
Leakage-Resilient Hardness vs Randomness
Yanyi Liu #

Cornell Tech, New York, NY, USA

Rafael Pass #

Tel-Aviv University, Israel
Cornell Tech, New York, NY, USA

Abstract
A central open problem in complexity theory concerns the question of whether all efficient randomized
algorithms can be simulated by efficient deterministic algorithms. The celebrated “hardness v.s.
randomness” paradigm pioneered by Blum-Micali (SIAM JoC’84), Yao (FOCS’84) and Nisan-
Wigderson (JCSS’94) presents hardness assumptions under which e.g., prBPP = prP (so-called
“high-end derandomization), or prBPP ⊆ prSUBEXP (so-called “low-end derandomization), and more
generally, under which prBPP ⊆ prDTIME(C) where C is a “nice” class (closed under composition
with a polynomial), but these hardness assumptions are not known to also be necessary for such
derandomization.

In this work, following the recent work by Chen and Tell (FOCS’21) that considers “almost-
all-input” hardness of a function f (i.e., hardness of computing f on more than a finite number of
inputs), we consider “almost-all-input” leakage-resilient hardness of a function f – that is, hardness
of computing f(x) even given, say,

√
|x| bits of leakage of f(x). We show that leakage-resilient

hardness characterizes derandomization of prBPP (i.e., gives a both necessary and sufficient condition
for derandomization), both in the high-end and in the low-end setting.

In more detail, we show that there exists a constant c such that for every function T , the
following are equivalent:

prBPP ⊆ prDTIME(poly(T (poly(n))));

Existence of a poly(T (poly(n)))-time computable function f : {0, 1}n → {0, 1}n that is almost-
all-input leakage-resilient hard with respect to nc-time probabilistic algorithms.

As far as we know, this is the first assumption that characterizes derandomization in both the
low-end and the high-end regime.

Additionally, our characterization naturally extends also to derandomization of prMA, and also
to average-case derandomization, by appropriately weakening the requirements on the function f . In
particular, for the case of average-case (a.k.a. “effective”) derandomization, we no longer require the
function to be almost-all-input hard, but simply satisfy the more standard notion of average-case
leakage-resilient hardness (w.r.t., every samplable distribution), whereas for derandomization of
prMA, we instead consider leakage-resilience for relations.

2012 ACM Subject Classification Theory of computation→ Pseudorandomness and derandomization

Keywords and phrases Derandomization, Leakage-Resilient Hardness

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.32

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/113/

Funding Yanyi Liu: Work done while visiting Tel-Aviv University.
Rafael Pass: Supported in part by NSF Award CNS 2149305, NSF Award SATC-1704788, NSF
Award RI-1703846, AFOSR Award FA9550-18-1-0267, a JP Morgan Faculty Award, and an Algorand
Foundation grant (MEGA-ACE). This material is based upon work supported by DARPA under
Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government or DARPA.

© Yanyi Liu and Rafael Pass;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yl2866@cornell.edu
mailto:rafaelp@tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2023.32
https://eccc.weizmann.ac.il/report/2022/113/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Leakage-Resilient Hardness vs Randomness

1 Introduction

Randomness is an ubiquitous tool in algorithm design. A central open problem in complexity
theory concerns the question of whether all randomized algorithms can be derandomized;
that is, can every randomized polynomial-time algorithm be simulated by a deterministic
polynomial-time, or perhaps even just sub-exponential one? In this work, we consider this
question with respect to promise problems; as usual, we refer to prBPP as the class of promise
problems (as opposed to languages) that can be solved in probabilistic polynomial time (with
2-sided error), and prP to the class of promise problems than can be solved in deterministic
polynomial time.

We here focus on the questions of whether prBPP = prP (the, so-called, “high-end
regime”), prBPP ⊆ prSUBEXP (the, so-called, “low-end regime”) and more generally whether
prBPP ⊆ prDTIME(C), where C is a “nice” class of time bounds (where by “nice” we here
mean that C is closed under composition with a polynomial).

A long sequence of works originating with the works of Blum-Micali [3], Yao [30], Nisan
[23], Nisan-Wigderson [24], Babai-Fortnow-Nisan-Wigderson [2], Impagliazzo-Wigderson [14]
have presented beautiful connections between this problem and the problem of proving
computational-complexity lower bounds – the so-called hardness v.s. randomness paradigm.
For instance, the results of [24, 14] show that prBPP = prP under the assumption that
E = DTIME(2O(n)) contains a language that requires Boolean circuits of size 2Ω(n) for
almost all input lengths (i.e., E is not contained in ioSIZE(2Ω(n))). Additionally, results by
Impagliazzo, Kabanets and Wigderson [13] show a partial converse: if prBPP = prP, then
some non-trivial circuit lower bound must also hold. In more detail, if prBPP = prP (or even
just MA = NP), then NEXP ̸⊆ P/poly; very recent works [28, 22] managed to strengthen the
conclusion to e.g., NTIME[npoly log n] ̸⊆ P/poly.

But despite over 40 years of research on the topic of derandomization, there has still
been a large “gap” between the hardness assumptions required for derandomizing prBPP,
and the ones that are known to be necessary for derandomization, leaving open the following
question:

For “nice” classes C, does there exist some (natural) hardness assumption that is
equivalent to prBPP ⊆ prDTIME[C]?

Most notably, known derandomization results for prBPP require complexity lower-bounds on
functions in EXP, whereas it is only known that derandomization of prBPP implies complexity
lower bounds for functions in non-deterministic classes.

There as been some recent progress on the above problem:
An elegant work by Chen, Rothblum, Tell and Yogev show an equivalence between
derandomization and circuit lower bound under a conjecture (a weaker version of the
non-deterministic exponential-time hypothesis) [5]. There work applies for both the
high-end and the low-end regime, but is only conditional (i.e., relies on a conjecture).
Chen and Tell [6], relying on the work by Goldreich [9], show that the existence of a
multi-output function f : {0, 1}n → {0, 1}n computable by polynomial size logspace-
uniform circuits with depth bounded by n2 that cannot be computed in some (a-priori
bounded) probabilistic polynomial time on any sufficiently large input – this is referred
to as “almost-all-input hardness” – implies that prBPP = prP. They also show a partial
converse: That a relaxed version of this conjecture, where the depth requirement is
dropped, also is necessary.
Liu and Pass [18], following the work of Hirahara [11], demonstrates a class of promise
problems (related to conditional time-bounded Kolmogorov complexity) such that (worst-
case) hardness with respect to a-priori polynomially bounded probabilistic algorithms of

Y. Liu and R. Pass 32:3

all problems in the class is equivalent to prBPP = prP. (The result of Liu and Pass also
shows that a single problem can be used to characterize prBPP = prP but this problem is
very artificial.) Similar to the results of [6], this characterization can be extended slightly
beyond the “high-end regime”, but fails to capture the “low-end regime”: it only works
to handle derandomization in time C, where C is a class closed under composition (i.e., if
T ∈ C, then T (T (·) ∈ T), and thus already does not apply to e.g., SUBEXP.
Finally, a very recent elegant work by Korten [17] demonstrates a natural search problem
– the R-Lossy Code problem – that is complete for prBPP. As such, the assumption that
this problem can be solved in deterministic time C characterizes when prBPP ⊆ DTIME(C).
We note, however that this assumption is not a hardness assumption, but rather an
“easiness” assumption.

Thus summing up, it is known how to characterize both the high-end and low-end deran-
domization through a hardness assumption under a conjecture [5]; unconditionally, however,
it is only known how to characterize the high-end regime (i.e., prBPP = prP) and even there
it is only known under either (a) a class of hardness assumptions (as opposed to one), or (b)
a very specific and artificial single hardness assumption.

In this work, we follow the work by Chen and Tell [6] and also consider the notion of
“almost-all-input” hardness of a multi-output function. In contrast to them, however, we
consider such “almost-all-input” hardness in the context of leakage resilience, a notion first
considered in the cryptographic literature in the 1980s. As we shall see, our main result
shows that “almost-all-input” leakage resilient hardness can be used to fully characterize
derandomization, both in the high-end and in the low-end setting; additionally, our char-
acterization will extend also to derandomization of prMA, and also to average-case (a.k.a.
“effective”) derandomization. In particular, for the case of average-case derandomization, we
no longer require the function to be almost-all-input hard, but simply satisfy the standard
notion of average-case leakage-resilient hardness (w.r.t., every samplable distribution). And
to characterize derandomization of prMA, we instead consider the notion of a leakage-resilient
relation, which again is a notion considered in the cryptographic literature. Taken together,
we believe that our results demonstrate an intriguing connection between derandomization
and notions from cryptography.

