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a b s t r a c t 

Introduction: The Centiloid scale was developed to harmonise the quantification of 𝛽-amyloid (A 𝛽) PET images 
across tracers, scanners, and processing pipelines. However, several groups have reported differences across trac- 
ers and scanners even after centiloid conversion. In this study, we aim to evaluate the impact of different pre and 
post-processing harmonisation steps on the robustness of longitudinal Centiloid data across three large interna- 
tional cohort studies. 
Methods: All A 𝛽 PET data in AIBL ( N = 3315), ADNI ( N = 3442) and OASIS3 ( N = 1398) were quantified using 
the MRI-based Centiloid standard SPM pipeline and the PET-only pipeline CapAIBL. SUVR were converted into 
Centiloids using each tracer’s respective transform. Global A 𝛽 burden from pre-defined target cortical regions in 
Centiloid units were quantified for both raw PET scans and PET scans smoothed to a uniform 8 mm full width half 
maximum (FWHM) effective smoothness. For Florbetapir, we assessed the performance of using both the standard 
Whole Cerebellum (WCb) and a composite white matter (WM) + WCb reference region. Additionally, our recently 
proposed quantification based on Non-negative Matrix Factorisation (NMF) was applied to all spatially and SUVR 
normalised images. Correlation with clinical severity measured by the Mini-Mental State Examination (MMSE) 
and effect size, as well as tracer agreement in 11 C-PiB- 18 F-Florbetapir pairs and longitudinal consistency were 
evaluated. 
Results: The smoothing to a uniform resolution partially reduced longitudinal variability, but did not im- 
prove inter-tracer agreement, effect size or correlation with MMSE. Using a Composite reference region for 18 F- 
Florbetapir improved inter-tracer agreement, effect size, correlation with MMSE, and longitudinal consistency. 
The best results were however obtained when using the NMF method which outperformed all other quantification 
approaches in all metrics used. 
Conclusions: FWHM smoothing has limited impact on longitudinal consistency or outliers. A Composite reference 
region including subcortical WM should be used for computing both cross-sectional and longitudinal Florbetapir 
Centiloid. NMF improves Centiloid quantification on all metrics examined. 
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1. Introduction 

The Centiloid (CL) scale was developed to harmonise all 𝛽− amyloid 
(A 𝛽) PET tracer quantification into a single universal scale ( Klunk et al., 
2015 ). In this scale, CL = 0 is anchored to group average of young 
healthy controls, and CL = 100 to group average of mild Alzheimer’s 
disease (AD) patients. While the Centiloid scale was originally only 
calibrated for 11 C-PiB (PiB), it describes a framework where different 
tracers and methods could be calibrated. The prescribed quantification 
pipeline based on SPM has since been calibrated for all F-18 A 𝛽 trac- 
ers, namely 18 F-Florebetaben (FBB) ( Rowe et al., 2017 ), 18 F-NAV4694 
(NAV) ( Rowe et al., 2016 ), 18 F-Flutemetamol (FLUTE) ( Battle et al., 
2018 ) and 18 F-Florbetapir (FBP) ( Navitsky et al., 2016 ). These data were 
then made publicly available 1 so that other quantification approaches 
could be calibrated. This was later performed using different approaches 
including a number of MR-based methods such as PMOD ( Battle et al., 
2018 ; Hanseeuw et al., 2021 ), FSL ( Battle et al., 2018 ), FreeSurfer 
( Royse et al., 2021 ; Su et al., 2018 ), and SPM5 ( Schwarz et al., 2018 ), 
as well as PET-only methods including CapAIBL ( Bourgeat et al., 2018 ). 
We have also seen non-traditional quantification methods based on im- 
age decomposition being also calibrated into Centiloids ( Bourgeat et al., 
2021 ). 

While the Centiloid scale provides a good framework for harmon- 
ising across tracers and processing pipelines, there could still be sig- 
nificant residual non-biological variability, which could be attributable 
to heterogeneity in data collection, preprocessing framework or prepro- 
cessing steps. Such heterogeneity could hide subtle longitudinal changes 
which are important to improve our understanding of the progression of 
AD and its risk factors. These could also hamper the detection of small 
changes in anti-A 𝛽 therapy and clinical trials. It is therefore important to 
evaluate existing quantification and harmonisation strategies in a large 
multi-centre datasets to quantify their impact on longitudinal variability 
of A 𝛽 over time. 

One of the main source of variability is the use of different PET scan- 
ners and reconstruction methods, which is inevitable in multi-site stud- 
ies such as AIBL or ADNI. Differences in scanner geometry, underlying 
technology and reconstruction algorithms can lead to large differences 
in quantification ( Aide et al., 2017 ; Joshi et al., 2009 ). Early work on 
scanner harmonisation was led by the work of Joshi et al. (2009) based 
on the scan of a Hoffman phantom used to estimate the amount of 
smoothing required to bring all the data to a uniform resolution. This 
method has been employed in ADNI as part of their standard pre- 
processing pipeline for all PET images and is often included in clinical 
studies and trials. While the initial validation was performed on FDG, its 
impact on A 𝛽 image quantification acquired on different scanners has 
not been fully assessed. 

The choice of reference region can also impact the reliability of A 𝛽

quantification. While the whole cerebellum (WCb) is the prescribed ref- 
erence region as it was shown to lead to the highest effect size between 
young controls and mild AD, its stability over time for each tracer has 
not been fully assessed. Previous work using the standardised uptake 
ratio (SUVR) has shown that WCb is suboptimal for FBP in longitu- 
dinal studies ( Landau et al., 2015 ) and a composite region of subcor- 
tical white matter plus WCb (WM + WCb) led to improved longitudi- 
nal consistency and a rate of increase more congruous with quantifica- 
tion obtained using PiB. While including WM in the reference region 
is believed to improve quantification by counteracting the effects of 
the WM spilling into the cortical target regions ( López-González et al., 
2019 ), there remains concerns with including WM in a reference due 
its non-specific binding being significantly different from the cortex GM 

( Fodero-Tavoletti et al., 2009 ) and its lower tracer uptake in regions of 
WM injuries ( Pietroboni et al., 2022 ) and demyelination ( Moscoso et al., 
2022 ). This composite reference region has been widely used for SUVR 

1 http://www.gaain.org/centiloid-project . 

quantification, but has only recently been cross-sectionally evaluated 
for Centiloids ( Royse et al., 2021 ). 

