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Abstract
We prove a higher codimensional radical Sylvester-Gallai type theorem for quadratic polynomials,
simultaneously generalizing [20, 36]. Hansen’s theorem is a high-dimensional version of the classical
Sylvester-Gallai theorem in which the incidence condition is given by high-dimensional flats instead
of lines. We generalize Hansen’s theorem to the setting of quadratic forms in a polynomial ring,
where the incidence condition is given by radical membership in a high-codimensional ideal. Our
main theorem is also a generalization of the quadratic Sylvester–Gallai Theorem of [36].

Our work is the first to prove a radical Sylvester–Gallai type theorem for arbitrary codimension
k ≥ 2, whereas previous works [36, 29, 30, 28] considered the case of codimension 2 ideals. Our
techniques combine algebraic geometric and combinatorial arguments. A key ingredient is a structural
result for ideals generated by a constant number of quadratics, showing that such ideals must be
radical whenever the quadratic forms are far apart. Using the wide algebras defined in [28], combined
with results about integral ring extensions and dimension theory, we develop new techniques for
studying such ideals generated by quadratic forms. One advantage of our approach is that it does
not need the finer classification theorems for codimension 2 complete intersection of quadratics
proved in [36, 16].
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1 Introduction

Let v1, . . . , vm be a set of points in Rn with the property that the line joining any two points
passes through a third point. The Sylvester–Gallai theorem states that v1, . . . , vm must all
be collinear. This result was conjectured by Sylvester [39], and proved independently by
Melchior [27] and Gallai [15].
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20:2 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

The inflection points of a cubic curve are a set of nine points in C2 such that the line
joining any two of them passes through a third ([9]). However, these points are not collinear.
In fact, Kelly [24] suggested that this was the motivation behind Sylvester’s conjecture, to
check if all inflection points can have real coordinates. In the same paper, Kelly observed
that Hirzebruch’s work on line arrangements [21] directly implies that every configuration
of points in Cn satisfying the Sylvester–Gallai condition must be coplanar, and thereby
answered a question of Serre [35]. This shows that the Sylvester–Gallai theorem crucially
depends on the underlying field. If the underlying field is finite, then such configurations no
longer have finite dimension. In light of these results, we fix our underlying field to C in this
work, though our results hold for algebraically closed fields of characteristic zero.

A number of variations and generalisations of the Sylvester–Gallai theorem have been
studied in combinatorial geometry such as a robust version [5], colored version [13], higher
dimensional flats [20, 5] and many more. The main underlying theme in all such results is
that the local linear relations between the points in a Sylvester–Gallai configuration must
imply that such configurations can only happen in low dimension, which is a global condition
on the configuration. Once one translates such geometric relations into algebraic terms,
one sees that the study of Sylvester-Gallai configurations is a study about cancellations in
algebraic geometry. In summary, Sylvester-Gallai type questions ask the following: given a
set of algebraic geometric objects (e.g. vectors, linear forms or polynomials), whether “many”
local cancellations or syzygies (such as the SG incidence conditions) imply global constraints
on the configuration (such as being low-dimensional or dependence on a low number of
variables).

Many results in algebraic and boolean complexity, as well as in cryptography, show that
cancellations are very powerful in computation [32, 33, 41, 17, 42, 22, 26, 6]. Therefore, it
is no surprise that proofs of Sylvester-Gallai theorems, which deal with limitations on the
power of cancellations, have required sophisticated tools.

The variations alluded to above have applications in several areas of theoretical computer
science, such as algebraic complexity (Polynomial Identity Testing and Reconstruction) and
coding theory (Locally Correctable Codes). We now discuss some of these variations and
their connections to TCS, and direct readers to [7] for more on classical Sylvester–Gallai
problems.

Robust Sylvester-Gallai theorems. In this variation, one is given a constant 0 < δ < 1, and
one requires the points v1, . . . , vm ∈ Cn to satisfy the following condition: for every vi, there
are δm many points vj such that the line joining vi, vj contains a third point in the set. The
robust Sylvester-Gallai theorem states that such configurations lie on a constant dimensional
subspace.

These configurations were first studied in [40], where the above theorem was proved for
all values of δ that are close to 1. Subsequently, in [5], the authors proved the theorem for
all values of δ, and showed that such configurations have dimension O(1/δ2). In [12], this
result was further improved, and the authors showed that such configurations have dimension
O (1/δ).

These configurations are useful in the study of locally correctable codes [5] and circuit
reconstruction [37].