1.1 Leakage-resilient Hardness
Consider some multi-output function f : {0, 1}n → {0, 1}n. Roughly speaking, we say that
f is T -hard if no T (|x|)-time algorithm/attacker A can compute f(x) given any input x.
Perhaps the most widely known example of a candidate construction of a hard function is
integer factorization: given a product of two-primes x, compute the factorization f(x) of x.
In 1985, Rivest and Shamir [26] asked the question of what happens to this candidate hard
function if the attacker gets some additional “side-information” about the factorization of x.
Namely, the attacker gets not only x, but also some T -time computable side-information
(a.k.a. “leakage”) leak(x, f(x)). Of course, if |leak(x, f(x))| ≥ |f(x)|, then the problem
becomes trivial since the side-information can simply reveal the whole factorization; in fact,
for the particular factorization problem, it trivially suffices to leak n/2 bits to reveal just
one of the primes. Rivest and Shamir [26] show that, in fact, it suffices to get n/3 bits of
leakage for the function to becomes easy; this result was improved by Coppersmith [7] to
n/4 bits, and a heuristic (with a conjectured polynomial running-time bound) by Maurer
[20] shows an attack given just ϵn bits of leakage for any constant ϵ > 0. As far as we know,
it is unknown if this problem can be solved using just nϵ bits of leakage, for any ϵ < 1.

CCC 2023

32:4 Leakage-Resilient Hardness vs Randomness

The notion of leakage-resilient hardness captures the notion that a function is hard even
given some bounded-length leakage [26, 20, 1]: We say that a function f is (T, ℓ)-leakage
resilient hard if no T (|x|)-time attacker A can compute f(x) given x and leak(x, f(x)) for
any T (|x|)-time computable leakage function leak that outputs at most ℓ(|x|) bits. In recent
years, leakage-resilient cryptography [15, 21, 8, 1] – the design of cryptographic protocols
resilient to some forms of leakage of honest players’ secrets – has received significant attention
and has become a subfield in cryptography; the bounded-length leakage model is the most
common way of formalizing the class of leakage functions.

In this paper, we will consider this notion of leakage-resilient hardness, except that
following Chen and Tell, we will also consider it in the context of almost-all-input hardness:
that is, for any pair (A, leak) there can be at most finitely many x for which A can compute
f(x) given x and leak(x, f(x)).

1.2 Characterizing Derandomization
We are now ready to state our main theorem, which shows that almost-all-input leakage-
resilient hardness characterizes both high-end and low-end derandomization. We say that
a class of time-bounds C is nice if for all polynomials p, q it holds that if T ∈ C, then
p(n)T (q(n)) ∈ C. For instance, the sets poly(n) and 2no(1) are nice and recall that P =
DTIME(poly) and SUBEXP = ∩ϵ>0DTIME(2nϵ).

Derandomizing prBPP. Our main theorem gives a characterization of derandomization of
prBPP:

▶ Theorem 1.1. There exists a constant c such that for every “nice” class of running-time
bounds C, and for every 0 < ϵ < 1, the following are equivalent:

prBPP ⊆ ∪T ∈CprDTIME[T (n)].
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
time T ∈ C such that f is almost-all-input (nc, nϵ)-leakage-resilient hard.

In particular, prBPP = prP (resp. prBPP ⊆ prSUBEXP) iff there exists a polynomial-time
(resp. subexponential-time) computable multi-output function f that is almost-all-input
(nc,
√

n)-leakage-resilient hard.

Some Corollaries to Leakage-resilient Hardness. For the proof of Theorem 1.1, in one
direction, we only require leakage-resilience with a “small” amount of leakage, whereas in
the other direction, we obtain a function that is leakage-resilient hard with a “large” amount
of leakage. Consequently, our proof actually also yields an amplification theorem for leakage-
resilient hardness: For any ϵ > 0, d ≥ 1, the existence of an efficient (nc, nϵ)-leakage-resilient
hard function implies an efficient (nd, n− Ω(log n))-leakage-resilient hard function.

▶ Theorem 1.2. There exists a constant c such that for every nice class C, all constants ϵ >

0, d ≥ 1, the following holds. If there exists a C-computable almost-all-input (nc, nϵ)-leakage-
resilient hard function. Then there exists a C-computable almost-all-input (nd, n− 3 log n)-
leakage-resilient hard function.

Let us highlight that as far as we know, this is the first type of leakage-resilience amplification
result in the literature that we are aware of. (Brakerski and Kalai [4] demonstrate a parallel
repetition theorem for leakage-resilience but it does not show how to amplify the amount of
leakage a function is resilient against, but rather only how to maintain the (relative) amount
of leakage.)

Y. Liu and R. Pass 32:5

Additionally, by combing the result of Chen and Tell [6] with our Theorem 1.1, we get
an interesting (one-sided) connection between low-depth computable hard functions and
leakage-resilience:

▶ Theorem 1.3. There exists some c such that the following holds. If there exists a function
f computable by polynomial-size logspace-uniform circuits with depth bounded by n2 that
is almost-all-input nc-hard, then for any constant d ≥ 1, there exists a polynomial-time
computable almost-all-input (nd, n− 3 log n)-leakage-resilient hard function.

Comparison with IW: leakage-resilient local hardness. Recall that Impagliazzo and
Wigderson [14] shows that prBPP = prP under the assumption that E ̸⊆ ioSIZE(2Ω(n)) (i.e.,
that there exists some exponential-time computable function that does not have 2Ω(n)-size
circuits.) Since Theorem 1.1 shows that leakage-resilient hardness is both a sufficient and
necessary condition for derandomizing prBPP, it directly follows that E ̸⊆ ioSIZE(2Ω(n))
implies leakage-resilient hardness (by combining [14] with Theorem 1.1), but it gives little
insight into whether the type of assumption used by IW is inherent, or to what extent it
“overshoots”. Indeed, understanding to what extent the NW/IW framework is inherent for
derandomization is a long standing open problem.

We now show how to use our framework to provide an (in our eyes) crisp answer to this
question. We start by noting that by a slight adjustment to the proof of Theorem 1.1, an
(a-priori) weaker notion of leakage-resilient local hardness actually suffices to derandomize
prBPP: Given a function f : {0, 1}n → {0, 1}n, we say that A t-locally computes f(·) on
input x if for every i ∈ [|x|], A(x, i) = f(x)i (i.e., the ith bit of f(x)), and A(x, i) runs in
time bounded by t(|x|); we analogously say that A t-locally computes f on input x given
(T, ℓ)-leakage leak if for every i ∈ [|x|], A(x, leak(x, f(x)), i) = f(x)i, A(x, z, i) runs in time
bounded by t(|x|), leak(x, f(x)) runs in time bounded by T (|x|), and |leak(x, f(x))| ≤ ℓ(|x|).
We finally say that f is almost-all-input (T, ℓ)-leakage resilient t-local hard if there does not
exist (A, leak) such that A t-locally computes f on infinitely many x given (T, ℓ)-leakage leak.
Note that this notion of leakage-resilient hardness differs from the standard one in two ways:
(a) we are decoupling the running time T of the leakage function, and the running time t of
the computing machine A, and (b) we require the computing machine A to be able to locally
compute each bit of the output of f(x) – this will allow us to consider sublinear running times
t. Indeed, we will focus our attention on the regime where A is required to reconstruct each
bit of f(x) in sublinear time: We say that f is simply almost-all-input (T, ℓ)-leakage resilient
locally hard if there exists some 0 < ϵ < 1 such that f is almost-all-input (T, ℓ)-leakage
resilient t-locally hard where t(n) = nϵ. Note that (T, ℓ)-leakage resilient hardness is trivially
an (a-priori) stronger condition than (T, ℓ)-leakage resilient local hardness when T ∈ Ω(n2).
We now have the following generalization of Theorem 1.1:

▶ Theorem 1.4. There exists a constant c ≥ 2 such that for every “nice” class of running-time
bounds C, and for every 0 < ϵ < 1, the following are equivalent:

prBPP ⊆ ∪T ∈CprDTIME[T (n)].
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
time T ∈ C such that f is almost-all-input (nc, nϵ)-leakage-resilient locally hard.
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
time T ∈ C such that f is almost-all-input (nc, nϵ)-leakage-resilient hard.

