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Single-nucleus RNA-sequencing of auto-
somal dominant Alzheimer disease and risk
variant carriers

Logan Brase 1,2,3, Shih-Feng You1,2,3, Ricardo D’Oliveira Albanus 1,2,3,
Jorge L. Del-Aguila 4, Yaoyi Dai 5, Brenna C. Novotny 1,2,3,
Carolina Soriano-Tarraga1,2,3, Taitea Dykstra 6,7, Maria Victoria Fernandez 1,2,3,
John P. Budde 1,2,3, Kristy Bergmann1,2,3, John C. Morris2,8,9,
Randall J. Bateman 2,8,9, Richard J. Perrin 2,6,8,9, Eric McDade 1,
Chengjie Xiong8,10, Alison M. Goate 11, Martin Farlow12, Dominantly Inherited
Alzheimer Network (DIAN)*, Greg T. Sutherland 13, Jonathan Kipnis 6,7,
Celeste M. Karch 1,2,3,15, Bruno A. Benitez14,15 & Oscar Harari 1,2,3,15

Genetic studies of Alzheimer disease (AD) have prioritized variants in genes
related to the amyloid cascade, lipid metabolism, and neuroimmune mod-
ulation. However, the cell-specific effect of variants in these genes is not fully
understood.Here, weperform single-nucleus RNA-sequencing (snRNA-seq) on
nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant
(APP and PSEN1) and risk-modifying variant (APOE, TREM2 andMS4A) carriers.
Within individual cell types, we capture genes commonly dysregulated across
variant groups. However, specific transcriptional states are more prevalent
within variant carriers. TREM2 oligodendrocytes show a dysregulated
autophagy-lysosomal pathway, MS4A microglia have dysregulated comple-
ment cascade genes, and APOEε4 inhibitory neurons display signs of ferrop-
tosis. All cell types have enriched states in autosomal dominant carriers. We
leverage differential expression and single-nucleus ATAC-seq to map GWAS
signals to effector cell types including the NCK2 signal to neurons in addition
to the initially proposed microglia. Overall, our results provide insights into
the transcriptional diversity resulting from AD genetic architecture and cel-
lular heterogeneity. The data can be explored on the online browser (http://
web.hararilab.org/SNARE/).

Alzheimer’s disease (AD), the most common cause of dementia, is
characterized by amyloid (Aβ) plaques and neurofibrillary tangles
(NFTs, Taudeposits) in the brain, accompanied byneuroinflammation,
myelination changes, synaptic dysfunction and loss, gliosis, and neu-
ronal death1,2. Genetic studies have successfully identified multiple
genes and pathways associated with AD pathogenesis, including rare
mutations in amyloid precursor protein (APP)3,4, presenilin 1 (PSEN1)5,

and presenilin 2 (PSEN2)6 that cause autosomal dominant AD (ADAD),
mainly by driving aberrant Aβ production in support of the amyloid
cascade hypothesis7. The strongest risk factor for sporadic AD (sAD),
apolipoprotein E (APOE) ε4, implicates cholesterol metabolism and Aβ
clearance mediated by astrocytes and microglia8. Integration of epi-
genetics and genome-wide association studies (GWAS) signals have
involved immune system dysfunction in AD9. Low-frequency variants
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in triggering receptors expressed onmyeloid cells 2 (TREM2), a gene that
drives microglia activation, increase AD risk10. Recent GWAS have
identified additional common genetic risk factors for AD, including
rs1582763, an intergenic variant in the MS4A locus that confers resi-
lience to AD and is associated with higher cerebrospinal fluid (CSF)
soluble TREM2 levels11–14. However, linkage and association studies do
not reveal downstream transcriptional ramifications nor the cell types
these variants influence.

Single-nucleus RNA-sequencing (snRNA-seq) has emerged as a
powerful approach to interrogating the underlying transcriptional
landscape of the cellularly-complex human brain. SnRNA-seq has been
used to study AD in different cohorts and brain regions, including the
entorhinal cortex15, temporal neocortex15,16, prefrontal cortex17,18, and
the dorsolateral prefrontal cortex (DLPFC)16,19,20. However, no single-
cell study has analyzed genetic high-risk variants and mutations in the
AD parietal cortex. A systematic and unbiased survey of cell type-
specific gene expression across this region will help identify tran-
scriptional states associated with the high Aβ plaque and tangle bur-
den but relatively low atrophy in the early stages of AD, which are
characteristic of the parietal cortex21.

In this study, we selected participants from the Dominantly
Inherited Alzheimer Network (DIAN) and Charles F. And Joanne Knight
Alzheimer Disease Research Center (Knight ADRC) biobank to enrich
our cohort with genetically defined AD patients carrying pathogenic,
risk, and resilience genetic variants to leverage the naturally occurring
perturbations of these genes and elucidate their role in AD patho-
genesis. Specifically, we performed snRNA-seq on the parietal cortex
(Brodmann areas 7 and 39). After stringent filtering, we obtained
294,114 high-quality nuclei from 67 individuals. We iteratively extrac-
ted nuclei by cell type (digital sorting), subclustered the nuclei into cell
type transcriptional states (cell states), and identified differentially
expressed genes (DEGs) by cell states.We identified differences in cell-
type composition associated with ADAD, APOEε4, TREM2, and MS4A
carriers and identified DEGs between the genetic groups and control
samples. Finally, we created an online browser (http://web.hararilab.
org/SNARE/) for convenient, unrestricted access to the snRNA-seq
expression data.

We independently replicated the genetically driven transcrip-
tional and proportional profiles identified in the parietal cortex using
snRNA-seq data of the DLPFC from the ROSMAP cohort20, snRNA-/
snATAC-seq data of the prefrontal cortex from UCI MIND’s ADRC17,
and single-cell RNAseq of 5xFAD mouse microglia22 (see details in
Methods).

Our findings highlight the power of leveraging genetic and single-
cell molecular data to understand the heterogeneity of pathways,
biological processes, and cell types mediating AD genetic risk factors.

Results
A single-nucleus atlas captures the transcriptional diversity
among sporadic and autosomal dominant AD
Detailed clinical data, postmortem neuropathological data, and
genetic characterization of the discovery cohort are described in
Table 1. We generated whole transcriptomes of the parietal cortices at
single-cell resolution using 10x Genomics Next GEM technology. After
data cleaning and quality control (QC; see Methods), we retained
67 samples and obtained molecular data for 16 carriers of pathogenic
mutations in APP and PSEN1 (autosomal dominant AD; ADAD), 31 sAD
non-carriers of risk-modifying variants, three individuals whomatched
AD-neuropathological criteria but without clinical cognitive impair-
ment at age-of-death (presymptomatic), eight individuals who mat-
ched non-AD neurodegenerative pathologies criteria (other), and nine
individuals who exhibited neither neurodegenerative pathology nor
evidence of dementia (control) (Table 1).Within the cohort, 41 samples
carried the minor allele (A) for rs1582763, an SNP in the MS4A gene
cluster11,13,14, 24 samples carried the APOEε4 allele, and 19 samples

(sAD:15, other:4) carried TREM2 risk variants (Table 1, Fig. 1a, and
Supplementary Dataset 1).

After data cleaning and QC (Table 2), we retained and clustered
294,114 nuclei (Supplementary Dataset 2), identifying 15 clusters cov-
ering major brain cell types (Fig. 1b, c). These clusters were annotated
based on the expression of well-known cell-type markers23 (Fig. 1c and
Supplementary Dataset 3). Clusters 0, 1, 2, and 9 were identified as
oligodendrocytes, clusters 3, 8, 10, 11, and 13 asneurons, and clusters4,
6, and 14 as astrocytes. Microglia, oligodendrocyte precursor cells
(OPCs), and endothelial cells were identified in clusters 7, 5, and 12,
respectively (Fig. 1b, c). We confirmed that all samples and batches
were fairly distributed among the different clusters (Entropy—See
Methods, Supplementary Figs. 1, 2, Supplementary Datasets 4, 5). The
distribution of nuclei by clusters (Supplementary Dataset 2) showed
that glial cells accounted for 80.7% of the nuclei, whereas neuronal
nuclei accounted for 18.2% (the remaining ~1% were endothelial cells).
These proportions are consistent with histological and bioinformatic
cell-type composition24. OPCs (generalized linear regression β =0.15,
p = 2.99 × 10−2) and endothelial cells (β =0.07; p = 1.25 × 10−2) showed
elevated proportions in ADAD participants compared to controls. All
other cell types were similarly represented across AD statuses (Sup-
plementary Dataset 6a).

After subclustering each cell type, we identified five to nine
subclusters or cell-type transcription states (cell states) within
each cell type (Supplementary Dataset 2). These cell states were
generally well represented among samples and batches (Supple-
mentary Fig. 1 and Supplementary Dataset 5). Cell states flagged
for review (<half the total entropy possible) were later identified as
either having few nuclei or being enriched for carriers of genetic
factors (i.e., ADAD, MS4A, or TREM2). Neuronal cell states were
then categorized as excitatory (EN) or inhibitory (IN; See Meth-
ods). We capture an average of 2696 upregulated genes (out of an
average of 16,223 genes tested) that passed multiple testing cor-
rection in each cell state compared to all other cell states in the
same cell type (Supplementary Datasets 7, 8, 9), which reveals a
rich transcriptional diversity within all brain cell types. As expec-
ted, due to statistical power, there was a positive correlation
between the number of detectable DEGs and the number of nuclei

Table 1 | Demographic characteristics of samples

Samples Control ADAD sAD Presym Other

Total 9 16 31 3 8

MS4A (AG%)* 55.6 46.7 45.2 33.3 12.5

TREM2@ - - 15 - 4

PSEN1 - 13 - - -

APP - 3 - - -

Braak Aβ (0/
A,B/C)

2/7/0 0/0/16 0/0/31 0/0/3 2/5/1

Braak
Tau (NA/I-III/
IV-VI)

0/9/0 3/0/13 4/2/25 0/0/3 0/6/2

Sex (XY)% 33.3 56.3 45.2 33.3 50.0

AOD
(mean, sd)y

90.1(9.6) 51.0(6.9) 81.5(6.4) 77.3(15.3) 88.8(6.1)

APOEℇ4+%$ 11.1 25.0 54.8 33.3 12.5

PMI
(mean, sd)h

10.9(5.5) 14.2(7.7) 11.9(6.3) 12.4(1.9) 11.3(9.1)

Other: (1:Dementia with Lewy bodies, 4:Argyrophilic grain disease, 1:Tramatic encephalopathy,
1:Neurofibrillary tangle-predominant AD, 1:Cerebrovascular disease).
ADAD autosomal dominant Alzheimer’s disease, sAD sporadic Alzheimer’s disease, Presym
presymptomatic, PMI postmortem interval.
*MS4A is referring to SNP rs1582763 (GG:25, AG:28, and AA:13).
@Two African descent and one Asian descent (the p.H157Y is European descent).
$The total number of APOE ℇ4+ were 24 (APOE genotypes: 23:4, 24:2, 33:39, 34:19, 44:3).
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in the cell type. A notable exception: most likely due to the neu-
ronal differences across cortical layers25, excitatory and inhibitory
neurons exhibited the highest average number of DEGs despite not
having the greatest nuclei abundance (Supplementary Dataset 7).
We identified a comparatively small number of endothelial nuclei,
which were not further subclustered (Supplementary Dataset 2).