High dimensional Sylvester-Gallai theorems. Another variation of the Sylvester-Gallai
theorem involves considering higher dimensional linear spaces instead of lines. For example,
suppose now that for any vi, vj , vk that are not collinear, we require the 2-dimensional
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affine space spanned by vi, vj , vk to contain a fourth point in the configuration. The higher
dimensional Sylvester-Gallai theorem states that such configurations also lie in a constant
dimensional affine subspace.

These configurations were first studied in [20], who proved the above theorem for affine
spaces of all dimensions (the above is the case of dimension two). Further, in [4] the authors
proved a robust version of the high dimensional Sylvester–Gallai theorem of [20].

These configurations have application in polynomial identity testing of depth three circuits
([23, 34]). The authors show that the linear forms in any depth three circuit computing the
zero polynomial satisfy a version of this Sylvester-Gallai theorem, and therefore have low
rank.

Higher degree generalisations and PIT. Motivated by the application of Syvester-Gallai
theorems for depth three PIT, Gupta [19] introduced non-linear Sylvester-Gallai configurations
and proposed Conjecture 1 below, generalizing the classical SG theorems to polynomials of
higher degree, where the incidence condition is given by radical membership. [19] shows that
a positive solution to Conjecture 1 yields deterministic poly-time PIT algorithms for depth
four circuits with bounded top and bottom fan-in (circuits of the form ΣkΠΣΠd).

Gupta divides nonzero ΣkΠΣΠd circuits into two classes, namely non-SG circuits and SG
circuits. Informally, non-SG circuits are those where there is not much cancellation among
the low degree polynomials computed at the bottom addition gate. These circuits form the
easy case for their PIT algorithm, and the author gives an unconditional polynomial time
algorithm to test if such circuits are nonzero. The analysis for non-SG circuits was recently
simplified in [18].

The hard case for PIT is when there are non-trivial cancellations among the low-degree
polynomials computed at the bottom addition gate. The author conjectures that such
cancellations can only occur if this set of polynomials have constant transcendence degree. If
this conjecture is true, then the Jacobian based method of [1] gives a poly-time deterministic
PIT algorithm.

We now state the main conjecture of [19]:

▶ Conjecture 1 (Conjecture 1, [19]). Let k, d, c ∈ N∗ be parameters, and let F1, . . . ,Fk be
finite sets of irreducible polynomials of degree at most d satisfying

∩iFi = ∅,
for every Q1, . . . , Qk−1, where each Qj is from a distinct set Fij

, there are polynomials
P1, . . . , Pc in the remaining set such that

∏
Pi ∈ rad (Q1, . . . , Qk−1).

Then the transcendence degree of ∪iFi is a function of k, d, c, independent of the number of
variables or the size of the sets Fi.

In Conjecture 1, the division into k sets and the fact that the product of the forms in the
remaining set are in the radical are both artefacts of the fact that the goal of the work was
to solve ΣkΠΣΠd PIT. Since the conjecture above is a far-reaching non-linear generalization
of Sylvester’s conjecture, it is important to study simpler versions of this conjecture which
are still wide open, just as was done in the linear case. With this in mind, towards the above
conjecture, Gupta lists a series of conjectures regarding configurations that more closely
resemble linear Sylvester-Gallai configurations, the first of which is the following.

▶ Conjecture 2 (Conjecture 2, [19]). Let Q1, . . . , Qm ∈ C [x1, . . . , xn] be irreducible, ho-
mogeneous, and of degree at most d such that for every pair Qi, Qj there is k ≠ i, j such
that Qk ∈ rad (Qi, Qj). Then the transcendence degree of Q1, . . . , Qm is Od(1) (where the
constant depends on the degree d).

CCC 2023
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Conjecture 2 is a beautiful mathematical generalization of the classical SG theorem as
well as a stepping stone towards a full resolution of the PIT problem. So far Conjecture 2 is
known for degrees 2 and 3 [36, 28] and it is open in general.

Since Conjecture 1 deals with radical ideals generated by k − 1 polynomials (and hence
of potentially higher codimension), it is important to generalize Conjecture 2 to a conjecture
about radical ideals generated by k elements. Just as in the linear case (see [20]), some
care must be taken when defining higher-codimensional Sylvester-Gallai configurations,
and we address this formally in Section 3. Now, we present an informal version of the
higher-codimensional SG conjecture, which will be the main focus of this work.2

▶ Conjecture 3 (Higher-codimensional SG conjecture). Let F ⊂ C [x1, . . . , xn] be a finite set
of irreducible homogeneous forms of degree at most d. Suppose for every F1, . . . , Fk+1 ∈ F ,
either Fk+1 ∈ rad (F1, . . . , Fk) or there exists R ∈ F such that R ∈ rad (F1, . . . , Fk+1) \
(rad (F1, . . . , Fk) ∪ (Fk+1)). Then dim spanC {F} = Od,k(1) (where the constant depends on
the degree d and the codimension parameter k).

