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Abstract
We present a quantum algorithm for sampling an edge on a path between two nodes s and t in an
undirected graph given as an adjacency matrix, and show that this can be done in query complexity
that is asymptotically the same, up to log factors, as the query complexity of detecting a path
between s and t. We use this path sampling algorithm as a subroutine for st-path finding and
st-cut-set finding algorithms in some specific cases. Our main technical contribution is an algorithm
for generating a quantum state that is proportional to the positive witness vector of a span program.
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1 Introduction

Finding and detecting paths between two vertices in a graph are important related problems,
both in and of themselves, and as subroutines in other applications, but there is still much
to understand in this area. While classically these problems seem to be equivalent, an
intriguing question is whether the same holds for quantum algorithms: there are cases
where a quantum algorithm can detect a path between s and t in significantly less time
than any known quantum algorithm takes to find such a path. In particular, path finding
on a glued trees graph is one of Aaronson’s top ten open problems in query complexity
[12, 1], as the best known quantum algorithms that find an st-path in such graphs have
exponentially worse running time than the best quantum algorithms for detecting one, and
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understanding how these problems are related could improve our understanding of why
quantum computers achieve dramatic speedups for certain problems. As an example of more
immediate practical interest: path finding in supersingular isogeny graphs is one approach
to attacking cryptosystems based on supersingular isogenies [11, 16], but currently the best
known attack of this form still takes exponential time [36] (see also [19]).

In this paper, we consider the quantum query complexity of a somewhat intermediate
problem: finding an edge on an st-path in an undirected graph.1 In the classical case, it
seems hard to imagine how one could find an edge on an st-path without first finding an
st-path, but we show that in the quantum case, one can sample an st-path edge with similar
resources to what is needed to detect the existence of an st-path. In some cases, this can be
done with significantly fewer queries than the best previously known path-finding algorithms.
We show this ability to sample an edge on a path has some useful applications, including to
sabotaging networks (finding st-cut sets) and to finding paths in certain graphs faster than
existing path finding algorithms.

Previously, Dürr, Heiligman, Høyer and Mhalla [18] described an algorithm for connectivity
in the adjacency matrix model that uses O(n3/2) queries for an n-vertex graph. Their
algorithm works by keeping track of known connected components, and then uses a quantum
search to look for any edge that connects any two components previously not known to be
connected. While the authors use this algorithm to decide connectivity, we note that after
O(n3/2) queries, the algorithm will produce (with high probability) a list of the connected
components of the graph, as well as a set of edges for each component that is a witness to
that component’s connectivity (a spanning tree). This data can then be used to find a path
from s to t, if s and t are in the same component. This algorithm uses O(logn) qubits and
O(n logn) classical bits, and applies to both directed and undirected graphs.

However, the algorithm of Dürr et al. does not take advantage of any structure in the
graph. This is in contrast to an undirected path detection quantum algorithm of Belovs and
Reichardt [7], further analyzed and refined in [22, 2], which, for example, can detect a path
between vertices s and t with Õ(

√
Ln) adjacency matrix queries when there is an st-path

of length L, and even better in the case of multiple short paths, or in the case of certain
promises when there is no path. In fact, there are even sufficiently structured promises on
the input for which this algorithm performs superpolynomially better than the best possible
classical algorithm [25]. While this path detection algorithm runs faster than O(n3/2) in
many cases, the algorithm does not output any information about the st-path – it simply
determines whether a path exists.

Our contribution is an algorithm that reproduces the query complexity of the Belovs-
Reichardt undirected path detection algorithm, even for structured inputs – for example, our
algorithm uses Õ(

√
Ln) queries when there is a path of length L – but now returns some

information about edges on an st-path: namely, a path edge.2 Specifically, our algorithm
outputs an st-path edge sampled with probability that depends on the optimal st-flow
between s and t. This is how electrons would flow in an electrical network if edges in the
graph were replaced by wires with resistors and a battery were connected between s and t.
For intuition, an edge is more likely to be sampled if it is on more or shorter paths. Thus,

1 In this paper, we use path to refer to a self-avoiding path, meaning a path with no repeated vertices.
2 As we hinted at with our statement of advantages for the Belovs-Reichardt algorithm in the case of

shorter and/or multiple paths, the Belovs-Reichardt algorithm for st-path detection actually has a
complexity that depends on the structure of the graph in a more subtle way, replacing L with an upper
bound on the effective resistance between s and t, which is at most the length of the shortest path
between s and t. This more subtle analysis also applies to our edge finding algorithm.
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in the case of a single path between s and t, our algorithm samples each edge in the path
with equal probability (up to some error in total variation distance). When there are disjoint
paths of different lengths, our algorithm is more likely to sample an edge on a short path than
a long path – the probability of sampling from a particular path of length ℓ is proportional
to 1/ℓ. (This means, unfortunately, that if there are many long paths, we might still be more
likely to sample an edge on some long path than an edge on a short path). We prove that
finding an st-path edge classically requires Ω(n2) queries in the worst case, even if promised
that there is a path of length L, as long as L ≥ 3.

With the ability to quickly find edges on short paths, we can create an improved algorithm
for finding st-paths in undirected graphs with a unique, short st-path. Given an adjacency
matrix for an n-vertex graph, if there is a unique st-path, whose (possibly unknown) length is
L, we can find all of the edges in the path in Õ(L1+o(1)n) expected queries. When L = o(

√
n),

this is an improvement over the Dürr et al. algorithm. In the general case that there is more
than one st-path, we prove that we can find all edges in a single path in Õ(L3/2n) queries
when L is the (possibly unknown) length of the longest path (although our approach in this
case does not use the edge sampling algorithm as a subroutine). When L = o(n1/3), this is
an improvement over the Dürr et al. algorithm.

We additionally use our sampling algorithm to find st-cut sets, in the case that s and t

are each part of a highly connected component, and there are only a few edges connecting
those components. Because these few connecting edges are bottlenecks in the flow, there
will be a lot of flow over those connecting edges, and so a high probability of sampling them,
and hence finding an st-cut set. We describe a particular family of n-vertex graphs were we
can find such a cut set in Õ(n) queries, where any classical algorithm would require Ω(n2)
queries.

Our edge sampling algorithm is a special case of a new span-program-based algorithm
(Section 3) for generating quantum states called span program witness states (or simply
witness states). One of the key elements of the analysis of span program algorithms for
deciding Boolean functions [34] is the positive witness (see Definition 2), which is a vector
that witnesses that the function evaluates a particular input to 1. While in the usual span
program algorithm, the output on input x is f(x), in our case, we output a quantum state
proportional to the positive witness for input x. In the case of the Belovs-Reichardt span
program for st-connectivity [7], a positive witness is a linear combination of edges that are on
paths between s and t, where the amplitudes depend on the optimal st-flow (see Definition 4).
Generating and then measuring such a state allows us to sample st-path edges.

Our results more generally hold for the case where the input x defines a subgraph G(x)
of some arbitrary graph G, that is not necessarily a complete graph. Although we do not
attempt to analyze time complexity in this work, we suspect that our query algorithms on
graphs are also time efficient when there is an efficient way to perform a quantum walk on
the underlying graph G, as in [25]. For example, when G is the n-vertex complete graph (i.e.
the oracle allows you to query elements of the full adjacency matrix for a n-vertex graph, as
we have been assuming throughout this introduction), there is an efficient way to do this
walk, and so in this case the time complexity of our algorithms is likely the same as the
query complexity, up to log factors.

1.1 Future Directions
A natural future direction is to try to use our edge finding technique for path finding in more
general settings than the ones we consider. One surprising aspect of our algorithm is that it
does not necessarily find edges in the order in which they appear in the path, and instead
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often finds edges in the middle of a path with high probability. The form of our algorithm
thus seems to circumvent a recent lower bound on path-finding in glued trees graphs that
applies to algorithms that always maintain a path from the starting node to any vertex in the
algorithm’s state [13]. However, one reason to be pessimistic for this particular application is
that in the glued trees graph, all edges connected to the starting vertex are in some st-path.
Still, we are hopeful that for some graphs, finding an edge in the middle of some st-path
opens up the possibility of new divide-and-conquer approaches for path finding.

We are only able to take advantage of the fact that we sample edges according to the
optimal st-flow for very specific graphs, like those with a single path, or with bottleneck flows,
but we hope that this edge sampling distribution will prove useful in additional applications.
In recent independent work, Apers and Piddock [3] develop a similar edge sampling algorithm
in the adjacency list model, which they use to analyze connections between electric flows and
quantum walks, and they prove that walks that proceed via their edge sampling algorithm
need only logarithmically many rounds before they have a high probability of reaching a
target vertex, on trees. We believe that such edge sampling methods will likely find further
applications.

We have only applied our span program witness state generation algorithm to the span
program for path detection. Span program algorithms exist for a wide range of graph
problems, from bipartiteness [8] and cycle detection [8, 17], to triangle [9] and other subgraph
detection [30], to other combinatorial search problems [6, 4]. Perhaps the span program
witness states for these problems would be useful for certain applications. Beyond span
program algorithms, dual adversary algorithms (which are equivalent to span programs for
decision problems, but generalize to state conversion problems [31]) and multidimensional
quantum walks [27, 23] all have a similar notion of witnesses in their design and analysis.
Similar techniques might yield witness generation algorithms for these more general algorithm
design paradigms.

We suspect our path finding algorithms are not optimal, as for graphs with longest paths
of length Ω(n1/3), our algorithms do not outperform Dürr et al.’s algorithm. We wonder
whether it is possible to find paths using o(n3/2) queries whenever the longest path has
length o(n), or to prove that this is not possible, perhaps by expanding on techniques for
lower bounding path-finding on welded trees [13].

Finally, all of our algorithms apply only to undirected graphs, while the algorithm of [18]
applies equally well to directed or undirected graphs. While there are span program algorithms
for problems on directed graphs (see e.g. [4]), they do not exhibit the same speedups with
short or many paths that the undirected span program algorithms possess. It would be
interesting to better understand whether there are ways to obtain similar improvements in
query complexity for directed graphs.