Shared transcriptomic profiles across AD groups and cell types
We leveraged the snRNA-seq data to compare the cell-type-specific
gene expression patterns of the sAD, TREM2, and ADAD groups com-
pared to controls (SupplementaryDataset 9). ADADdonors havemore
underexpressed than overexpressed genes for each cell type.

Conversely, TREM2 samples have more overexpressed than under-
expressed genes (Supplementary Datasets 10, 11). Astrocytes, excita-
tory neurons, and OPCs show a trend for transcriptional
underexpression across groups; in contrast, microglia and oligoden-
drocytes show overexpression (Fig. 2a). This suggests that, in general,
astrocytes, excitatory neurons, and OPCs lose functionality overall
whilemicroglia and oligodendrocytes increase in functionality in AD. A
notable exception is the TREM2 group’s OPCs, which generally show
overexpression compared to controls.

We then compared whether genes were coincidentally differen-
tially expressed across AD groups (Fig. 2b and Supplementary Fig. 3).
In many instances, sAD and ADAD have the same direction of effect on

Fig. 1 | SnRNA-seq distinguishes major cell types using 67 human brains.
a Diagram of the study design. b UMAP plot showing 15 distinguished clusters,
0–14, with 294,114 total cells. c DotPlot depicting expression of cell-type-specific

markers genes to identify each cluster in b. Source data are provided as a Source
Data file.

Table 2 | Quality control steps

Performed on Individual samples Cell types

filter applied Cell ranger Barcode-rank Distribution Distrib UMI Distrib genes % mit. >10 cells* Double finder Garnett

Total #nuclei 1,102,459 566,486 423,937 414,303 380,625 380,625 346,264 294,114

Mean #genes 3154 2418 2242 2228 2234 2234 2221 2182

Mean #UMI 10,279 5646 4969 4899 4897 4897 4888 4725

Avg %mitochondria 2.35 2.34 1.98 1.94 1.22 1.22 1.21 1.21

mit mitochondria.
# number
*Genes were removed if they were not expressed in at least ten nuclei.
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differential gene expression. However, the effect tends to be stronger
inADAD (SupplementaryFig. 4).We also identifiedgroup-specific gene
patterns of interest. Within ADAD astrocytes, there was over-
expression of genes SLC7A5, LRP2, and SLC7A1 related to “transport
across blood–brain barrier” (Benjamini–Hochberg p = 4.09 × 10−2).
Also within ADAD astrocytes, was the overexpression of ITGA10, SER-
PINF2, P3H2, PLOD3, PLOD1, and ADAMTS12 related to “extracellular
matrix organization” (Benjamini–Hochberg p = 1.35 × 10−2) which is
concordant with other evidence implicating astrocytes in matrisome
perturbation26. Across AD groups in excitatory neurons, we identified
overexpression of EHD1, DGAT2, LRP5, and LDLRAP1 relating to ‘cho-
lesterol homeostasis’ (Benjamini–Hochberg p = 3.99 × 10−2). Unique to
TREM2OPCs, we captured overexpression of genes PDGFRB, PFKP, and
PDK1 relating to “Central carbon metabolism” (Benjamini–Hochberg
p = 3.94 × 10−2, Supplementary Dataset 12).

We found distinctive patterns of shared dysregulated genes
across cell types (Supplementary Fig. 5 and Supplementary Datasets
13, 14). All cell types showed dysregulation of “lysosome” genes
HGSNAT and ARSG (Benjamini–Hochberg p = 2.86 × 10−2) in ADAD
samples compared to controls. In ADAD, compared to sAD samples,
genes related to “vesicle-mediated transport” (CCZ1B), “Golgi main-
tenance” (GOLGA8B), and “vesical docking” (RABEPK) were dysregu-
lated in all cell types.

In astrocytes, SULT1A2 and SQSTM1 were overexpressed in sAD,
TREM2, and ADADgroups compared to controls (Supplementary Fig. 5
and Supplementary Datasets 15, 16). SULT1A2 catalyzes the sulfate
conjugation of hormones, neurotransmitters, drugs, and xenobiotics.
The SQSTM1 gene encodes p62, a protein involved in the signaling for
multiple pathways relating to proteasomes, autophagy, oxidative
stress, inflammation, and immune response27. It has been proposed as

Fig. 2 |Divergentandcoincidentexpressionpatterns acrossADAD,TREM2, and
sAD by cell type. a Ridge plots showing the distribution of gene estimates
extracted from the linearmixedmodels comparing control nuclei to ADAD,TREM2,
and sAD nuclei within cell types. Only DEGs that passedmultiple testing correction
in at least one genetic group were considered. For inclusion, the gene must also
have beennominally significant (p <0.05) in the genetic group. The total numberof
genes is shown on the right tail. b Heatmaps of gene estimates from the same
models emphasize the divergent and congruent expression patterns across genetic

groups. The largest 500 estimateswere selected per cell typeandused to create full
heatmaps (found in Supplement). “Modules” were manually created based on
expression patterns and dendrogram groupings. The top 10% of genes from each
module were extracted (order preserved) to produce the above heatmaps. “sAD
sig.”, “TREM2 sig.”, and “ADAD sig.” depict the significance status of each gene for
that group. “BH”: Benjamini–Hochberg p <0.05, “Nominal”: p <0.05, “NS”: not
significant. Source data are provided as a Source Data file.
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a therapeutic target to facilitate amyloid-β removal by autophagy
activation28.

In microglia, the genes FLT1 and PTPRG were overexpressed in
sAD, TREM2, and ADAD, whereas FARP1 was overexpressed in sAD,
ADAD, and APOEε4+ (see Methods) samples. FLT1mediates microglial
chemotactic inflammatory responses, which contribute to pathologi-
cal conditions in the ADbrain29. PTPRG is a tyrosine phosphatase, and a
family-based GWAS hit for AD risk30. FARP1 is involved with synapse
formation, and the retention of a specific intron within this gene is
associated with AD in mouse brains31.

The gene SNTG, which is associatedwith the age of onset in PSEN1
p.E280A carriers32, was dysregulated in excitatory neurons of ADAD
and APOEε4+ samples. In oligodendrocytes, LPL and VWA3B are both
overexpressed in TREM2 and ADAD compared to controls and ADAD
compared to sAD. LPL, lipoprotein lipase, is increased in AD brains and
associated with AD progression33. Mutations in VWA3B cause a reces-
sive form of Spinocerebellar Ataxia34.

In OPCs, CNTNAP2 is overexpressed in the ADAD and
APOEε4+ groups and underexpressed in the TREM2 group. PTPN13 is
overexpressed in the TREM2 and ADAD groups compared to controls
and in ADAD compared to the sAD group. CNTNAP2 is required for jap
junction formation. It is anADGWAShit linked toneurodevelopmental
disorders, including Tourette syndrome, autism, schizophrenia, epi-
lepsy, OCD, and ADHD35. PTPN13 is a tyrosine phosphatase involved in
tau tyrosine phosphorylation36. These genes highlight core biological
functions dysregulated across multiple genetic backgrounds.

Pleiotropic effects of APP and PSEN1 mutations across brain
cell types
Strikingly, every cell type we analyzed exhibited cell states enriched
within ADAD carriers (Fig. 3a–e, Supplementary Fig. 6, and Supple-
mentary Datasets 6b, 9). Two astrocyte cell states were specific to
ADAD samples. One in particular, Astro.4 (Astro-DAA; generalized
linear regression β = 0.15, p = 4.39 × 10−2), had increased expression
of OSMR (linear mixed effects regression log2FC = 1.48, Benjamini–
Hochberg p = 4.37 × 10−4), VIM (log2FC = 1.80, Benjamini–Hochberg
p = 8.92 × 10−13), and CTSB (log2FC = 1.56, Benjamini–Hochberg
p = 4.03 × 10−5) compared to the other astrocyte cell states, recapi-
tulating the expression profile of the disease-associated astrocytes
(DAA) identified in the 5xFAD mouse model37 (Supplementary
Fig. 7f). Astro-DAA’s overexpressed genes are associated with
“cytoplasmic translation” (Benjamini–Hochberg p = 9.06 × 10−22) and
“cytokine-mediated signaling” (Benjamini–Hochberg p = 3.05 × 10−15)
(Fig. 3f and Supplementary Dataset 17b).

Mic.4 (Mic-stress) was a prominent cell state enriched in ADAD
samples (general linear regression β = 0.40, p = 2.50 × 10−3; Supple-
mentary Datasets 6b, 9), capturing nuclei from 11 PSEN1 carriers and
one TREM2 p.R136W carrier (Fig. 3b and Supplementary Fig. 7).
Mic-stress’s DEGs did not overlap with established microglia sig-
natures (hypergeometric), including “disease-associated microglia”
(DAM)38, “microglial neurodegenerative” (MGnD)39, and “human AD
microglia” (HAM)40 (Supplementary Dataset 18). Interestingly, Mic-
stress showed a significant increase in the expression of MECP2
(linear mixed effects regression β = 0.67, Benjamini–Hochberg
p = 3.20 × 10−10, Supplementary Fig. 7g), which has previously shown
differential expression in AD brains and, when knocked down in
microglia, caused NMDA receptor-dependent excitotoxic neuronal
cell death in a mouse model of Rett syndrome41. Pathway analysis
revealed that the 491 upregulated genes in Mic-stress were asso-
ciated with the regulation of “cellular response to stress”
(Benjamini–Hochberg p = 3.17 × 10−3) and “receptor-mediated endo-
cytosis” (Benjamini–Hochberg p = 1.74 × 10−2) (Fig. 3g and Supple-
mentary Dataset 17c). Furthermore, the Mic-stress upregulated gene
signature was replicated (upregulation signature score generalized
linear regression p range 1.92 × 10−374 to 2.45 × 10−28; Fig. 3h) in the

cortex of seven-month-old 5xFAD mice (high amyloid plaque load
at this age).