Note that the Sylvester-Gallai conditions in the above conjectures look different from the
previous ones: we talk about membership in radical ideals as opposed to containment in affine
spans. A discussion on why this is an appropriate generalisation of the linear Sylvester-Gallai
condition can be found in [19].

Our main result, a proof of Conjecture 3 in the case where d = 2, is a step towards
Conjecture 1 for the parameters (k, d, c) = (k, 2, c) for any choice of k, c ∈ N.

1.1 Main Result & Technical Contributions
In this subsection we informally state our main result, the higher codimensional analogue of
the radical Sylvester–Gallai theorem. As is the case with the higher codimensional linear
setting, the formal statement (Theorem 37) requires some additional definitions and is given
in Section 3.3

▶ Theorem 4 (Main theorem, informal). Let F ⊂ C[x1, · · · , xn] be a finite set of irreducible
forms of degree at most 2. Suppose for every F1, . . . , Fk+1 ∈ F , either Fk+1 ∈ rad (F1, . . . , Fk)
or there exists R ∈ F such that R ∈ rad (F1, . . . , Fk+1) \ (rad (F1, . . . , Fk) ∪ (Fk+1)). Then
dim spanC {F} = Ok(1).

▶ Remark 5. Note that our theorem, with k = 1, recovers the main theorem in [36].

Geometrically, the above statement says that the algebraic set defined by every set of
k + 1 forms in the configuration lies in the variety defined by another form. Since such
algebraic sets have codimension at most k + 1, we call our configurations higher codimension
Sylvester-Gallai configurations.

In previous works [36, 29, 30, 31, 16, 28], which deal with (variants of) the case where
k = 1, the approach used to prove a theorem of the above type required a structure theorem
that would categorize ideals of the form (F1, F2) where each Fi is either a quadratic or a
cubic form. These structure theorems used two main facts about ideals of the form (F1, F2):
1. they are complete intersections, and therefore Cohen-Macaulay (which implies unmixed).
2. they have small degree (four in the quadratic case and nine in the cubic case).

2 The conjecture stated here is implied by our formal conjecture in Section 3.
3 Theorem 37 in fact implies the result that we are stating in this page.
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These two facts, along with properties of Hilbert-Samuel multiplicity, yield a list of special
minimal primes and multiplicities such ideals can have, whenever they are not radical.
Combined with existing literature and some new results on prime (and primary) ideals of
codimension 2, the structure theorems are derived, and then used in the proof of their main
theorem.

In our setting, neither of the above facts hold in general. The ideals we consider are
generated by k quadratics, and therefore can have degree up to 2k. Further, these ideals
may no longer be complete intersections, and therefore can have embedded primes and even
minimal primes of any codimension between 2 and k. This rules out the feasibility of using
very fine-grained structure theorems as was done in previous works.

In a recent breakthrough, [2] proved that if one has quadratics F1, . . . , Fk which are “far
enough apart,” then the ideal (F1, . . . , Fk) is a complete intersection and prime (and hence
radical). However, as discussed above, in our case this result alone is not enough for us to
prove all we need: in many cases of interest, the forms in our configuration will not be far
enough apart and the result from [2] will not apply.

To handle the remaining cases, we build on the techniques of [28] and prove a more
general structural result on ideals generated by k quadratic forms. Our structural result
(Lemma 64) states that given certain conditions on the quadratic forms F1, . . . , Fk, even
though they may not be far enough apart, one can still prove that the ideal (F1, . . . , Fk)
is radical and has well-behaved minimal primes. The precise conditions of Lemma 64 are
somewhat technical, and are developed in Section 6.1 with the definition of integral sequences
of forms. An easier version of our structural lemma can be stated as follows:

▶ Lemma 6 (Basic Lemma 64). Let F1, . . . , Fk ∈ C[x1, . . . , xn, y1, . . . , yk] be irreducible
quadratic forms such that Fi ∈ C[x1, . . . , xn, yi] is monic in yi. Then, the ideal I :=
(F1, . . . , Fk) is radical and for any minimal prime p ⊃ I, we have p ∩ C[x1, . . . , xn] = (0).