Leakage-resilient local hardness is useful as it allows to capture the assumption that E ̸⊆
ioSIZE(2Ω(n)). In fact, we observe that E ̸⊆ ioSIZE(2Ω(n)) directly implies the existence
of a (nc, nϵ)-leakage-resilient locally hard function for every c. To see this, consider some

CCC 2023

32:6 Leakage-Resilient Hardness vs Randomness

E-computable function gn : {0, 1}n → {0, 1} that does not have circuits of size 2Ω(n); in other
words, gn cannot be computed by a 2Ω(n) time algorithm even when given any (potentially
non computable) advice string. Define the multi-output function f that is constant on each
input length n and simply outputs the truthtable of glog n; that is,

f(x) = gm(1)||gm(2)|| . . . ||gm(|x|)

where m = log |x|. Note that f(x) is polynomial-time computable (since we are only
evaluating gm on input of logarithmic length in |x|), and additionally by the hardness of
g, it directly follows that f is almost-all-input leakage-resilient locally hard (since locally
computing f on some input x in sublinear time with efficiently computable leakage implies
computing glog |x|(y) on every input y ∈ {0, 1}log |x| in subexponential time with advice).1 In
fact, it directly follows that this construction is almost-all-input leakage-resilient locally hard
even with respect to uncomputable leakage.

In other words, the IW assumption “overshoots” the minimal assumption needed for
derandomizing BPP in two ways: (a) it considers leakage-resilient hardness of a “degenerated”
multi-output function that is constant on each input length, and (b) it requires leakage
resilient hardness also with respect to uncomputable leakage, whereas the minimal assumption
only requires it w.r.t. polynomial-time computable leakage.

Effective Derandomization. Goldreich [9] (see also [10, 16]) considers a notion of “effective”
derandomization of prBPP where the derandomizer does not need to work on all inputs –
rather, it can fail sometimes, but only on inputs that are “hard to find” – in more detail,
no PPT finder/refuter can find instances on which the derandomization fails except with
negligible probability. In essence, effective derandomization is good enough for all efficient
applications of derandomization.

For technical reasons, however, Goldreich, is not able to characterize such effective deran-
domization, but rather only a notion of p(·)-effective derandomization where the finder/refuter
running time is bounded by p(n) for some fixed polynomial p and it success probability is
bounded by 1

p(n) . (In more details, for every a-priori fixed polynomial bound p(·) on the
running-time/success probability of a refuter, we require the existence of derandomization
that works for that particular bound. In contrast, effective derandomization (as we consider
it here) requires the existence of a single derandomization procedure that works for any
polynomial-time refuter, and with only negligible failure probability.)

Using our leakage-resilient framework, we can get a clean characterization also of effective
derandomization through average-case leakage-resilient hardness, where average-case leakage-
resilient hardness with respect to some distribution D is defined just like before except we
now consider instances x sampled from D and we allow the attacker A to succeed on at most
a negligible fraction of instances.

More precisely, we say that Π is effectively contained in Π′ (denoted Π ⊆poly Π′) if for
every PPT A there exists a negligible µ such that the probability that A(1n) is able to output
an n-bit element in the symmetric difference between Π and Π′ is bounded by µ(n); we may
extend this notion of classes of problems in the usual way: D ⊆poly D′ iff for every Π ∈ D,
there exists some Π′ ∈ D′ such that Π ⊆poly Π′.

1 There is a minor subtlety here. If we have an attacker A that locally computes f(x) on some input x in
sublinear time, then A can compute glog |x|(y) for every y ∈ {0, 1}log |x| in sublinear time given access to
x which can be of exponential length compared to |y|. But since A runs in sublinear time, it can access
at most a sublinear number of bits of x, and thus we can compute gm by a circuit of subexponential
size.

Y. Liu and R. Pass 32:7

▶ Theorem 1.5. There exists a constant c such that for every 0 < ϵ < 1, the following are
equivalent:

prBPP ⊆poly prP.
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
polynomial time such that f is average-case (nc, nϵ)-leakage-resilient hard for every
efficiently samplable distribution D.

The result also extends to the low-end regime but only if we consider a stronger form of
effective containment (which allows the refuter to have super polynomial running time).

Derandomizing prMA. Finally, we consider the problem of derandomizing prMA (as opposed
to just prBPP). Here, we require considering the notion of a leakage-resilient hard relation [25],
which is identically defined to that of a leakage-resilient hard function, except that any input
x can be mapped to multiple values y ∈ R(x). We show:

▶ Theorem 1.6. There exists a constant c such that for every “nice” class of running-time
bounds C, and for every 0 < ϵ < 1, the following are equivalent:

prMA ⊆ ∪T ∈CprNTIME[T (n)].
The existence of a relation R ⊂ {0, 1}n × {0, 1}n computable in non-deterministic time
T ∈ C such that R is almost-all-input (nc, nϵ)-leakage-resilient hard.

In particular, prMA = prNP iff there exists a relation R ∈ NP that is almost-all-input
(nc,
√

n)-leakage-resilient hard.

Proof Overview. We focus our attention on the proof of Theorem 1.1 (and Theorem 1.4);
afterwards, we briefly discuss how to extend these techniques to prove the remaining results.
For simplicity, here focusing only on the high-end setting, but the key point is that the same
technique directly extends also to the low-end setting.

Leakage-resilient Hardness implies prBPP = prP: Following Goldreich [9], we
consider the notion of a targeted PRG – roughly speaking, this is a PRG g that gets
an additional target z as input, and indistinguishability holds with respect to uniform
algorithms that also get the target z as input. In other words, g is just like a normal
PRG, but with the exception that both the PRG and the distinguisher get access to the
auxiliary “target” string z, and we require security to hold for all strings z. (Since we
consider PRGs in the context of derandomization, we allow the running-time of the PRG
to be (polynomially) larger than the running-time of the distinguisher.) Using standard
techniques, it follows that the existence of such a targeted PRG, with sufficiently large
stretch, implies that prBPP = prP (simply let the instance to be decided be the target for
the PRG).
We next show how to use leakage-resilient hardness to construct a targeted PRG. Assume
the existence of a leakage-resilient hard multi-output function f : {0, 1}n → {0, 1}n.
Given a target z ∈ {0, 1}n, we compute gz = ECC(f(z)), where ECC is an appropriate
list-decodable error-correcting code with good parameters, and interpret gz as a hard
function to use in the Impaglizzo-Wigderson (IW)/Nisan-Wigderson (NW) pseudo-random
generator generator [14, 24]. That is, we are relying on the Sudan-Trevisan-Vadhan PRG
[27]. The IW-NW proof essentially shows that given a distinguisher D for the PRG,
and some (bounded-length) advice about the truthtable (and D), we efficiently compute
the evaluation of gz with probability 1/2 + 1

p(n) for some polynomial p over random
n-bit inputs. We observe that this advice in fact can be efficiently computed if we
have access to the truthtable of gz and the distinguisher D, and we can thus view it
as efficiently leakage on (z, f(z)). We can next list-decode (again efficiently) gz and

CCC 2023

32:8 Leakage-Resilient Hardness vs Randomness

recover a polynomial-length list of candidates for f(z); given f(z), we can efficiently
determine which of these candidates is the correct one, and also include the index of this
candidate in the leakage (which again will be short). Given both these leakage, we can
now re-compute f(z) by simply again running the list-decoding algorithm and outputting
the string specified by the index. We note that we here rely on the fact that once this
leakage has been fixed, the rest of the NW reconstruction procedure is deterministic,
and furthermore, the list-decoding procedure is also deterministic, so the attacker A can
recompute the same list of candidates in the same order, and thus we are guaranteed that
it also recovers the exact same string.
In other words, if anyone can break the targeted PRG on infinitely many targets z, we
can compute f(z) on infinitely many inputs z given short and efficiently computable
leakage on (z, f(z)); we note that, somewhat curiously, the leakage function actually also
needs to access z and not just f(z) in order to simulate the distinguisher D (that gets z

as an input).
We finally observe that if the error-correcting code additionally satisfies a local list
decoding property – e.g., by using the error-correcting code of [27] – then we can actually
locally compute each bit of f(z) in sublinear time in the length of f(z) which we can use
to conclude also the implication in the proof of Theorem 1.4. There is just one small
catch; the local list decoding procedure will be randomized, so we may not necessarily
recover the same list of candidates, or the same ordering of them. But the list-decoding
procedure has a small running time and thus also uses a small amount of randomness, so
we can just include this additional randomness as part of the leakage.
In the actual proof, we show the above in a more modular way:

We first consider a notion of a strongly black-box PRG – roughly speaking a PRG
based on f for which there exists (a) an efficient algorithm that given black-box access
to f and some distinguisher for the PRG outputs some advice string, and (b) another
efficient algorithm that given this advice string and black-box access to the same
distinguisher, is able to efficiently compute f . This notion is a strengthening of the
notion of a black-box PRG from [29] where the advice string did not need to be
efficiently computable. Nevertheless, following [12], we note that the advice string
needed in the reduction to prove security of the [27] PRG construction actually can be
efficiently computed.
Next, we show that any such strongly black-box PRG construction can be used to get
a targeted PRG from leakage-resilient hardness.

prBPP = prP implies Leakage-resilient Hardness: Our proof, roughly speaking,
proceeds in two steps. First, we show using an information theoretic argument that a
random function f is almost-all-input leakage-resilient hard. Next, we show how this
function can be “derandomized” assuming prBPP = prP – the crucial aspect that makes
this derandomization possible is that it is possible to efficiently verify whether there
exists some attacker that efficiently computes the function on some input given efficient
leakage (by enumerating the log n first Turing machines and evaluating them).
For the first step, we use a simple compression argument to show that for every attacker,
leakage-function pair (A, leak), for any input x, with high probability over the choice of
y = F (x) ∈ {0, 1}n, it is the case that the attacker A can compute F (x) with probability
at most, say, 1/6. In fact, we will show a slightly stronger statement: for any A, x,
with high probability over y, there does not exists any leakage function, leak, such that
(A, leak) computes y with probability 1/6. The advantage of this stronger formulation
is that now it is without loss of generality to restrict attention to deterministic leakage
functions leak (since for any fixed A, x, y we can always consider the deterministic leakage
function that fixes the best randomness).

Y. Liu and R. Pass 32:9

To prove the (stronger) statement, let us first consider the case when also the attacker
A is deterministic. Since the length ℓ of the leakage is significantly shorter than |y|, it
follows that for any fixed x, most strings y are not in the range of what the attacker can
output given x and any leakage, and thus for every x, with high probability over the
choice of y, the attacker fails to output y no matter what the function leak is.
Next, note that even if A is randomized, there can be at most 6 strings that A outputs with
probability 1/6 given any fixed x and any fixed leakage output, so the above argument
actually also extends to randomized A (except that we increase the number of string y

that can be hit by a factor 6). This thus concludes a random choice of y will with high
probability not be computable by any (A, leak).
Next, we show that for any x, this random choice of y can actually be derandomized
assuming prBPP = prP, and relying on the fact that we only need y to be hard to compute
with respect to uniform (bounded) polynomial-time computable (A, leak). Towards this,
we follow the approach of Goldreich [9] and show that for any x, we can greedily compute
the bits of y = f(x) one at a time, relying on the fact that we know that a random
selection will work, and then use the fact that prBPP = prP to efficiently find a good
selection. In more details, we know that with high probability over the choice of y, the first
log n uniform (A, leak) machines with running time bounded nc will fail to compute y so
we can start by picking bit 1 y1 of y that leads to a high probability over the continuation
of y of all those log n machines failing to compute y. Estimating this probability requires
randomness, but if prBPP = prP then it can also be done deterministically. This second
step can be done in a modular way by appealing to the elegant BPP-decision-to-search
reduction of Goldreich [9] and by appropriately specifying the above problem of finding
a “good” y that fools the log n first uniform (A, leak) machine with running time nc (in
the sense that their estimated success probability is significantly smaller than 1/6) as a
BPP-search problem.

Effective Derandomization. To characterize “effective derandomization”, the proof follows
a very similar structure, except to perform the derandomization we instead pass through a
new notion of an “average-case targeted PRG”. The converse direction (showing necessity of
the assumption) becomes a bit more complicated than before as we no longer have access
to a perfect derandomization, but these additional subtleties can be dealt with. (Roughly
speaking, the issue is that since the derandomizer only succeeds on average, we may run into
trouble during the decision to search process. On a high-level, the way we get around these
issues is by relying on the fact that we only need to derandomize a single fixed problem, and
that effective derandomization yields a single derandomized algorithm for solving it, and we
can next show that if an error occurs during the decision to search process, the location of
the first mistake can be efficiently guessed.)

Characterizing Derandomization of prMA. To show how to derandomize prMA, we instead
pass through a new notion of a non-deterministic targeted PRG, which can be instantiated
from our assumption and which implies derandomization of prMA.

To prove the converse direction, we proceed a bit different from the proof of Theorem 1.1 –
we can no longer passing through the above-mentioned search-to-decision reduction, as no such
reduction is known for prMA. Instead, we show how to directly construct a leakage-resilient
hard relation from the assumption that prMA can be derandomized using a diagonalization
argument. Roughly speaking, we show that the above described BPP-search problem (of
given a string x, finding some y that is leakage-resilient hard to compute w.r.t. the first

CCC 2023

32:10 Leakage-Resilient Hardness vs Randomness

log n algorithms) actually is a leakage-resilient hard relation assuming that prMA can be
derandomized! First note that this problem trivially is in prMA and thus also in prNP under
the assumption that prMA = prNP. More interestingly, if there exists some attacker A that
given an input x and given some efficient leakage on x can compute a y in this relation, then
this y cannot be in the relation (since by definition, y cannot be computed by any efficient
algorithm with small description), which is a contradiction.

Paper Overview. In Section 3, we present an equivalence between derandomizing prBPP
and leakage-resilient hardness. In Section 4, we present a characterization of derandomizing
prMA via the notion of leakage-resilient relation. The results on average-case derandomization
are deferred to the full version [19].

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time al-
gorithms, and probabilistic algorithms and computational classes such as prBPP and prP.
We say that a function f is time-constructible if f is increasing and for all n ∈ N, f(n) can
be computed by a Turing machine in time poly(f(n)). We say that a class of functions C is
nice if for all T ∈ C, t(p(n))q(n) ∈ C for all polynomials p, q.

We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a probability distribution
over {0, 1}n. We say that an ensemble D = {Dn}n∈N is samplable if there exists a probabilistic
polynomial time Turing machine S such that S(1n) samples Dn.

2.1 Leakage Resilient Hardness of (Multi-output) Functions
We consider multi-output functions f : {0, 1}n → {0, 1}n (as opposed to binary functions,
traditionally considered in the derandomization literature). We will focus on a leakage-
resilient notion of hardness. Roughly speaking, we say that f is (T, ℓ)-leakage resilient hard
if no T -time attacker can compute f(x) given x and leak(x, f(x)), where leak is any T -time
computable leakage function such that leak(x, f(x)) ≤ ℓ(|x|). We will consider this notion
of in the context of almost-all-input hardness [6] which requires all potential attackers to
succeed only on finitely many inputs.

▶ Definition 2.1 (Almost-all-input leakage-resilient hardness). Let f : {0, 1}n → {0, 1}n be
a (multi-output) function. We say that f is almost-all-input (T, ℓ)-leakage resilient hard
if for all T -time2 probabilistic algorithms leak, A satisfying leak(x, f(x)) ≤ ℓ(|x|), for all
sufficiently long strings x, A(x, leak(x, f(x))) ̸= f(x) with probability ≥ 2/3 (over their
internal randomness).

The notion of leakage-resilient local hardness will be useful for us. In the local hardness
condition, we require no attacker A can produce each bit of f(x) given the input x together
with the coordinate. This allows us to consider attackers A that run in |x|ε time on input x.

▶ Definition 2.2 (Almost-all-input leakage-resilient local hardness). Let f : {0, 1}n → {0, 1}n be
a (multi-output) function. We say that f is almost-all-input (T, ℓ)-leakage resilient t-local hard
for all T -time probabilistic algorithms leak satisfying leak(x, f(x)) ≤ ℓ(|x|), for all t-time prob-
abilistic algorithms A, for all sufficiently long strings x, A(x, leak(x, f(x))) locally computes

2 To simplify notation, we say that an algorithm A(·, ·) runs in time T if A runs in T (n) time where n is
the size of the first input.

Y. Liu and R. Pass 32:11

f(x) with probability at most ≥ 1/3 (over their internal randomness), where we say that A(x,

leak(x, f(x))) locally computes f(x) if for all i ∈ {0, 1}log |x|, i ≤ |x|, A(x, leak(x, f(x)), i) =
f(x)i.