Oligo.3 (Oligo-spliceosome) was also significantly associated with
ADAD samples (Fig. 3e, generalized linear regression β =0.63,
p = 1.48× 10−6; Supplementary Datasets 6b, 9). Pathway analysis of the
Oligo-spliceosomeupregulated genes was enriched in genes related to
‘mRNA splicing, via spliceosome’ (Benjamini–Hochberg p = 1.42 × 10−41,
Fig. 3g) mainly from the family of heterogeneous nuclear ribonucleo-
proteins (HNRNP), including HNRNPA1, HNRNPA2B1, HNRNPA3,
HNRNPC, HNRNPD, HNRNPH3, HNRNPK, HNRNPM, andHNRNPU, which
have previously been linked to late-onset AD (Supplementary Fig. 7h
and Supplementary Dataset 17h)42. The AD risk genes, PICALM, CLU,
APP, and MAP1B, which have intronic excision levels correlated with
the expression of HNRNP genes42, were also overexpressed in Oligo-
spliceosome (Supplementary Fig. 7h). This suggests that PICALM, CLU,
APP, andMAP1B could be alternatively spliced throughHNRNP splicing
repression within oligodendrocytes. HNRNP genes also play a role in
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
(FTD)43 and promote the translation of APP44.

Additional cell states in oligodendrocytes (Oligo.1), OPCs (states
4, 5, 6), and neurons (EN.3, IN.2) were enriched within ADAD carriers
(Fig. 3c–f and Supplementary Datasets 6b, 9).

TREM2 variants modulate microglial and oligodendrocytic
transcription states
The TREM2AD-risk variants associatedwith reduced cellular activation
(p.R47H, p.R62H, and p.H157Y)20,45 were associated with Mic.2 (Mic-
reduced; Fig. 4a; generalized linear regression β =0.23, p = 3.29 × 10−2;
Supplementary Datasets 6c, 9). Mic-reduced showed high expression
of resting-state-microglia marker genes (TMEM119, P2RY13, MED12L,
and SELPLG) and minimal elevation of activated (ABCA1, C5AR1,
TNFAIP3, andCD83)marker genes compared to theMic-resting (Mic.0)
andMic-activated (Mic.1) cell states (Fig. 4b, Supplementary Fig. 8, and
Supplementary Dataset 18). We analyzed microglia from 32 ROSMAP
snRNA-seq samples (DLPFC) that included 11 TREM2 p.R62H carriers
(See Methods, Synapse ID: syn21125841)20. We found that 10.2% of the
ROSMAPmicroglia recapitulated theMic-reduced transcriptional state
(signature score generalized linear regression p range 1.04 × 10−165 to
4.56 × 10−3; Fig. 4c, d and Supplementary Figs. 9, 10). Carriers of TREM2
p.R62H had a higher proportion of theirmicroglia inMic-reduced than
did non-carriers (Fig. 4a, Discovery: generalized linear regression
β = 0.20, p = 2.58 × 10−2; Meta-analysis: p = 2.26 × 10−2).

In the discovery cohort, these TREM2 risk variant carriers were
also enriched for Oligo.5 (Oligo-TFEB; generalized linear regression
β = 0.13, p = 4.66 × 10−2; Fig. 4e and Supplementary Dataset 6c), which
exhibited upregulation of 1124 genes including TFEB (linear mixed
effects regression Log2FC =0.15; Benjamini–Hochberg p = 8.69 × 10−6;
Supplementary Dataset 8) compared to other oligodendrocyte cell
states (Fig. 3d). Altered TFEB expression may be driven by the inter-
action of TREM2 with mTOR, which is upstream of TFEB46,47. TFEB, a
central regulator of lysosomal biogenesis and autophagy48,49, represses
myelination at different developmental stages50 and dysregulated
TFEB signaling has been implicated in multiple neurodegenerative
diseases48,51. Oligo-TFEB also had increased proportions among sAD
samples compared to controls (Supplementary Dataset 6c).Within the
ROSMAP cohort, 7.1% of oligodendrocytes exhibited this transcrip-
tional signature (upregulation signature score of Oligo-TFEB general-
ized linear regression p range 1.22 × 10−483 to 3.56 × 10−2; Fig. 4g;
Supplementary Figs. 9, 11) with an increased proportion in TREM2
p.R62H carriers (Discovery: generalized linear regression β = 0.13,
p = 2.48 × 10−2; Meta-analysis: p = 6.11 × 10−3; Fig. 4e). Furthermore, our
analysis of the expression-derived gene regulatory network (GRN) for
these oligodendrocytes identified transcription factors mediating
regulation in both discovery and replication data (replication hyper-
geometric p = 9.08 × 10−41). We identified SOX8, SREBF1, and NKX6-2
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linked to myelination17,52,53, NFE2L2/NRF2 associated with multiple AD
pathologies including Aβ, Tau, and oxidative stress54, and ZNF518A
associated with increased somatic-mutational burden in AD
oligodendrocytes55 (Fig. 4g and Supplementary Dataset 19). Down-
regulation of SREBF1 was previously reported in oligodendrocytes in

AD brain tissue17, and associated with regulation of ErbB/mTOR sig-
naling pathways and autophagy56,57. Changes in autophagy markers
were reportedpreviously inmicrogliaof p.R62Hcarriers46 andourdata
suggest that autophagy dysregulation may also be a feature of oligo-
dendrocytes in p.R62H carriers.

Fig. 3 | ADAD participants exhibit distinct signatures in astrocytes, microglia,
OPCs, oligodendrocytes, and neurons. a–f Proportionplots show the enrichment
of certain cell states in ADAD participants compared to all other participants. The
proportionwas calculated for each sample (seeMethods). For visualization, sample
proportions are averaged by AD status. (*) represents a significant (p <0.05)
enrichment of that cluster within ADAD samples as determined by linear regres-
sion. Exact p values can be found in Supplementary Dataset 6. ADAD autosomal
dominant AD, sAD sporadic AD, Pres presymptomatic, CO neuropath free, OTH
non-AD neurodegenerative. a Astrocytes (Astro-DAA= cluster 4). bMicroglia (Mic-
stress = cluster 4). c Excitatory neurons. d Inhibitory neurons. e Oligodendrocytes
(Oligo-spliceosome cluster 3). fOPCs.gAheatmapof the enriched pathwayswithin

the upregulated genes for each cell state. The DEGs were isolated from the linear
mixedmodels comparing each cell state to all other cell states of the samecell type.
GO Biological Process terms were summarized and selected as described in the
Methods. (·) indicates a significant (Benjamini–Hochberg p <0.05) association as
calculatedby the Rpackage enrichR. Exact p values canbe found in the SourceData
file. h 5xFADmouse validation of Mic-stress ADAD cluster (cluster 2 here). Left and
middle: a UMAPof integratedmicroglia split by species. Right: a violin plot showing
that mouse cells in the ADAD cluster have a higher human microglia ADAD cluster
signature score than mouse cells in other clusters. (**) = p < 5.0 × 10−25, (***) =
p < 5.0 × 10−50. Source data are provided as a Source Data file.
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MS4A resilience variant carriers show a specific inflammatory
microglial activation state
Carriers of rs1582763-A, an intergenic allele associated with reduced risk
for ADand higher CSF sTREM2 levels14, showed increasedproportions of

nuclei in Mic.3 (Mic-proinflammatory) compared to non-carriers (gen-
eralized linear regression β =0.15, p= 1.67 × 10−3; Fig. 5a; Supplementary
Fig. 12 and Supplementary Datasets 6e, 9). The Mic-proinflammatory
state displayed a proinflammatory profile, including the upregulation of

Fig. 4 | TREM2 reduced activation variant carriers (p.R47H, p.R62H, and
p.H157Y) have distinct microglia and oligodendrocyte profiles. a–d Microglia
(Mic-reduced = cluster 2). e–g Oligodendrocytes (Oligo-TFEB= cluster 5).
a, e Proportion plots show a significant (p <0.05) enrichment (*) of cell states in
TREM2 reduced activation carriers (TREM2R) compared to all other samples as
determined by linear regression. Exact p values can be found in Supplementary
Dataset 6. The proportion was calculated for each sample (see Methods). For
visualization, sample proportions are averaged by group. “Other” represents all
sAD non-TREM2 reduced activation carriers, including carriers of other TREM2
variants. b Barplot shows the expression of both resting and activated microglia
marker genes inMic-reduced (mic.2) compared to theMic-resting (mic.0) andMic-
activated cell states (mic.1). Expression was corrected for the age of death and sex
using partial residuals. c UMAP plots showing the integrated nuclei from the dis-
covery cohort and ROSMAP, split by cohort. d Violin plot of cell state expression
signatures in the ROSMAP nuclei. The signature was calculated from the

upregulated genes from the discovery cohort. Differences in signature scores were
calculated using linear regression. (*) = p <0.05, (**) = p < 5.0 × 10−3, (***) =
p < 5.0 × 10−20; exact p values can be found in the Source Data file. f Barplot shows
the log2 fold-change of TFEB by oligodendrocyte cell state. g Identification of gene
regulatory networks (GRN) in Oligo-TFEB discovery and replication cohorts. Reg-
ulons were filtered to include only those identified in both cohorts (p = 9.98 × 10−41;
hypergeometric analysis) with significant differential expression in Oligo-TFEB.
Then those regulons with significant (Benjamini–Hochberg p <0.05; hypergeo-
metric analysis and Benjamini–Hochberg multiple testing correction) coincidence
in the underlying target genes between cohorts were selected. h Gene regulatory
network for transcription factors (TF; shown in blue) replicated in both discovery
(purple edges) and ROSMAP (orange edges) datasets for oligo-TFEB. Replicated
target genes and edges are shown in yellow and green respectively. Genes within
AD GWAS loci are highlighted in red. g, h (*) = Benjamini–Hochberg p <0.05, (**) =
Benjamini–Hochberg p <0.01. Source data are provided as a Source Data file.
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ILB1 (linearmixed effects regression log2FC=3.45, Benjamini–Hochberg
p=2.07 × 10−36), CD14 (log2FC=0.63, Benjamini–Hochberg p= 1.87 ×
10−3), FCGR3A (log2FC=0.50, Benjamini–Hochberg p=3.31 × 10−3), and
CD40 (log2FC=0.91, Benjamini–Hochberg p=9.84× 10−3; Fig. 5b). Its
upregulated genes were associated with “response to lipopolysacchar-
ide” (Benjamini–Hochberg p=2.15 × 10−6) and “cytokine-mediated
signaling” (Benjamini–Hochberg p=9.65 × 10−10; Fig. 3g). Mic-
proinflammatory was present in the ROSMAP cohort (upregulation
signature score of Mic-proinflammatory generalized linear regression p
range 1.68 × 10−235 to 9.98× 10−7; Supplementary Fig. 10), but it was not
enriched within rs1582763 carriers (p>0.05), possibly because the
ROSMAP cohort contained few homozygous recessive carriers (n=3)
which were enriched in the discovery cohort by the design of the study
(n= 13). In conjunction with increased proportions of Mic-proin-
flammatory, rs1582763-A carriers also exhibited a trend for decreased
proportions of nuclei in Mic-activated (Supplementary Dataset 6e). Mic-
activated had an upregulation of activated-microglia genes CD68 (linear
mixed effects regression log2FC=0.39, Benjamini–Hochberg p=
1.06× 10−4), CD83 (log2FC= 1.34, Benjamini–Hochberg p=9.44× 10−37),
TNFAIP3 (log2FC=0.57, Benjamini–Hochberg p=2.16 × 10−7), C5AR1
(log2FC= 1.23, Benjamini–Hochberg p=4.03 × 10−46), GPNMB (log2FC=
1.73, Benjamini–Hochberg p= 6.99× 10−102), and ABCA1 (log2FC=0.82,
Benjamini–Hochberg p= 1.78× 10−45; Fig. 4b, Supplementary Fig. 8), and
a significant overlap with genes also upregulated in the DAM38, MGnD39,
HAM40, and aging58 signatures (Supplementary Dataset 18).