Organization

In Section 3 we present our main technical result: an algorithm for generating a state
proportional to a span program witness for x. In Section 4, we show how to apply this to
finding a path edge (Section 4.1), and give an example of a particular family of graphs in
which the classical complexity of finding a path edge is quadratically worse than our quantum
algorithm (Theorem 20). In Section 4.2, we show how our edge finding algorithm can be
applied to efficiently find an st-cut set in a particular family of graphs, and in Section 4.3
we show how it can be applied to find an st-path in Õ(nL1+o(1)) queries when there is a
unique st-path of length L (Theorem 25); and also give an algorithm for finding an st-path in
general graphs in Õ(nL3/2) queries when L is the length of the longest st-path (Theorem 26).
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2 Preliminaries

We first introduce some basic notation. We let ∥·∥ denote the l2 norm, [m] := {1, 2, 3, . . . ,m},
and let L(H,V ) denote the set of linear operators from the vector space H to the vector
space V.

2.1 Span Programs
Span programs are a linear algebraic model of computation, introduced in [28], that have
proven extremely useful for analyzing query [34, 35], space [24], and time complexity [7, 15, 5]
in quantum algorithms. We follow Ref. [21] closely in our definitions.

▶ Definition 1 (Span Program). For a finite set R, a span program on Rm is a tuple
P = (H,V, |τ⟩, A) where
1. H is a direct sum of finite-dimensional inner product spaces: H = H1 ⊕ H2 · · ·Hm ⊕

Htrue⊕Hfalse, and for j ∈ [m] and a ∈ R, we have Hj,a ⊆ Hj , such that
∑

a∈R Hj,a = Hj ;
2. V is a vector space;
3. |τ⟩ ∈ V is a target vector; and
4. A ∈ L(H,V).
Given a string x ∈ Rm, we use H(x) to denote the subspace H1,x1 ⊕ · · · ⊕Hm,xm

⊕Htrue,
and we denote by ΠH(x) the orthogonal projector onto the space H(x).

An important concept in the analysis of span programs and quantum query complexity is
that of witnesses:

▶ Definition 2 (Positive Witness). Given a span program P = (H,V, |τ⟩, A) on Rm and
x ∈ Rm, |w⟩ ∈ H(x) is a positive witness for x in P if A|w⟩ = |τ⟩. If a positive witness
exists for x, we define the witness size of x in P as

w+(x) = w+(P, x) := min
{
∥|w⟩∥2 : |w⟩ ∈ H(x) and A|w⟩ = |τ⟩

}
. (1)

We say that |w⟩ ∈ H(x) is the optimal positive witness for x if ∥|w⟩∥2 = w+(P, x) and
A|w⟩ = |τ⟩.

Our main algorithm produces a normalized version of this unique optimal positive witness,
|w⟩/∥|w⟩∥. (To see that the optimal positive witness is unique, for contradiction assume
that the optimal positive witness is not unique – then a linear combination of two optimal
positive witnesses produces a witness with smaller witness size than either.)

A span program P encodes a function f : X → {0, 1} in the following way. We say
f(x) = 1 if x has a positive witness, and f(x) = 0 if x does not have a positive witness. We
say such a P decides the function f .

We will also need the concept of an approximate negative witness.

▶ Definition 3 (Negative Error, Approximate Negative Witness). Given a span program
P = (H,V, |τ⟩, A) on Rm and x ∈ Rm, we define the negative error of x in P as

e−(x,P) := min
{
∥⟨ω̃|AΠH(x)∥2 : ⟨ω̃| ∈ L(V,R), ⟨ω̃|τ⟩ = 1

}
. (2)

Note that e−(x,P) = 0 if and only if P decides a function f with f(x) = 0. Any ⟨ω̃| such
that ∥⟨ω̃|AΠH(x)∥2 = e−(x,P) is called an approximate negative witness for x in P . We
define the approximate negative witness size of x as:

w̃−(x,P) := min
{
∥⟨ω̃|A∥2 : ⟨ω̃| ∈ L(V,R), ⟨ω̃|τ⟩ = 1, ∥⟨ω̃|AΠH(x)∥2 = e−(x,P)

}
. (3)

We call an approximate negative witness ⟨ω̃| that also minimizes ∥⟨ω̃|A∥2 an optimal approx-
imate negative witness.

TQC 2023
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We use the following notation for maximum positive and approximate negative witness
sizes:

W+(P, f) = W+ := max
x∈f−1(1)

w+(P, x), W̃−(P, f) = W̃− := max
x∈f−1(1)

w̃−(x,P). (4)

Note that we are restricting to 1-inputs of f . That is because our witness generation algorithm
will assume that x is a 1-input, unlike previous span-program-based algorithms that decide f .

2.2 Quantum Query Algorithms

The algorithms we develop are query algorithms, where we can access a unitary oracle Ox for
some x ∈ X ⊆ Rm such that Ox acts on the space Cm ⊗Cq as Ox|i⟩|a⟩ = |i⟩|xi + a mod q⟩.
where q = |R|, xi is the value of the ith element of x and |i⟩ ∈ Cm and |a⟩ ∈ Cq are standard
basis states.

The query complexity of an algorithm is the number of times Ox must be used, in the
worst case over x ∈ X. In our case, we will also consider the expected query complexity
on input x, which is the average number of times Ox must be used when given a particular
input x, where the randomness is due to random events in the course of the algorithm.

2.3 Graph Theory and Connection to Span Programs

Let G = (V,E) be an undirected graph.3 We will particularly consider graphs with specially
labeled vertices s, t ∈ V , such that there is a path from s to t in G. Let −→E = {(u, v) : {u, v} ∈
E}; that is −→E is the set of directed edges corresponding to the edges of G. Given a graph
G = (V,E), for u ∈ V , we denote by G−

u the subgraph of G on the vertices V \ {u}, and
with overloading of notation for S ⊆ E, we denote by G−

S the subgraph of G with edges S
removed. (It will be clear from context whether we are removing edges or vertices from the
graph.)

On a graph G with s and t connected we will consider a unit st-flow, which is a linear
combination of cycles and st-paths, formally defined as a function on −→E with the following
properties.

▶ Definition 4 (Unit st-flow). Let G = (V,E) be an undirected graph with s, t ∈ V (G), and s
and t connected. Then a unit st-flow on G is a function θ : −→E → R such that:
1. For all (u, v) ∈ −→E , θ(u, v) = −θ(v, u);
2.
∑

v:(s,v)∈
−→
E
θ(s, v) =

∑
v:(v,t)∈

−→
E
θ(v, t) = 1; and

3. for all u ∈ V \ {s, t},
∑

v:(u,v)∈
−→
E
θ(u, v) = 0.

▶ Definition 5 (Unit Flow Energy). Given a graph G = (V,E) and a unit st-flow θ on G, the
unit flow energy of θ is J(θ) = 1

2
∑

e∈
−→
E
θ(e)2.

▶ Definition 6 (Effective resistance). Let G = (V,E) be a graph with s, t ∈ V . If s and t are
connected in G, the effective resistance of G between s and t is Rs,t(G) = minθ J(θ), where
θ runs over all unit st-unit flows of G. If s and t are not connected in G, Rs,t(G) =∞.

3 Our results easily extend to multigraphs, see [22], but for simplicity, we will not consider multigraphs
here.
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Interpretation of the optimal flow

The st-flow with minimum energy is unique, and describes the electric current going through
that edge if the graph represents a network of unit resistors and we put a potential difference
between s and t. The minimum energy flow has several other interpretations and connections
to other graph properties. For reference, and for those who would like to build their intuition
for this object, we have collected some of these relationships in the full version of this work
[26, Appendix A].

Graph access

We turn graph problems into oracle problems by letting a string x ∈ {0, 1}m specify a
subgraph G(x) of G. In particular, we associate each edge e ∈ E with a number in [m]. Then,
given a string x ∈ {0, 1}m, let G(x) = (V,E(x)) be the subgraph of G that contains an edge
e ∈ E if e is associated with the integer i ∈ [m] and xi = 1, where xi is the ith bit of x. In
this oracle problem, one is given access to an oracle Ox for x (or classically, given the ability
to query the values of the bits of x one at a time), and a description of the parent graph G

along with the association between bits of x and edges of G, and the goal is to determine
something about the graph G(x) using as few queries as possible. Let Ei ⊂ E be the set
of edges associated with the ith bit of x. When not specified otherwise, one should assume
that m = |E|, and then associate each edge of G uniquely with a bit of the input string. In
this case, when G is the complete graph, Ox is equivalent to query access to the adjacency
matrix of a graph. When we consider subgraphs of the original graph (like G−

u ), we assume
that the edges are associated with the same indices as in the original graph, unless otherwise
specified.

Most of the applications in this paper are related to the problem of detecting a path
between s and t – more commonly called st-connectivity. We define st-connG(x) := 1 if s
and t are connected in G(x), and 0 otherwise. The following span program, which we denote
by PGst

, first introduced in Ref. [28] and used in the quantum setting in Ref. [7], decides
st-connG(x): for a graph G = (V,E), where m = |E|, define the span program PGst as:

∀i ∈ [m], Hi,1 = span{|(u, v)⟩ : {u, v} ∈ Ei}, Hi,0 = ∅
V = span{|v⟩ : v ∈ V (G)}
|τ⟩ = |s⟩ − |t⟩

∀(u, v) ∈ −→E : A|u, v⟩ = |u⟩ − |v⟩. (5)

For PGst
, the negative approximate witness size is bounded by W̃− = O(n2) [21]. If s

and t are connected in G(x), the optimal positive witness of x in PGst
is [7, 22]

|θ∗⟩ = 1
2
∑
e∈

−→
E

θ∗(e)|e⟩, (6)

where θ∗ is the st-unit flow with minimal energy, so by Definitions 2 and 6, w+(PGst , x) =
1
2Rs,t(G(x)).

One of our main applications is to apply our witness state generation algorithm to the
span program PGst

, in which case, we produce a quantum state close to |θ∗⟩/∥|θ∗⟩∥ where θ∗

is the optimal unit st-flow on G(x). If we were to create |θ∗⟩/∥|θ∗⟩∥ exactly, and then measure
in the standard basis, the probability that we obtain the edge e is θ∗(e)2/(2Rs,t(G(x))). Let
qG(x),s,t denote the distribution such that for ∀e ∈ −→E ,

qG(x),s,t(e) = θ∗(e)2/(2Rs,t(G(x))). (7)
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Additionally, this optimal flow θ∗ is a convex combination of (self-avoiding) st-paths, as
we prove in the full version of this work [26, Appendix A]:

▶ Lemma 7. An st-path in G(x) is a sequence of distinct vertices u⃗ = (u0, . . . , uℓ) such
that s = u0, t = uℓ, and for all i ∈ [ℓ], (ui−1, ui) ∈

−→
E (G(x)). From u⃗, we define

|ρu⃗⟩ = 1√
2

ℓ−1∑
i=0

(|ui, ui+1⟩ − |ui+1, ui⟩) (8)

and refer to all such states as st-path states of G(x). Then if |θ∗⟩ is the optimal positive
witness for x in PGs,t

, it is a linear combination of st-path states in G(x).