We simply say that f is almost-all-input (T, ℓ)-leakage resilient local hard if there exists
ε > 0 such that f is almost-all-input (T, ℓ)-leakage resilient nε-local hard.

We remark that we are decoupling the running time T of the leakage function and the
running time t of the computing machine A. In addition, we only require hardness with
respect to |x|ε-time attackers A which can only read the first |x|ε bits of the string x.3 As
mentioned in the introduction, the notion of leakage-resilient local hardness enables us to
capture the assumption that E ̸⊆ ioSIZE(2Ω(n)).

▶ Lemma 2.3. If there exists a constant ε > 0 such that E ̸⊆ ioSIZE(2εn), then there exists
a function f : {0, 1}n → {0, 1}n that is (nc, nε/2)-leakage resilient nε/2-locally hard for every
c ≥ 1.

Proof. Let gn : {0, 1}n → {0, 1} be a E-computable function that requires circuits of size
> 2εn to compute (which is guaranteed to exist by the assumption). Consider the following
multi-output function f such that for each x ∈ {0, 1}∗,

f(x) = gk(1)|| . . . ||gk(2k)||0|| . . . ||0

where k = ⌊log |x|⌋. Note that f(x) can be computed in time 2O(k) = 2O(log |x|) = |x|O(1) so
f is poly-time computable. Assume for contradiction that f is not (nc, nε/2)-leakage resilient
nε/2-locally hard. Then there exist attackers (A, leak) such that leak(x, f(x)) outputs at
most |x|ε/2 bits and A(x, leak(x, f(x))) computes f(x) locally in time |x|ε/2 for infinitely
many x. For each such x and input length k = ⌊log |x|⌋, we will construct a 2εk-size circuit
Ck to compute g on input length k, which is a contradiction. Since A(x, leak(x, f(x))) locally
computes f(x) in time |x|ε/2, there exists a leakage string w ∈ {0, 1}|x|ε/2 and a random tape
r ∈ {0, 1}|x|ε/2 such that for each i ∈ {0, 1}log |x|, A(x, w, i; r) will compute f(x)i within time
|x|ε/2, and it follows that A(x, w, i; r) will only read the first |x|ε/2 bits of the string x; let x′

denote the |x|ε/2-bit prefix of x. Consider a circuit Ck having the strings x′, w, r hardwired in
it, and on input i ∈ {0, 1}k, it will compute A(x, w, i; r). Ck is of size O(|x|ε/2 log |x|) ≤ 2εk

that computes g on input length k, which concludes the proof. ◀

In addition, we can also consider just “plain” (as opposed to leakage-resilient) hardness.
As above, we also require the hardness condition holds on almost all inputs.

▶ Definition 2.4 (Almost-all-input hardness). Let f : {0, 1}n → {0, 1}n be a (multi-output)
function. We say that f is almost-all-input T -hard if for all T -time probabilistic algorithms
A, for all sufficiently long strings x, A(x) ̸= f(x) with probability ≥ 2/3 (over their internal
randomness).

2.2 Targeted Pseudorandom Generator
We consider the notion of a targeted pseudorandom generator (targeted PRG) [9]. Roughly
speaking, a targeted pseudorandom generator G takes a seed along with a “target” string x as
input, and we require that its output is indistinguishable from uniform by (computationally-
bounded) distinguishers that additionally get the target x as input. In other words, G is just

3 We assume that A is a standard Turing machine with each input on a separate tape, and we do not
assume that A has oracle access to its inputs. This is a weaker hardness assumption than letting A
have oracle access to the inputs.

CCC 2023

32:12 Leakage-Resilient Hardness vs Randomness

like a normal PRG, but with the exception that both the PRG and the distinguisher get
access to the auxiliary “target” string x, and we require security to hold for all strings x.
Since we consider PRGs in the context of derandomization, we allow the running-time of the
PRG to be larger than the running-time of the distinguisher.

▶ Definition 2.5 (Targeted pseudorandom generator [9]). Let G : 1n×{0, 1}ℓ(n)×{0, 1}m(n) →
{0, 1}n be a computable function. We say that G is an T (n)-secure (ℓ(n), m(n))-targeted
pseudorandom generator (T -secure (ℓ(n), m(n))-targeted PRG) if for all deterministic at-
tackers D that run in T (n) time (where n is the length of its first input), for all sufficiently
large n ∈ N and all strings x ∈ {0, 1}ℓ(n), it holds that

|Pr[s← {0, 1}m(n) : D(1n, x, G(1n, x, s)) = 1]− Pr[y ← {0, 1}n : D(1n, x, y) = 1]| < 1
6 .

For any targeted PRG G, we say that G is O(T (n))-secure if for all constant c > 0, G is
(cT (n))-secure. Note that the length of the target string ℓ(n) can be potentially larger than
the running time bound of the distinguisher T (n). In such cases, we only require security
with respect to distinguishers D which can only read the first T (n) bits of the target string.
Note that this is a weaker security requirement than allowing D to have oracle access to the
target string.

It is well-known that a (non-uniformly) secure PRG can derandomize prBPP. When
considering a targeted uniformly-secure PRG, the same derandomization result still holds.
This in essence follows by the standard proof (that non-uniformly secure PRG derandomize
prBPP), but with an additional padding argument to deal with the “target”/auxiliary input.

▶ Lemma 2.6 ([9]). Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure
(nθ, σ log n)-targeted PRG G that runs in time t(n) ≥ n. Then, prBPP ⊆ ∪p,q∈polyprDTIME[
t(p(n))q(n)].

For the sake of completeness, we refer the reader to the full version for a detailed proof.

3 Derandomization and Leakage Resilient Hardness

In this section, we show a characterization between derandomizing prBPP and the existence
of almost-all-input leakage resilient hard functions. Our result can be adapted to both the
high-end and the low-end setting.

▶ Theorem 3.1. There exists a constant c ≥ 1 such that for all nice classes of functions C,
the following are equivalent.
1. prBPP ⊆ ∪T ∈CprDTIME[T].
2. The existence of a constant ε > 0, a function T ∈ C, and an almost-all-input (nc, nε)-

leakage resilient locally hard function f : {0, 1}n → {0, 1}n computable in deterministic
time T .

3. For all d ≥ 1, there exist T ∈ C and an almost-all-input (nd, n− 3 log n)-leakage resilient
hard function f : {0, 1}n → {0, 1}n computable in deterministic time T .

Proof. The implication (1)⇒ (3) follows from Theorem 3.8 (stated and proved in Section 3.1).
To show (2) ⇒ (1), we apply Lemma 3.9 (stated and proved in Section 3.2) to obtain a
targeted PRG and (1) follows from Lemma 2.6. (3) trivially implies (2). ◀

We then state corollaries of Theorem 3.1 in both the high-end regime and the low end
regime. To characterize derandomizing prBPP in polynomial time, we take the class C in
Theorem 3.1 to be the class of polynomials poly(·).

Y. Liu and R. Pass 32:13

▶ Corollary 3.2. There exists a constant c ≥ 1 such that the following holds. prBPP = prP
if and only if there exists an efficiently computable multi-output function f that is almost-all-
input (nc,

√
n)-leakage resilient hard.

To characterize derandomizing prBPP in subexponential time prSUBEXP = ∩ε>0prDTIME[
2nε], we consider the class C consisting of (all) time-constructible functions T such that
T (n) is smaller than 2nε for all ε > 04, and we refer to a function f as being computable in
subexponential time if f runs in time 2nε for all ε > 0.

▶ Corollary 3.3. There exists a constant c ≥ 1 such that the following holds. prBPP ⊆
prSUBEXP if and only if there exists an subexponential time computable multi-output function
f that is almost-all-input (nc,

√
n)-leakage resilient hard.

In addition, we note that the proof of Theorem 3.1 also yields the following amplification
result for leakage resilient hardness.

▶ Theorem 3.4. There exists a constant c such that if there exist a constant ε > 0 and an
almost-all-input (nc, nε)-leakage-resilient hard function computable in time t(n), then for all
d ≥ 1, there exist polynomials p, q and an almost-all-input (nd, n− 3 log n)-leakage-resilient
hard function computable in time t(p(n))q(n).

Proof. The theorem follows from Lemma 3.9, Lemma 2.6, and Theorem 3.8. ◀

Besides amplifying leakage resilience, we observe that by combining the result of Chen
and Tell with Theorem 3.1, we obtain a leakage-resilient hard function from a low-depth
function with just plain hardness.