We then identified the DEGs between Mic-activated and
Mic-proinflammatory. Mic-activated showed increased expression
of C5 (linear mixed effects regression log2FC = 1.79, Benjamini–
Hochberg p = 3.46 × 10−3), whereas Mic-proinflammatory had
increased expression of C3 (linear mixed effects regression log2FC =
−1.24, Benjamini–Hochberg p = 4.98 × 10−26; Fig. 5c and Supplemen-
tary Dataset 20a). Previous analyses have indicated a protective role
for C3 in AD and a potentially detrimental role for C559. This is con-
sistent with the protective effect of rs1582763-A. Mic-activated also
had increased ACVR1 (linear mixed effects regression log2FC = 0.97,
Benjamini–Hochberg p = 2.92 × 10−3) and BMPR2 (log2FC = 0.39,
Benjamini–Hochberg p = 3.54 × 10−2), indicating increased BMP sig-
naling, whereas Mic-proinflammatory had high TGFBR1 (linear mixed
effects regression log2FC = −0.98, Benjamini–Hochberg p = 4.82 ×
10−17) and TGFBR2 (log2FC = −0.35, Benjamini–Hochberg p = 4.50 ×

10−2), indicating increased TGF-β signaling (Fig. 5c and Supplemen-
tary Dataset 20a). These genes encode for related receptors in the
TGF-β superfamily, which is implicated in multiple neurological
disorders60. Mic-proinflammatory also showed increased expression
of TMEM163, an AD GWAS gene61. TMEM163 is involved in trans-
porting zinc into cells where the zinc influences reactive oxygen
species (ROS) levels62. Evidence suggests ROS causes genomic
damage to neurons leading to cell death in AD63. A gene ontology
analysis also showed an upregulation of genes related to “cytokine
response/production” (Benjamini–Hochberg p = 2.89 × 10−9) and
“regulation of ERK1 and ERK2 cascade” (Benjamini–Hochberg
p = 2.37 × 10−7; Supplementary Dataset 20b). In addition, carriers of
rs1582763-A had decreased proportions of Astro-resting (Astro.0)
and a trend towards increased proportions of Astro-activated
(Astro.1) (Fig. 5d, Supplementary Fig. 7f, and Supplementary Data-
set 6e). The MS4A genes are not expressed in astrocytes, suggesting
cellular crosstalk synchronizes microglia and astrocytes’ activation.

APOEε4 carriers show vulnerability to ferroptosis in inhibitory
neurons
We identified a microglial and an inhibitory neuron cell state with
reduced proportions within APOEε4 carriers compared to non-
carriers. The microglia state, Mic.6 (Mic-PNNs; generalized linear
regression β = −0.13, p = 1.85 × 10−2; Supplementary Dataset 6f, 9c),
showed upregulation of genes relating to “extracellular matrix
organization” (Benjamini–Hochberg p = 6.68 × 10−6, Fig. 3g) and
“chondroitin sulfate proteoglycan biosynthetic process”
(Benjamini–Hochberg p = 5.03 × 10−4, Fig. 3g) pointing to perineur-
onal nets (PNNs) and plasticity64. The neuronal state, IN.0 (IN-axo-
nogenesis; generalized linear regression β = −0.09, p = 8.06 × 10−3),
showed upregulation of genes involved in “cytoplasmic translation”
(Benjamini–Hochberg p = 5.91 × 10−21, Fig. 3g) and “axonogenesis”
(Benjamini–Hochberg p = 2.00 × 10−6, Supplementary Dataset 17).
Within IN-axonogenesis, APOEε4 carriers had upregulation of genes
PRNP and GPX4 related to “Ferroptosis” (Benjamini–Hochberg
p = 1.11 × 10−2, Supplementary Dataset 21g) a pathology often found in
AD samples and mouse models65–67. This is concordant with the
recent finding in APOE, suggesting that the APOEε4 protein variant
has a reduced capacity to inhibit iron release by ferritin and prevent
the accumulation of intracellular iron and lipid peroxides, which lead

Fig. 5 | Unique microglial and astrocytic signatures for MS4A rs1582763 car-
riers. a Proportion plot shows a dose-dependent enrichment of Mic-
proinflammatory (cluster 3) in carriers of the rs1582763-A allele. The proportion
was calculated for each sample, and for visualization, sample proportions are
averaged by the group. (*) represents a significant (p <0.05) enrichment as deter-
mined by linear regression. Exact p values can be found in Supplementary Data-
set 6. b Heatmap of proinflammatory (purple) and anti-inflammatory (gray)
microgliamarker gene log2 fold changes (Log2(FC)) within themicroglia cell states.
(·) indicates a significant (Benjamini–Hochberg p <0.05) association as determined

by linear regression andBenjamini–Hochbergmultiple testing correction. Exact log
fold-change and p values can be found in the Source Data file. c Volcano plot of
DEGs determined by linear mixedmodels between the “main” (Mic-activated, blue)
and “MS4A”’ (Mic-proinflammatory, purple) activated microglia clusters. d A pro-
portion plot depicts a significant (p <0.05) reduced proportion (*) of astro.0 (non-
activated) in rs1582763-A carriers and a trend for the enrichment of astro.1 (acti-
vated) as calculated by linear regression. Exact p values can be found in Supple-
mentary Dataset 6. Source data are provided as a Source Data file.
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to ferroptosis68. Therefore, ferroptosis could explain the reduction of
APOEε4+ nuclei in this cell state.

APOEε4 carriers also showed an upregulation of genes involved in
‘ribosome biogenesis’ (Benjamini–Hochberg p = 1.42 × 10−2) and
“mitotic G1/S transition checkpoint signaling” (Benjamini–Hochberg
p = 1.42 × 10−2) inmicroglia, “maintenance of protein localization in ER”
(Benjamini–Hochberg p = 7.75 × 10−3) and “COPI coating of Golgi vesi-
cles” (Benjamini–Hochberg p = 7.75 × 10−3) in astrocytes, “regulation of
nuclear division” (Benjamini–Hochberg p = 3.12 × 10−2) in oligoden-
drocytes, and “cytoplasmic translation” in OPCs (Benjamini–Hochberg
p = 4.34 × 10−5; Supplementary Dataset 21).

Genes within risk AD GWAS loci show variable expression
between transcriptional states
GWAS meta-analyses have successfully identified genomic loci asso-
ciated with sAD11–13. We sought to leverage the glial and neuronal cell
states to help map genomic loci implicated in the general AD popu-
lation onto genes and cell types. This is based on the rationale that
genes differentially expressed between cell states might be function-
ally relevant to that cell type regardlessof the relative expressionof the
gene compared to other cell types. We curated a list of genes in loci
identified in recent AD GWAS, starting with 89 genes previously
prioritized13,61,69 (77 measured in this study) from 38 different loci
(Supplementary Dataset 22a); we extended the list by adding the “non-
prioritized” genes within these AD GWAS associated loci also present
in this dataset (530 genes; Supplementary Dataset 22b, c).

Out of the 77 prioritized genes, 68 (from 37 loci) showed differ-
ential expression between the cell states of at least one cell type
(Fig. 6a and Supplementary Fig. 13). We also found that for 13 genes,

the cell type with the greatest expression level variability (log fold-
change between cell states) did not match the cell type with the
highest average expression. For example, CR1 showed the highest
average expression in oligodendrocytes, but microglia and OPCs had
larger log2 fold changes in expression (log2FC) between cell states.
This suggests that transcriptional states can provide an additional
layer of information to help map GWAS genes to cell types. Rare
coding variants in PLCG2, implicated in TREM2-dependent microglial
function in AD70, have been recently reported to protect against AD71.
We found differential expression of PLCG2 between cell states within
all cell types, suggesting an extended functionality beyond the TREM2
signaling pathway in microglia (Fig. 6)72,73. These PLCG2 expression
differences were largely driven by the significant overexpression
detected in ADAD brains across all cell types except microglia, which
was nominally significant (Supplementary Dataset 10).

We accessed snRNA-/snATAC-seq data from 20 additional brains
(prefrontal cortex) from the UCI MIND’s ADRC17. Using the snRNA-seq
data, we replicated the expression and fold-change patterns identified
in the discovery cohort (seeMethods). Specifically, we observed a high
correlation between cell-type-specific gene expression (Pearson
R = 0.93; p = 5.65 × 10−211; Fig. 6b) and an overall concordance in the
DEG by cell-type calling (Fisher exact test OR = 7.88, p = 4.09 × 10−24;
Supplementary Fig. 14 and Supplementary Dataset 23) for the prior-
itized genes between cohorts. All cell types, except OPCs, individually
had a significant concordance in DEG calling.