A final pair of tools we use are a quantum algorithm that decides st-connG(x) with
fewer queries in the case of small effective resistance, without knowing the effective resistance
ahead of time, and a quantum algorithm for estimating the effective resistance:

▶ Lemma 8 ([2]). Fix δ > 0 and a family of n-vertex graphs G with vertices s and t. Then
there is a quantum algorithm PathDetection(Ox, G, s, t, δ) such that,
1. The algorithm returns st-connG(x) with probability 1−O(δ).
2. On input x, the algorithm uses O

(
n
√
Rs,t(G(x)) log

(
n

Rs,t(G(x))δ

))
expected queries if

st-connG(x) = 1, and O
(
n3/2 log 1/δ

)
expected queries if st-connG(x) = 0.

▶ Lemma 9 ([21]). Fix δ > 0 and a family of n-vertex graphs G with vertices s and t. Then
there is a quantum algorithm WitnessSizeEst(Ox, G, s, t, ϵ, δ) that, on input x such that
st-connG(x) = 1, with probability 1− δ, outputs an estimate R̂ for Rs,t(G(x)) such that∣∣∣R̂−Rs,t(G(x))

∣∣∣ ≤ ϵRs,t(G(x)), (9)

using Õ
(√

Rs,t(G(x))n2

ϵ3 log(1/δ)
)

expected queries; and on input x such that st-connG(x) =

0, uses at most Õ
(
(n/ϵ)3/2 log(1/δ)

)
.

Lemma 9 is a special case of [21, Theorem 3.8], which gives an algorithm for estimating the
quantity w+(x) from any span program. If we apply this construction with the span program
PGs,t

, we can estimate its positive witness sizes, which are precisely 1
2Rs,t(G(x)). The

algorithm described in [21, Theorem 3.8] assumes that the input is a 1-input to st-connG(x),
but can easily be modified to always stop after at most Õ

(
(n/ϵ)3/2 log(1/δ)

)
steps, regardless

of the input, since Rs,t(G(x)) ≤ n. The algorithm as stated also only works with bounded
error, but the success probability can be amplified to 1− δ by repeating log(1/δ) times and
taking the median estimate.

3 Witness Generation

Our main technical result, on generating span program witness states is the following:

▶ Theorem 10. Given a span program P that decides a function f , and constants ϵ, δ, there is
an algorithm (Algorithm 1) that, given as input an oracle Ox such that f(x) = 1 with optimal
positive witness |w⟩, outputs a state |ŵ⟩/∥|ŵ⟩∥ such that

∥∥∥|w⟩/√w+(x)− |ŵ⟩/∥|ŵ⟩∥
∥∥∥2
≤ O(ϵ)

with probability 1−O(δ), and uses Õ
(√

w+(x)W̃−
ϵ log

( 1
δ

))
expected queries to Ox.



S. Jeffery, S. Kimmel, and A. Piedrafita 5:9

For comparison, a span program algorithm can decide f with bounded error in expected

query complexity Õ
(√

w+(x)W̃−

)
, so Theorem 10 gives a matching complexity for gener-

ating a witness state. As we will see in Section 4.1, in the case of the span program PGs,t for
st-connectivity on subgraphs of G, this implies that we can sample an st-path edge in the
same complexity used by the span program algorithm to decide if an st-path exists.

A key subroutine for our witness state generation algorithm will be quantum phase
estimation. In quantum phase estimation one implements a controlled version of a unitary U
acting on a Hilbert space HA on an input state |ψ⟩ ∈ HA. The state |ψ⟩ can be decomposed
into its eigenbasis with respect to U as |ψ⟩ =

∑
i αi|λi⟩, where U |λi⟩ = eiϕiπ and we say

ϕi is the phase of the state |λi⟩. Then when phase estimation is performed with precision
Θ the probability that you measure a phase of 0 after the phase estimation procedure
is approximately given by

∑
i:|ϕi|≤Θ |αi|2, and the non-normalized state that results after

measuring a phase of 0 is approximately
∑

i:|ϕi|≤Θ αi|λi⟩. In other words, phase estimation
can be used to project into the low phase space (with phase less than Θ) with probability that
depends on the amount of amplitude the original state had on low-phase eigenstates. For an
accuracy parameter ϵ, the number of uses of U in phase estimation scales as O

( 1
Θ log 1

ϵ

)
. A

more rigorous description of the guarantees of phase estimation is given below in Lemma 11.
The basic idea of the algorithm that we use to prove Theorem 10 is to apply phase

estimation with a unitary U(P, x, α), (which can be implemented with access to an oracle Ox

and depends on a span program P , and a positive real parameter α), on a state |0̂⟩. We show
that the eigenspectrum of |0̂⟩ relative to U(P, x, α) decomposes into two states, |0̂⟩ ⊕ 1

α |w⟩,
which is a 0-phase eigenstate of U(P, x, α), and |ψx,+⟩, which has small overlap with the
low-phase space of U(P, x, α).

If we do phase estimation with U(P, x, α) on |0̂⟩ with sufficiently small precision, and
then if we measure a phase of 0, as discussed above, we will approximately project into the
state |0̂⟩ ⊕ 1

α |w⟩. From there, if we make the measurement {|0̂⟩⟨0̂|, I − |0̂⟩⟨0̂|}, and obtain
outcome I − |0̂⟩⟨0̂| the state will project into |w⟩, as desired.

Next, there comes a balancing act for our choice of α. When α is too small, |0̂⟩ has small
overlap with the span of |0̂⟩ ⊕ 1

α |w⟩, so we are not very likely to measure a phase of 0 when
we do phase estimation with U(P, x, α) on |0̂⟩. However, when α gets too large, while it
becomes very likely to measure a phase of 0 and thus obtain the state |0̂⟩ ⊕ 1

α |w⟩, we will be
unlikely to subsequently measure outcome I − |0̂⟩⟨0̂|.

The sweet spot is when α ≈
√
w+(x), in which case both measurement outcomes we

require have a reasonable probability of occurring. Since we don’t know w+(x) ahead of time,
we must first estimate an appropriate value of α to use, which we do by iteratively testing
larger and larger values of α.4 Our test involves estimating the probability of measuring
a phase of 0 when phase estimation with U(P, x, α) is performed on |0̂⟩, which we show
provides an estimate of α/

√
w+(x).

3.1 Proof of Theorem 10
Before introducing the algorithm we use to prove Theorem 10, we introduce some key
concepts, lemmas, and theorems that will be used in the analysis.

Let H̃ = H ⊕ span{|0̂⟩}, and H̃(x) = H(x) ⊕ span{|0̂⟩}, where |0̂⟩ is orthogonal to H.
Then we define Ãα ∈ L(H̃,V) as

Ãα = 1
α
|τ⟩⟨0̂| −A. (10)

4 There is a similar algorithm in [21] that estimates w+(x), but it is more precise than we require.
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Let Λα ∈ L(H̃, H̃) be the orthogonal projection onto the kernel of Ãα, and let Πx ∈ L(H̃, H̃)
be the orthogonal projector onto H̃(x). Finally, let U(P, x, α) = (2Πx − I)(2Λα − I). Note
that 2Πx − I can be implemented with two applications of Ox [21, Lemma 3.1], and 2Λα − I
can be implemented without any applications of Ox.

We will use parallelized phase estimation, as described in Ref. [32], which provides
improved error bounds over standard phase estimation. In particular, given a unitary U

acting on a Hilbert Space H, a precision Θ > 0, and an accuracy ϵ > 0, we can create a
circuit D(U) that implements O(log 1

ϵ ) parallel copies of the phase estimation circuit on U ,
each to precision O(Θ), that each estimate the phase of a single copy of a state |ψ⟩. That
is, D(U) acts on the space HA ⊗ ((C2)⊗b)B where b = O

(
log 1

Θ log 1
ϵ

)
, and A labels the

input state register, and B labels the registers that store the results of the parallel phase
estimations.

We use the circuit D(U) to check if an input state has high overlap with the low-valued
eigenphase-space of U [29, 14, 32]. To characterize the low phase space of a unitary U , let
PΘ(U) (or just PΘ when U is clear from context) be the projection onto span{|u⟩ : U |u⟩ =
eiθ|u⟩ with |θ| ≤ Θ} (the eigenspace of U with eigenphases less than Θ). Then the following
lemma provides key properties of parallel phase estimation circuit D(U):

▶ Lemma 11 ([29, 14, 32]). Let U be a unitary on a Hilbert Space HA, and let Θ, ϵ > 0.
We call Θ the precision and ϵ the accuracy. Then there is a circuit D(U) that acts on the
space HA ⊗ ((C2)⊗b)B for b = O

(
log 1

Θ log 1
ϵ

)
, and that uses O

( 1
Θ log 1

ϵ

)
controlled calls to

U . Then for any state |ψ⟩ ∈ HA,
1. D(U)(P0|ψ⟩)A|0⟩B = (P0|ψ⟩)A|0⟩B
2. ∥P0|ψ⟩∥2 ≤ ∥(IA ⊗ |0⟩⟨0|B)D(U)(|ψ⟩A|0⟩B)∥2 ≤ ∥PΘ|ψ⟩∥2 + ϵ.

Iterative Quantum Amplitude Estimation is a robust version of amplitude estimation,
which uses repeated applications of amplitude estimation to achieve improved error bounds:

▶ Lemma 12 (Iterative Quantum Amplitude Estimation [20]). Let δ > 0 and A be a unitary
quantum circuit such that on a state |0⟩, A|ψ⟩ = α0|0⟩|ψ0⟩ + α1|1⟩|ψ1⟩. Then there is an
algorithm that estimates |α0|2 to additive error δ with success probability at least 1− p using
O
(

1
δ log

(
1
p log 1

δ

))
calls to A and A†.

