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HIMA2: high‑dimensional mediation analysis 
and its application in epigenome‑wide DNA 
methylation data
Chamila Perera1, Haixiang Zhang2, Yinan Zheng3, Lifang Hou3, Annie Qu4, Cheng Zheng5, Ke Xie1 and Lei Liu1* 

Introduction
Mediation analysis explores the underlying mechanism by which an independent varia-
ble (e.g., exposure or treatment) influences the dependent variable (e.g., health outcome) 
through a mediator variable [1]. Mediation analysis has been playing a major role in 
many areas, e.g., social studies, economics, and health sciences [2]. More recently, with 
the advancement of large-scale data collection techniques, there has been substantial 
interest in developing methodology for high-dimensional mediation analysis in omics 
and imaging studies. An incomplete list of publications include [2–22]. For example, 
Derkach et al. [11] considered a latent variable model for high-dimensional mediation 
analysis. Huang et al. [12] presented a hypothesis test of the mediation effect in a causal 
mediation model with high-dimensional continuous mediators. Dai et al. [22] developed 
a multiple-testing procedure that accurately controls the false discovery rate (FDR) when 
testing high-dimensional mediation hypotheses.

Abstract 

Mediation analysis plays a major role in identifying significant mediators in the path-
way between environmental exposures and health outcomes. With advanced data 
collection technology for large-scale studies, there has been growing research interest 
in developing methodology for high-dimensional mediation analysis. In this paper we 
present HIMA2, an extension of the HIMA method (Zhang in Bioinformatics 32:3150–
3154, 2016). First, the proposed HIMA2 reduces the dimension of mediators to a man-
ageable level based on the sure independence screening (SIS) method (Fan in J R Stat 
Soc Ser B 70:849–911, 2008). Second, a de-biased Lasso procedure is implemented for 
estimating regression parameters. Third, we use a multiple-testing procedure to accu-
rately control the false discovery rate (FDR) when testing high-dimensional mediation 
hypotheses. We demonstrate its practical performance using Monte Carlo simulation 
studies and apply our method to identify DNA methylation markers which mediate the 
pathway from smoking to reduced lung function in the Coronary Artery Risk Develop-
ment in Young Adults (CARDIA) Study.
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Our motivating example comes from the DNA methylation (DNAm) research of 
the Coronary Artery Risk Development in Young Adults (CARDIA) Study [23]. In 
the DNAm process, methyl groups are added to DNA at binding sites referred to as 
cytosine-phosphate-guanine (CpG) islands, which inhibits the binding of transcrip-
tion factors to DNA and results in changes (typically down regulation) to the expres-
sion of genes [24]. The platform Illumina MethylationEPIC Beadchip array is used to 
measure DNAm levels of roughly 850  K probes, which are ultra high-dimensional. 
Such high-dimensional DNAm markers may mediate pathways linking environmental 
exposures with health outcomes. Our objective is to explore the mediating role from 
high dimensional DNAm markers on the relationship between smoking and lung 
function in the CARDIA study.

In this paper, we propose an improved estimation and inference procedure for the 
high-dimensional mediation model, extending the work of Zhang et al. [3]. Our method 
includes three major steps: First, to tackle the ultra-high dimensionality of the DNAm 
markers, we screen out potentially a large number of mediators using a series of mar-
ginal mediation effect pathways (exposure → mediator → outcome). Second, we adopt 
the de-biased Lasso method [25] to estimate the high dimensional regression coeffi-
cients (mediator → outcome). Third, we employ a joint significance test with a mixture 
of null distributions to accurately control the FDR for large-scale multiple tests [22].

The remainder of this paper is structured as follows. In "Methodology" Section, we 
propose a three-step inference procedure for mediation effects in the high-dimen-
sional regression model. In "Simulation studies" Section, we evaluate the performance 
of our method via numerical simulations. In "Application" Section, an application to 
the CARDIA study is provided. Finally, some discussion and concluding remarks are 
presented in "Conclusion and remarks" Section.

Methodology
Denote the exposure as X , baseline covariates to be adjusted for as Z = (Z1, . . . ,Zq)

T  , 
where the superscript T  denotes the transpose of a vector or a matrix. We adopt 
the following counterfactual framework for the vector of potential mediators 
M(x) = (M1(x), . . . ,Mp(x))

T  under exposure level x , and counterfactual Y (x,m) 
under exposure level x and mediators level m, to perform the mediation analysis [26]:

where γ is the direct effect of exposure on the outcome; β = (β1, . . . ,βp)
T is the regres-

sion parameter vector relating the mediators to the outcome; α = (α1, . . . ,αp)
T is the 

parameter vector relating the exposure to mediators; η and δj are vectors of regression 
coefficients for the covariates; and ε and ej are error terms in Models (1’) and (2’), respec-
tively. Note there are p submodels in Model (2’), one for each mediator. We allow the 
correlation between the error terms, i.e., e = (e1, . . . , ep)

T ∼ N (0,�e) , where �e is a pos-
itive definite covariance matrix.

(1’)Y (x,m) = γ x + βTm+ ηTZ + ε

(2’)Mj(x) = αjx + δTj Z + ej for j = 1, . . . , p
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A few causal assumptions that are needed for the identification of natural direct effect 
(NDE) and natural indirect effects (NIE) are listed below [41–42]:

A1. Stable unit treatment value assumption (SUTVA) for both the mediators and the 
outcome. This assumption means that there is no multiple versions of exposures and 
there is no interference between individuals, which implies that M(x) and Y (x,m) are 
well defined.