Next, we sought to determine if genetic variants identified in AD
GWAS showed chromatin co-accessibility with the prioritized genes,
thus providing an independent layer of evidence relating genetic var-
iants to genes and cell types. We employed the snATAC-seq fromUCI17

Fig. 6 | Transcriptional states complement chromatin accessibility to help
prioritize causal cell types and genes mediating AD GWAS risk variants.
a Overview of prioritized risk genes by AD GWAS studies and their transcriptional
changes across cellular states (absolute log2 fold-change in any cellular state for cell
type). The “Locus” row indicates genes within the same locus using alternating
black and gray rectangles. The color of the squares represents the max log2 fold-
change of the gene between cell states (subclusters) of that cell type (gray: not
significant). The square size represents the average log10 transformed gene
expression. Borders represent co-accessibility (red background) or overlap (black
outline) between the TSS and a regulatory element containing a prioritized (95%
credible set) AD variant. Background color intensity corresponds to the highest
posterior probability of association (PPA) of the 95% credible set variants

overlapping the TSS or co-accessible element. b Replication of the parietal lobe
differential expression results using the UCI prefrontal cortex snRNA-seq data. OR:
Fisher exact test odds-ratio (replicated vs. non-replicated). c Distribution of genes
co-accessible or with their TSS overlapping a regulatory element (snATAC-seq
narrow peak) containing a fine-mapped AD risk genetic variant. The color indicates
the number of cell types the co-accessibility signal was detected in. d Chromatin
accessibility signals across cell types for the BIN1 locus. The lead variant is repre-
sented by a red vertical bar, and the fine-mapping PPAs are plotted for each variant
with PPA >0.01. TSS regions co-accessible with variant-overlapping regulatory
elements are plotted as arcs below each signal track. e Same visualization as (d) for
the NCK2 locus. Source data are provided as a Source Data file.
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and fine-mapped AD GWAS credible sets61 to analyze cell-type-specific
chromatin accessibility between the transcription start sites (TSS) of
theprioritizedgenes and the variants in theADGWAScredible sets.We
determined that microglia cells had the highest fraction of genes co-
accessible with AD risk variants, as was previously reported17. A large
fraction (34.5%) of these genes only had co-accessibility signals within
microglia, indicating that they likely mediate AD genetic risk in a cell-
type-specific manner (Fig. 6c). For example, rs6733839 in the BIN1
locus is co-accessible with the BIN1 TSS only inmicroglia (Fig. 6d). This
is concordant with our predictions using transcriptional data (Fig. 6a
and Supplementary Dataset 8), which showed that BIN1 is under-
expressed in Mic-activated compared to both Mic-resting and Mic-
proinflammatory (MS4A associated), suggesting that the role of BIN1 in
AD risk is dependent on microglia activation.

A recent study suggested that microglial cells mediate AD genetic
risk at the NCK2 locus (lead variant rs143080277, MAF =0.0054),
principally based on the higher expression of NCK2 in microglia74. We
also observed thatNCK2 expression is highest inmicroglia (Fig. 6a and
Supplementary Fig. 12); however, we identified the largest NCK2
expression differences within excitatory neuron cell states (max. linear
mixed effects regression fold-change = 2.02). Analyses of chromatin
accessibility show that rs143080277 is co-accessible with the NCK2
promoter in excitatory and inhibitory neurons, but not microglia
(Fig. 6e). Altogether, these results highlight that DE between cell-type-
specific transcriptional states provides additional information to help
prioritize target genes and cell types mediating genetic risk at non-
coding loci, which is complementary to other evidence, including cell-
type-specific chromatin accessibility.

Discussion
We performed snRNA-seq on nuclei from the understudied parietal
cortex froma cohort enriched in carriers of AD genetic variants in APP,
PSEN1, TREM2, APOE, and theMS4A cluster (rs1582763-A, an intergenic
resilience variant in theMS4A locus associated with increased levels of
soluble TREM2 in CSF and reduced AD risk14).

In this cross-sectional study, we identify genes commonly dysre-
gulated across AD groups, including FARP1, SQSTM1, CNTNAP2, LPL,
and SNTG in microglia, astrocytes, OPCs, oligodendrocytes and exci-
tatory neurons respectively. These represent core genes and pathways
perturbed across a wide range of genetic backgrounds and are,
therefore, powerful potential targets for therapeutic intervention. We
also noted that the parietal lobes of sporadic and autosomal dominant
AD brains show similar transcriptional dysregulation in general, but
the effect is usually stronger inADAD. This supports the premise of the
amyloid hypothesis, that the molecular changes in ADAD are also
found in sAD, and shows that the ADAD cohorts provide unique
opportunities to study the underlying biology of the disease.

It is worth noting that we observed cell states enriched within
ADAD samples for all cell types, with the Mic-stress state almost
exclusively present in these carriers. We cannot rule out the possibility
that this specificity could be due to younger ages in ADAD (an average
of 32.9 years younger) compared to sAD. However, upon integrating
microglia and oligodendrocyte snRNA-seq data from the parietal cor-
tex with that from the DLPFC, we observed that this transcriptional
state is also present in sporadic late-onset AD (Fig. 4c, g). In sAD, the
parietal cortex is affected in the later stages of disease progression,
whereas the DLPFC is affected earlier75,76. Therefore, the cell states
identified in the parietal cortex of ADAD participants could represent
accelerated stages of pathology like the DLPFC in late-onset sAD,
consistent with the elevated tau PET found in the parietal region of
ADAD compared to sAD patients77. Additional studies capturing mul-
tiple brain regions with varying degrees of pathology will provide the
data to understand these observations in more detail.

TREM2 p.R47H, p.R62H, and p.H157Y show reduced cell activa-
tion in vitro20,45. Here, we report microglia and oligodendrocyte cell

states associated with TREM2 risk variant carriers. TREM2 is mainly
expressed in microglia. However, loss of function mutations in
TREM2 cause Nasu-Hakola disease, which is characterized by white
matter changes, including loss of myelination, suggesting
oligodendrocyte-microglia crosstalk78. Therefore, it is likely that AD
patients with TREM2 variants had altered microglia behavior which
changed the microenvironment, driving the oligodendrocyte cell
state found in TREM2 variant carriers. The microglial cluster asso-
ciated with these reduced activation variant carriers displayed a
resting-like state, suggesting they might benefit from treatments
targeting TREM2 to prevent its cleavage, increasing microglial
activation79; however, not all TREM2 risk variants are functionally
equivalent14,80,81. We also observed a microglia state expressing
activation markers enriched for homozygous carriers of the MS4A
resilient variant. In contrast to the major activated microglia state,
this cell state showed upregulation of proinflammatory genes and
cytokine signaling. A better understanding of this microglia resi-
lience state could improve efforts to induce therapeutic microglial
activation.

APOEε4 carriers had decreased proportions of nuclei in Mic-PNN
and IN-axonogenesis, expression states that both influence axon
regeneration and brain plasticity. The disruption of these cell states
could be a contributor to the faster cognitive decline associated with
the ε4 allele. Pathway analysis implicates ferroptosis in the loss of IN-
axonogenesis cells suggesting this pathway warrants further investi-
gation in APOEε4 carriers.

Most AD GWAS hits are non-coding variants that potentially
influence gene expression. By inspecting the cell state differential
expression results, we found that multiple cell types might mediate
some genetic loci’s effect. For instance, both differential expression
and co-accessibility analyses linked the NCK2 GWAS hit to neurons in
addition to the initially proposed microglia. This example highlights
the benefit of using cell state DE as an additional layer in linking GWAS
signals to genes and cell types.

These analyses are limited by the rarity of mutations in APP,
PSEN1, and the low frequency of variants in TREM2 in the general
population. As a result, samples withmutations in APP and PSEN1were
merged and considered as a single ADAD group and three TREM2
variants (p.R47H, p.R62H, and p.H157Y) were merged as the TREM2-
reduced activation group despite there being slight differences in the
functional mechanisms. Further analyses on additional tissue samples
from carriers of these variants are needed to fully uncover the variant-
specific effects in these critical AD genes.

Disease heterogeneity could explain the failure of many promis-
ing clinical trials tomeet their endpoints82. ThemechanismsdrivingAD
heterogeneity are complex and rarely studied. Here, we show that
genetic variants influence cell expression states, and, therefore, could
explain somedisease heterogeneity. Themolecular characterization of
the genes and pathways driving these cell states elucidates the func-
tional mechanisms driving disease heterogeneity and possible targets
for therapeutic intervention in the era of personalized medicine.

In conclusion, ourfindings support that single AD risk variants can
influence the transcriptional landscapes of multiple brain cell types.
Pathogenicmutations inAPP and PSEN1 altered the profiles of neurons,
but more especially glia when compared to controls and sAD. TREM2
risk variants shifted microglial and oligodendrocytic profiles and the
MS4A resilience variant inflated a proinflammatory microglia profile.
Each of these changes can modify AD’s pathological progression and
clinical manifestations.

Methods
Processing of brain tissue samples
The Washington University Translational Human Neurodegenerative
Research (THuNDR) laboratory, which serves as the Neuropathology
Core for the Knight Alzheimer Disease ResearchCenter (Knight ADRC)
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and the Dominantly Inherited Alzheimer Network (DIAN) study, pro-
vided the postmortem parietal lobe tissue samples. These samples
were obtained with informed consent for research use and approved
by the Washington University School of Medicine in St. Louis Institu-
tional Review Board. According to the National Institute on Aging-
Alzheimer’s Association (NIA-AA) criteria, AD neuropathological
changes were assessed. Their demographic, clinical severity, and
neuropathological information are presented in Table 1. RIN scores
were used to evaluate bulk RNA quality for each sample before snRNA-
seq library preparation83 (Supplementary Dataset 24).

Nuclei isolation and snRNA-seq on the 10X Genomics platform
The frozen human parietal cortex samples were processed according
to the “Nuclei extraction and library preparation” protocol described
by ref. 23. Briefly, the tissue was homogenized, and the nuclei were
isolated using a density gradient. The nuclei were then sequenced
using the 10X Chromium single cell Reagent Kit v3, targeting 10,000
cells per sample and 50,000 reads per cell for each sample.

SnRNA-seq data processing with 10X genomics CellRanger
software and data filtering
The CellRanger (v3.0.2 10XGenomics) software was employed to align
the sequences and quantify gene expression. We used the GRCH38
(release-93) reference to prepare a pre-mRNA reference according to
the steps detailed by 10X Genomics (References- 3.0.0). The software
was packaged into a Docker container (https://hub.docker.com/r/
ngicenter/cellranger3.0.2), allowing us to launch it within the
McDonnell Genome Institute (MGI) infrastructure, reducing the com-
puting time for generating the BAM files. Four samples failed in library
prep and sequencing, leaving 70 samples to pass to QC.