Lastly, novel quantification methods which do not rely on prede- 
fined regions of interest have been proposed. These methods use im- 
age decomposition to separate specific from non-specific binding, as 
part of the A 𝛽 quantification. These methods all show good correla- 
tion with standard CL or SUVR, while improving the separation be- 
tween Healthy Controls (HC) and AD patients ( Pegueroles et al., 2021 ; 
Whittington and Gunn, 2019 ), increasing the correlation with cogni- 
tive measures ( Liu et al., 2021 ) and reducing longitudinal variabil- 
ity ( Bourgeat et al., 2021 ; Whittington and Gunn, 2019 ). These meth- 
ods include Non-negative Matrix Factorisation (NMF) ( Bourgeat et al., 
2021 ), AmyQ ( Pegueroles et al., 2021 ) and A 𝛽-index ( Leuzy et al., 2020 ) 
which both rely on a PCA decomposition, Amyloid Load (Amyloid IQ ) 
( Whittington and Gunn, 2019 ) which uses an image-base regression, 
and a more recent deep-learning based method which learns to separate 
the specific from the non-specific binding based on A 𝛽- scans ( Liu et al., 
2021 ). To our knowledge, our previous work on NMF was the only ap- 
proach to explicitly enforce consistency between the decomposition of 
each tracer, and attempt to implicitly reduce the variability due to the 
use of different scanners. Moreover, it was validated on all five A 𝛽 trac- 
ers currently in use and assessed in terms of longitudinal consistency in 
the multi-tracer/multi-scanner AIBL study. The validation however did 
not assess the effect of the uniform resolution, the importance of the 
choice in the reference region or its effectiveness in other studies. 

Other work on PET harmonisation includes a recent deep learning 
approach ( Shah et al., 2022 ) which allows to transform an image from 

an Amyloid tracer (FBP) to another Amyloid tracer (PiB). While this 
approach showed promising results, a major limitation is the need for 
a large number of paired scans to train the model ( N = 80 used in the 
paper). The ComBat harmonisation method which is widely used in MR 

scanner harmonisation has also been recently used for FDG PET SUV 

harmonisation ( Orlhac et al., 2022 ). However, to our knowledge, it has 
not been evaluated for Amyloid PET harmonisation. 

In this work, we aim to assess the impact of smoothing to a uniform 

resolution, choice of the reference region and choice of the quantifica- 
tion method on the harmonization of the A 𝛽 PET data in three large 
longitudinal cohorts, namely AIBL, ADNI and OASIS3 as part of the 
Alzheimer’s Dementia Onset and Progression in International Cohorts 
(ADOPIC) study. We first evaluate the impact of smoothing the PET data 
to a uniform 8mm resolution. We then look at the stability of the ref- 
erence region for each tracer and evaluate the impact of the choice of 
reference region for FBP. Lastly, we compare the quantification using 
the standard SPM8 pipeline and the more advanced NMF quantification 
approach. Since not all subjects can undergo an MRI, we also evaluated 
the impact of all these harmonisation strategies on our PET-only quan- 
tification method through CapAIBL, and its NMF extension on the same 
subset of subjects. We first compared the corresponding Centiloid values 
cross-sectionally to evaluate their impact on the quantification, before 
evaluating their consistency in longitudinal data. 

2. Methods 

2.1. Data 

Data used in this study combined three of the largest and publicly 
available imaging studies in AD, namely AIBL ( Ellis et al., 2009 ), ADNI 
( Petersen et al., 2010 ) and OASIS3 ( LaMontagne et al., 2019 ). We ex- 
tracted all A 𝛽 PET data and corresponding T1W MRI acquired before 
the 31st of December 2020 in AIBL (N images = 3315, N subjects = 1345), 
ADNI (N images = 3516, N subjects = 1648) and OASIS3 (N images = 1398, 
N subjects = 748) for a total of 8229 PET scans from 3741 participants. 
AIBL A 𝛽 PET scans were acquired using one of five tracers (PiB, FBP, 
FBB, NAV, FLUTE), ADNI used three (PiB, FBP, FBB) and OASIS3 used 
two (PiB, FBP). The breakdown of the tracer’s distribution is given in 
Table 1 , showing that PIB is the most prevalent tracer in AIBL and OA- 
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Table 1 

Basic demographics and distribution of the number of scans per tracers used in each study. 

AIBL ADNI OASIS 

Number of scans per tracer PIB/FBP/FBB/NAV/FLUTE 1307/627/14/849/518 226/2901/389/-/- 958/440/-/-/- 
Subjects with change of tracer 41.1% 2.9% 34.0% 

Subjects with change of scanner 37.2% 18.2% 41.8% 

Number of scanner models 4 27 3 
Diagnosis at baseline (%) HC/MCI/AD/Others 66/19/13/2 40/44/16/1 83/0/11/6 
Age at baseline (Mean [Std]) HC/MCI/AD 72/73/74 [6/8/8] 73/73/75 [7/8/8] 69/-/77 [9/-/8] 
MMSE at baseline (Mean [Std]) HC/MCI/AD 28/26/22 [1/2/5] 29/28/23 [1/2/3] 29/-/25 [1/-/4] 
Number of timepoints (Mean [Std]) HC/MCI/AD 2.8/2.1/1.6 [1.7/1.4/0.9] 2.3/2.3/1.3 [1.3/1.4/0.5] 1.9/-/1.1 [0.8/-/0.3] 
Length of follow-up (Mean [Std]) in years 4.2/3.7/3.4 [2.9/2.5/2.1] 4.2/3.7/3.4 [2.4/2.3/2.2] 4.6/-/4.7 [2.3/-/2.5] 

SIS, whereas FBP is the most used tracer in ADNI. AIBL has the highest 
proportion of subjects who were scanned with 2 of more tracers (41%), 
followed by OASIS (34%) and ADNI (3%). OASIS has the highest pro- 
portion of subjects who were scanned on 2 or more scanners (42%), 
followed by AIBL (37%) and ADNI (18%). When only considering sub- 
jects with 3 or more timepoints, OASIS has the highest proportion of 
subjects who were scanned with 2 or more tracers (79%), followed by 
AIBL (69%) and ADNI (9%). Similarly, OASIS has the highest proportion 
of subjects who were scanned on 2 or more scanners (96%), followed by 
AIBL (57%) and ADNI (42%). PET scans in AIBL were performed using 
4 different scanners models, ADNI used 27 and OASIS used 3. 