A key mathematical tool in analyzing span program algorithms is the Effective Spectral
Gap Lemma:

▶ Lemma 13 (Effective Spectral Gap Lemma, [31]). Let Π and Λ be projections, and let
U = (2Π − I)(2Λ − I) be the unitary that is the product of their associated reflections. If
Λ|w⟩ = 0, then ∥PΘ(U)Π|w⟩∥ ≤ Θ

2 ∥|w⟩∥.

We will need the following relationship between optimal positive witnesses and optimal
negative approximate witnesses:

▶ Theorem 14. [21, Theorem 2.11] Given a span program P = (H,V, |τ⟩, A) on Rm and
x ∈ Rm, if |w⟩ is the optimal positive witness for x and ⟨ω̃| is an optimal negative approximate
witness for x, then

|w⟩ = w+(x)ΠH(x)(⟨ω̃|A)†. (11)
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As discussed following Theorem 10, we decompose the state |0̂⟩ into a linear combination
of two orthogonal states. They are

|ψx,0⟩ =|0̂⟩+ 1
α
|w⟩,

|ψx,+⟩ =|0̂⟩ − α

w+(x) |w⟩, (12)

so we can write |0̂⟩ as

|0̂⟩ = a0|ψx,0⟩+ a+|ψx,+⟩, where a0 = 1
1 + w+(x)

α2

, a+ = 1
1 + α2

w+(x)
. (13)

We first show that |ψx,0⟩ is a 0-phase eigenvector of U(P, x, α). Note that Ãα|ψx,0⟩ =
1
α (|τ⟩− |τ⟩) = 0 (see Equation (10)), so recalling that Λα is the orthogonal projector onto the
kernel of Ãα, we have Λα|ψx,0⟩ = |ψx,0⟩. Furthermore, since Πx is the orthogonal projector
onto H̃(x) = H(x)⊕ span{|0̂⟩}, it follows that Πx|ψx,0⟩ = |ψx,0⟩, where we use that |w⟩ is a
positive witness, so |w⟩ ∈ H(x). Thus U(P, x, α)|ψx,0⟩ = |ψx,0⟩.

On the other hand |ψx,+⟩ has low overlap with PΘ(U(P, x, α)) for small enough Θ and
α, as the following lemma shows.

▶ Lemma 15. If α2 ≥ 1/W̃−, then ∥PΘ(U(P, x, α))|ψx,+⟩∥ ≤ Θα
√
W̃−.

Proof. Let ⟨ω̃| be an optimal negative approximate witness for x (see Definition 3), and let

|v⟩ = |0̂⟩ − α(⟨ω̃|A)†. (14)

Using Theorem 14 and the fact that Πx|0̂⟩ = |0̂⟩, we have that

Πx|v⟩ = |0̂⟩ − αΠH(x)(⟨ω̃|A)† = |0̂⟩ − α |w⟩
w+(x) = |ψx,+⟩. (15)

Now we will show Λα|v⟩ = 0. Let |k⟩ be in the kernel of Ãα, so Ãα|k⟩ = 0. Using Equation (10)
and rearranging,

A|k⟩ = 1
α
|τ⟩⟨0̂|k⟩. (16)

Then
⟨v|k⟩ = ⟨0̂|k⟩ − α⟨ω̃|A|k⟩

= ⟨0̂|k⟩ − ⟨0̂|k⟩⟨ω̃|τ⟩
= 0 (17)

where we have used Equations (14) and (16) and the properties of optimal negative approx-
imate witnesses. Thus |v⟩ is orthogonal to any element of the kernel of Ãα, so Λα|v⟩ = 0.

Now we can apply Lemma 13 to |v⟩ to get:

∥PΘ(U(P, x, α))|ψx,+⟩∥ = ∥PΘ(U(P, x, α))Πx|v⟩∥

≤ Θ
2 ∥|v⟩∥

= Θ
2
√

1 + α2w̃−(x,P)

≤ Θα
√
W̃−, (18)

where in the first line we have used Equation (15), and in the last, our assumption that
α2W̃− ≥ 1. ◀
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▶ Corollary 16. ∥P0(U(P, x, α))|ψx,+⟩∥ = 0.

Proof. Apply Lemma 15 with Θ set to 0. ◀

To prove Theorem 10, we analyze the following algorithm:

Algorithm 1 WitnessGeneration(P, Ox, δ, ϵ).

Input : Error tolerance δ, accuracy ϵ, span program P that decides a function f ,
oracle Ox

Output : A quantum state |ŵ⟩/∥|ŵ⟩∥ such that for the optimal positive witness |w⟩
for x, ∥|w⟩/

√
w+(x)− |ŵ⟩/∥|ŵ⟩∥∥2 ≤ O(ϵ) with probability 1−O(δ)

1 ϵ′ ← min{ϵ, 1/96}; T ←
⌈

log
√
W+W̃−

⌉
;

p← min
{
δ/ log(W+W̃−), 1/

√
W+W̃−

}
// Probing Stage

2 for i = 0 to T do

3 α← 2i/

√
W̃−

4 â← Iterative Amplitude Estimation (Lemma 12) estimate (with probability of
failure p and additive error 1/48) of the probability of outcome |0⟩B in register
B when D(U(P, x, α)) (see Lemma 11) acts on |0̂⟩A|0⟩B with error ϵ′, precision√

ϵ′

α2W̃−

5 if 15
48 ≤ â ≤

35
48 then Break

// State Generation Stage
6 for j = 1 to log(1/δ) do
7 Apply D(U(P, x, α)) to |0̂⟩A|0⟩B with error ϵ′, precision

√
ϵ′

α2W̃−

8 Make a measurement with outcome M = {(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|B} on the resultant
state

9 if Measure outcome M then
10 Return the resultant state

11 Return “failure”

To analyze Algorithm 1, will need the following lemma and corollary. In Algorithm 1, we
estimate the probability of measuring the outcome |0⟩ in the B register after doing phase
estimation. In the following lemma, we prove this probability is closely related to a0 from
Equation (13).

▶ Lemma 17. Applying D(U(P, x, α))) with error ϵ and precision
√

ϵ

α2W̃−
(see Lemma 11)

to input state |0̂⟩A|0⟩B for α ≥ 1/
√
W̃− results in the outcome |0⟩ in the B register with

probability in the range [a0, a0 + 2ϵ].

Proof. Throughout the proof, let U = U(P, x, α). The probability that we measure |0⟩ in
register B after we apply D(U) with error ϵ and precision Θ to |0̂⟩A|0⟩B is, by Lemma 11
Item 2, at most

∥PΘ(U)|0̂⟩∥2 + ϵ = ∥a0PΘ(U)|ψx,0⟩+ a+PΘ(U)|ψx,+⟩∥2 + ϵ, (19)

by Equation (13). Now PΘ(U)|ψx,0⟩ and PΘ(U)|ψx,+⟩ are orthogonal, since

⟨ψx,0|PΘ(U)PΘ(U)|ψx,+⟩ = ⟨ψx,0|ψx,+⟩ = 0, (20)
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where we’ve used that PΘ(U)|ψx,0⟩ = |ψx,0⟩ and that |ψx,0⟩ and |ψx,+⟩ are orthogonal.
Continuing from Equation (19) and using the orthogonality condition, we have, using
Θ =

√
ϵ

α2W̃−
,

∥PΘ(U)|0̂⟩∥2 + ϵ = a2
0∥PΘ(U)|ψx,0⟩∥2 + a2

+∥PΘ(U)|ψx,+⟩∥2 + ϵ

≤ a2
0∥|ψx,0⟩∥2 + a2

+Θ2α2W̃− + ϵ by Lemma 15, since α2W̃− ≥ 1

≤ a0 + a2
+ϵ+ ϵ

≤ a0 + 2ϵ, (21)

where we have used that ∥|ψx,0⟩∥2 = 1/a0, and a+ ≤ 1 (see Equation (13)) .
By Lemma 11 Item 2, the probability that we measure |0⟩ in register B after applying

D(U(P, x, α)) on |0̂⟩A|0⟩B with error ϵ and any precision is at least

∥P0(U)|0̂⟩∥2 = ∥a0P0(U)|ψx,0⟩+ a+P0(U)|ψx,+⟩∥2 = a2
0∥|ψx,0⟩∥2 = a0, (22)

where we have used Corollary 16. ◀

▶ Corollary 18. In Algorithm 1, if in an iteration of the Probing Stage, Iterative Amplitude
Estimation does not fail at Line 4 and subsequently causes a break at Line 5, then

a0 ∈
[

1
4 ,

3
4

]
,

a2
0w+(x)
α2 ∈

[
3
16 ,

1
4

]
. (23)

Proof. If Iterative Amplitude Estimation does not fail at Line 4 and causes a break at Line
5, then we have an estimate â that is in the range [ 15

48 ,
35
48 ]. Thus, because of the additive

error of 1/48 in Iterative Amplitude Estimation, the probability of measuring outcome |0⟩B
is in the range [ 14

48 ,
36
48 ]. By Lemma 17, this same probability is in the range [a0, a0 + 2ϵ′],

so in particular these two ranges overlap. Thus, since we choose 2ϵ′ to be at most 1/48, we
have that

a0 ∈
[

13
48 ,

36
48

]
⊂
[

1
4 ,

3
4

]
. (24)

Using a0 = (1 + w+(x)
α2 )−1 (see Equation (13)), this implies the stated ranges for a2

0w+(x)
α2 =

a0(1− a0). ◀

Now we prove the main performance guarantees of Algorithm 1, bounding the success
probability and the expected query complexity, thus proving Theorem 10.

Proof of Theorem 10. Letting U = U(P, x, α), we analyze Algorithm 1. We first show
that the algorithm will produce the desired state if both the Probing Stage and the State
Generation stage are successful. Then we will analyze the probability of this occurring, in
order to bound the success probability of the algorithm.