Filtering and QC were done using the Seurat package (v3.1.2) on
each subject individually. Each raw gene expression matrix for each
sample was plotted using BarcodeInflectionsPlot to calculate the
inflection points derived from the barcode-rank distribution. Thresh-
olds were selected to isolate uniform regions of the distribution
(Barcode-rank Distribution, Table 2, Supplementary Fig. 15, and Sup-
plementary Dataset 25). Once the thresholds were determined, a
subset of the data were isolated. We removed nuclei with high mito-
chondria gene expression following the dynamic model proposed by
ref. 19. Briefly, the nuclei were grouped by their percentage of mito-
chondria values using k = 2 clustering, and the group with the higher
percentage values was removed. Genes not expressed in at least ten
nuclei were removed from the final matrix. To detect and discard
doublets, we usedDoubletFinder84 (v1.0.0), which removes nuclei with
expression profiles that resemble synthetically mixed nuclei from the
dataset. The gene expression matrices from all samples were com-
bined in R independently for further processing using the Seurat
protocol. One sample was removed during this process due to low
nuclei counts, leaving 69 samples.

Dimensionality reduction, clustering, and UMAP
Themerged expressionmatrix was normalized using the SCTransform
protocol by Seurat. This function calculates a model of technical noise
in scRNA-seq data using “regularized negative binomial regression” as
described previously in ref. 85. We regressed out, during the normal-
ization, the number of genes, the number of UMIs, and the percentage
of mitochondria. The principal components were calculated using the
first 3000 variable genes, and the Uniform Manifold Approximation
and Projection (UMAP) analysis was performed with the top 14 PCs.
The clustering was done using a resolution of 0.2.

Cluster annotation and quantification of regional and individual
contributions to cell types
We employed a list of marker genes we had previously curated23 to
annotate brain snRNAseq data. We used the DotPlot function (Seurat

package) to visualize the average expression of genes related to specific
cell types. This approach enabled the labeling of cell types based on the
overall expression profile of the nuclei, regardless of dropout events. In
addition, we employ a supervised method termed Garnett86 (v0.1.14)
that leverages machine learning to classify each nucleus and estimate
cluster homogeneity. This method also provides a metric of gene
ambiguity, which enables further optimization of the marker genes to
be included in the classification process. For this method, we employed
SYT1, SNAP25, and GRIN1 to classify neurons, NRGN, SLC17A7, and
CAMK2A for excitatory neurons and GAD1 and GAD2 for inhibitory
neurons; AQP4 and GFAP for astrocytes; CSF1R, CD74, and C3 for
microglia;MOBP, PLP1, andMBP for oligodendrocytes; PDGFRA, CSPG4,
and VCAN for oligodendrocyte precursor cells (OPCs); CLDN5, TM4SF1,
and CDH5 for endothelial cells and ANPEP for pericytes. We employed
the function check_markers (Garnett package) to evaluate the ambiguity
score and the relative number of cells for each cell type. A classifier was
then trained using the marker file, with “num_unknown” set to 50. This
classifier annotates cells with cell-type assignments extended to nearby
cells using the “clustering-extended type” labeling option. At this stage,
one ambiguous cluster and one subject-specific cluster were dropped.
One sample was predominantly in the ambiguous cluster, and another
was predominantly in the subject-specific cluster, so those samples
were removedentirely, leaving67 samples. Distributions ofUMI counts,
gene counts, and percentage of mitochondrial reads for each sample
are shown in Supplementary Fig. 16.

Identification of alternative cell-type transcription states
The nuclei within the primary cell-type clusters were each isolated
from the full dataset and re-clustered. We re-normalized the data
subset using the same protocol as explained in section 4 in methods.
The number of PCs used for UMAP dimensionality reduction was dif-
ferent for each cell type, 4, 8, 10, 6, and 5, for neurons, oligoden-
drocytes, microglia, astrocytes, and OPCs, respectively. We then
employed Seurat’s FindNeighbors and FindClusters functions to iden-
tify unique cell states or subclusters (resolution =0.1, 0.2, 0.2, 0.05,
and0.15). Additionally, we used theGarnett protocol to examinenuclei
in each expression state within each cell type to detect and remove
those nuclei that did not resemble a trustworthy expression profile
from downstream analyses. After this final stage of QC, we ended with
67 of the 74 brains and 294,114 of the 1,102,459 nuclei. Distributions of
UMI counts, gene counts, and percentage of mitochondrial reads by
cell state are shown in Supplementary Fig. 17.

Sample and batch entropy by clusters and cell state
To evaluate the sample and batch effects in clustering, the sample and
batch entropies were calculated for clusters and cell types for the full
snRNA-seq dataset and the cell states for each cell type87. Shannon
entropy was used to calculate individual cluster entropies (Eq. 1), and
the weighted sum was used to calculate overall clustering entropy
(Eq. 2)88. The entropies were normalized by dividing each entropy
value by the maximum entropy possible for each scenario (batch
(n = 14) = 3.81; sample (n = 67) = 6.07) (Supplementary Dataset 5).

H ið Þ= �
X

j2K
p ij
� �

log2pðijÞ ð1Þ

H =
X

i2C
HðiÞNi

N ð2Þ

Excitatory and inhibitory neuron classification
Neuronal marker genes SLC17A7 and GAD1 from ref. 25. were used to
classify the individual neuron cell states as either excitatory (EN) or
inhibitory (IN), respectively (Supplementary Fig. 18). Expression of
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these genes was log2 transformed, averaged by sample within each
cluster, and then averaged by cluster to get a final score for each
cluster. Downstream analyses were performed within these new clas-
sifications. Gene markers for the cortical layer were also from Lake
et al. to link each neuronal cell state to a probable cortical layer
(Supplementary Fig. 18).

Differential proportion analysis
We employed linear regression models testing each individual’s cell
state compositions to identify associations between cell-type tran-
scriptional states and disease groups (ADAD, sAD, TREM2, TREM2_re-
duced, rs158276).Moreexplicitly, the number of nuclei a subjecthad in
a specific cell

Proportion=
numberNucleiðstateiÞ
totalNucleiðcellTypeÞ ð3Þ

state was divided by the subject’s total nuclei count for that cell type
creating a proportion (Eq. 3). The proportionswere normalized using a
cube root transformation andwere corrected by sex, age of death, and
disease status depending on the variable of interest. We removed
participants who contributed fewer than 60 nuclei to the cell type
cluster. The TREM2 and APOE analyses only included the 31 sAD sam-
ples.We utilized glm, a standard function in R, to implement themodel
(Eqs. 4–8).

rs1582763ðAdditiveÞ : ðProportionÞ1=3 ∼Genotype+ Sex+ADstatus ð4Þ

APOEε4+ : ðProportionÞ1=3 ∼APOEstatus + Sex+AOD ð5Þ

TREM2, ðProportionÞ1=3 ∼TREM2status + Sex+AOD

TREM2�reduced :
ð6Þ

ADAD : ðProportionÞ1=3 ∼Sex +ADstatus ð7Þ

sAD : ðProportionÞ1=3 ∼Sex +ADstatus ð8Þ

To visualize these results, cell state proportions were averaged
between the samples in a group and displayed in a stacked barplot
using the ggplot2 (v3.3.6) library in R. The location and density of
nuclei for these groups in the UMAP space were also visualized using a
modified version of SCANPY’s embedding_density functions that
extended its functionality to quantitative variables (rs1582763 allele
counts). This modified code can be found at https://github.com/
HarariLab/parietal-snRNAseq89.

Cell state differential expression
To determine if there was unique functionality or potentially altered
cell states due to disease, wefitted a linearmixedmodel that predicted
the expression level of each gene for the individual nuclei by cell state
and corrected for the subject of origin and sex (Eq. 9)90. Control, sAD,
and ADAD samples were used to calculate cell-state differentially
expressed genes. Expression levels were extracted from the Seurat
objects using GetAssayData with the ‘slot’ parameter set to “counts”.
Age of death (AOD) was not included in the model because AOD is
correlated with ADAD status. The R package nebula91 (v1.1.5) was used
to implement the model, including parameters for a zero-inflated
negative binomial distribution (model = “NBLMM”, method = “LN”)
and the random effect of the subject of origin91. The number of UMI’s
per nuclei was already accounted for during SCTransformation, so the

model did not need to account for the number of UMI’s.

Expression∼CellState + Sex + ð1∣SubjectÞ;
ZI model = ∼ 1;ZINB distribution

ð9Þ

Within each cell type, differential expression (DE) was calculated
on each cell state versus all other states and each state against each
other state individually. Participants with sufficient nuclei counts
(astrocytes, microglia: n > 50; excitatory neurons, inhibitory neurons,
oligodendrocytes: n > 60; OPCs: n > 66) in the cell type cluster were
included in the analysis. Thresholds were determined by natural
breaks in the count distributions for each cell type.

Genetic factor differential expression
Differentially expressed genes were identified within each cell type by
genetic status, namelyADAD,TREM2, or sADvs.Controls andAPOEε4−
vs. APOEε4+. The nuclei were isolated for each group (ADAD, TREM2
variant carriers, sAD, and APOEε4+). Each group was compared to
controls (neuropath. free controls or APOEε4−) using linear mixed
models as explained above. Samples with sufficient nuclei counts
(astrocytes, microglia: n > 50; excitatory neurons, inhibitory neurons,
oligodendrocytes: n > 60; OPCs: n > 66) in the cell type cluster were
included in the analysis. The following model was used:

Expression∼GeneticStatus +AOD+Sex + ð1∣SubjectÞ;
ZImodel = ∼ 1; ZINBdistribution

ð10Þ

Age of death (AOD) was not included when analyzing ADAD. This
model was run on the entire cell type and each cell state within the cell
types. Only non-TREM2 sAD samples were included in the APOEε4+
analysis. Only carriers of TREM2 variants p.R47H, p.R62H, and p.H157Y
were included in the TREM2 compared to controls analyses.

Handling of genetically related individuals
The data generated is primarily from unrelated donors, but also
includes data from related samples from three nuclear families. In
more detail, two pairs from two sibships from the Knight ADRC, and
one pair of related donors from the DIAN cohort (sAD-family, sAD-
presymptomatic family, and ADAD-family; SupplementaryDataset 26).
To confirm that this would not bias the differential expression results,
we ran analyses with both samples in a family retained and one sample
from the family removed. Using the largest (oligodendrocytes) and
oneof the smallest (microglia) cell types,we testedADADcompared to
controls (ADAD-family, sample40 dropped) and sAD compared to
controls (sAD-family, sample59 dropped) and calculated the correla-
tion of the estimates and –log10-transformed p values between the
“retained” and “removed” analyses using cor.test in R (Supplemen-
tary Fig. 19).