Lemma 64, and the more basic version above, can be seen as general structural results,
which say that either a given ideal is radical, or the generators are “related” (i.e. the “extra
variables” y1, . . . , yk must be related). This is a weaker structural result than the ones in
the previous works, but holds in a more general setting, and is likely to generalise to higher
degree configurations.

The proof of Lemma 64 involves tools from dimension theory, as well as the discriminant
lemma, and the transfer principles from [28]. All of these concepts can be found in Section 4.

1.2 High level proof ideas
Our high level strategy is the that in order to bound dim spanC {F}, it is enough to prove
that F is contained in a small graded algebra. To deal with the issues raised in the previous
subsection, our strategy will be to prove that any such SG configuration F must be contained
in a special ideal, which satisfies two properties:
1. the ideal is generated by a vector space V := V1 + V2 with dimV = Ok(1), where V1 is a

vector space of linear forms and V2 is a vector space of quadratics
2. Any nonzero quadratic in V2 is of very high rank (relative to dimV ).
With this result, we reduce the radical Sylvester-Gallai question to a linear, high-codimensional
Sylvester-Gallai question, and apply the theorems from [5, 12, 11] to obtain that F must be
contained in a small algebra. This is done in Section 7.3.

To prove that such special ideals exist, we proceed in two steps, each guided by a different
conceptual principle. In the first step, we construct a small graded vector space W such that
all forms in F are “close to” the algebra C[W ]. That is, there exists a constant B such that
for each form F ∈ F , there exist constantly many linear forms y1, . . . , yr, where r ≤ B, such

CCC 2023
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that F ∈ C[W, y1, . . . , yr]. Note that both the linear forms yi and the constant r depend on
the form F , and the point here is to obtain a global upper bound on the values that r can
take. We name such algebra C[W ] core algebra (see Section 7.1).

In the second step, given F and a core algebra, we want to construct the special ideal
V satisfying properties 1 and 2 above such that F ⊂ (V ). To do this, we use Lemma 64 to
show that for any sequence F1, . . . , Fk such that (F1, . . . , Fk) is not a radical ideal, it must
be the case that the “extra variables” of the forms F1, . . . , Fk must be (very) dependent.
Thus we get a win-win type of result here: either the ideal (F1, . . . , Fk) is radical (which
gives us some linear dependencies amongst the forms of F), or the linear forms coming from
the extra variables must have very strong linear dependencies (and hence we can control
their total dimension).

We now give an overview of each step.

Step 1 – constructing core algebras (Section 7.1). given a quadratic form Q and a vector
space W , we say that Q is B-close to C[W ] if there is a vector space Y of linear forms with
dimY ≤ B such that Q ∈ C[W,Y ].4 That is, Q is a polynomial in few (linear) variables
whenever we are allowed to have coefficients in C[W ]. We say that F is B-close to C[W ]
if every form in F is B-close to C[W ]. A core algebra is an algebra C[W ] such that F is
B-close to C[W ] for some constant B.

The key inspiration for constructing such core algebras comes from the work [2], where
the authors prove that if the quadratic forms F1, . . . , Fk+1 are “sufficiently far apart,” then
they form a prime sequence (which is a much stronger condition than complete intersection).
Thus, either a given set of quadratic forms is a prime sequence, or one of the quadratics is
“close” (that is, of low rank) to the vector space generated by the other quadratics.

One consequence of being a prime sequence is that the ideal (F1, . . . , Fk+1) will be a
prime ideal (hence radical) and a complete intersection. If we have too many quadratic forms
which are far apart, then the radical SG condition will imply that dependencies among the
quadratics are linear dependencies, and therefore we can apply [5, 12] and construct our core
algebra.

Here we get our first win-win: either many forms are far apart, in which case we will get
linear dependencies (and thereby a vector space of low dimension) or we can construct a
small vector space W such that F is close to C[W ].

Since we want to control the quadratic forms of high rank (which we call strong forms),
the proof of the construction of W requires an auxiliary SG configuration, dealing only
with dependencies of high rank quadratics. We term these strong SG configurations (see
Section 6.2 for details) and our proof is via a careful induction on the codimension of such
configurations. Due to the fact that we are now dealing with both linear and quadratic forms,
and our condition is a radical membership condition, the proof of this step is more involved
and more delicate than the inductive approach used in [5, Section 5].