Both AIBL and OASIS had a higher proportion of healthy controls at 
baseline, whereas ADNI had similar proportion of HC and MCI patients. 
OASIS has no MCI patients. There was no significant difference in Age 
at baseline in any diagnostic group between AIBL and ADNI. The HC in 
OASIS were significantly younger, and AD patients significantly older. 
There were significant differences in MMSE between subjects in each of 
the diagnostics groups for each of the 3 studies. The number of imaging 
timepoints was generally higher in the HC and MCI than in the AD group. 

Data used in the preparation of this article were partly obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic reso- 
nance imaging (MRI), positron emission tomography (PET), other bi- 
ological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). For up-to-date information, 
see www.adni-info.org. 

In OASIS, 120 subjects were scanned using both PiB and FBP within 
7 months (median = 8 days, max = 6.5months). Since we do not expect 
significant increase of A 𝛽 retention during this timeframe, this dataset 
was used to assess the pair-wise correlation between PiB CL and FBP 
CL. It should also be noted that most pairs were acquired on different 
scanners, as one of the PET imaging sessions was combined with the MRI 
visit by using the PET-MRI scanner in order to reduce participant burden 
and minimize missing data due to missed visits. FBP scans were acquired 
on 2 scanners (110 on BioGraph mMR, 10 on BioGraph 40) and PiB on 
3 (1 on BioGraph mMR, 117 on BioGraph 40 and 2 on ECAT HRplus). 
Therefore, while we only refer to these 2 datasets by the tracer used in 
the rest of the manuscript, any difference measured will contain both 
a tracer and scanner effect, which cannot be easily isolated from each 
other. For the longitudinal analysis, having scans in such close proxim- 
ity will artificially increase the error metrics, and is not representative 
of the actual timespan between different scans of the same subject in 
longitudinal studies. Therefore, for the longitudinal analysis, only one 
of each scan pairs was used. However, as we sought to evaluate our 
methods in heterogeneous datasets, for each OASIS subject with 2 trac- 
ers at the same timepoint, the tracer that was the least represented in all 
timepoints for a given participant was kept, therefore enforcing a larger 
variability in tracers used for each subject. 

2.2. Image analysis 

We evaluated two quantification methods, the SPM-based quantifi- 
cation pipeline, as prescribed by the Centiloid consortium ( Klunk et al., 
2015 ), and CapAIBL, a PET-only quantification method which has been 
previously calibrated to provide Centiloids ( Bourgeat et al., 2018 ). In 
the SPM-based quantification method, each T1W MR image is affinely 
registered to a T1 template. It is then segmented into GM, WM and CSF 
through an iterative expectation maximisation algorithm, which also 
includes bias field correction, and non-rigid alignment to the template. 
The corresponding PET image is then rigidly aligned to the T1W im- 
age and non-rigidly deformed using the T1 deformation field. Quantifi- 
cation of the PET is performed using the Centiloid masks in the nor- 
malised space ( Klunk et al., 2015 ). With CapAIBL, the PET image is first 
affinely registered to a mean PET template. An adaptive PiB-PET tem- 
plate is optimised to match the pattern of A 𝛽 retention in the image 
( Bourgeat et al., 2015 ). The optimal template is then used as a target 
for the non-rigid registration. Similar to SPM framework, the quantifi- 
cation is performed using the Centiloid masks in the normalised space. 
CL SPM and CL Cap will be used to refer to the Centiloids computed using 
the SPM pipeline, or the CapAIBL one. 

To further test the stability of each method when using different PET 

scanners, we evaluate their performances when using raw PET images, 
compared to PET images which have been smoothed to a uniform point 
spread function. This is achieved using the methodology of Joshi et al. 
(2009 ), which is used in ADNI as part of their standard pre-processing 
pipeline. It requires the acquisition of a Hoffman phantom on each 
PET scanner. The scans are co-registered to a digital version of Hoff- 
man phantom, which is smoothed using a 8 mm FWHM Gaussian filter. 
Each co-registered scan is smoothed with Gaussian filters of increasing 
FWHM. For each scanner, the FWHM which minimises the difference be- 
tween the smoothed physical Hoffman and the smoothed digital one is 
then used to smooth all PET scans acquired on this scanner. This proce- 
dure was performed for both AIBL and OASIS using Hoffman phantoms 
scanned on each of the scanners used in each study. For ADNI, the pre- 
processed PET scans which follow the exact same preprocessing and are 
available on the LONI website were used. Raw CL and Uni CL will be used 
to refer to the CL computed using Raw images and images smoothed to 
a uniform resolution, respectively. 

To assess the stability of the reference region, the subset of PET im- 
ages from AIBL and ADNI which had valid SUV information in their 
DICOM files were scaled into SUV, so that their reference region mean 
SUV could be computed (We did not have access to the raw DICOMs for 
OASIS, and could not use them in this part of the analysis). To assess 
the impact of the choice of reference region for the FBP scans, two ref- 
erence regions were evaluated, the whole cerebellum, and a composite 
reference region, as proposed by Landau et al. (2015 ). The composite 
reference region includes subcortical white matter as well as the whole 
cerebellum. To minimize the contribution from voxels with the partial 
volume effects at the grey-white matter boundary, the white matter seg- 
mentation is first smoothed using an 8 mm Gaussian kernel and then 
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thresholded at 70% of its maximum to erode the white matter mask 
away from grey matter ( Landau et al., 2015 ), before being combined 
with the Centiloid whole cerebellum mask. For SPM, the WM segmenta- 
tion from each corresponding T1W MR image was used to compute the 
composite mask. In CapAIBL, the WM segmentation of the T1 template, 
matching the PET template was used to build the composite mask. This 
means that for SPM, each scan used a subject-specific composite mask, 
whereas in CapAIBL, all scans used the same mask. CL WCb and CL Comp 
will be used to refer to the CL computed using the whole cerebellum as 
the reference region, or the composite WM region. 