A2. Consistency for the mediators and the outcome. That is, there are no measure-
ment errors in the mediators and thus the observed variables satisfy M = M(X) and 
Y = Y (X ,M).

A3. Sequential ignorability: This assumption contains 4 parts:
(A3.1) X ⊥ Y (x,m)|Z, i.e., no unmeasured confounding between exposure and the 

potential outcome;
(A3.2) M ⊥ Y (x,m)|X ,Z, i.e., no unmeasured confounding between mediators and 

the potential outcome;
(A3.3) X ⊥ M(x)|Z, i.e., no unmeasured confounding between exposure and the 

potential mediators;
(A3.4) M x′ ⊥Y (x,m)|Z, i.e., no exposure-induced confounding between mediators 

and the potential outcome. In other words, the potential mediators under any interven-
tion level  m are independent of potential outcomes under any intervention x and media-
tor level  x′ given covariate Z.

A4. No direct causal relationship between mediators. We do not allow one mediator to 
be the cause of another, but we do allow them to have shared common causes.

Under A1-A3, we have direct effect NDE = E[Y (1,M(0))− Y (0,M(0))] = γ , indirect 
effect NIE = E[Y (1,M(1))− Y (1,M(0))] =

∑p
j=1 αjβj . Under the additional assump-

tion A4, we can decompose the indirect effect into sum of indirect effects through 
each mediator Mj , NIEj = αjβj . Also we obtain the structural equation model for the 
observed outcome as in previous literature [3] to assess the mediation effects of high-
dimensional mediators:

Our goal is to estimate and test the mediation effects αjβj jointly for j = 1, . . . , p. An 
illustration of mediation analyses with single mediator and high dimensional mediators 
is given in Fig. 1.

As shown in Fig. 1, we do allow these mediators to share common unmeasured causes. 
These assumptions are in line with the underlying biologic procedures. Smoking could 
induce biochemical alterations to the DNAs, which lead to methylation changes. Such 
change in a certain CpG site is unlikely to directly cause the methylation alternation of 
other CpG sites. Rather, such dependency is most likely to be indirect, for example, by 
regulating gene expressions in related pathways that in turn modify other CpGs, or sev-
eral CpGs are modified by common unmeasured causes (e.g., inflammatory response).

Details of our proposed approach are given below.

(1)Y = γX + βTM + ηTZ + ε,

(2)Mj = αjX + δTj Z + ej for j = 1, . . . , p,
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Step 1: (Screening of Mediators). For j = 1, . . . , p , we consider a series of marginal 
models:

Along the lines of the sure independence screening (SIS) method [27], we select a sub-
set D = {j : Mj is among the top d = [2n/log(n)] largest effect

∣∣∣α̂jβ̂j
∣∣∣ , for j = 1, . . . , p} , 

where α̂j and β̂j are ordinary least square (OLS) estimators based on marginal models (3) 
and (4), respectively.

All Mj ’s are scaled with mean zero and unit variance before performing this screen-
ing procedure. The key advantage of Step 1 is that the product term α̂jβ̂j could roughly 
describe the mediated effect of the j th mediator. Therefore, the selected subset D con-
tains true mediators with a large probability.

Step 2: (De-biased Lasso). We consider the following submodel based on the selected 
set D,

where βD and MD denote sub-vectors of β and M with index belonging to D respec-
tively, and βD is estimated using the de-biased Lasso method, with estimator β̂j and its 
standard error σ̂βj obtained in [25]. The corresponding p-values are given as:

(3)Y = γX + βjMj + ηTZ + ε

(4)Mj = αjX + δTj Z + ej

(5)Y = γX + βT
D
MD + ηTZ + ε

Fig. 1 Mediation analysis of A a single mediator; B high dimensional mediators, plotted similarly to [3]. An 
arrow from X  to U is possible though omitted to avoid the complexity in interpreting α as the total effect
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where �(·) is the cumulative distribution function of N (0, 1). De-biased Lasso in Step 
2 is necessary as the ordinary least square will yield inefficient estimates (with reduced 
power), because the dimension of survived mediators after Step 1 is still relatively large.

Step 3: (Joint Significance Test). We consider the multiple testing problem for jǫD as 
follows:

with corresponding p-value

where Pβj is given in (6), Pαj = 2
{
1−�

(∣∣α̂j
∣∣/σ̂αj

)}
 , α̂j and σ̂αj are OLS estimators. 

Zhang et  al. [3] considered the joint significant test (termed “JS-uniform”), which 
assumes that Pj follows a uniform distribution. However, although Pαj and Pβj are each 
uniformly distributed, their maximum is not. As a result, the significance rule using 
the uniform null distribution for Pj results in a valid but overly conservative test [28]. 
In this paper, we will adopt the “JS-mixture" approach to accurately control the FDR 
[22] (Sect. 2.3).