We say the Probing Stage is successful if in some iteration, Iterative Amplitude estimation,
having not failed thus far, does not fail and then triggers a break at Line 6, in which case we
can apply Corollary 18. Under these assumptions, we consider the outcome of a successful
State Generation stage, when we achieve the measurement outcome M = (I−|0̂⟩⟨0̂|)A⊗|0⟩⟨0|B .
The non-normalized state |ŵ⟩ that is produced upon measurement outcome M is
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|ŵ⟩ = (I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|0̂⟩A|0⟩B
= a0(I − |0̂⟩⟨0̂|)AD(U)|ψx,0⟩A|0⟩B + a+(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B
= a0(I − |0̂⟩⟨0̂|)A|ψx,0⟩A|0⟩B + a+(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B

= a0

α
|w⟩A|0⟩B + a+(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B︸ ︷︷ ︸

=:|ξ⟩

, (25)

where in the final equality, we used Lemma 11 Item 1, since P0(U)|ψx,0⟩ = |ψx,0⟩.
We would like to bound ∆, where

∆ :=

∥∥∥∥∥ |ŵ⟩∥|ŵ⟩∥
− |w⟩A|0⟩B√

w+(x)

∥∥∥∥∥ =

∥∥∥∥∥ a0
α |w⟩A|0⟩B + |ξ⟩

∥|ŵ⟩∥
− |w⟩A|0⟩B√

w+(x)

∥∥∥∥∥
≤

∣∣∣∣∣ a0

α ∥|ŵ⟩∥
− 1√

w+(x)

∣∣∣∣∣ ∥|w⟩∥+ ∥|ξ⟩∥
∥|ŵ⟩∥

by triangle ineq.

≤

∣∣∣∣∣a0
√
w+(x)

α ∥|ŵ⟩∥
− 1

∣∣∣∣∣+ ∥|ξ⟩∥
∥|ŵ⟩∥

. (26)

To bound ∥|ξ⟩∥, we have

∥|ξ⟩∥2 = a2
+
∥∥(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B

∥∥2 ≤∥IA ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B∥2

≤∥PΘ|ψx,+⟩∥2 + ϵ′

≤Θ2α2W̃− + ϵ′ ≤ 2ϵ′,
(27)

where the first inequality is because a projection can only decrease the norm of a vector, and
a+ ≤ 1; the second inequality is from by Lemma 11 Item 2, and the third inequality comes
from Lemma 15 and our choice of Θ.

Next, to bound ∥|ŵ⟩∥, we use the triangle inequality on the final line of Equation (25),
and Equation (27) to get

a0
√
w+(x)
α

−
√

2ϵ′ ≤ ∥|ŵ⟩∥ ≤
a0
√
w+(x)
α

+
√

2ϵ′. (28)

By our choice of ϵ′, we have 2ϵ′ ≤ 1/48, and also applying Corollary 18 to Equation (28), we
have

1
4 <

√
3/16−

√
1/48 ≤ ∥|ŵ⟩∥ ≤

√
1/4 +

√
1/48 < 3

4 . (29)

Rearranging Equation (28) and applying Equation (29), we have∣∣∣∣∣a0
√
w+(x)

α ∥|ŵ⟩∥
− 1

∣∣∣∣∣ ≤
√

2ϵ′
∥|ŵ⟩∥

. (30)

Then plugging Equations (27), (29), and (30) into Equation (26) we have:

∆ ≤ 2
√

2ϵ′
∥|ŵ⟩∥

< 8
√

2ϵ′ = O(ϵ). (31)
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Now we analyze the probability that both the Probing Stage and State Generation Stage
are successful, resulting in the state |ŵ⟩/ ∥|ŵ⟩∥ as in Equation (26). First note that there is
a value of α (if we iterate in the Probing Stage long enough), that will cause us to break out
of the Probing Stage if Iterative Amplitude Estimation does not fail. In particular, when
w+(x)/α2 ∈ [1/2, 2], then from Equation (13) a0 ∈ [1/3, 2/3]. Thus by Lemma 17 and since
2ϵ′ ≤ 1/48, the probability of of outcome |0⟩B is in [16/48, 33/48], which in Line 5 causes
us to leave the Probing Stage if Iterative Amplitude Estimation does not fail. This occurs
for some value of α, as we are doubling α at each iteration of the Probing Stage, causing
w+(x)/α2 to decrease, and initially we have w+(x)/α2 = w+(x)W̃− ≥ 1.5

Thus if no error occurs, the condition of Line 5 will be satisfied after some number
L of rounds such that L ∈ O(log(w+(x)W̃−)) = O(log(W+W̃−)). As the probability of
failing a single Iterative Amplitude Estimation round is p ≤ δ/ log(W+W̃−) (see Line 1), the
probability of leaving the Probing Stage when Line 5 is satisfied (rather than before or after)
is at least

(1− p)L = 1−O(δ). (32)

Assuming that we have successfully left the Probing Stage without failure, we next
calculate the probability of getting a measurement outcome M during the at most log(1/δ)
iterations of the State Generation Stage. The probability of getting outcome M is lower
bounded by (from Equation (29))

∥|ŵ⟩∥2 ≥ 1/16. (33)

Thus the probability of success in the State Generation Stage is

1− (15/16)log(1/δ) = 1−O(δ). (34)

Combining Equations (32) and (34), our probability of successfully producing a state
|ŵ⟩/ ∥|ŵ⟩∥ as in Equation (26) is

(1−O(δ))(1−O(δ)) = 1−O(δ). (35)

To calculate the expected query complexity, we first note that if we terminate in round
t ∈ {0, . . . ,

⌈
log
√
W+

⌉
} of the Probing Stage, we use

t∑
i=0

O

(
2i

√
ϵ

log
(

1
ϵ

)
log
(

1
p

))
+O

(
log
(

1
δ

)
2t

√
ϵ

log
(

1
ϵ

))
=O

(
2t

√
ϵ

log
(

1
ϵ

)
log
(

1
pδ

))
(36)

queries, which comes from the cost of Iterative Amplitude Estimation (Lemma 12) applied
to phase estimation (Lemma 11) in each round of the Probing Stage up to the tth round,
plus the cost of phase estimation in the State Conversion Stage.

The probability that we terminate in any round t when we have an estimate â that is
not in the range [ 15

48 ,
35
48 ] is at most p. Using Equation (36) the the total contribution to the

average query complexity from all such rounds is at most

⌈log
√

W+W̃−⌉∑
t=0

O

(
p

2t

√
ϵ

log
(

1
ϵ

)
log
(

1
pδ

))
= O

p
√
W+W̃−

ϵ
log
(

1
ϵ

)
log
(

1
pδ

) . (37)

5 To see that w+(x)W̃− ≥ 1, let N+ = min{∥|w⟩∥2 : A|w⟩ = |τ⟩}, and N− = min{∥⟨ω|A∥2 : ⟨ω|τ⟩ = 1}.
Then w+(x) ≥ N+, and W̃− ≥ N−, and by [21, Section 2.4], N+N− = 1.
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where in the sum we have actually included all rounds, not just those that satisfy when â is
not in the range [ 15

48 ,
35
48 ], which is acceptable since we are deriving an upper bound on the

expected query complexity.
If we terminate at a round t∗ when â is in the range [ 15

48 ,
35
48 ], which happens when

Iterative Amplitude Estimation does not fail at Line 4 and then causes a break at Line 5,
from Equation (23) we have w+(x)

α2 ∈
[ 1

3 , 4
]
, and 2t∗ = α

√
W̃− so

√
w+(x)W̃−/2 ≤ 2t∗ ≤√

3w+(x)W̃−. Because we double α at each iteration, there are only a constant number
of rounds where we will find â in the appropriate range, and we trivially upper bound the
probability of terminating at any such round by 1. Using Equation (36), these rounds add

O

√w+(x)W̃−

ϵ
log
(

1
ϵ

)
log
(

1
pδ

) (38)

to the total expected query complexity.

Combining Equations (37) and (38), and using that we set p to be O
(

1/
√
W+W̃−)

)
(Line 1), we find the expected query complexity is

O

√w+(x)W̃−

ϵ
log
(

1
ϵ

)
log
(

1
pδ

) = Õ

√w+(x)W̃−

ϵ
log
(

1
δ

) . (39)

4 Graph Applications

4.1 Finding an Edge on a Path
In this section, we consider the problem of finding an edge on an st-path in G(x), which we
denote st-edgeG(x). That is, given query access to a string x that determines a subgraph
G(x) = (V,E(x)) of an n-vertex graph G, as described in Section 2.3 (if G is a complete
graph, x is just the adjacency matrix of G(x)), with s, t ∈ V such that there is at least one
path from s to t in G(x), output an edge e ∈ E(x) that is on a (self-avoiding) path from s

to t.
Classically, it is hard to imagine that this problem is much easier than finding a path,

and indeed, in our classical lower bound in Theorem 20 the set-up forces the algorithm
to learn a complete path before it can find any edge on the path. However, we find that
quantumly, when there are short or multiple paths, this problem is easier than any path
finding algorithms known. This opens up the possibility of improved quantum algorithms for
cases where it is not necessary to know the complete path, like the st-cut set algorithm of
Section 4.2.

▶ Theorem 19. Fix p > 0, and a family of n-vertex simple graphs G with vertices s and t.
There is a quantum algorithm (Algorithm 2) that solves st-edgeG(x) with probability 1−O(p)

and uses Õ
(

n
√

Rs,t(G(x))
p

)
expected queries on input x. More precisely, with probability

1−O(p), the algorithm samples from a distribution q̂ such the total variation distance between
q̂ and qG(x),s,t is O(√p), where qG(x),s,t(u, v) (defined in Equation (7)) is proportional to
θ∗(u, v)2, where θ∗ is the optimal unit st-flow on G(x).
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To obtain this result, we run our witness state generation algorithm (Algorithm 1) using
the span program for st-connectivity, PGst

and an oracle Ox that defines a graph G(x)
with a path between s and t. When successful, the output will be a quantum state that
is approximately proportional to the optimal flow state, Equation (6), which itself is a
superposition of edges on paths by Lemma 7. Then from Equation (7), when we then
measure in the standard basis, the probability of obtaining an edge e should be close to
qG(x),s,t(e), and with high probability, we will measure some edge on a path.

Proof of Theorem 19: We analyze Algorithm 2.

Algorithm 2 EdgeFinder(Ox, p,G, s, t).

Input : Failure tolerance p > 0, oracle Ox for the graph G(x) = (V,E(x)), s, t ∈ V
such that there is a path from s to t.

Output : An output e, or “Failure”, such that with probability 1−O(p), e is an edge
on a path from s to t.