Lastly, the recently proposed NMF-based Centiloid quantification 
( Bourgeat et al., 2021 ) was evaluated. It relies on a decomposition of 
each PET image into its specific and non-specific binding components 
based on a 2 components NMF decomposition. The model used for the 
decomposition were built on the Centiloid calibration dataset, and the 
decomposition was performed so that the specific binding components 
of each tracer would match in the calibration paired data, therefore en- 
forcing consistency across tracers. The method requires the PET images 
to be spatially normalised to a standard space, and SUVR normalised. 
While we’ve previously calibrated using SPM normalised images us- 
ing WCb, we have here recalibrated the method for FBP images nor- 
malised using the Composite reference region, as well as PET images 
spatially normalised using the PET-only method CapAIBL. We will refer 
to the SPM and CapAIBL based NMF quantification as CL SPM + NMF and 
CL CapAIBL + NMF . 

Each pipeline and reference region were calibrated to the Centiloid 
scale following the level-2 calibration method described in the original 
Centiloid paper ( Klunk et al., 2015 ). Since the original Centiloid calibra- 
tion data from GAAIN do not include Hoffman phantoms, the calibration 
scans could not be smoothed to a uniform resolution. Therefore, there 
was no difference in the equations used to convert SUVR into Raw CL and 
Uni CL. Unless specified otherwise, all analysis were performed using all 
available data from all 3 studies. 

2.3. Statistical analysis 

2.3.1. Cross-sectional analysis 

The effect of the uniform resolution smoothing on the Centiloid 
quantification compared to the raw data was first assessed cross- 
sectionally within each pipeline by looking at any bias in the linear 
equation between the CL values before and after smoothing to a uni- 
form resolution and their correlation assessed using the coefficient of 
determination. The stability of the reference region SUV for each tracer 
against time was evaluated using a t-test, while controlling for the ef- 
fect of multiple scanners. The impact of the reference region on cross- 
sectional Centiloid value was similarly assessed by looking at any bias 
in the linear equation and the correlation assessed using the coefficient 
of determination and ICC. 

Using the paired data in OASIS, we also assessed the correlation be- 
tween PIB and FBP using the coefficient of determination, and the cor- 
relation equation to identify any bias. Cohen’s Kappa score was used to 
measure the inter-tracer agreement (PiB vs FBP) when classifying high 
(A 𝛽+ ) and low (A 𝛽-) scans based on a 20CL threshold. 

To verify that the derived CL values are biologically meaningful, the 
strength of its correlation with MMSE was assessed using the coefficient 
of determination. The effect size between all baseline HC and AD was 
assessed using Cohen’s d . 

For all inter-tracer and pre-processing comparison, ICC was also com- 
puted to assess agreement. 

2.3.2. Longitudinal analysis 

For each subject, the rate of change for each method was defined as 
the slope of the CL value compared to the participant’s age at the time 
of the scan and was reported in CL/year. Following the analysis done in 
Bourgeat et al. (2021 ), the longitudinal consistency (which we here de- 
fine as the expectation that all timepoints follow a similar slope/trend) 

was first assessed using a linear regression of all available timepoints 
and measuring the fitting error, assuming the working hypothesis that 
A 𝛽 accumulation is linear for each subject over the time-course of the 
study. We also measured the number of outliers, defined as successive 
timepoints having changes in CL/year larger or smaller than what is ob- 
served in 95% of the cases when a single tracer/single scanner is being 
used. The thresholds were computed using all 3 cohorts, but separately 
for the A 𝛽- and A 𝛽+ groups. A 𝛽+ was defined based on a threshold of 
20 CL on the SPM CL WCb Raw at baseline. Lastly, given that there is 
no expectations of linearity between the rate of CL change compared to 
baseline CL, their correlation was measured using the Spearman 𝜌. 

Linear fit and correlations were computed using python’s scipy 
(1.5.4). Cohen’s Kappa was computed using python’s sklearn (0.22.2). 
ICC was computed using python’s pingouin (0.3.12). 

3. Results 

3.1. Studies characteristics 

Studies and population characteristics are presented in Table 1 . 

3.2. Cross-sectional comparison 

3.2.1. FWHM smoothing 

The FWHM smoothing kernel (in mm) for each study was as follow 

(XY: mean [min,max], Z: mean [min,max]): AIBL (XY: 4.9 [0.5,7.0], Z: 
7.1 [4.0,8.0]), ADNI (XY: 4.5 [2.0,6.0], Z: 3.9 [2.0,6.0]), OASIS (XY: 6.2 
[5.5,6.5], Z: 6.8 [6.5,7.0]). 

The ICC and R 

2 between Raw CL and Uni CL for the different analysis 
methods is presented in Fig. 1 . The WCb was used as the reference region 
for all analysis. The ICC between Raw CL and Uni CL was high for all quan- 
tification methods, and comparable between SPM (ICC = 0.999) and 
CapAIBL (ICC = 0.995). Using the FWHM smoothing led to an average 
reduction of CL by 3% when using SPM and 5% when using SPM + NMF 
compared to using Raw CL SPM . When using CapAIBL, the reduction in 
CL was more pronounced with 8% with CapAIBL alone, and 7% with 
CapAIBL + NMF compared to using Raw CL CapAIBL . 

Since the amplitude of FWHM smoothing is scanner specific, we also 
examined the variance in correction across scanners for each quantifica- 
tion method, with a smaller variance indicating that the correction has 
a similar effect on the quantification across all scanners, and a larger 
variance indicating a large range of effects across scanners. The individ- 
ual correlations segregated by scanners for each cohort are illustrated 
in Suppl. Fig. 1. The variance of slopes between Raw CL and Uni CL across 
scanners was significantly smaller ( p < 0.02) when using SPM (2.5 ∗ 10 − 4 ) 
compared to CapAIBL (3.2 ∗ 10 − 4 ), meaning that SPM had less variability 
between Raw CL and Uni CL across scanners. The variance of slopes was 
significantly higher ( p < 0.007) using SPM NMF (8.4 ∗ 10 − 4 ) compared 
to SPM. There was no significant difference in the variance of slopes 
between CapAIBL and CapAIBL NMF. 

