb more tolerant to

antibiotics. However, the observed drug tolerance is rarely

pan-antibiotic. For example, in hypoxic conditions, while

Mtb becomes extremely tolerant to some antibiotics,

including isoniazid, rifampicin, and streptomycin, it remains

susceptible to antibiotics that target ATP synthase, and in some

cases becomes more sensitive to killing by ATP synthase

inhibitors and other antibiotics that target the electron

transport chain (Koul et al., 2008; Rao et al., 2008;

Gengenbacher et al., 2010; Sarathy et al., 2018; Lee et al.,

2021). Furthermore, in an experiment to identify Mtb

mutants with altered sensitivity to either isoniazid,

rifampicin, pyrazinamide, or ethambutol during mouse

infection, the majority of mutants identified only exhibited

significantly altered susceptibility to a single antibiotic

(Bellerose et al., 2020). Therefore, antibiotic tolerance can be

conditional and specific to individual antibiotics.

Metabolic changes in Mtb that result in increased drug

tolerance are often correlated with growth arrest, including

toxicity mediated by propionyl-CoA or MCC intermediate

accumulation (Hicks et al., 2018; Quinonez et al., 2022),

hypoxia-induced TAG accumulation (Baek et al., 2011), and

decreased glycerol metabolism in low pH conditions (Baker

et al., 2014). However, there is also data, particularly in

infection models, that suggests growth arrest is not universally

associated with antibiotic tolerance (Raffetseder et al., 2014;

Bellerose et al., 2019, Bellerose et al., 2020). Specifically, the

DglpK mutant had no fitness defect in mice yet had altered

antibiotic susceptibility to pyrazinamide (Bellerose et al., 2019).

In addition, although there is a correlation between mutants that

were less sensitive to isoniazid and mutants that had a fitness

defect in mice, this association was not observed with mutants

that were less sensitive to the other antibiotics (Bellerose

et al., 2020).

Conclusion

Unders tanding the mechanisms by which Mtb

metabolism impacts tolerance to specific antibiotics,

particularly in the host environment, could lead to novel

therapeutic approaches. We have highlighted several studies

that demonstrate it is possible to manipulate metabolic

pathways to reverse tolerance to a number of frontline

antibiotics. For example, the Mtb Dtgs1 mutant is more

suscept ib le to ki l l ing by isoniaz id , r i fampic in , or

streptomycin during stress and in mice (Baek et al., 2011).

This suggests that developing inhibitors of TAG biosynthesis

could be a viable approach to enhance the efficacy of these

antibiotics in the clinic. Additionally, supplementation with

exogenous PEP was sufficient to enhance killing of hypoxic

Mtb by isoniazid (Lim et al., 2021). Thus, changing the

metabolic state of Mtb can potentiate killing by frontline

antibiot ics . Our review focused on central carbon

metabolism, however these pathways are intricately

connected to other metabolic networks, such as amino acid

biosynthesis. De novo biosynthesis of amino acids from the

TCA cycle and other pathways is essential for Mtb virulence

and recent studies have shown that inhibiting amino acid

biosynthesis is a promising approach for therapeutic

development (Wellington et al., 2017). Although some

metabolic enzymes may not be druggable targets due to

shared structural homology with the mammalian homolog

or difficulty in identifiying small molecules that effectively

inhibit the enzyme, further elucidation of which metabolic

pathways are essential during infection and how specific
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pathways contribute to drug tolerance will provide new

opportunities for exploration.
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