The multiple testing problem (7) is equivalent to the union of the following three 
disjoint component null hypotheses,

That is, Pj is a 3-component mixture distribution instead of the uniform distribu-
tion. Dai et al. [22] proposed the following estimated FDR for testing mediation:

where π̂01, π̂10 and π̂00 are the estimates of proportions H01,j ,H10,j and H00,j , respec-
tively, and R(t) = V00(t)+ V01(t)+ V10(t)+ V11(t) , where V00(t) = #

{
Pj ≤ t|H00

}
 , 

V01(t) = #
{
Pj ≤ t|H01

}
 , V10(t) = #

{
Pj ≤ t|H10

}
 , V11(t) = #

{
Pj ≤ t|H11

}
 for t ∈ [0, 1].

We define the significant threshold for Pj as t̂b = sup
{
t : F̂DR(t) ≤ b

}
, to control 

the FDR at level b . Then Ŝ =
{
j : Pj ≤ t̂b, j ∈ D

}
 gives the estimated index set of sig-

nificant mediators.
We can obtain π̂01, π̂10 , π̂00 and t̂b using the R package HDMT [22].
Compared to the estimation and inference method in [3] (termed “HIMA”), our 

new method (termed “HIMA2”) has the following three advantages. First, HIMA only 
considers β (mediator → outcome) for screening in Step 1, while HIMA2 considers 

(6)Pβj = 2

{
1−�

(∣∣∣β̂j
∣∣∣/σ̂βj

)}
, for jD

H0j : αj = 0 or βj = 0,

(7)Pj = max

(
Pαj ,Pβj

)

H00,j : αj = 0 or βj = 0,

H01,j : αj = 0 or βj �= 0,

H10,j : αj �= 0 or βj = 0.

(8)F̂DR(t) =
π̂01t + π̂10t + π̂00t

2

max{1,R(t)}/d
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the indirect effect of αβ . Therefore, the mediation-based screening method in HIMA2 
addresses the indirect effect more accurately than HIMA. Second, HIMA uses the 
minimax concave penalty (MCP; [29]) technique to estimate the effect β , which can 
only provide p-values for selected mediators in Step 2. That is, Pβj is set to 1 for those 
not selected, which results in poor estimate of Pj in Eq.  (7). In contrast, de-biased 
Lasso in HIMA2 yields p-values for all βj ’s in D , which gives more appropriate esti-
mate of Pβj . Third, HIMA adopts a naive joint significance rule assuming a uniform 
null distribution for the maximum p-value calculation in Step 3, which may result in a 
valid but overly conservative test with lower power.

Simulation studies
In this section we assess our proposed method using simulation studies. For Model 
(1), we generate the exposure X from N (0, 2) ; covariates Z = (Z1,Z2)

T  , where Z1 and 
Z2 are independently generated from N (0, 2) . We set γ = 0.5 , δ = (0.3, 0.3)T  and 
η = (0.5, 0.5)T  ; β1 = 0.20, β2 = 0.25, β3 = 0.15, β4 = 0.30, β5 = 0.35, β6 = 0.10, and 
βj = 0 for all other j’s;  α1 = 0.20, α2 = 0.25, α3 = 0.15, α4 = 0.30, α5 = 0.35, α7 = 0.10, 
and αj = 0 for all other j’s. Therefore, we have: (i) αjβj  = 0 for j = 1, . . . , 5 ; (ii) αj = 0 
but βj  = 0 for j = 6 ; (iii) αj  = 0 but βj = 0 for j = 7 ; and (iv) αj = 0 and βj = 0 for 
j > 7 . The error terms e =

(
e1, . . . , ep

)T  are generated from N (0,�e) , where 
�e =

(
ρ|j−j

′
|
)
j,j

′
 and ε is generated from N (0, 1) . All the simulations are based on 500 

replications with 16 factorial settings: p = 1000, 5000 , n = 300, 600, and 
ρ = 0, 0.25, 0.5, 0.75.

We compare the performance of HIMA2 with HIMA in Table 1, which provides the 
estimated biases (Bias) given by the sample mean of the estimates minus the true value, 
and the mean-square error (MSE) of the estimates. Table  1 shows that both HIMA2 
and HIMA are unbiased, however, HIMA2 has smaller MSEs than HIMA for signifi-
cant mediators. MSEs for both HIMA and HIMA2 decrease as the sample size increases. 
Of note, the results for j > 8 ( αj = 0 and βj = 0 ) are close to those of j = 8 and thus 
omitted.

We also present the estimated FDR and power of mediation effects testing in Tables 2 
and 3, where the nominal level is 0.05. The results indicate that both HIMA2 and HIMA 
can achieve valid FDR control. Furthermore, HIMA2 is more powerful than HIMA in 
selecting significant mediators, though the differences become smaller when sample 
size increases. We also note that as the correlation among the mediators becomes larger, 
both methods suffer in terms of power.

Per suggestion from a reviewer, we compare our method to HDMA [30], which was 
developed along the lines of HIMA but adopts the de-biased Lasso method in Step 2. 
However, no multiple testing adjustment was used in HDMA for inference. As a result, 
HDMA suffers from poor FDR control albeit with higher power as shown in Tables 2 
and 3.