Lastly, we checked if the smoothing could improve the concordance 
between different methods, especially given that the PET-only method 
might be more sensitive to the image appearance than MR-based one. 
There was however no change in the CL SPM and CL CapAIBL agreement 
using raw data, or uniformly smoothed ones, with both yielding an 
ICC = 0.987. 

3.3. Reference region 

To evaluate the temporal stability of the reference regions, we com- 
puted the correlation between the SUV in the reference region and age in 
the subset of AIBL and ADNI data with valid SUVs. In AIBL, there was no 
correlation between the WCb SUV and the subject’s age when using PiB 

( p = 0.56), NAV ( p = 0.30) or FLUTE ( p = 0.89). There was however a 
significant negative correlation when using FBP ( p = 0.049). This corre- 
lation disappeared when using the composite WM + WCb SUV ( p = 0.22). 
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Fig. 1. Scatter plot of the Centiloid computed 
using the raw data ( Raw CL) compared to the 
Centiloid computed using images smoothed to 
a uniform 8mm resolution ( Uni CL) quantified 
using SPM, CapAIBL and their NMF exten- 
sion. This shows the limited impact of uniform 

smoothing on CL quantification. 

In ADNI, there was no correlation between the WCb SUV and the sub- 
ject’s age in FBB ( p = 0.88), but there was a significant negative corre- 
lation in FBP ( p = 4 ∗ 10 − 10 ). The correlation was reduced but remained 
significant when using the composite WM + WCb SUV ( p = 3 ∗ 10 − 9 ). The 
scatter plots of SUV vs age are presented in Suppl. Fig. 2 for WCb and 
Suppl. Fig. 3 for the composite WM + WCb. 

The correlation between the CL WCb and CL Comp for the different anal- 
ysis methods is presented in Fig. 2 . The uniform images (8mm FWHM) 
were used for the analysis. While the ICC between CL WCb and CL Comp 
was high for all analysis methods, the agreement was much higher 
(ICC > 0.98) when using NMF, meaning that the NMF-based quantifica- 
tion appears to be more robust to the choice of reference regions. 

3.4. Head-to-head PiB-FBP comparison 

The scatter plots comparing the PiB CL and their matching FBP CL 
in the OASIS pairs are presented in Fig. 3 and the ICC between PIB and 
FBP for each method is presented in suppl Table 1. It shows a strong 
bias when using SPM or CapAIBL, with FPB CL being overestimated 
compared to PiB CL. Using the NMF reduces the bias and improves the 
agreement with a higher ICC. The agreement between PiB and FBP for 
the classification into a A 𝛽+ ( ≥ 20CL) and A 𝛽- scan ( < 20CL) was as- 
sessed using the Cohen’s Kappa coefficient for each method and pre- 
sented in Table 2 . Using the SPM and CapAIBL quantification methods, 
there was a greater agreement between PiB and FBP when FBP was nor- 
malised using the composite WM + WCb reference region. Using the uni- 
form resolution smoothing, however, did not improve the agreement 
compared to using the raw data (shown in Suppl Fig. 4). The highest 
agreements were obtained using the NMF approach, which were sys- 
tematically higher than their baseline methods. When using NMF, the 

choice of reference region had negligible effects on the agreement be- 
tween PiB and FBP. 

3.5. Correlation with MMSE and effect size 

Using all subjects at baseline, we measured the correlation of CL 
with MMSE using the coefficient of determination ( Table 3 ). There was 
no clear trend showing that the uniform smoothing improved the cor- 
relation. The correlation was however much stronger when using the 
composite WM + WCb reference region, and the NMF systematically im- 
proved the correlation compared to its baseline method. Similarly, we 
also computed the effect size between HC and AD at baseline ( Table 4 ), 
leading to the same findings. Similar trends were observed when the 
analysis was conducted in each cohort separately (supplementary Ta- 
bles 2 and 3). 

3.6. Longitudinal comparison 

3.6.1. Fitting error and number of outliers 

In the A 𝛽-, 95% of the changes between consecutive pairs of scans 
acquired on the same scanner and using the same tracer were between 
-6.33 and 8CL/Y. In the A 𝛽+ , those were between –16.6 and 20.13CL/Y. 

The percentage of outliers in the whole population, including partic- 
ipants with a change of scanner and/or tracer, showing changes outside 
that range in the A 𝛽- and A 𝛽+ are presented in Tables 5 and 6 , respec- 
tively. For all quantification methods, using images smoothed to a uni- 
form 8mm resolution led to a systematic reduction of outliers compared 
to using the raw data. With both SPM and CapAIBL, using the composite 
WM + WCb reference region for FBP also led to a systematic reduction 
of outliers compared to using the WCb. This was also the case in the 
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Fig. 2. Scatter plot of FBP CL WCb and CL Comp 

quantified using SPM, CapAIBL and their NMF 
extension. 

Fig. 3. Scatter plots of the PiB-FBP CL pairs, using different preprocessing and quantification methods. 
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Table 2 

Cohen’s Kappa score for the inter-tracer (PiB vs FBP) agreement for classifying A 𝛽+ and A 𝛽- scans based on a 20CL threshold. Higher 
Cohen’s Kappa means greater agreement. For each quantification method, the pre-processing leading to the highest agreement is 
shown as a bold value. The overall best agreement is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 0.73 0.89 0.69 0.88 
Uni CL WCb Yes WCb 0.68 0.94 0.74 0.89 
Raw CL Comp No Composite 0.87 0.91 0.85 0.91 
Uni CL Comp Yes Composite 0.78 0.92 0.81 0.85 

Table 3 

Correlation of CL with MMSE. For each quantification method, the pre-processing method leading to the highest R 2 is shown in bold. 
The overall highest R 2 is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 0.191 0.226 0.195 0.234 
Uni CL WCb Yes WCb 0.188 0.225 0.198 0.235 
Raw CL Comp No Composite 0.218 0.236 0.229 0.238 
Uni CL Comp Yes Composite 0.216 0.235 0.232 0.237 