1 ϵ← p2; δ ← p

2 |θ̂⟩ ← WitnessGeneration(PGst
, Ox, ϵ, δ) (Algorithm 1)

3 if |θ̂⟩ ≠ “Failure” then
4 e←result of Measuring |θ̂⟩ in the standard basis
5 Return “Failure”

If WitnessGeneration(PGst , Ox, ϵ, δ) (see Algorithm 1) does not fail, which happens
with probability 1−O(δ) = 1−O(p), then by Theorem 10,

|θ̂⟩ = |θ∗⟩/∥|θ∗⟩∥+ |η⟩ (40)

for some |η⟩ such that ∥|η⟩∥2 = O(ϵ) and from Equation (6), |θ∗⟩ = 1
2
∑

e∈
−→
E
θ∗(e)|e⟩ where

θ∗ is the optimal unit st-flow in G(x), so ∥|θ∗⟩∥ =
√
Rs,t(G(x)).

Let PE(x),s,t be the projection onto the set of edges in −→E (x) that are on (self-avoiding)
paths from s to t. The probability that we measure such an edge when we measure |θ̂⟩ in
the standard basis is the square of∥∥∥PE(x),s,t|θ̂⟩

∥∥∥ ≥ ∥∥PE(x),s,t|θ∗⟩/ ∥|θ∗⟩∥
∥∥− ∥∥PE(x),s,t|η⟩

∥∥ = 1−O(
√
ϵ), (41)

where we have used the triangle inequality, and the fact that PE(x),s,t|θ∗⟩ = |θ∗⟩, by Lemma 7.
Continuing, we have probability∥∥∥PE(x),s,t|θ̂⟩

∥∥∥2
≥
(
1−O(

√
ϵ)
)2 = 1−O(

√
ϵ). (42)

Thus our total probability of success of measuring an edge on a path is (1−O(δ))(1−O(
√
ϵ).

Since we are setting ϵ to p2 and δ to p, our total probability of success is 1−O(p).
Let q̂ be the output distribution of Algorithm 2. By the relationship between total

variation distance and trace norm, we have that d(q̂, qG(x),s,t), the total variation distance
between q̂ and qG(x),s,t, is at most the trace norm of |θ̂⟩ and |θ∗⟩/∥|θ∗⟩∥ (see e.g. [33]) so

d(q̂, qG(x),s,t) ≤
√

1−
∣∣∣⟨θ̂|θ∗⟩/ ∥|θ∗⟩∥

∣∣∣2
=
√

1−
∣∣∣⟨θ̂|θ̂⟩ − ⟨θ̂|η⟩∣∣∣2

≤
√

1− (1− ∥|η⟩∥)2

≤
√

2 ∥|η⟩∥ = O(ϵ1/4) = O(√p). (43)
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By Theorem 10, the expected query complexity of WitnessGeneration, and thus Algorithm 2
is

Õ

√w+(x)W̃−

ϵ
log
(

1
δ

) = Õ

(√
Rs,t(G(x))n

p

)
(44)

where we have used the fact that, for PGst
, w+(x) = Rs,t(G(x)) and W̃− = O(n2) [7, 21];

and set ϵ to p2 and δ to p, as in Algorithm 2. ◀

We can use Theorem 19 to prove the following separation between the quantum and
classical query complexity of finding an edge on a path:

▶ Theorem 20. Let G = (V,E) with s, t ∈ V be an n-vertex complete graph, and suppose we
are promised that G(x) has a path of length L for L ∈ [3, n/4] between s and t (L may depend
on x and need not be known ahead of time). Then st-edgeG(x) can be solved in Õ(n

√
L)

expected quantum queries on input x, while any classical algorithm has query complexity
Ω(n2).

Proof. For the quantum algorithm, we apply Theorem 19 with bounded probability of error
p = Ω(1), and use the fact that Rs,t(G) = O(L).

· · · · · ·

· · · · · ·

...
...

...
...

s t

S
(0)
s S

(0)
t

S
(1)
s S

(1)
t

3 ≤ L ≤ n/4

(L− 3)/2 (L− 3)/2

Figure 1 The solid black lines show the edges that are present in G(x) for any x. In addition,
G(x) contains a single edge between a vertex in S

(b)
s and S

(b)
t , where b = σ∗

1 , as in the dashed red
edge, resulting in a single path of length L.

For the classical lower bound, we reduce the following problem to path edge finding:
Given a string x of N = 2ℓ bits, (xσ)σ∈{0,1}ℓ such that there is a unique σ∗ with xσ∗ = 1,
output σ∗

1 . That is, we would like to output the first bit of the index of the unique 1-valued
bit of x. By an adversary argument similar to a standard OR lower bound, the bounded
error randomized query complexity of this problem is Ω(N). We will show how to solve
this problem with an algorithm for finding a path edge on a graph like the one depicted in
Figure 1.

For x ∈ {0, 1}N , let G(x) be a graph on n = Θ(2ℓ/2) vertices in which there is a unique
st-path of length L, for some odd L, as shown in Figure 1. The vertex s is connected by
a path of length (L − 3)/2 to a vertex that is additionally connected to a set of 2(ℓ−1)/2

vertices, S(0)
s = {u0,σ : σ ∈ {0, 1}(ℓ−1)/2}. In a symmetric manner, s is also connected by

another disjoint path of length (L − 3)/2 to a vertex that is additionally connected to a
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set of 2(ℓ−1)/2 vertices, S(1)
s = {u1,σ : σ ∈ {0, 1}(ℓ−1)/2}. In the same way, t is connected

by a pair of disjoint paths of length (L− 3)/2 to a pair of vertices, additionally connected
to S

(0)
t = {v0,σ : σ ∈ {0, 1}(ℓ−1)/2} and S

(1)
t = {v1,σ : σ ∈ {0, 1}(ℓ−1)/2} respectively. All

edges described so far (the black edges in Figure 1) are always present in G(x) (we simulate
querying the associated input bits by just outputting 1). We now describe edges whose
presence in G(x) is determined by x. For b ∈ {0, 1}, there is a potential edge between every
pair of vertices ub,σ ∈ S(b)

s and vb,σ′ ∈ S(b)
t , with the label xbσσ′ , meaning exactly one of

these is present in G(x) – the one with σ∗ = bσσ′. All remaining possible edges are never
present in G(x) (we simulate querying their associated input bits by just outputting 0).

We can find the first bit of σ∗ by running the edge finding algorithm on G(x). Assuming
the output is correct, there are the following possibilities:
1. If the algorithm outputs an edge from the middle part of the graph, then it must be the

one labelled by xσ∗ , so σ∗ is learned entirely.
2. If the algorithm outputs an edge from the left-hand side of the graph, it is on a path

between s and S
(b)
s for some b ∈ {0, 1}, and we know that σ∗

1 = b.
3. If the algorithm outputs an edge from the right-hand side of the graph, it is on a path

between t and S
(b)
t for some b ∈ {0, 1}, and we know that σ∗

1 = b.
In all cases, we have learned σ∗

1 . This gives a lower bound on path-edge finding of Ω(N) =
Ω(2ℓ) = Ω(n2). ◀

4.2 Finding an st-cut set
Given a graph G(x) containing a path from s to t, an st-cut set is a set of edges in G(x)
such that when those edges are removed from G(x), there is no longer a path from s to t.
The st-cut set problem is that of finding an st-cut set. This problem has applications to
detecting weak points in networks in order to figure out how to strengthen a network, or
conversely, for sabotaging networks.

We first note that for graphs with a single st-path, Theorem 19 can immediately be used
to find an st-cut set, since any edge on the path is an st-cut set. However, we can also
analyze more complex situations, as the following, in which we have an upper bound on
the effective resistance of the graph, and a lower bound on the optimal unit st-flow going
through any edge in the st-cut set:

▶ Theorem 21. For functions R, g : N→ R>0, let G = (V,E) with s, t ∈ V be a family of
n-vertex simple graphs, and suppose we are additionally promised that Rs,t(G(x)) ≤ R(n),
and there exists an st-cut set C ⊆ E(x) such that for each {u, v} ∈ C, θ∗(u, v)2 ≥ g(n) where
θ∗ is the optimal unit st-flow in G(x). Then there is a quantum algorithm that outputs a set
C ′ such that C ⊆ C ′ with bounded error, and has worst-case query complexity Õ

(
R(n)2n
g(n)3/2

)
.

We can assume without loss of generality that the C in Theorem 21 is a minimal st-cut.
While we are not guaranteed that the set C ′ output by the algorithm referred to in Theorem 21
is minimal, it is still an st-cut as long as it contains C, since its removal will disconnect s
and t.

To prove Theorem 21, we will use the following variation of the well-known “coupon
collector” problem.

▶ Lemma 22. Consider repeatedly sampling a random variable Z on a finite set S. Let
C ⊆ S be such that for each e ∈ C, Pr[Z = e] ≥ B. Let T be the number of samples to Z

before we have sampled each element of C at least once. Then E[T ] = O
(

log |C|
B

)
.
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Proof. For i ∈ {1, . . . , |C|}, the probability that Z is a new element of C, after i−1 elements
have already been collected, is pi ≥ (|C| − (i− 1))B. Let Ti be the number of samples to Z
after sampling (i− 1) elements of C, until we sample i elements of C, so Ti is a geometric
random variable with

E[Ti] = 1/pi ≤ ((|C| − (i− 1))B)−1. (45)

From this we can compute

E[T ] =
|C|∑
i=1

E[Ti] ≤
|C|∑
i=1

1
(|C| − (i− 1))B = 1

B

|C|∑
j=1

1
j

= Θ
(

log |C|
B

)
. (46)

◀

Proof of Theorem 21. We use parameters T ′ and ϵ, to be defined shortly, and δ = 1/4. Our
strategy is to repeatedly run WitnessGeneration(PGst

, Ox, ϵ, δ) (Algorithm 1) to produce
an approximate witness state, and then measure the resultant state in the standard basis to
get an edge e, which we add to C ′. We repeat this T ′ times, before outputting C ′.