Overlapping genes
Overlapping DEGs from the genetic factor differential expression
analyses were identified using two approaches. First, the results were
grouped by genetic factor, and the cell types were overlapped (Sup-
plementary Fig. 5 and Supplementary Dataset 13). Second, the results
were grouped by cell type, and the genetic factors were overlapped
(Supplementary Fig. 5 and Supplementary Dataset 15). Overlapping
gene sets that included three or more overlaps were run through gene
enrichment analysis using enrichR (v2.1; hosted by the Ma’ayan
Laboratory92,93) (Supplementary Datasets 14, 16). Overlaps were
visualized using the ComplexUpset (v1.3.3) library in R.

Strength and direction of effects
To see which genes are simply more strongly differentially expressed
in ADAD samples versus those unique to ADAD samples, the multiple-
test-corrected significant DEGs for sAD, TREM2, and ADAD samples

Article https://doi.org/10.1038/s41467-023-37437-5

Nature Communications |         (2023) 14:2314 12

https://github.com/HarariLab/parietal-snRNAseq
https://github.com/HarariLab/parietal-snRNAseq


compared to controls were isolated. The three gene lists were merged
(union), and the estimates for each gene from each comparison were
extracted. Distributions of the estimates split by sAD, TREM2, and
ADAD were plotted for each cell type’s nominally significant genes in
each group. Heatmaps were created using the top 500 strongest
estimates for each cell type (SupplementaryFig. 3). Theheatmapswere
visually inspected for gene modules, and the modules were run
through gene enrichment analysis using enrichR (Supplementary
Datasets 12, 27). Theseheatmapswere summarized to 25 genes in Fig. 2
by taking the genes with the strongest estimates from each module
while maintaining the correct proportion of genes for each module.

The effects between sAD vs. controls and ADAD vs. controls were
also directly compared by cell type using the results from the ‘Genetic
factor differential expression’ analyses described above. Only the
analyses run on the entire cell type population were interrogated. The
results of these analyses were filtered to include only genes with
nominal associations (P <0.05) in both analyses to ensure that there
could be confidence in the effect sizes for accurate comparison. The
correlation coefficient was calculated using R’s native cor function.

Pathway analyses
The upregulated genes identified for each cell state were used in a
subsequent pathway analysis. We used the R-based application
enrichR. We used gene sets to determine pathway enrichment using
the “KEGG 2021 Human” or “GO Biological Process 2021” gene sets.
Downregulated genes were also run in the APOE-high neuron analysis.

A heatmap was created to summarize the upregulated “GO Bio-
logical Process 2021” (GO_BP) hits for all cell states. All GO_BP term
-log10 P values for each cell state weremerged into a single table. The
union of the ten highest GO_BP terms for each cell state were then
ranked (Rank) by finding the averaged transformed P value across all
cell states for each term. The terms were then loaded into rrvgo
(v1.6.0), an R package that implements the Revigo94 tool for sum-
marizing GO_BP terms. The function calculateSimMatrix was used to
calculate the relationships between the GO_BP terms with variable
inputs: orgdb = “org.Hs.eg.db”, ont = “BP”, method = “Rel”. The terms
were then summarized using reduceSimMatrix and the following
variables: score = “Rank”, threshold = .6, orgdb = “org.Hs.eg.db”. The
summarized terms or “parentTerms” and their P values were then
used to make the heatmap. Rows were ordered using dist function
method = “euclidean”, and columns were ordered using method = “p”
for Pearson correlation. Additional GO_BP terms were manually
removed that showed similar signatures across the cell states and
implied the same biological processes (compare Fig. 3g with Sup-
plementary Fig. 6).

Microglia expression states
We collected 12 gene sets (Aging58, Homeostatic95, Lipid-droplet-
accumulating96, Neurodegenerative39, Proliferative-region-associated97,
Injury-responsive98, Activated-response99, Interferon-response99,
Human-Alzheimer’s40, Disease-associated38, TREM279, and Granulin79

microglia) associatedwith differentmicroglia functional states that had
been described in the literature. Each set was split into its up and
downregulated gene lists. A hypergeometric test was performed using
R’s native phyper function to identify which previously reported
microglial transcriptional states were recapitulated in this dataset.

Neuronal APOE and MHC-I coexpression
We followed the methods outlined by ref. 100. Briefly, MAGIC101

(v3.0.0) was used to impute gene expression, APOE expression greater
than two standard deviations marked APOE-high expression, and the
genes HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and B2M were summed to
represent MHC-I expression. A total of 61 samples were analyzed
(controls = 9, presymptomatic = 2, sAD= 28, ADAD= 15, others = 7).
The correlation between APOE and MCH-I expression was calculated

using the native cor.test function in R. Genes differentially expressed
between APOE-high and APOE-low neurons were identified using linear
mixed models as previously described (nebula R package; model:
expression ~ APOEHigh + Sex). These DE analyses were performed only
on the IN.0 and IN.2 cell states split by AD condition. Enriched path-
ways in the significantly upregulated genes were identified using
enrichR as previously described.

ADAD-specific microglia cluster validation
To confirm the biological existence of Mic-stress (Mic.4), a microglia
expression state observed in ADAD samples, single microglia cells
(n = 1551) from 5xFAD mice were collected as described by ref. 22.
Protein-encoding mouse genes were converted to their human
orthologs using biomaRt (v2.42.1). The data were normalized using
SCTransform, regressing out numbers of genes andUMIs. Seurat’s best
practices workflow was followed to integrate the mouse and human
microglia using the human microglia as the reference dataset. Seven
clusters were assigned using FindNeighbors and FindClusters with the
first eight principal components and a resolutionof0.2 as input. A total
of 297 mouse cells and 1413 of the 1429 human Mic.4 nuclei were
recaptured in the post-integration cluster 2. Themouse cells were then
re-isolated. A human Mic.4 signature score was calculated for each
mouse cell by running the 412 upregulated genes that passedmultiple-
test corrections into Seurat’s AddModuleScore. The significant pairwise
differences in cluster scores were calculated using the linear mixed
model:

moduleScore∼ cluster, ziformula= ∼0, family = 'gaussian' ð11Þ

executed using glmmTMB (v1.0.1).

TREM2-enriched and rs1582763-enriched microglial cluster
validation
Human snRNA-seqdata fromROSMAP samples (DLPFC)20wereused to
confirm theMic-reduced (Mic.2) andMic-proinflammatory (Mic.3) cell
states, enriched for TREM2 p.R47H, p.R62H, and p.H157Y and the
rs1582763-A allele respectively. The ROSMAPdata has 11 sAD, 11 TREM2
R62H, and 10 control participants with 3986 microglia. The TREM2
p.R47H samples produced by the contributors of the ROSMAP snRNA-
seq data were analyzed using nanostring and, therefore, not used in
replication. Themicroglia were isolated and normalized using Seurat’s
SCTransform function with “return.only.var.genes” set to FALSE and
regressing out “nCount_RNA” and “nFeature_RNA”. Themicroglia were
then integrated using 3000 features in SelectIntegrationFeatures, Pre-
pSCTintegration, ourdata as a reference in FindIntegrationAnchors, and
IntegrateData. To identify which nuclei fell into our original clusters,
the integrated data were clustered using the first ten principal com-
ponents as input for FindNeighbors and a resolution of 15 in
FindClusters. This shattered the data finding 147 clusters. We assigned
each of these 147 clusters an ‘original’ identity by isolating our cohort
of nuclei from the individual clusters and identifying the most com-
mon original ID. This ID was transferred to the ROSMAP nuclei, similar
to a k-nearest neighbor classifier102. These cluster identities were
mapped to the pre-integrated normalized ROSMAP data.

To measure the accuracy of our label transfer, cell state signature
scores were calculated for each ROSMAP nucleus by running the sig-
nificantly upregulated genes with estimates greater than 0.25 from
each discovery cell state into Seurat’s AddModuleScore (Supplemen-
tary Dataset 28). This same process was run for the downregulated
genes with estimates less than −0.25. The significant pairwise differ-
ences between clusters were calculated using the linear mixed model:

moduleScore∼ cluster + ð1∣subjectÞ, family = 'gaussian' ð12Þ
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It was executed using the lmer function from the lme4 (v1.1-23) R
package (Supplementary Fig. 10). The previously described ‘Differ-
ential proportion analysis’ methods were then followed to verify the
enrichment of TREM2 p.R62H nuclei in the ROSMAP Mic-reduced
(Mic.2) cluster and rs1582763 nuclei in the ROSMAP Mic-
proinflammatory (Mic.3) cluster.

TREM2-enriched oligodendrocyte cluster validation
The two oligodendrocyte clusters (29,478 nuclei) in the ROSMAP
data were integrated with our oligodendrocytes and labeled with
our original cluster identities as described above. A total of 264
clusters were identified using eight PCA dimensions at a resolu-
tion of 15. As described above, the upregulated and down-
regulated signature scores were calculated on the ROSMAP nuclei
using the cell state DEGs identified from the discovery cohort.
Pairwise significant differences in the signature score and
enrichment of TREM2 p.R62H variant carriers were calculated as
described above (Supplementary Fig. 11). The previously descri-
bed ‘Differential proportion analysis’ methods were followed to
verify the enrichment of TREM2 p.R62H nuclei in the ROSMAP
Oligo-TFEB (Oligo.5) cluster.

Reconstruction of gene regulatory network from snRNA-seq
We employed the python implementation of the SCENIC103 analysis
method called pySCENIC104 (version 0.12.1) to evaluate the gene
regulatory networks (GRN). We selected 8561 genes expressed in ≥5%
of the full oligodendrocyte population in the discovery dataset. We
employed default values for all parameters and provided default
reference data downloaded from https://resources.aertslab.org/
cistarget/: Database (hg38_500bp_up_100bp_down_full_tx_v10_clust.-
genes_vs_motifs.rankings, hg38_10kbp_up_10kbp_down_full_tx_v10_
clust.genes_vs_motifs.rankings), table (motifs-v10nr_clust-nr.hgnc-
m0.001-o0.0.tbl), and transcription factor list (allTFs_hg38.txt). An
additional TF list was downloaded from http://humantfs.ccbr.
utoronto.ca/download/v_1.01/TF_names_v_1.01.txt and the two lists
were merged totaling 2093 TFs.