Table 4 

Effect-size (ES) between HC and AD at baseline based on the CL value. For each quantification method, the pre-processing method 
leading to the highest effect size is shown in bold. The overall highest effect size is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 1.654 1.824 1.653 1.837 
Uni CL WCb Yes WCb 1.635 1.807 1.65 1.836 
Raw CL Comp No Composite 1.826 1.876 1.839 1.849 
Uni CL Comp Yes Composite 1.801 1.858 1.829 1.841 

Table 5 

Percentage of outliers in the A 𝛽- group with changes smaller than -6.33 CL/Y or larger than 8 CL/Y. For each quantification method, 
the pre-processing leading to the smallest number of outliers is shown as a bold value. The overall lowest percentage of outliers is 
underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region (FBP) SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 6.43 4.39 6.90 2.75 
Uni CL WCb Yes WCb 6.04 3.45 5.41 2.04 
Raw CL Comp No Composite 7.57 6.31 6.59 4.63 
Uni CL Comp Yes Composite 5.22 5.18 3.92 4.75 

Table 6 

Percentage of outliers in the A 𝛽+ group with changes smaller than –16.6 CL/Y or larger than 20.13CL/Y. For each quantification 
method, the pre-processing leading to the smallest number of outliers is shown as a bold value. The overall lowest percentage of 
outliers is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region (FBP) SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 6.41 2.07 7.69 2.78 
Uni CL WCb Yes WCb 5.70 1.64 5.41 1.99 
Raw CL Comp No Composite 2.64 1.64 3.56 1.92 
Uni CL Comp Yes Composite 2.21 1.21 2.56 1.35 

A 𝛽+ group when using the NMF. However, in the A 𝛽- group, the NMF 
gave the lowest number of outliers when the WCb was used. Overall, 
using the NMF led to a systematic reduction in the number of outliers 
in both groups, compared to their baseline method. Similar results were 
obtained with the mean standard error of the estimated slopes, with ta- 
bles shown in Suppl. Tables 4 and 5. This reduction of outliers when 
using the NMF is illustrated in Suppl. Figs. 5 and 6 showing the longi- 

tudinal plots of Centiloid value against age for both SPM and CapAIBL, 
respectively. 

3.7. Rate of change 

The rate of CL change vs baseline CL for each method, as well as the 
corresponding Spearman correlation coefficients are shown in Fig. 4 . 
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Fig. 4. Rate of change in CL/year against baseline CL value for CL measured using different preprocessing and quantification methods. 

The effect of the uniform smoothing on the correlation was negligeable 
(Suppl. Fig.7). The correlation with SPM and CapAIBL were stronger 
using the composite WM + WCb reference region for FBP, compared to 
using WCb. The correlations were the strongest using NMF, regardless 
of the pre-processing method or quantification pipeline used. The corre- 
lation using CapAIBL and CapAIBL + NMF were generally stronger than 
those obtained using SPM and SPM + NMF. 

4. Discussion 

In this paper, we have presented a comparison of different pre- and 
post-processing techniques applied for improving CL harmonisation. We 
assessed the use of FWHM resolution which was originally proposed to 
reduce inter-scanner differences in multi-centre studies, and later im- 
plemented in the default ADNI pre-processing pipeline. We then com- 
pared the use of different reference regions for FBP, deviating from the 
standard Centiloid protocol, but more in line with studies showing that 
the prescribed WCb reference region for Centiloid might not be ade- 
quate to observe longitudinal changes. These different pre-processing 
and normalisation were assessed with both the recommended SPM 

pipeline, and a PET-only quantification method that we previously cali- 
brated to Centiloids. Lastly, our recently proposed NMF method, which 
was previously shown to improve longitudinal consistency in AIBL 
was evaluated on both pipelines. We will discuss each of these assess- 
ments, before providing overall recommendations and limitations of this 
study. 

4.1. Uniform FWHM resolution 

Smoothing to a uniform FWHM resolution was originally proposed 
for FDG ( Joshi et al., 2009 ). While the authors showed a 20–50% re- 
duction of variability across scanners on phantom data, the results on 
real subjects were a lot more modest, with only 15–25% reduction of 
variability. Given that we lack same tracer, head-to-head comparison 
on different scanners, it can be hard to assess how much improvement 

the smoothing brings to the CL quantification. It is however useful to 
quantify the effect of the smoothing to uniform resolution on the CL 
quantification. In our cross-sectional analysis, the effect was modest, 
with only 3% difference with SPM and 8% with CapAIBL. The differ- 
ence between the 2 methods can be explained by the method used for 
the spatial normalisation. With SPM, the extra smoothing will have lit- 
tle to no impact on the accuracy of the co-registration between the PET 

and MRI, and therefore, most of the differences compared to using the 
raw data can be attributed to the change in signal intensity on the PET 

due to the extra smoothing. Since CapAIBL uses the PET directly for the 
non-linear registration to the template, it is more susceptible to biases 
due to changes in the PET appearance. As a result, the larger differ- 
ence between using the raw and smoothed data can be attributed to 
both different errors in the registration as well as the differences in PET 

intensity. This was further illustrated by looking at the variance of the 
slopes between different scanners when comparing the CL computed be- 
fore and after smoothing to uniform resolution for a given method. This 
variance was significantly higher with CapAIBL than SPM, indicating 
that when using CapAIBL, the CL quantification using raw data had a 
lot more variability across scanners compared to using raw data with 
SPM. This would indicate that PET-only quantification methods, such 
as CapAIBL could benefit from the FWHM smoothing to reduce vari- 
ability in the spatial normalisation, whereas MR-based techniques, such 
as SPM, might not get as much of a benefit from it. It should however 
be noted that we did not observe any improvement in the agreement 
between SPM and CapAIBL when using raw or smoothed data, so while 
the smoothing had a greater effect on CapAIBL, it did not necessarily 
translate into a more accurate quantification. 