Let Z be the random variable on E ∪ {Failure} representing the measured output of one
call to Algorithm 1. We set ϵ = Θ

(
g(n)
R(n)

)
small enough so that if the algorithm does not

fail, we produce a state |θ∗⟩/∥|θ∗⟩∥+ |η⟩ where ∥|η⟩∥2 ≤ g(n)/R(n) (see Equation (40) and
following discussion). Then the probability that we sample an edge e′ ∈ C when we measure
in the standard basis is

∥⟨e′| (|θ∗⟩/∥|θ∗⟩∥+ |η⟩)∥2 = ∥2θ∗(e′)/
√
Rs,t(G(x))− ⟨e′|η⟩∥2

≥ ∥2
√
g(n)/R(n)−

√
g(n)/R(n)∥2

= Ω(g(n)/R(n)). (47)

Since the probability of one call to Algorithm 1 not failing is 1− δ = Ω(1), for every e′ ∈ C,
we have Pr[Z = e′] ≥ B for some B = Ω(g(n)/R(n)). Thus, by Lemma 22, the expected
number of calls to Algorithm 1 before C ⊆ C ′ is at most:

E[T ] = O

(
R(n)
g(n) log |C|

)
= O

(
R(n)
g(n) logn

)
. (48)

By Markov’s inequality, if we set T ′ = 100E[T ], the algorithm will succeed with bounded
error.

By Theorem 10, each call to Algorithm 1 has expected query complexity

Õ

(√
Rs,t(G(x))n2

ϵ

)
= Õ

(
n

√
R(n)

g(n)/R(n)

)
= Õ

(
nR(n)√
g(n)

)
, (49)

so the total expected query complexity is

Õ

(
T ′ nR(n)√

g(n)

)
= Õ

(
R(n)
g(n)

nR(n)√
g(n)

)
= Õ

(
nR(n)2

g(n)3/2

)
. (50)

We can get a worst case algorithm by stopping after 100 times the expected number of steps,
if the algorithm is still running, and outputting the current C ′. We have no guarantee on the
correctness of C ′ in that case, but by Markov’s inequality, this only happens with probability
1/100. ◀
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We can use Theorem 21 to prove the following result for finding an st-cut set in a
particular family of graphs with expander subgraphs and a single st-cut edge.

▶ Corollary 23. Let G = (V,E) with s, t ∈ V be a family of n-vertex graphs, and suppose we
are additionally promised that G(x) consists of two disjoint, d-regular (for d ≥ 3), constant
expansion subgraphs, each on n/2 vertices, where s and t are always put in separate subgraphs,
plus a single additional edge connecting the two subgraphs. Then there is a quantum algorithm
that finds the st-cut edge with bounded error in worst-case Õ(n) queries, while any classical
algorithm has query complexity Ω(n2).

Proof. For a classical algorithm, even if the algorithm had complete knowledge of the two
subgraphs, there would be Ω(n2) possible locations for the connecting edge, reducing the
problem to search, requiring Ω(n2) queries.

For the quantum algorithm, note that the maximum effective resistance between any
two points in a d-regular (for d ≥ 3), constant expansion graph on n-vertices is O(1/d) [10].
Thus Rs,t(G(x)) = Ω(1). Additionally, since there is only one edge e′ connecting the two
subgraphs, the optimal unit st-flow on e′, θ∗(e′), must be equal to 1.

Applying Theorem 21 with R(n) = O(1) and g(n) = Ω(1), we get a worst-case bounded
error quantum query complexity Õ(n). ◀

4.3 Path Finding

In this section, we consider the problem of finding an st-path in G(x), which we denote
st-pathG(x). That is, given query access to a string x that determines a subgraph G(x) =
(V,E(x)) of an n-vertex graph G, as described in Section 2.3 (if G is a complete graph, x
is just the adjacency matrix of G(x)), with s, t ∈ V such that there is at least one path
from s to t in G(x), output a path from s to t. A path is a sequence of distinct vertices
u⃗ = (u0, . . . , uℓ) such that s = u0, t = uℓ, and for all i ∈ [ℓ], (ui−1, ui) ∈

−→
E (G(x)).

To solve st-pathG, one might expect that we could simply apply Algorithm 2 multiple
times, storing each edge’s endpoints and identifying vertices of the endpoints of found edges
to reduce the size of the graph, until a path is found. However, such an algorithm could run
into challenges that could produce slow running times. For example, in a graph where there
are many st-paths, the algorithm could spend too much time sampling edges from different
paths, rather than focusing on completing a single path. In the case of a single st-path, such
a strategy would not take advantage of the fact that once one edge on the path is found, the
problem reduces to two connectivity subproblems (from s to the found edge, and from t to
the found edge) that each typically have significantly smaller query complexities than the
original problem.

Thus we develop two algorithms that allow us to prove tighter expected query complexity
bounds than Ref. [18] for the case of short longest st-paths, one in the case of a single st-path,
and one for generic graphs.

Before getting into quantum algorithms for path detection, we note the following corollary
of Theorem 20, via a reduction to path finding from path-edge finding, that characterizes
the classical query complexity of path finding in the case of short longest st-paths:

▶ Corollary 24. Let G = (V,E) with s, t ∈ V be an n-vertex complete graph and suppose
we are promised that G(x) has a path of length L for L ∈ [3, n/4] between s and t. Then
st-pathG(x) has randomized query complexity Ω(n2).
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4.3.1 Graph with a Single Path
When the graph G(x) is known to have a single st-path, we will we use a divide-and-conquer
algorithm to find the path. To show that the divide-and-conquer approach is useful, we first
consider the simpler algorithm (as described above) that uses Theorem 19 to find an edge
{u, v} on the path, and then once that edge is found, the algorithm is run on a new graph
where vertices u and v are identified. This process is continued until the edge {s, t} is found.
Thus if the length of the path is initially L, after an edge is found, the path length will be
L− 1, and then L− 2 in the next iteration, etc. Ignoring error, and assuming the algorithm
finds an edge in each round, by Theorem 19, the query complexity at the ith round will be
Õ(n
√
L− i). Over the course of the L rounds, the total query complexity will be

L−1∑
i=0

Õ(n
√
L− i) = Õ

(
nL3/2

)
. (51)

For L ≥ n2/3, this algorithm does not even outperform the best classical algorithm, and for
L ≥ n1/3 it does not outperform the quantum algorithm of Ref. [18].

We instead consider the following divide-and-conquer approach, described in detail in
Algorithm 3. We use Algorithm 2 to find a set of edges, some of which are very likely to be
on the path. Then we use Lemma 8 to verify which of those edges is actually on the path,
and Lemma 9 to ensure we choose an edge near the center of the path, so we are left with
two subproblems of approximately half the size. Finally two recursive calls find the unique
path from s to the found edge, and the unique path from t to the found edge.

▶ Theorem 25. Let p ≥ 0, and G = (V,E) with s, t ∈ V be a family of n-vertex graphs, and
suppose we are promised that G(x) contains a single st-path of some length L (L may depend
on x and need not be known ahead of time). Then there is a quantum algorithm (Algorithm 3)
that with probability 1− O(p) solves st-pathG(x) and uses Õ(nL1+o(1) log2(1/p)) expected
queries on input x.

Proof. We first analyze the probability of error, then we prove the correctness of Algorithm 3,
assuming that no errors are made, and finally, we analyze the query complexity.

We will stop the algorithm after O(n) recursive calls. Since each recursive call returns
an edge, and any path has length at most n, this termination will not affect the success
probability. We then bound our probability of error by O(p/n4) = O(p), by showing that
the failure probability in each recursive call is O(p/n5).

We say a failure occurs (in some recursive call) if any of the following happens:
1. Any one of the at most 4ℓ PathDetection algorithms errs. This has probability O(ℓδ) =

O(p/n5), by our choice of δ = p/(ℓn5).
2. One of the at most O(ℓ) calls to WitnessSizeEst produces an estimate that is not within

the desired relative error. This has probability O(ℓδ) = O(p/n5).
3. None of the ℓ iterations of EdgeFinder produces an edge that is on the st-path, and

moreover, that is within (ε3 − ε2)L = √ε1L of the middle of the path. The absence of
this type of failure is sufficient to guarantee that the condition on Line 20 will be satisfied,
as long as WitnessSizeEst is also successful.

We analyze the probability of the last event, assuming the first two do not occur. Let
e0, . . . , eL−1 denote the path edges, in order, in the unique st-path in G(x). For one of the ℓ
runs of EdgeFinder, the probability that it does not output “Failure” is ε1. Conditioned on
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Algorithm 3 SinglePathFinder(Ox, p,G, s, t).

Input : Failure tolerance p > 0, oracle Ox for the graph G(x) = (V,E(x)), s, t ∈ V
such that there is a unique path from s to t.

Output : With probability 1−O(p), a set of edges whose vertices form a path from s

to t in G(x).
// Base Cases

1 if s = t then Return ∅
2 if {s, t} ∈ E(x) then Return {s, t}

// Finding Possible Edges on Path
3 ε1 ← 1

log n // Any ε1 = o(1) that is inverse polylog(n) would suffice
4 S ← ∅
5 ℓ← 2 log(n5/p)

ε1
for i = 1 to ℓ do

6 e← EdgeFinder(Ox, ε1, G, s, t) (Algorithm 2)
7 if e ̸= “Failure” and e = (u, v) ∈ −→E (x) then S = S ∪ {(u, v), (v, u)}

// Finding a possible edge that is actually on a path
8 δ ← p/(ℓn5)
9 for (u, v) ∈ S do

10 Initialize PathDetection(Ox, G
−
{u,v}, s, u, δ) (Lemma 8)

11 Initialize PathDetection(Ox, G
−
{u,v}, v, t, δ)

12 flag ← True
13 while flag do
14 Run in parallel each PathDetection algorithm initialized in the prior for loop,

until each algorithm applies Ox once or terminates (or do nothing for those
algorithms that have terminated previously)

15 for (u, v) ∈ S do
16 if PathDetection(Ox, G

−
{u,v}, s, u, δ) and PathDetection(Ox, G

−
{u,v}, v, t, δ)

have both terminated in this iteration of the while loop and both detected
paths then

17 ε2 ←
√
ε1, ε3 ← 2√ε1

18 k̃ ←WitnessSizeEst(Ox, G, s, u, ε2, δ) (Lemma 9) // estimate of
dist. s to u

19

20 if |k̃ − L/2| ≤ ε3L then
21 (u∗, v∗)← (u, v)
22 flag ← False

// Recursive call
23 Return
{(u∗, v∗)}∪ SinglePathFinder(Ox, p,G, s, u

∗)∪ SinglePathFinder(Ox, p,G, v
∗, t)
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the output of EdgeFinder not being “Failure,” by Theorem 19, we sample from a distribution
q̂ that is √ε1-close in total variation distance to the uniform distribution over edges on the
st-path. Thus, the probability that we sample an edge in the set

R = {ek : k ∈ [L/2− (ε3 − ε2)L,L/2 + (ε3 − ε2)L]}, (52)

where ek is the kth path edge, is:

q̂(R) ≥ |R|
L
−
√
ε1 = 2(ε3 − ε2)−

√
ε1 = 2(2

√
ε1 −

√
ε1)−

√
ε1 =

√
ε1. (53)

Thus, using ε1 ≤ 1/2, each of the ℓ samples has probability at least (1− ε1)√ε1 ≥
√
ε1/2 of

being a path edge in the correct range, R. Using Hoeffding’s bound, the probability that
none of them is a path edge in the correct range is thus at most:

e−2ℓ(√
ε1/2)2

= e−ℓε1/2 = e− log(n5/p) = O(n−5p) (54)

by our choice of ℓ = 2 log(n5/p)/ε1. The total probability of failure in one round is thus at
most O(p/n5).