Per suggestion from a reviewer, similar to our real data analysis, we also consider a 
setting with 2 significant mediators, i.e.: β1 = 0.15, β2 = 0.3, β3 = 0.1, β4 = 0, and 
βj = 0 for all other j’s;  α1 = 0.15, α2 = 0.3, α3 = 0, α4 = 0.1, and αj = 0 for all other j
’s. As shown in the supplementary materials (Additional file 1: Tables S1, S2 and S3), we 
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Table 1 Bias (MSE) for mediation effect estimates

ρ = 0

p = 1000 p = 5000

HIMA2 HIMA HDMA HIMA2 HIMA HDMA

n = 300 α1β1 7.21E−04
(1.72E−04)

−7.07E−03
(4.23E−04)

−8.95E−03
(2.80E−04)

−8.90E−03
(1.97E−04)

−2.23E−02
(8.19E−04)

−2.25E−02
(7.14E−04)

α2β2 −2.44E−04
(2.80E−04)

−7.27E−03
(5.10E−04)

−1.30E−02
(4.28E−04)

−1.34E−02
(4.12E−04)

−2.71E−02
(1.22E−03)

−2.90E−02
(1.09E−03)

α3β3 9.45E−04
(1.00E−04)

−8.32E−03
(2.84E−04)

−7.54E−03
(1.91E−04)

−4.17E−03
(1.17E−04)

−1.43E−02
(3.63E−04)

−1.40E−02
(3.00E−04)

α4β4 −2.22E−03
(4.86E−04)

−1.16E−02
(7.75E−04)

−1.95E−02
(8.11E−04)

−1.87E−02
(6.97E−04)

−3.27E−02
(1.52E−03)

−3.89E−02
(1.77E−03)

α5β5 −4.82E−03
(5.89E−04)

−1.63E−02
(1.03E−03)

−2.66E−02
(1.23E−03)

−2.51E−02
(1.07E−03)

−4.48E−02
(2.66E−03)

−5.21E−02
(3.04E−03)

α6β6 6.06E−05
(1.05E−05)

−3.76E−05
(8.92E−06)

4.81E−05
(7.21E−06)

5.10E−05
(4.32E−06)

3.56E−05
(1.62E−06)

2.88E−05
(1.57E−06)

α7β7 2.41E−03
(3.71E−05)

3.21E−04
(5.91E−06)

3.75E−04
(8.43E−06)

1.13E−03
(1.81E−05)

5.43E−05
(1.85E−06)

6.02E−05
(1.60E−06)

α8β8 1.11E−04
(1.08E−06)

1.17E−05
(1.09E−07)

3.62E−05
(2.72E−07)

4.58E−05
(4.02E−07)

−1.03E−05
(4.31E−08)

−5.98E−06
(3.04E−08)

n = 600 α1β1 1.46E−03
(1.01E−04)

2.88E−03
(1.64E−04)

−4.34E−03
(1.06E−04)

−6.78E−03
(1.18E−04)

−9.43E−03
(2.22E−04)

−1.49E−02
(2.89E−04)

α2β2 1.00E−03
(1.59E−04)

3.47E−03
(2.45E−04)

−7.38E−03
(2.00E−04)

−1.01E−02
(2.23E−04)

−1.32E−02
(3.40E−04)

−2.26E−02
(6.03E−04)

α3β3 8.87E−04
(4.72E−05)

−2.49E−04
(1.38E−04)

−3.13E−03
(6.45E−05)

−3.22E−03
(5.42E−05)

−7.51E−03
(1.67E−04)

−9.34E−03
(1.40E−04)

α4β4 7.51E−04
(1.97E−04)

4.32E−03
(2.97E−04)

−1.03E−02
(2.94E−04)

−1.44E−02
(4.12E−04)

−1.90E−02
(5.96E−04)

−3.22E−02
(1.18E−03)

α5β5 −1.03E−03
(2.80E−04)

2.39E−03
(4.03E−04)

−1.59E−02
(5.36E−04)

−2.12E−02
(7.05E−04)

−2.89E−02
(1.13E−03)

−4.57E−02
(2.27E−03)

α6β6 1.15E−05
(4.16E−06)

−9.97E−05
(4.28E−06)

−3.24E−05
(3.21E−06)

1.59E−04
(2.27E−06)

1.43E−04
(2.06E−06)

1.37E−04
(1.45E−06)

α7β7 2.20E−03
(2.09E−05)

1.29E−04
(1.32E−06)

2.99E−04
(7.03E−06)

6.68E−04
(1.07E−05)

4.24E−05
(1.28E−06)

1.01E−04
(1.29E−06)

α8β8 −4.17E−06
(4.54E−07)

3.83E−06
(7.98E−08)

−4.66E−06
(2.06E−07)

−6.36E−06
(1.62E−07)

−4.77E−06
(9.88E−09)

5.34E−06
(4.52E−08)

ρ = 0.25

p = 1000 p = 5000

HIMA2 HIMA HDMA HIMA2 HIMA HDMA

n = 300 α1β1 4.46E−04
(1.82E−04)

−7.65E−03
(4.95E−04)

−7.79E−03 
(2.49E−04)

−6.92E−03
(1.95E−04)

−1.85E−02
(6.84E−04)

−1.84E−02 
(5.13E−04)

α2β2 3.22E−04
(3.08E−04)

−6.70E−03
(5.90E−04)

−1.07E−02 
(3.88E−04)

−1.07E−02
(3.65E−04)

−2.17E−02
(9.31E−04)

−2.58E−02 
(8.66E−04)

α3β3 5.90E−04
(1.09E−04)

−7.05E−03
(2.83E−04)

−4.87E−03 
(1.40E−04)

−3.934E−03
(1.01E−04)

−1.33E−02
(3.34E−04)