▶ Theorem 3.5. There exists some c such that the following holds. If there exists a function
f computable by polynomial-size logspace-uniform circuits with depth bounded by n2 that
is almost-all-input nc-hard, then for any constant d ≥ 1, there exists a polynomial-time
computable almost-all-input (nd, n− 3 log n)-leakage-resilient hard function.

Proof. Chen and Tell [6] showed that the existence of such f implies prBPP = prP. The
existence of a leakage-resilient hard function then follows from Theorem 3.1. ◀

3.1 Leakage Resilient Hardness from Derandomization
We proceed to constructing a multi-output function that is almost-all-input leakage resilient
hard. Towards this, it is instructive to recall some ingredients from [9]. We first recall the
definition of a prBPP search problem.

▶ Definition 3.6 (prBPP search problem). Let RYES and RNO be two disjoint binary relations
⊆ {0, 1}∗ × {0, 1}∗. We say that (RYES, RNO) is a prBPP search problem if the following two
conditions hold.
1. The decisional problem (RYES, RNO) ∈ prBPP; that is, there exists a PPT algorithm V

such that for every (x, y) ∈ RYES it holds that Pr[V (x, y) = 1] ≥ 2/3, and for every
(x, y) ∈ RNO it holds that Pr[V (x, y) = 1] ≤ 1/3.

2. There exists a PPT algorithm A such that, for every x ∈ SRYES , it holds that Pr[A(x) ∈
RYES(x)] ≥ 2/3, where RYES(x) = {y : (x, y) ∈ RYES} and SRYES = {x : RYES ̸= ∅}

4 Note that this class is indeed nice since if T (n) < 2nε

for all ε > 0, it holds that T (p(n))q(n) < 2nε

for
all ε > 0 and all polynomials p, q.

CCC 2023

32:14 Leakage-Resilient Hardness vs Randomness

It has also been shown in [9] that there exists a deterministic search to decision reduction
for prBPP by using techniques resembling the Conditional Expectation Method.

▶ Theorem 3.7 (Search to decision reduction [9]). For every prBPP search problem
(RYES, RNO), there exists a binary relation R such that RYES ⊆ R ⊆ ({0, 1}∗ × {0, 1}∗)\RNO
and solving the search problem of R is polynomial-time deterministically reducible to some
decisional problem in prBPP.

Now we return to showing the existence of a multi-output function that is hard to compute
on almost all inputs with leakage assuming prBPP can be derandomized.

▶ Theorem 3.8. If prBPTIME[O(n)] ⊆ prDTIME[t(n)], then for any constant c ≥ 1, there
exists a function f : {0, 1}n → {0, 1}n running in time t(p(n))q(n) (for some polynomials
p, q) such that f is almost-all-input (nc, n− 3 log n)-leakage resilient hard.

Proof. We start by defining a prBPP-search problem which the task of constructing a
leakage-resilient hard function can be reduced to. Consider any constant c ≥ 1 and let
ℓ(n) = n− 3 log n. To construct an almost-all-input (nc, ℓ(n))-leakage resilient hard function,
for each input x ∈ {0, 1}n, we need to find (uniformly) a string f(x) = r such that r is hard
to compute (for any nc-time algorithms) given x and any (nc-time) “side information” leaked
from r. We observe that for any attacker/leakage functions g, leak – even non-computable
g, leak – with high probability over r, r will satisfy the hardness with leakage condition w.r.t.
g, leak.

▷ Claim 1. For any probabilistic algorithms leak, g, for all n ∈ N, ℓ ≤ n, x ∈ {0, 1}n, with
probability at most 6 · 2−n+ℓ+1 over random r ∈ {0, 1}n, it holds that

Pr [|leak(x, r)| ≤ ℓ ∧ g(x, leak(x, r)) = r] ≥ 1
6 (1)

Proof. Consider any n ∈ N, x ∈ {0, 1}n, and any probabilistic algorithm g. We will show
that with probability at most 6 · 2−n+ℓ+1 over random r ∈ {0, 1}n, for any deterministic
function leak′ that outputs ≤ ℓ bits, it holds that

Pr[g(x, leak′(x, r)) = r] ≥ 1
6 (2)

The proof of Claim 1 will directly follow from Equation 2 by noting that given any probabilistic
leak, g, any n ∈ N, ℓ ≤ n, x ∈ {0, 1}n, we can consider the deterministic leak′ obtained
by fixing the random tape of leak to be such that it maximize the number r’s that satisfy
Equation 1.

To show Equation 2, consider the set of “bad” r’s: B = {r : ∃w, |w| ≤ ℓ, Pr[g(x, w) =
r] ≥ 1/6}. For any r ∈ {0, 1}n, if there exists a function leak′ that outputs ≤ ℓ bits and
Pr[g(x, leak′(x, r)) = r] ≥ 1

6 , it follows that r ∈ B. We now bound |B|. Note that are at
most 2ℓ+1 strings w such that |w| ≤ ℓ, and for each such w, there can be at most 6 strings
ouput by g with probability ≥ 1/6; thus we have that |B| ≤ 6 · 2ℓ+1. It follows that the
probability that a random r falls into B is at most 6 · 2−n+ℓ+1. ◁

Next, we note that if we only consider efficiently (and uniformly) computable g, leak, it
suffices to consider attacker/leakage functions of description length no more than log n. We
can thus defined an prBPP-search problem that will enable us to find a “hard” r w.r.t. all
such efficient attacker/leakage functions.

Y. Liu and R. Pass 32:15

The BPP search problem. Let RYES be a binary relation such that (x, r) ∈ RYES if
1. |x| = |r|
2. For all probabilistic machines leak, g such that |leak| ≤ log n, |g| ≤ log n, it holds that

Pr
[
|leak′(x, r)| ≤ ℓ(n) ∧ g′(x, leak′(x, r)) = r

]
<

1
6 (3)

where n denotes |x|, and leak′ and g′ denote “time-truncated” versions of leak, g that are
only executed for nc steps, where c is the constant in the lemma statement.

Let RNO be a binary relation such that (x, r) ∈ RNO if for at least one pair of leak and g

with |leak|, |g| ≤ log n, the above equation with 1
6 replaced by 1

3 does not hold.
We turn to showing that (RYES, RNO) is a prBPP search problem by presenting a verifying

algorithm V and a solution finding algorithm A.

The search problem verifier. On input (x, r), the verifier V enumerates all probabilistic
machines leak, g such that |leak|, |g| ≤ log n. V estimates the value

pleak,g = Pr
[
|leak′(x, r)| ≤ ℓ(n) ∧ g′(x, leak(x, r)) = r

]
by running the following experiment for sufficiently many times and computing the average
acceptance probability. In each experiment, V emulates leak(x, r) for nc steps, and emulates
g(x, leak(x, r)) for nc steps. V accepts in this experiment if g(x, leak(x, r)) = r. After
estimating the average acceptance probability for each pair of leak and g, V outputs 1 if
the estimated values of pleak,g are < 3

12 for all pairs of leak, g. By the Chernoff bound and
the Union bound, V will accept if (x, r) ∈ RYES (and reject if (x, r) ∈ RNO) with very high
probability.

The solution finder. We next construct a solution finding algorithm A such that (x, A(x)) ∈
RYES with high probability for all x. On input x, A simply outputs a random string of the
same length. For any fixed x ∈ {0, 1}n, by Claim 1 and a Union bound over the choice
of leak and g, we conclude that A(x) outputs a valid witness with probability at least
1− 6n2 · 2−n+ℓ(n)+1 ≥ 2

3 .