In the head-to-head PIB-FBP comparison where 2 different scanners 
are used, the smoothing to a uniform resolution did not improve the 
agreement between the tracers, with similar ICC and bias obtained when 
comparing the raw PiB to the raw FBP, and the uniform PiB and uni- 
form FBP. It did however modify the agreement between the two trac- 
ers for classifying A 𝛽+ from A 𝛽- scans based on a 20CL threshold, al- 
though there was no systematic trend, with some quantification meth- 
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ods leading to better agreement using the raw data. It should be noted 
that this head-to-head dataset is not optimal to evaluate the effect of 
smoothing to a uniform resolution, given that the 2 scanners use differ- 
ent technology, and MR-based attenuation has been previously shown 
to lead to an underestimation of SUVR compared to using a CT-based 
attenuation map ( Su et al., 2016 ), which is independent of the scanner 
resolution. 

The correlation with MMSE and effect size between HC and AD did 
not improve with the uniform smoothing, and while the differences were 
small, the results were often worse compared to using the raw data. It is 
therefore possible that the extra smoothing might reduce small changes, 
resulting in weaker correlations. 

In the longitudinal analysis, where 56% of the subjects were scanned 
with 2 or more scanners, while the uniform resolution led to a reduction 
in both the number of outliers and in the standard error of the estimated 
slopes, it did not increase the correlation between the rate of change and 
the baseline CL. This is likely because we only used subjects with three 
or more timepoints in this analysis, with the linear regression, used to 
compute the rate of change, smoothing out the effects of outliers. The 
smoothing might have had a bigger impact if we had included subjects 
with only two timepoints. 

4.2. Reference region 

The correlation of the WCb SUV with age revealed that the WCb was 
stable over time for PiB, NAV, FBB and FLUTE, and therefore suitable 
to be used as a reference region. It also confirmed that it was not sta- 
ble for FBP. The composite WM + WCb, however, was stable for FBP in 
AIBL. In ADNI, while it reduced the strength of the correlation, it re- 
mained significantly correlated. The disparity of results between AIBL 
and ADNI could be explained by the number of scanners being used. 
While AIBL used only 3 scanners to image FBP, 27 different scanner 
models have been used in ADNI, which could confound some of these 
effects since SUV can be dependent on the scanner used. It could also 
indicate that some age effects are still present in the composite reference 
region. Nevertheless, those results indicate that the composite reference 
is more stable over time, and therefore more suitable than WCb for FBP 
normalisation. 

The choice of reference region had a strong impact on the CL quan- 
tification of FBP images, with the ICC between CL WCb and CL Comp being 
only 0.92 for both CapAIBL and SPM. The ICC was much higher ( ∼0.98) 
when using NMF, indicating that NMF is quite robust irrespective of the 
choice of reference region. This is expected as the NMF model is fitted 
to the entire image and will therefore suffer less bias due to the intensity 
normalisation method. 

In the head-to-head comparison, the use of CL Comp for FBP did not 
reduce the bias, but improved the agreement between PiB and FBP, 
with higher ICC when using the standard SPM or CapAIBL quantification 
pipeline. It also improved the agreement between both tracers in clas- 
sifying A 𝛽+ from A 𝛽-. There was also a systematic improvement in the 
correlation of CL with MMSE when using CL Comp compared to CL Raw 

, as 
well as an increase in the effect size between HC and AD. These results 
indicate that using the composite WM + WCb reference region might im- 
prove the accuracy of FBP quantification in cross-sectional analysis. 

In the longitudinal analysis, the results were in line with previous 
reports ( Landau et al., 2015 ), showing that the use of the composite 
WM + WCb reference region generally reduced the number of outliers 
and the fitting error, especially in the A 𝛽+ , as well as increasing the 
correlation between the rate of change and baseline CL. 

Given the existing concerns with regards to using a reference region 
containing WM, we conducted further analysis testing a GM reference 
region using the cerebellum cortex (Cb). These results showed that the 
FBP SUV in the Cb was significantly correlated with age in both AIBL 
and ADNI (Suppl. Fig. 8). Using the Cb also led to a worse ICC in the 
head-to-head comparison compared to using WCb (Suppl. Fig. 9). In the 

longitudinal analysis, it also led to a larger number of outliers (Suppl. 
Tables 6 and 7) and worse Spearman correlation when comparing base- 
line CL against its rate of change (Suppl. Fig. 10). 

4.3. Quantification methods 

In all cross-sectional analysis, the results obtained using both SPM 

and CapAIBL were often comparable, with no quantification pipeline 
clearly outperforming the other. Neither quantification pipeline showed 
a strong benefit from the uniform resolution smoothing, while both 
showed a benefit from the use of the composite WM + WCb reference 
region for FBP. In the longitudinal analysis, while CapAIBL had fewer 
outliers in the A 𝛽-, SPM had fewer outliers in the A 𝛽+ . This is likely due 
to the CapAIBL adaptive atlas only containing healthy controls, which 
might limit its ability to properly model AD cases with high CL values 
and lead to sub-optimal spatial normalisation. This was however not re- 
flected in the correlation of baseline CL against its rate of change where 
CapAIBL generally had a higher correlation compared to SPM. 

In all experiments, both cross-sectionally and longitudinally, the 
NMF systematically outperformed its baseline method. In the cross- 
sectional analysis, it led to the highest ICC between PiB and FBP in the 
head-to-head comparison, and the highest inter-tracer agreement when 
classifying A 𝛽+ from A 𝛽-. It also led to the strongest correlation with 
MMSE and highest effect-size between HC and AD. In the longitudinal 
analysis it also had the lowest number of outliers, and the strongest cor- 
relation between baseline CL against its rate of change. While there were 
small differences between SPM-NMF and CapAIBL-NMF, both versions 
performed similarly well. 

4.4. Recommendations 

These results indicate that while the smoothing to a uniform res- 
olution can reduce the number of outliers in longitudinal studies, its 
impact on harmonisation appears to be quite limited, and in some cases 
detrimental to some metrics. Because of the overhead involved with ac- 
quiring a Hoffman phantom and smoothing the data, we do not consider 
smoothing the images to a uniform resolution as a strong requirement 
for longitudinal studies. While this statement is valid for the studies con- 
sidered, it should be noted that such advice might differ with the intro- 
duction of high-resolution scanners such as the Siemens Biograph Vision 
PET/CT, where significant differences in resolution and partial volume 
effect may have a stronger impact on the quantification. It should also 
be noted that the Centiloid neocortical mask is quite large and includes a 
large proportion of partial volume voxels. The results might therefore be 
different if a MR-based parcellation was used to define the neocortical 
mask, as it might be more susceptible to partial volume effects. 