−1.22E−02 
(2.38E−04)

α4β4 −2.44E−03
(4.26E−04)

−1.04E−02
(7.13E−04)

−1.74E−02 
(7.17E−04)

−1.81E−02
(6.81E−04)

−3.33E−02
(1.69E−03)

−3.79E−02 
(1.74E−03)

α5β5 −3.57E−03
(5.93E−04)

−1.53E−02
(1.02E−03)

−2.34E−02 
(1.15E−03)

−2.25E−02
(9.91E−04)

−4.21E−02
(2.39E−03)

−5.08E−02 
(2.94E−03)

α6β6 1.77E−04
(9.38E−06)

1.56E−04
(7.85E−06)

2.24E−04 
(7.31E−06)

−4.44E−05
(4.70E−06)

2.45E−05
(2.84E−06)

−1.12E−05 
(2.35E−06)

α7β7 3.63E−03
(4.74E−05)

4.27E−04
(1.09E−05)

7.49E−04 
(1.07E−05)

1.89E−03
(2.29E−05)

1.84E−04
(3.29E−06)

2.20E−04 
(3.13E−06)

α8β8 7.33E−05
(9.05E−07)

−2.12E−05
(1.81E−07)

−9.48E−06 
(2.56E−07)

3.63E−05
(4.97E−07)

−1.24E−05
(3.90E−08)

6.43E−07 
(2.70E−08)
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Table 1 (continued)

ρ = 0.25

p = 1000 p = 5000

HIMA2 HIMA HDMA HIMA2 HIMA HDMA

n = 600 α1β1 8.96E−04
(9.43E−05)

2.08E−03
(1.75E−04)

−3.94E−03 
(1.07E−04)

−6.44E−03
(1.24E−04)

−8.81E−03
(1.98E−04)

−1.44E−02 
(2.69E−04)

α2β2 3.74E−04
(1.50E−04)

2.77E−03
(2.21E−04)

−6.33E−03 
(1.95E−04)

−9.28E−03
(2.15E−04)

−1.32E−02
(3.50E−04)

−2.20E−02 
(5.88E−04)

α3β3 1.41E−03
(5.39E−05)

1.33E−04
(1.31E−04)

−1.94E−03 
(5.17E−05)

−3.45E−03
(5.67E−05)

−6.69E−03
(1.41E−04)

−8.19E−03 
(1.06E−04)

α4β4 3.66E−04
(2.13E−04)

3.32E−03
(2.95E−04)

−8.58E−03 
(2.91E−04)

−1.35E−02
(3.75E−04)

−1.93E−02
(5.98E−04)

−3.14E−02 
(1.13E−03)

α5β5 4.79E−04
(3.29E−04)

3.09E−03
(4.39E−04)

−1.15E−02 
(4.74E−04)

−1.95E−02
(6.63E−04)

−2.81E−02
(1.11E−03)

−4.37E−02 
(2.12E−03)

α6β6 −2.74E−05
(3.95E−06)

−1.16E−04
(4.39E−06)

−2.32E−05 
(3.27E−06)

−1.33E−04
(2.97E−06)

−1.96E−04
(2.85E−06)

−6.82E−05 
(1.90E−06)

α7β7 3.17E−03
(2.65E−05)

3.37E−04
(4.72E−06)

1.13E−03 
(8.65E−06)

2.24E−03
(1.90E−05)

1.23E−04
(1.92E−06)

2.37E−04 
(2.55E−06)

α8β8 1.62E−05
(3.35E−07)

−5.68E−07
(4.13E−08)

−6.73E−07 
(2.26E−07)

2.72E−05
(1.54E−07)

1.69E−05
(6.54E−08)

1.30E−05 
(2.72E−08)

ρ = 0.50

p = 1000 p = 5000

HIMA2 HIMA HDMA HIMA2 HIMA HDMA

n = 300 α1β1 3.76E−03
(2.34E−04)

−3.46E−03
(4.90E−04)

−1.78E−03
(2.13E−04)

−5.14E−03
(1.98E−04)

−1.63E−02
(6.36E−04)

−1.46E−02 
(3.74E−04)

α2β2 2.82E−03
(3.66E−04)

−5.79E−03
(8.16E−04)

−4.11E−03
(3.79E−04)

−7.97E−03
(3.72E−04)

−2.14E−02
(1.13E−03)

−2.18E−02
(7.77E−04)

α3β3 2.25E−03
(1.42E−04)

−6.91E−03
(3.36E−04)

−9.13E−04
(1.19E−04)

−3.27E−03
(1.19E−04)

−1.32E−02
(3.33E−04)

−8.64E−03 
(1.59E−04)

α4β4 1.03E−03
(5.02E−04)

−8.62E−03
(9.89E−04)

−7.04E−03
(5.47E−04)

−1.15E−02
(5.83E−04)

−2.90E−02
(1.65E−03)

−2.97E−02 
(1.26E−03)

α5β5 6.66E−03
(7.53E−04)

−5.38E−03
(1.01E−03)

−7.22E−03
(7.94E−04)

−1.27E−02
(7.87E−04)

−3.52E−02
(2.06E−03)

−4.02E−02 
(2.24E−03)

α6β6 −3.47E−05
(8.66E−06)

−2.58E−04
(7.30E−06)

9.43E−05
(7.46E−06)

6.55E−05
(6.88E−06)