Constructing the hard function f . Finally, we show how to construct a function f that is
hard to compute in the presence of any leakage, by making use of the prBPP search problem
(RYES, RNO). By Theorem 3.7, there exists a binary relation R such that RYES ⊆ R ⊆
({0, 1}∗×{0, 1}∗)\RNO and solving the search problem of R is polynomial-time deterministic
reducible to some decisional prBPP problem. This leads us to our construction of f . On
input x, f solves the search problem of R and outputs a R-witness of x. We first show that
f is almost-all-input (nc, ℓ(n))-leakage resilient hard. Consider any nc-time algorithms leak
and g satisfying |leak(x, f(x))| ≤ ℓ(|x|), all sufficiently large inputs x ∈ {0, 1}n such that
|g| ≤ log n and |leak| ≤ log n. Since R and RNO are disjoint and f solves the search problem
of R, (x, f(x)) ̸∈ RNO and this implies that

Pr [g(x, leak(x, f(x))) ̸= f(x)] ≥ 2
3

We turn to proving that f runs in deterministic time t(p(n))q(n) for some polynomials p, q,
which will conclude our proof. Recall that f can be polynomial-time deterministically reduced
to a decisional problem Π ∈ prBPP. Since prBPTIME[O(n)] ⊆ prDTIME[t(n)], by padding
instances in Π so that the probabilistic algorithm for Π now runs in linear time in the length

CCC 2023

32:16 Leakage-Resilient Hardness vs Randomness

of the padded instance, it follows that Π ∈ prDTIME[t(p′(n))] (for some polynomial p′). This,
combined with the fact that the reduction runs in deterministic polynomial time, shows that
f can be computed in deterministic time t(p′(a(n)))b(n) for some polynomials a, b and the
claim follows. ◀

3.2 Derandomization from Leakage Resilient Hardness
We turn our attention to the converse direction and we will show how to obtain a targeted PRG,
which is later used to derandomize prBPP, from an almost-all-input leakage resilient hard
function. Combining the result from the previous section, we will obtain a characterization
between derandomization and leakage resilient hardness.

▶ Lemma 3.9. There exists a constant c ≥ 1 such that the following holds. Assume that
there exist a constant ε > 0 and an almost-all-input (nc, nε)-leakage resilient nε-locally
hard function f : {0, 1}n → {0, 1}n computable in deterministic time t(n) ≥ n. Then there
exist constants σ, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-targeted PRG computable in time
t(nθ)poly(n).

The proof of Lemma 3.9 relies on the notion of black-box PRG construction from a
worst-case hard function f [27, 29]. Roughly speaking, this notion of black-box PRG from a
function f requires the existence of an efficient oracle algorithm that given (a) some fixed
advice string, and (b) black-box access to any distinguisher for the PRG, is able to compute
function f . Following, [12], we will here consider a strengthening of this notion of a black-box
construction, simply referred to as strongly black-box, where also the advice string can be
efficiently computed using black-box access to f .

▶ Definition 3.10. Let g : 1n× 1m×{0, 1}d → {0, 1}m be a (deterministic) oracle algorithm,
and let k(·) be functions. We say that g is a k-reconstructive PRG construction if there exist
PPT oracle algorithms R, M such that for every f : [n]→ {0, 1} and T : {0, 1}m → {0, 1}, if

|Pr[T (gf (1n, 1m,Ud)) = 1]− Pr[T (Um) = 1]| ≥ 1
6

then Mf,T (1n, 1m) will output at most k(n, m) bits such that for all i ∈ [n],

RT (Mf,T (1n, 1m), i) = f(i)

with probability at least 2/3.

We next observe that the Sudan-Trevisan-Vadhan PRG [27] obtain by combining a locally
list-decodable error correcting code [27] and the Nisan-Wigderson PRG construction [24]
yields a strongly black-box construction of a PRG. We note that [29] previously argued that
this construction is black-box; we here simply observe that the advice string needed can be
efficiently computed.

▶ Theorem 3.11 (Extending [27]; see also [29, Theorem 7.67]). There exists a k-reconstructive
PRG construction g : 1n × 1m × {0, 1}d → {0, 1}m such that for every m ∈ N, n ≥ m,
f : [n]→ {0, 1} the following conditions are satisfied:
1. Explicitness: gf is computable in uniform time poly(m, n).
2. Seed length: d(n, m) = O(log2 n/ log m).
3. Reduction advice length: k(n, m) = poly(m, log n).
Since the proof follows standard techniques, we have deferred it to the full version.

Y. Liu and R. Pass 32:17

Return to proving Lemma 3.9. We are now ready to prove Lemma 3.9 by relying on the
above result.

Proof of Lemma 3.9. Consider any constant ε > 0.

A padding trick. In this proof, we will use a padding argument to make the leakage we
need as small as it is required. Let m denote the output length of the targeted PRG that
we hope to construct. Let n denote the input length of the multi-output function f . Let
θ = O(1/ε) ∈ N be a constant such that 1

θ is sufficiently smaller than ε. In this proof, we
usually assume that n = poly(m) and it holds that n = n(m) = mθ. In some cases depending
on the context, m is defined w.r.t. n and it holds that m(n) = ⌊n1/θ⌋ (and we can think of
m as being sublinear in n).

Constructing the PRG. Let g be the k-reconstructive PRG obtained from Theorem 3.11,
and let R, M be the algorithms associated with g (as in Definition 3.10). We will consider a
function G : 1m × {0, 1}mθ × {0, 1}d → {0, 1}m. On input (1m, x, y) where x ∈ {0, 1}mθ

, y ∈
{0, 1}d, the algorithm G proceeds in the following steps.

G first computes z = f(x). Let n = mθ = |z|.
G outputs

G(1m, x, y) = gz(1n, 1m, y)

Note that the seed length of the PRG d(n, m) = O(log2 n/ log m) so we can let σ be a constant
such that d = σ log m and G is now a function of the form 1m × {0, 1}mθ × {0, 1}σ log m →
{0, 1}m.

We claim that G is a O(m)-secure (mθ, σ log m)-targeted PRG. Suppose not; then there
exists a O(m)-time deterministic distinguisher D such that for infinitely many m ∈ N,
n = mθ, x ∈ {0, 1}n,∣∣Pr[v ← {0, 1}σ log m : D(1m, x, G(1m, x, v)) = 1]− Pr[w ← {0, 1}m : D(1m, x, w) = 1]

∣∣ ≥ 1
6 (4)

(Note that D runs in time O(m) so it is unable to read the whole string x.) We will prove that
f can be computed locally in nε time with nc-time computable leakage, for some constant c

which we will fix later.

Computing f with leakage. We will construct a nc-time algorithm leak, and a nε-time
(local) algorithm A, where leak(x, f(x)) will produce a |x|ε-bit leakage and A(x, leak(x, f(x))
will locally compute the function f(x) on input x for infinitely many x (i.e., those inputs
x on which Equation 4 holds). The algorithms A and leak will collaboratively proceed as
follows. On input x, z, leak computes n = |x| and m = ⌊n1/θ⌋, and leak simply outputs
Mz,D(1m,x,·)(1n, 1m). We turn to constructing the algorithm A. On input x, the output of
leak (denoted by a), and a bit index i ∈ [n], A simply outputs RD(1m,x,·)(a, i).

Analyzing the reduction. We turn to analyzing the reduction. We first show that
A(x, leak(x, f(x)), i) will indeed compute f(x)i for all i ∈ [|x|] on infinitely many inputs x.
This follows from the correctness of the distinguisher D, and the security of the reconstructive
PRG g. In more detail, let us fix a (sufficiently long) string x ∈ {0, 1}n w.r.t. which Equa-
tion 4 holds. Note that the distinguisher D(1m, x, ·) will also distinguish the reconstructive
PRG gz(1n, 1m, ·), and therefore A(x, leak(x, f(x)), i) will output

RD(1m,x,·)(Mz,D(1m,x,·)(1n, 1m), i)

CCC 2023

32:18 Leakage-Resilient Hardness vs Randomness

which equals zi = f(x)i with probability at least 2/3. In addition, leak(x, f(x)) is short and
of length at most nε (due to our choice of θ). Since leak(x, f(x)) contains the reduction advice
for the reconstructive PRG g, and by Theorem 3.11 it is at most of length poly(m, log n) =
poly(n1/θ, log n), which is at most nε (since θ is picked to be much larger than 1/ε).

We proceed to showing that leak runs in time nc (for some sufficiently large universal
constant c) and A runs in time nε. Note that leak simply invokes the algorithm M on input
1n, 1m (given z and D(1m, x, ·)), M runs in polynomial time, and D runs in time O(m). It
follows that leak runs in time poly(n) and we can pick c to be large enough such that leak
runs in time nc. A will call the algorithm R on input (a, i), which (as argued above) is of
length at most n2/θ. Since R runs in polynomial time, A runs in time poly(n2/θ) which will
be at most nε if we pick θ much larger than 1/ε.