While previous studies have only recommended the use of the com- 
posite reference region for longitudinal studies using FBP, these results 
indicate that it also improves agreement with PIB in the head-to-head 
study, improves correlation with MMSE and increase the HC-AD effect 
size. The longitudinal analysis also confirmed that it reduces the num- 
ber of outliers, decreases the fitting error and improves the correlation 
between baseline CL and its rate of change. These results indicate that 
the composite reference region should be used to normalise FBP images 
not only in longitudinal, but also in cross-sectional analysis when using 
SPM or CapAIBL. It should however be noted that the results presented 
in this study were obtained without partial volume correction (PVC) 
and recent work indicate that PVC could improve FBP quantification 
when using the Cb or WCb ( López-González et al., 2019 ). Therefore, 
our recommendation does not apply to methods that use partial volume 
correction. When using the NMF, there was no systematic benefit from 

using the composite reference region. 
In this study, SPM and CapAIBL had similar performances both cross- 

sectionally and longitudinally. Since CapAIBL does not need a matching 
MRI to perform the quantification, it can be run on a larger set of data 
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in studies where the MR is missing, and therefore could become the pre- 
ferred analysis method since it allows an increase in the number of im- 
ages that can be quantified, especially in AIBL where 20% of the subjects 
were unable to undergo an MRI. The NMF proved to be more versatile 
tool as it could improve the quantification of both CapAIBL and SPM on 
all the metrics used both cross-sectionally and longitudinally. We would 
therefore recommend using this method for any future analysis relying 
on SPM or CapAIBL. 

The NMF code and models used in this study are available at 
10.25919/5f8400a0b6a1e. 

4.5. Limitations 

While we looked at reducing the effect of different PET scanner reso- 
lution by smoothing the images to a lower resolution, we did not investi- 
gate how PVC could be used to achieve a similar goal. While smoothing 
to a uniform resolution is a fairly standard procedure, there is a wide 
range of techniques for PVC which can lead to quite different quantifi- 
cation results ( Schwarz et al., 2019 ). PVC would also preclude the use 
of NMF in our study’s framework, as it would require perfect matching 
of the cortical GM across patients, which the current pipeline based on 
SPM does not provide. Therefore, the potential gains from using PVC 

would need to outperform the clear benefits that we’ve demonstrated 
by using NMF. While such comparison would be valuable, it is outside 
the scope of this paper. 

Another limitation of our evaluation is that we used the same Cen- 
tiloid transforms for both raw and uniformly FWHM smoothed PET 

data, which could introduce a bias in the analysis as the transforms de- 
rived from the raw calibration data are not optimal for the uniformly 
smoothed data. Deriving a new transform for uniformly smoothed data 
is not possible using the existing calibration dataset as they do not 
have phantom data. An alternative could be to use an external dataset 
to recalibrate the Centiloid, but this would require a large number of 
paired scans for all tracer which is currently not available in our study. 
The application of the FWHM smoothing was also performed uniformly 
throughout the brain when the resolution is known to vary across the 
field of view and depending on the type of reconstruction used. Fu- 
ture studies should seek to estimate and apply spatially varying image 
smoothing which could improve the accuracy of the uniform resolution 
harmonization step. 

We also did not investigate the use of different reference regions for 
the other tracers, noting that for quantification using SUVR, the cere- 
bellar cortex is typically the prescribed reference region for PiB, NAV 

and FBB, and the pons for FLUTE. There is however little literature in- 
dicating the inadequacy of using the whole cerebellum for these tracers, 
compared to the well documented issues with longitudinal FBP, and our 
analysis of the stability of the SUV in the reference region over time 
supports these conclusions. That said, one interesting finding from the 
current study was to show that the NMF was relatively robust irrespec- 
tive of the choice of reference region, and while it was only tested on 
FBP, and only two reference regions were compared, we do expect these 
results to generalise to other tracers and reference regions. This would 
however need to be confirmed in further studies. 

Similarly to our previous work ( Bourgeat et al., 2021 ), our longitu- 
dinal validation relies on the assumption that A 𝛽 accumulation is linear 
over a period < 10 years, when the accumulation is believed to follow 

trajectory close to a sigmoid ( Villemagne et al., 2013 ). However, half of 
the participants had their last timepoints within 3.3 years for AIBL, 3.9 
for ADNI and 5.0 for OASIS, a fairly short timeframe where changes can 
be approximated as linear. For participants scanned over a longer period 
of time, 54% of AIBL participants, 43% of ADNI and 68% of OASIS had 
a CL remaining bellow 10, meaning that they had very little changes 
over time. 

Lastly, it should be noted that all our validation experiments rely 
on surrogate markers, and while NMF improves on all of them, it does 
not necessarily mean that the method is more accurate. Further eval- 

uation of all quantification methods using actual ground truth data 
such as autopsy (although this is not viable in large studies), phan- 
toms (although those are often unrealistic) and Monte Carlo simulations 
( López-González et al,. 2019 ; Paredes-Pacheco et al., 2021 ) is there- 
fore warranted. We have also limited this analysis to two quantification 
pipelines, which was again done for the sake of clarity. More quantifi- 
cation pipeline could be included in further studies now that the impact 
of the pre-processing steps has been clarified. 

5. Conclusions 

With the availability of large imaging datasets, data harmonisation 
has become an important topic not only for combining multiple stud- 
ies, but also to ensure that the findings can be replicated in the clinic 
where different PET tracers and scanners might be used. In this study, we 
quantified the impact that each pre-processing step can have on the final 
PET quantification, and its consistency over time. We also compared two 
state of the art PET quantification methods and demonstrated that NMF 
can further reduce inter-tracer differences, improve concordance with 
cognitive measures and separation between HC and AD as well as re- 
duce variability over time. These improvements will help detect smaller 
variations in the dynamics of A 𝛽 accumulation and better relate those 
to genetic, lifestyle and cognitive differences, leading to a better under- 
standing of the progression of AD and its risk factors. Improving the 
detection of small changes of A 𝛽 over time, will improve the sensitivity 
to detect the effects of anti-A 𝛽 therapy. 
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