6.48E−05
(6.34E−06)

7.46E−05 
(5.69E−06)

α7β7 4.69E−03
(5.74E−05)

9.18E−04
(1.63E−05)

2.09E−03
(2.36E−05)

3.81E−03
(4.57E−05)

5.83E−04
(9.04E−06)

1.06E−03
(1.21E−05)

α8β8 1.82E−05
(1.91E−06)

−3.56E−05
(5.92E−07)

−1.17E−05
(7.80E−07)

−1.28E−05
(4.19E−07)

−2.13E−05
(1.67E−07)

1.08E−05 
(1.89E−07)
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Table 1 (continued)

ρ = 0.50

p = 1000 p = 5000

HIMA2 HIMA HDMA HIMA2 HIMA HDMA

n = 600 α1β1 2.44E−03
(1.08E−04)

2.14E−03
(1.74E−04)

4.14E−04 
(1.01E−04)

−3.50E−03
(1.01E−04)

−6.87E−03
(1.99E−04)

−1.07E−02 
(1.95E−04)

α2β2 3.41E−03
(2.02E−04)

4.48E−03
(2.75E−04)

7.19E−04 
(1.71E−04)

−5.51E−03
(2.26E−04)

−9.64E−03
(3.32E−04)

−1.68E−02 
(4.46E−04)

α3β3 1.76E−03
(7.22E−05)

−3.66E−03
(1.91E−04)

6.19E−04 
(6.90E−05)

−1.24E−03
(6.31E−05)

−6.00E−03
(1.74E−04)

−5.34E−03 
(7.98E−05)

α4β4 4.34E−03
(2.65E−04)

4.77E−03
(3.36E−04)

2.98E−04 
(2.42E−04)

−9.92E−03
(3.48E−04)

−1.59E−02
(5.71E−04)

−2.48E−02 
(8.05E−04)

α5β5 8.04E−03
(4.34E−04)

9.29E−03
(5.06E−04)

1.81E−03 
(3.96E−04)

−9.00E−03
(4.37E−04)

−1.82E−02
(7.82E−04)

−3.04E−02 
(1.23E−03)

α6β6 1.10E−04
(4.60E−06)

5.09E−05
(3.85E−06)

9.57E−05 
(4.21E−06)

−1.66E−04
(3.28E−06)

−1.12E−04
(2.79E−06)

−7.62E−05 
(2.46E−06)

α7β7 2.91E−03
(3.12E−05)

8.64E−04
(1.22E−05)

2.17E−03 
(2.10E−05)

3.23E−03
(2.66E−05)

6.05E−04
(6.67E−06)

1.23E−03 
(9.06E−06)

α8β8 6.18E−06
(4.08E−07)

−1.44E−06
(1.23E−07)

−2.07E−06 
(4.32E−07)

2.24E−05
(2.45E−07)

1.13E−05
(5.31E−08)

5.00E−06 
(1.28E−07)

ρ = 0.75

p = 1000 p = 5000

HIMA2 HIMA HDMA HIMA2 HIMA HDMA

n = 300 α1β1 7.39E−03
(3.47E−04)

−2.75E−03
(7.68E−04)

4.38E−03
(3.12E−04)

2.65E−03
(2.98E−04)

−8.93E−03
(7.81E−04)

−4.19E−03
(2.82E−04)

α2β2 8.32E−03
(7.65E−04)

−1.43E−02
(2.29E−03)

5.21E−03
(6.63E−04)

2.17E−03
(5.13E−04)

−2.20E−02
(2.15E−03)

−8.00E−03
(6.11E−04)

α3β3 4.03E−03
(2.70E−04)

−1.05E−02
(5.41E−04)

2.83E−03
(2.53E−04)

8.24E−05
(2.15E−04)

−1.32E−02
(5.05E−04)

−3.20E−03
(2.06E−04)

α4β4 1.07E−02
(1.07E−03)

−6.93E−03
(2.81E−03)

5.83E−03
(9.77E−04)

1.03E−03
(7.32E−04)

−2.05E−02
(2.85E−03)

−1.21E−02
(9.51E−04)

α5β5 1.74E−02
(1.50E−03)

−1.48E−02
(4.46E−03)

1.08E−02
(1.33E−03)

7.51E−03
(1.09E−03)

−3.15E−02
(4.61E−03)

−1.28E−02
(1.26E−03)

α6β6 2.06E−05
(8.13E−06)

−1.05E−04
(6.97E−06)

4.44E−05
(8.01E−06)

9.89E−06
(7.72E−06)

−1.27E−04
(6.67E−06)

6.18E−05
(7.25E−06)

α7β7 6.19E−03
(1.20E−04)

1.66E−03
(4.07E−05)

4.97E−03
(1.08E−04)

4.63E−03
(8.72E−05)

9.38E−04
(1.99E−05)

2.55E−03
(7.09E−05)

α8β8 −1.15E−04
(5.76E−06)

−8.81E−06
(8.67E−07)

−1.04E−04
(5.11E−06)

−1.78E−05
(2.51E−06)

−5.95E−06
(1.02E−06)

−6.78E−05
(2.77E−06)

n = 600 α1β1 4.81E−03
(1.64E−04)

8.99E−04
(4.05E−04)

3.88E−03
(1.57E−04)

1.75E−03
(1.52E−04)