The same resource files and parameters were used in the
ROSMAP cohort replication, employing 7938 out of the 8561
genes used in the discovery cohort, including 894 out of the 896
TFs. Each regulon is represented by a single TF. We tested for an
overall concordance in regulon-TFs between the discovery and
ROSMAP datasets using the hypergeometric test implemented in
the scipy.stats.hypergeom.pmf function (version 1.6.3), using
M = 896 total TFs, n = 222 TFs in discovery, N = 190 TFs in ROS-
MAP, k = 122 intersecting TFs. We intersected the list of regulons
from the discovery and ROSMAP, and then selected those that
were differentially expressed in Oligo-TFEB state (Supplementary
Dataset 8). Finally, we selected those TFs whose regulons showed
a significant overlap among the list of target genes, using the
hypergeometric test using M = 8561 total genes used in analysis,
n = the number of genes in discovery regulon, N = number of
genes in ROSMAP regulon, k = the number of intersecting
genes (Supplementary Dataset 19). We employed the
Benjamini–Hochberg method (alpha = 0.05) to correct for multi-
ple testing. We then kept the significant regulons that had >2
intersecting target genes. We only used the genes that were dif-
ferentially expressed in Oligo-TFEB when visualizing the network.

Data visualization browser
We developed the Single Nucleus Alzheimer disease RNAseq Explorer
(SNARE) to host the single nucleus expression data using the
cellxgene105 platform. It can be publicly and freely accessed at http://
web.hararilab.org/SNARE/. We include the UMAP representations for
the full dataset (consists of all cell types) and the individual cell type
subclustering.

Characterization of loci identified in AD risk GWAS
A list of genes identified through AD GWAS was collected. We started
with 89 genes from 38 different loci that were previously
prioritized13,61,69. We then added in all 1240 genes from all the sig-
nificant loci. This list was filtered by genes detected in our snRNA-seq
dataset, leaving 530 genes (77 of the prioritized genes). The significant
cell state DE results were queried for the genes within our curated lists
and extracted by cell type. We did not include results from direct
comparisons with cell states that contained less than 5% of that cell
type’s nuclei. We removed gene hits with a negative estimate for DE
analyses that were a cell state against all others (e.g., mic.1 vs all other
mic cell states).We calculated the log2 fold-change from the estimates
provided by nebula by using this equation:

log2FC= log2ðeestimateÞ ð13Þ

We selected the maximum log fold-change in our plots if a gene
had multiple hits within a single cell type. For each gene in our gene
list, we calculated the mean expression in each cell type.

Replication of GWAS loci characterization
SnRNA-seq data from UCI MIND’s ADRC was accessed from Synapse17.
The data was loaded into a Seurat object and normalized using
SCTransform with “nCount_RNA” and “nFeature_RNA” as regression
variables. Using just the 77 prioritized genes from above, we ran dif-
ferential expression analysis between cell states and between each cell
state and all other cell states at once within each cell type using the
cluster annotations provided with the data. As before, the nebula91

package was used for linear mixed models on the SCTransformed
expression counts with cluster and sex as fixed effects and sample as a
random effect. Following the processes above, we calculated the
maximum log2FC and the average expression of these genes in each
cell type. Genes with a p value less than 0.05 were included in the
maximum log2FC calculation.

Average expression was log10 transformed and Pearson correla-
tions were calculated for all genes and cell types at once and for each
cell type individually using cor.test in R (Supplementary Fig. 14). Max-
imum log2FC values were converted to binary format (0= gene not
differential expressed between cell states, 1 = differentially expressed)
for comparison creating 2 × 2 tables that could be passed to fisher
exact tests (fisher.test in R).

snATAC-seq data processing
We used CellRanger (version 6.1.1) to process the publicly available
snATAC-seq fastq files on Synapse from the UCI MIND ADRC17. Reads
were mapped to the GRCh38 reference obtained from https://cf.
10xgenomics.com/supp/cell-arc/refdata-cellranger-arc-GRCh38-2020-
A-2.0.0.tar.gz. We first filtered the BAM file outputted by Cell Ranger
using samtools viewwith flags -f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30.
We then used a custom python script to subset the filtered BAM file
into one pseudo-bulk BAM file for each cell type using the original
cluster assignments provided by the authors. We used MACS106 (ver-
sion 2.2.7.1) with flags–nomodel --shift -100 --extsize 200 --keep-dup all
--call-summits -B to call narrow peaks on each cell type BAM file. We
removed any narrow peaks overlapping blacklisted regions in the
genome (https://www.encodeproject.org/files/ENCFF356LFX). For
each cell type, we generated a matrix of snATAC-seq read counts per
barcode for each narrow peak, which was used as input to CICERO107

(version 1.4.4) to calculate co-accessibility across regions.

snATAC-seq co-accessibility with AD GWAS
Wedownloaded the genetic fine-mapping results from Supplementary
Dataset 861. We used column finemap_prob_nc to obtain the posterior
probability of association (PPA) values for the primary (and secondary,
when available) credible sets per locus. Using only variants with PPA
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>0.01, we identified all snATAC-seq peaks co-accessible with these
variants ina cell-type-specificmannerwith an absoluteCICERO107 score
≥0.001. In addition, we identified all transcription start sites (TSS) that
overlapped a fine-mapped GWAS variant and a snATAC-seq narrow
peak.WeusedpyGenomeTracks108 (version 3.7) to visualize the results.

Statistics and reproducibility
All statistical methods and tests used in this paper are described as
appropriate in the figure legends, methods, supplementary ormain
text. All instances where data were excluded from the further ana-
lysis are detailed above in the quality control descriptions. No sta-
tistical method was used to determine the sample size, but the
frequency of the genetic variants in the general population was
considered when selecting the sample size. Additionally, power
analyses were performed on the anticipated sample size and nuclei
counts. We planned to sequence 10,000 nuclei for each of the
74 samples for a total of ~750,000 nuclei. We expected to remove
50% of these during QC, leaving ~375,000. We expected the largest
cell typecluster tomakeup60%of these,providing thepower (0.95)
to detect cluster proportion differences with an effect size of
Cohen’s f2 = 2.16 × 10−4 according to the R package pwr (version
1.3.0). Predicting that the largest subcluster within this cell type
would account for 50% of the nuclei, we calculated Cohen’s d = 0.03
for the largestofallouranalyses.Weanticipatedthesmallestmodels
to include ~1000 nuclei, with the smallest subcluster accounting for
20%of thesenuclei.Thisprovidedpower (0.8) todetect f2 = 0.03and
d = 0.44. Samples were classified into experimental groups on the
basis of neuropathological analysis and clinical data. Analyses were
controlled for individual-level covariates, including age and sex.
Laboratory staff were blinded to sample status during sample pre-
paration. Investigators were not blinded to group allocation during
data collection and/or analysis. Knowledge of group allocation was
required to perform differential abundance analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single nucleus data from the Knight ADRC generated in this study
have been deposited in the National Institute on Aging Genetics of
Alzheimer’s Disease Data Storage Site (NIAGADS) with accession
number NG00108. The raw single nucleus data from the DIAN brain
bank generated in this study are available under restricted access to
maintain individual and family confidentiality. These samples contain
rare disease-causing variants that could be used to identify the parti-
cipating individuals and families. Access can be obtained by request
through the online resource request system on the DIAN Website:
https://dian.wustl.edu/our-research/for-investigators/dian-observatio
nal-study-investigator-resources/. As detailed on the website, “Data
requests will be reviewed based on the following criteria: (1) Scientific
merit and feasibility (e.g., availability of DIAN resources to fulfill the
request), (2) appropriateness of the investigator’s qualifications and
resources to protect the data, (3) appropriateness to DIAN goals/
themes.” Additional conditions of access include: “(1) the recipient to
cite/reference the grant (Dominantly Inherited Alzheimer Network,
U19AG032438) in any presentation or publication thatmay result from
the research, (2) Should publications result from the use of DIAN
resources now or in the future, the recipient agrees to notify the DIAN
Executive Director with details (reference or PubMedCentral ID#) and
provide a copy of the publication so productivity derived from [DIAN]
resources can be reported to the funding agency (the National Insti-
tute on Aging (NIA)). Such publications require compliance with NIH
public access policies and DIAN data sharing/publication policies, (3)
Should funding result from this research now or in the future, please

notify the DIAN Executive Director with details (grant title, sponsor,
number, dollar total, dates) so productivity derived from [DIAN]
resources can be reported to NIA, (4) no sharing of data with a third
party is allowed without the permission of the DIAN Steering Com-
mittee, (5) de-identified DIAN data will be made available to investi-
gators to conduct analyses after approval by the PI and the relevant
DIAN Core Leader. Allow 30–60 days for the review process and
30 days for interaction with the Biostatistics Core to provide the
dataset.” The processed single nucleus RNAseq data generated in this
study can be freely viewed at http://web.hararilab.org/SNARE/. The
5xFAD mouse microglia data used in this study are in the Gene
Expression Omnibus (GEO database) under the accession number
GSE141917. The ROSMAP single nucleus RNA-sequencing data used in
this study are available at Synapse under Synapse ID syn21125841. The
single-nucleus RNA-sequencing and single-nucleus ATAC sequencing
data used in this study from the UCI MIND ADRC are available at
Synapse under Synapse ID syn22079621. The GRCH38 reference data
used with CellRanger was downloaded here [ftp://ftp.ensembl.org/
pub/release-93/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.
primary_assembly.fa.gz], [ftp://ftp.ensembl.org/pub/release-93/gtf/
homo_sapiens/Homo_sapiens.GRCh38.93.gtf.gz]. The pySCENIC de-
fault reference data was downloaded from https://resources.aertslab.
org/cistarget/: Database [https://resources.aertslab.org/cistarget/data
bases/homo_sapiens/hg38/refseq_r80/mc_v10_clust/gene_based/hg38
_500bp_up_100bp_down_full_tx_v10_clust.genes_vs_motifs.rankings.fe
ather], [https://resources.aertslab.org/cistarget/databases/homo_sapi
ens/hg38/refseq_r80/mc_v10_clust/gene_based/hg38_10kbp_up_10kbp
_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather], table [htt
ps://resources.aertslab.org/cistarget/motif2tf/motifs-v10nr_clust-nr.h
gnc-m0.001-o0.0.tbl], and transcription factor list [https://resources.
aertslab.org/cistarget/tf_lists/allTFs_hg38.txt]. An additional TF list was
downloaded from [http://humantfs.ccbr.utoronto.ca/download/v_1.
01/TF_names_v_1.01.txt]. The GRCH38 referenced used in the chro-
matic accessibility analysis was downloaded here [https://cf.
10xgenomics.com/supp/cell-arc/refdata-cellranger-arc-GRCh38-2020-
A-2.0.0.tar.gz]. And the blacklisted regions in the genome were
downloaded here [https://www.encodeproject.org/files/ENCFF356
LFX]. Source data are provided with this paper.

Code availability
Custom code used to analyze the snRNA-seq data and datasets gen-
erated and/or analyzed in the current study are available from the
corresponding authors upon request or at https://github.com/
HarariLab/parietal-snRNAseq89.
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