It remains to show that G runs in time t(mθ)poly(m). Note that it takes t(mθ) time to
compute z = f(x), and the construction g runs in time polynomial in n = mθ. Thus, it
follows that G(1m, x, ·) runs in time t(mθ)poly(m). ◀

4 Characterizing Derandomization of prMA

In this section, we present a characterization between derandomization and leakage-resilient
hardness regarding prMA and prNP. In the non-deterministic setting, we need to consider a
notion of leakage-resilient hard relations (generalizing the notion of leakage-resilient hard
functions), which will be both sufficient and necessary to derandomize prMA. Due to space
limit, we will defer proofs in this section to the full version.

For any relation R ⊆ {0, 1}∗ × {0, 1}∗ and any class of languages C, we say that R is
computable in C if there exists a language L ∈ C such that (x, y) ∈ R iff (x, y) ∈ L.

▶ Definition 4.1 (Leakage Resilient Hard Relation). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation
such that for every (x, y) ∈ R, |x| = |y|. We say that R is almost-all-input (T (·), ℓ(·))-leakage
resilient hard if the following two conditions hold.

(Non-triviality.) For every x ∈ {0, 1}∗, R(x) = {y : (x, y) ∈ R} ≠ ∅.
(Leakage-resilient.) For all T -time probabilistic algorithms leak, A satisfying leak(x, y) ≤
ℓ(|x|), for all sufficiently long strings x, y satisfying (x, y) ∈ R, A(x, leak(x, y)) ̸= y with
probability ≥ 2/3 (over their internal randomness).

Now we are ready to state our characterization of derandomizing prMA.

▶ Theorem 4.2. There exists a constant c ≥ 1 such that for all nice classes of functions C,
all constants 0 < ε < 1, the following are equivalent.
1. prMA ⊆ ∪T ∈CprNTIME[T].
2. The existence of a function T ∈ C and an almost-all-input (nc, nε)-leakage resilient hard

relation R ⊆ {0, 1}∗ × {0, 1}∗ computable in NTIME[T].

Proof. The implication (1) ⇒ (2) follows from Theorem 4.3 (stated and proved below). To
show (2) ⇒ (1), we apply Lemma 4.6 (stated and proved in below) to obtain a targeted PRG
and (1) follows from Lemma 4.5. ◀

As demonstrated in the proof above, the proof Theorem 4.2 contains two parts. In the
first part, we show that we can directly obtain a leakage-resilient hard relation from the
assumption that prMA = prNP without relying on a search-to-decision reduction.

▶ Theorem 4.3. If prMATIME[O(n)] ⊆ prNTIME[t(n)], then for any constant c ≥ 1, there
exists a relation R computable in NTIME[t(p(n))] (for some polynomials p) that is almost-
all-input (nc, n− 3 log n)-leakage resilient hard.

Y. Liu and R. Pass 32:19

In the second part of the proof, we prove the converse implication of Theorem 4.3. We
rely on the following non-deterministic variant of a targeted PRG (where the PRG takes as
input an additional witness whose validity can be checked by an verifier).

▶ Definition 4.4 (Targeted non-deterministic pseudorandom generator). Let G : 1n×{0, 1}ℓ(n)×
{0, 1}ℓ(n) × {0, 1}m(n) → {0, 1}n be a computable function. We say that G is an T (n)-secure
(ℓ(n), m(n))-targeted non-deterministic pseudorandom generator (T -secure (ℓ(n), m(n))-
targeted NPRG) if there exists a non-deterministic verifier V such that the following two
conditions hold:

For all sufficiently large n ∈ N, for all x ∈ {0, 1}ℓ(n), there exists w ∈ {0, 1}ℓ(n), |w| = |x|,
and V (1n, x, w) = 1.
For all deterministic attackers D that run in T (n) time (where n is the length of its
first input), for all sufficiently large n ∈ N and all strings x, w ∈ {0, 1}ℓ(n) satisfying
V (1n, x, w) = 1, it holds that

|Pr[s← {0, 1}m(n) : D(1n, x, G(1n, x, w, s)) = 1]−Pr[y ← {0, 1}n : D(1n, x, y) = 1]| < 1
6 .

We say that a targeted NPRG G is computable in time T (for some function T) if G is
computable in time T (with respect to the length of its first input) and there exists a verifier
for G computable in non-deterministic time T (w.r.t. the length of its first input).

We then show that the notion of a targeted NPRG is indeed useful by proving that it
can be used to derandomize prMA.

▶ Lemma 4.5. Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure
(nθ, σ log n)-targeted NPRG G that is computable in time t(n) ≥ n. Then, prMA ⊆
∪p,q∈polyprNTIME[t(p(n))q(n)].

It remains to show that the existence of a leakage-resilient hard relation implies the
existence of a targeted NPRG, which can be proved by generalizing Lemma 3.9 to allow
non-deterministic computation.

▶ Lemma 4.6. There exists a constant c ≥ 1 such that the following holds. Assume that
there exist a constant ε > 0 and an almost-all-input (nc, nε)-leakage resilient hard relation R

computable in NTIME[t]. Then there exist constants σ, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-
targeted NPRG GN computable in time t(nθ)poly(n).

References
1 Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and

cryptography against memory attacks. In Theory of cryptography conference, pages 474–495.
Springer, 2009.

2 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

3 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

4 Zvika Brakerski and Yael Tauman Kalai. A parallel repetition theorem for leakage resilience.
In Theory of Cryptography Conference, pages 248–265. Springer, 2012.

5 Lijie Chen, Ron D Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypotheses,
derandomization, and circuit lower bounds. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 13–23. IEEE, 2020.

6 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. Electronic Colloquium on Computational Complexity, 2021. URL: https:
//eccc.weizmann.ac.il/report/2021/080/l.

CCC 2023

https://eccc.weizmann.ac.il/report/2021/080/l
https://eccc.weizmann.ac.il/report/2021/080/l

32:20 Leakage-Resilient Hardness vs Randomness

7 Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa vulnerabil-
ities. Journal of cryptology, 10(4):233–260, 1997.

8 Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302, 2008.

9 Oded Goldreich. In a world of P=BPP. In Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, pages 191–232. Springer, 2011.

10 Oded Goldreich. Two comments on targeted canonical derandomizers. In Electron. Colloquium
Comput. Complex., volume 18, page 47, 2011.

11 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In 35th Computational Complexity Conference (CCC 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

12 R Impagliazzo and A Wigderson. Randomness vs. time: de-randomization under a uniform
assumption. In Proceedings 39th Annual Symposium on Foundations of Computer Science
(Cat. No. 98CB36280), pages 734–743. IEEE, 1998.

13 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

14 Russell Impagliazzo and Avi Wigderson. P = BPP if e requires exponential circuits: Deran-
domizing the xor lemma. In STOC ’97, pages 220–229, 1997.

15 Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Annual International Cryptology Conference, pages 463–481. Springer,
2003.

16 Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63(2):236–252, 2001.

17 Oliver Korten. Derandomization from time-space tradeoffs. In 37th Computational Complexity
Conference (CCC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

18 Yanyi Liu and Rafael Pass. Characterizing derandomization through hardness of levin-
kolmogorov complexity. In CCC, 2022.

19 Yanyi Liu and Rafael Pass. Leakage-resilient hardness vs randomness. Electronic Colloquium on
Computational Complexity, 2022. URL: https://eccc.weizmann.ac.il/report/2022/113/.

20 Ueli M Maurer. Factoring with an oracle. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 429–436. Springer, 1992.

21 Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory of Cryptography
Conference, pages 278–296. Springer, 2004.

22 Cody Murray and Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for np and nqp. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 890–901, 2018.

23 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

24 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

25 Rafael Pass. Unprovability of leakage-resilient cryptography beyond the information-theoretic
limit. In SCN, 2020.

26 Ronald L Rivest and Adi Shamir. Efficient factoring based on partial information. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 31–34. Springer, 1985.

27 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the xor
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

28 Roei Tell. Proving that prBPP= prP is as hard as proving that “almost NP” is not contained
in P/poly. Information Processing Letters, 152:105841, 2019.

29 Salil P Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

30 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91, 1982.

https://eccc.weizmann.ac.il/report/2022/113/

	1 Introduction
	1.1 Leakage-resilient Hardness
	1.2 Characterizing Derandomization

	2 Preliminaries
	2.1 Leakage Resilient Hardness of (Multi-output) Functions
	2.2 Targeted Pseudorandom Generator

	3 Derandomization and Leakage Resilient Hardness
	3.1 Leakage Resilient Hardness from Derandomization
	3.2 Derandomization from Leakage Resilient Hardness

	4 Characterizing Derandomization of prMA