−2.42E−03
(3.86E−04)

−3.55E−03
(1.46E−04)

α2β2 8.29E−03
(4.00E−04)

−2.07E−03
(1.30E−03)

6.75E−03
(3.79E−04)

3.43E−03
(3.20E−04)

−8.50E−03
(1.30E−03)

−4.32E−03
(3.05E−04)

α3β3 2.88E−03
(1.17E−04)

−1.15E−02
(4.25E−04)

2.38E−03
(1.15E−04)

6.43E−04
(1.17E−04)

−1.38E−02
(4.22E−04)

−2.27E−03
(1.18E−04)

α4β4 1.06E−02
(5.68E−04)

6.82E−03
(1.20E−03)

9.09E−03
(5.32E−04)

2.99E−03
(4.38E−04)

−4.25E−03
(1.26E−03)

−7.83E−03
(4.99E−04)

α5β5 1.57E−02
(8.59E−04)

6.22E−03
(1.70E−03)

1.26E−02
(7.55E−04)

6.31E−03
(6.40E−04)

−8.25E−03
(1.96E−03)

−9.78E−03
(7.13E−04)

α6β6 −9.35E−05
(3.98E−06)

−9.84E−06
(2.76E−06)

−1.16E−04
(3.92E−06)

−1.13E−04
(3.75E−06)

−6.49E−05
(2.45E−06)

−9.40E−05
(3.77E−06)

α7β7 4.63E−03
(6.31E−05)

1.03E−03
(1.79E−05)

3.94E−03
(5.85E−05)

4.57E−03
(5.64E−05)

1.13E−03
(1.85E−05)

2.41E−03
(3.99E−05)

α8β8 2.92E−05
(1.56E−06)

−1.46E−05
(2.31E−07)

−2.62E−05
(1.51E−06)

9.12E−07
(1.19E−06)

−1.37E−05
(7.91E−08)

−2.86E−05
(1.11E−06)
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observe similar results to those in Tables 1, 2 and 3. We note that the results from HIMA 
and HIMA2 are more close to each other when the correlation is high ( ρ = 0.75).

Per suggestion from a reviewer, we use the standardized coefficient estimates in the 
SIS step, but the results are close to those without standardization (results available 
upon request).

Finally, we notice that in Tables 2 and Additional file 1: Table S2, the FDR of HIMA2 
decreases with sample size. This also happens with HIMA, though to a less magnitude.

Application
We apply our method to the Coronary Artery Risk Development in Young Adults (CAR-
DIA) Study, an ongoing longitudinal cohort examining the development and deter-
minants of clinical and subclinical cardiovascular disease and their risk factors [23]. 
A group of 5115 black and white men and women aged 18–30 years were enrolled in 
1985–6 from 4 study centers: Birmingham, AL; Chicago, IL; Minneapolis, MN; and 
Oakland, CA. They were followed-up during 1987–1988 (Year 2), 1990–1991 (Year 5), 

Table 2 FDR at significance level 0.05

ρ = 0 ρ = 0.25

p = 1000 p = 5000 p = 1000 p = 5000

Method n = 300 n = 600 n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

HIMA2 0.0110 0.0030 0.0634 0.0214 0.0094 0.0053 0.0569 0.0202

HIMA 0.0225 0.0149 0.0316 0.0316 0.0244 0.0238 0.0320 0.0301

HDMA 0.2067 0.2553 0.2994 0.3739 0.1880 0.2299 0.2712 0.3678

ρ = 0.50 ρ = 0.75

p = 1000 p = 5000 p = 1000 p = 5000

Method n = 300 n = 600 n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

HIMA2 0.0099 0.0039 0.0351 0.0129 0.0055 0.0026 0.0097 0.0025

HIMA 0.0322 0.0253 0.0339 0.0281 0.0325 0.0232 0.0306 0.0327

HDMA 0.1482 0.1764 0.2533 0.3174 0.0990 0.1211 0.1740 0.1816

Table 3 Power at significance level 0.05

ρ = 0 ρ = 0.25

p = 1000 p = 5000 p = 1000 p = 5000

Method n = 300 n = 600 n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

HIMA2 0.8640 0.9608 0.8024 0.9392 0.8440 0.9512 0.8076 0.9364

HIMA 0.7760 0.9464 0.6192 0.8872 0.7800 0.9480 0.6472 0.9020

HDMA 0.8928 0.9848 0.7680 0.9496 0.9032 0.9880 0.8236 0.9652

ρ = 0.50 ρ = 0.75

p = 1000 p = 5000 p = 1000 p = 5000

Method n = 300 n = 600 n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

HIMA2 0.7996 0.9180 0.7596 0.9096 0.6612 0.8200 0.6416 0.8072

HIMA 0.7672 0.9252 0.6412 0.8876 0.5860 0.7584 0.5244 0.7232

HDMA 0.9052 0.9816 0.8136 0.9560 0.8436 0.9452 0.7900 0.9208
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1992–1993 (Year 7), 1995–1996 (Year 10), 2000–2001 (Year 15), 2005–2006 (Year 20), 
2010–2011 (Year 25), and 2015–2016 (Year 30).