We prove correctness using induction on L, the length of the path, assuming no failure
occurs. For the base case, if L ∈ {0, 1}, we will correctly return the path in Lines 1 and 2.

For the inductive case, let L′ ≥ 1. We assume SinglePathFinder works correctly
for all lengths L such that 0 ≤ L ≤ L′. Now consider a graph with L = L′ + 1. Then
assuming no failure, we will sample at least one edge (u, v) in the set R = {ek : k ∈
[L/2− (ε3− ε2)L,L/2 + (ε3− ε2)L]} (not doing so is a failure of the type specified by Item 3
in the list above). Then if there are no errors in the PathDetection algorithms, Line 16 will
be satisfied when (u, v) corresponds to an edge in the path where u is closer to s and v is
closer to t. This is because we have removed {u, v} from the graph when we are running
PathDetection, and since there is a unique st-path, there will only be a path from s to u
and not from s to v, and likewise for t.

Then for every edge (u, v) that we have correctly found using PathDetection to be on
a path, we apply WitnessSizeEst (see Lemma 9) to estimate Rs,u(G(x)). If (u, v) = ek,
then e0, . . . , ek−1 is the unique su-path in G, and it has length k, and so Rs,u(G(x)) = k,
and thus WitnessSizeEst is actually estimating k. Assuming (u, v) ∈ R, (and we know this
holds for at least one such edge), we have |k − L/2| ≤ (ε3 − ε2)L. Then since we assume
WitnessSizeEst does not fail, it outputs an estimate k̃ of k, such that |k̃ − k| ≤ ε2k ≤ ε2L.
Together, these conditioned imply |k̃−L/2| ≤ ε3L, which will trigger the while loop to halt.
It is possible that we will break out of the loop for an edge not in R, but at the least we
know that if no failure occurs, we will will certainty break out of the while loop with an
edge (u∗, v∗) on the path.

Now that we have the edge (u∗, v∗), to find the rest of the path, we just need to find the
rest of the path from s to u∗ and from v∗ to t. But both of these problems will have path
lengths between 0 and L′, so by inductive assumption, the recursive calls in Line 23 will be
correct, and will return the edges on the paths.

Turning to our analysis of the expected query complexity, we first bound the contribution
to the expected query complexity in the case of a failure. As just discussed, a failure
occurs with probability O(p/n4). Even in case of failure, each of our O(n log(n/p)) =
O(n2 log(1/p)) calls to EdgeFinder, PathDetection, and WitnessSizeEst still has expected
query complexity at most Õ(n1.5(1/ε1 + 1/ε3/2

2 ) log(1/δ)) = O(n2 log(1/p)) (for any x),
for a total query cost of O(n4 log2(1/p)). Thus, the error case contributes an additive
O(p log2(1/p)) = O(1) to the expected query complexity.
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Next, we create a recurrence relation for the expected query complexity, assuming no
failure occurs. Let E[TL] be the expected query complexity of Algorithm 3 on a graph with n
vertices, when there is a single path, and that path has length L. For k ∈ {0, . . . , L− 1}, let
q̃L(k) be the probability that the path edge that we find, (u∗, v∗), is ek. Because we assume
no subroutine call fails, we can assume that k̃ is an estimate of k with relative error ε2, so
|k̃−k| ≤ ε2k ≤ ε2L. From the conditional statement in Line 20, we also have |k̃−L/2| ≤ ε3L.
Taken together, these imply:

|k − L/2| ≤ (ε2 + ε3)L = (
√
ε1 + 2

√
ε1)L = 3

√
ε1L. (55)

Thus with certainty (assuming no failure occurs), we will exit the while loop with (u∗, v∗) =
ek, for k ∈ [(1/2− 3√ε1)L, (1/2 + 3√ε1)L], so:

E[TL] = Õ(ℓn
√
L/ε1) + Õ(ℓn

√
L log(1/δ)) + Õ

(
ℓ
n
√
L

ε
3/2
2

log(1/δ)
)

+
⌊(1/2+3√

ε1)L⌋∑
k=⌈(1/2−3√

ε1)L⌉

q̃L(k) (E[Tk] + E[TL−k−1]) , (56)

where the first three terms come from: (1) running EdgeFinder (Algorithm 2, Theorem 19)
ℓ times; (2) at most O(ℓ) parallel PathDetection (Lemma 8) algorithms; and (3) running
WitnessSizeEst (Lemma 9) O(ℓ) times; and the final term from the two recursive calls.

To get a function that is strictly increasing in L, let T ′
L := maxk≤L E[Tk], so in particular

E[TL] ≤ T ′
L, and T ′

L also satisfies the recursion in Equation (56) (with = replaced by ≤).
Then we have, for any k ∈ [(1/2− 3√ε1)L, (1/2 + 3√ε1)L],

E[Tk] + E[TL−k−1] ≤ 2T ′
(1/2+3√

ε1)L. (57)

Continuing from Equation (56), and using 1/ε1 = logn and 1/ε2 = 1/√ε1 =√
logn, ℓ = 2 log(n5/p)/ε1 = O(log(1/p) log2 n), and log(1/δ) = O(log(ℓn/p)) =

log(1/p)polylog(n, log(1/p)), we get

E[TL] ≤ T ′
L ≤ Õ

(
n
√
L log2(1/p)

)
+ 2T(1/2+3√

ε1)L. (58)

To analyze this recurrence, we add up the queries made in every recursive call. At the
ith level of recursion, there are 2i recursive calls, and each one makes Õ

(
n
√
L/bi log2(1/p)

)
queries itself, where b = (1/2 + 3√ε1)−1, before recursing further. Thus

E[TL] ≤ Õ
(
n
√
L log2(1/p)

)
+

logb L∑
i=1

2i

√
L

bi
· Õ
(
n log2(1/p)

)
≤ Õ

(
n
√
L log2(1/p)

)
+ Õ

(
n
√
L log2(1/p)

)(
2/
√
b
)logb L

. (59)

Letting η := 1
1+ 1

6√
ε1

= O(1/
√

logn) since ε1 = 1/ logn, so that b = 2(1− η), we have:

log
(

2/
√
b
)logb L

=
(

1− 1
2 log b

)
logL
log b =

(
1

log b −
1
2

)
logL

=
(

1
1− log 1

1−η

− 1
2

)
logL =

(
1
2 +

log 1
1−η

1− log 1
1−η

)
logL

so
(

2/
√
b
)logb L

= L
1
2 +o(1), (60)
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where we used log 1
1−η

1−log 1
1−η

= o(1), since log 1
1−η = o(1), which follows from η = o(1). Thus,

continuing from Equation (59), we have:

E[TL] = Õ
(
n
√
L log2(1/p)

)
L

1
2 +o(1) = Õ

(
nL1+o(1) log2(1/p)

)
. (61)

We note that while our approach in Theorem 25 outperforms the simpler, non-divide-
and-conquer algorithm analyzed in Equation (51), it performs worse than the algorithm of
Ref. [18] for graphs with L = Ω(n1/2−o(1)). Thus, one could run Algorithm 3 until O

(
n3/2)

queries had been made, and then switch to the algorithm of Ref. [18].

4.3.2 Path Finding in Arbitrary Graphs

When G(x) is not known to only have one st-path, while it is possible that an algorithm
similar to Algorithm 3 would solve st-pathG(x), we have not been able to bound the running
time effectively. This is because in the case of a single path, once you find an intermediate
edge on the path, the longest paths from s and t to that edge must be shorter than the
length of the longest path from s to t. This ensures that subproblems take shorter time than
the original problem. With multiple paths, we no longer have that guarantee.

However, we provide an alternative approach that, while not as fast as Algorithm 3, still
provides an improvement over the algorithm of [18] for graphs in which all (self-avoiding)
paths from s to t are short. Our approach does not make use of our path-edge sampling
algorithm as a subroutine, and instead uses the path detection algorithm of Lemma 8 to
decide whether there are paths through various subgraphs, and then uses that information
to find each edge in a path in order from s to t. In this way, we avoid the problem of
subproblems being larger than the original problem, since if the longest path from s to t has
length L, and the first edge we find on the path is (s, u), then longest path from u to t that
doesn’t go through s must have length at most L− 1. However, we lose the advantage of a
divide-and-conquer approach.

To find the first edge on a path, we use a group testing approach. We divide the neighbors
of s in G into two sets, S1 and S2 and run path detection algorithms in parallel on two
subgraphs of G(x), one with edges from s removed, except those to vertices in S1 (that is,
G−

{{s,u}∈E:u∈S1}), and one with edges from s removed, except those to vertices in S2. We
will detect which of these subgraphs contains a path, and we will know there is a path whose
first edge goes from s to a vertex in the corresponding set (S1 or S2). Then we divide that
set into half again, and repeat, until we have narrowed down our set to one vertex u, that
must be the first vertex on a path from s to t.

At this point we have learned the first edge on a path from s to t. We then consider G−
s ,

which is G with vertex s removed, and recursively iterate this procedure to learn the first
edge on a path from u to t. Using this approach, we obtain the following result:

▶ Theorem 26. Let p ≥ 0, and G = (V,E) with s, t ∈ V be a family of n-vertex graphs,
and suppose we are promised that there is a path from s to t in G(x). On input x, if the
longest st-path in G(x) has length L (L need not be known ahead of time), there is a quantum
algorithm that returns the edges on a path with probability 1−O(p) and uses Õ(nL3/2 log(1/p))
expected queries.

A detailed description of the algorithm and the proof of Theorem 26 can be found in the full
version of this work [26, Section 4.3.2].
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