We are interested in investigating how the DNA methylation (DNAm) markers medi-
ate the relation between smoking and lung function. Due to budget limitation, 1200 
individuals from the CARDIA participants at Year 15 were randomly selected for DNAm 
profiling using the Illumina MethylationEPIC Beadchip (p =  ~ 850,000 sites). The R 
package Enmix [31] was used to perform quality control, background correction, dye 
bias correction, quantile normalization (by probe types), and extreme outliers removal. 
Eventually, the DNAm measurements were obtained for a total of 1042 blood samples, 
which are treated as mediators in this study. The FEV1 (forced expiratory volume in 1 s) 
measured at Year 20 is considered as the lung function outcome. The number of ciga-
rette packs/year in Year 10 is the exposure variable. We are interested in building the 
mediation pathway in sequence: smoking at Year 10 → High dimensional DNAm mark-
ers at Year 15 → lung function at Year 20.

Our analysis adjusts for age, height, weight, study center, gender, and race in Mod-
els (1) and (2). Additionally, we estimated the proportions of CD4 + T lymphocytes, 
CD8 + T lymphocytes, B lymphocytes, natural killer cells, monocytes, and granulocytes 
using [32], which are also adjusted in the models. To account for experimental batch 
effects and other technical biases, we derive surrogate variables from intensity data for 
non-negative internal control probes using principal components (PCs) analysis [31]. 
The top eight PCs, explaining 95.06% of the variation across the non-negative internal 
control probes, are also adjusted as covariates in the model. All the covariates are meas-
ured at Year 10.

After screening in Step 1, the average of the absolute values of correlation among CpGs 
is 0.25 (max 0.93). In Table 4, we present the summary results on selected mediators. 
For FDR < 0.05, HIMA2 identifies 2 CpGs: cg26331243 and cg19862839 as mediators. 
CpG cg26331243 is located in the body region of gene CCDC33, which is differentially 
expressed for tobacco smoke exposure [33, 34]. CCDC33 is also linked to susceptibility 
to lung function disorders, e.g., pneumococcal meningitis [35] and SARS-CoV-2 infec-
tion [36]. Therefore, it is plausible that cg26331243 plays a role in regulating the expres-
sion of CCDC33, which in turn mediates the pathway from smoking to lung function.

CpG cg19862839 is located in the body region of gene TBX4. Growing evidence has 
indicated that TBX4 variants are associated with a wide spectrum of lung disorders [37, 
38]. Patients with mutations in TBX4 may also be more susceptible to cigarette smoking 
[39]. Therefore, we speculate that cg19862839 could participate in regulating the expres-
sion of TBX4, which also acts as a mediator between smoking and lung function.

Table 4 Summary of selected CpGs with mediation effects subject to FDR < 0.05

a Genome assembly GRCh37 (hg19)
b Based on UCSC RefGene

CpGs Chromosome1 Positiona Proximal 
gene 
 targetb

α̂k(SE) β̂k(SE) α̂k β̂k FDR

cg26331243 chr15 74,550,946 CCDC33 −0.081 (0.016) 0.084 (0.027) −0.0067 0.0345

cg19862839 chr17 59,543,726 TBX4 −0.082 (0.024) 0.059 (0.020) −0.0049 0.0397



Page 12 of 14Perera et al. BMC Bioinformatics          (2022) 23:296 

In comparison, HIMA only identifies cg26331243 as a mediator with FDR < 0.05. 
Therefore, the proposed HIMA2 has better power to identify CpGs in high dimensional 
mediation analysis.

Finally, we note that cg05575921, which was identified in the normative aging study 
(NAS) [3], is not a significant mediator in the CARDIA study. In CARDIA, the esti-
mate of α (from smoking to DNAm) is highly significant for cg05575921. However, 
the estimate of β (from DNAm to FEV1) is not significant. This may be due to that 
participants in CARDIA were much younger (mean age 45 at Year 20, range 38–55) 
than NAS (mean age 74, range 55–100), when the lung function of CARDIA partici-
pants are more homogenous. Therefore, the association between DNAm to lung func-
tion at Year 20 may not be significant in CARDIA.

In the current analysis, there is a 5-year gap between the exposure and the mediator. 
A reviewer raised the concern on treatment-induced-mediator-outcome confound-
ing. The life-course smoking trajectories for the majority of individuals were relatively 
stable before age 40–45, which corresponds to the Year 10–15 of our study cohort 
[40]. Although DNA methylation is modifiable by smoking, it is still a relatively sta-
ble biomarker over time [41]. Short-term exposure-induced covariates within a 5-year 
gap (if any) are unlikely to produce biologically functional changes in DNA methyla-
tion for us to detect as mediators.

Conclusion and remarks
In this paper we proposed an improved method HIMA2 for high dimensional medi-
ation analysis, which was shown to have better performance than HIMA [3] by 
numerical studies. We applied HIMA2 to the identification and testing of the DNA 
methylation mediating effects in the CARDIA study. Our method is relatively simple 
to implement, and can be widely used in high-dimensional mediation analyses.

Our method can be extended in several directions. First, we will consider how to 
address the correlation among DNA methylation markers to improve the inferential 
results, as shown in the Simulation Studies that both HIMA and HIMA2 lose power 
for high correlation. Second, it is of interest to incorporate the interaction terms 
between the exposure and the mediators in our model, i.e., the high dimensional 
moderated mediation analysis. Third, there has been an increasing interest and devel-
opment in longitudinal studies of DNA methylation. We can also consider repeated 
measures of DNA methylation markers as mediators in our future research.
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