The technical reason why this step is more delicate than the induction on codimension
done in [5, Section 5], is due to the fact that quotienting by a quadratic form will lead us to
working with rings which are not necessarily polynomial rings, as well as the fact that we
still have to handle non-linear radical dependencies and quadratic forms of low rank.

Step 2 – from core algebras to special ideals (Section 7.2). once we have constructed
our core algebra C[W ], we now have a global constant bound B such that all forms in F are
B-close to C[W ]. In this setting, our structural lemma (Lemma 64) applies and we are able

4 We extend this definition to linear forms by saying that any linear form is 1-close to any algebra.
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to prove that either the quadratic forms are a linear Sylvester-Gallai configuration (which
happens if many ideals (F1, . . . , Fk+1) are radical), or the extra variables of the quadratic
forms must be (very) dependent. The proof of the aforementioned fact (in Section 7.2) is
done by an iterative process to construct our special ideal. We couple Lemma 64 with two
potential functions to prove termination of the iterative process providing the special ideal,
in a similar way that [36, 16] use their potential functions.

Wide algebras
Both steps 1 and 2 use the notion of forms being close to an algebra. In Section 5, we make
this notion clear, and establish what properties are needed from such algebras to make sure
that we preserve the geometric properties of polynomial rings. Since we are dealing with
quadratic forms, we need a slightly simpler version of the wide algebras introduced in [28].

1.3 Related work
As stated above, the main motivation for studying higher degree versions of the Sylvester-
Gallai theorem comes from the relation established to depth four PIT in [19]. The d = 2 case
of Conjecture 2 was proved in [36], which also kick started this line of work. Subsequently,
in [29], the authors prove a product version of Conjecture 2 where the radical of the ideal
generated by every pair of quadratics contains the product of all other quadratics. In [30], the
authors strengthen this further, and prove Conjecture 1 in the case when k = 3, d = 2, c = 4.
This also implies polynomial time PIT for Σ3ΠΣΠ2 circuits. In [16] and [31] the authors
independently proved a robust version of Conjecture 2 in the case when d = 2.

In [28], the authors prove Conjecture 2 in the case when d = 3. Our current work develops
techniques building upon the intermediate results proved in [28]. In particular, the wide
vector spaces we use are special cases of the wide vector spaces used in [28]. Further, our
“structure theorems” are proved using the discriminant lemma from [28].

Progress on depth four PIT. There has been some recent progress on the PIT problem for
depth four circuits with bounded top and bottom fan-in, the same model that is the focus
on [19]. In [10], the authors give a quasipolynomial time PIT algorithm for such circuits.
The authors use the Jacobian method of [1] to find a variable reduction map that preserves
the algebraic independence of the inputs to the top addition gate. They are able to construct
this map explicitly by first massaging the input circuits to change them to easier models,
and then showing that the Jacobian can be computed by a read once oblivious arithmetic
branching program (ROABP), for which hitting sets are known. Their methods are analytic
in nature, and rely on the logarithmic derivative and its power series expansion.

In [25], the authors combine their lower bounds for bounded depth circuits with the
methods of [8] to obtain subexponential time PIT algorithms for the same circuit families.
Note that the methods of [8] cannot give a polynomial time PIT algorithm no matter how
strong the lower bound assumptions are. Even getting a quasipolyomial time PIT from these
methods for depth four circuits requires much stronger lower bounds than are currently
known. However, these methods are more general, and work for all constant depth circuits.

The Sylvester–Gallai approach to PIT is the only one so far that can yield a deterministic
poly–time algorithm. In both the works above, the methods used are quite distinct from
the methods based on the Sylvester-Gallai theorem. In particular, they avoid dealing with
cancellations, and therefore are unable to exploit the global structure that many local
cancellations give rise to.

CCC 2023
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2 Preliminaries

In this section we establish notation and preliminary facts we will need for the rest of the
paper. Let S = C [x1, . . . , xN ] denote the polynomial ring, graded by degree S =

⊕
i≥0 Si.

Given a vector space V ⊂ S, we use Vi to denote the degree i piece, that is, Vi = V ∩ Si. We
say that a vector space is graded if V = ⊕Vi.

We use form to refer to a homogeneous polynomial. Given two forms A,B we say that
A,B are non-associate if A ̸∈ (B) and B ̸∈ (A). If A,B are of the same degree, this is
equivalent to them being linearly independent.

2.1 Rank and linear spaces of quadratic forms
We now define a notion of the rank of quadratic forms, in accordance to [36].

▶ Definition 7 (Rank of a quadratic form). Let Q be a quadratic form. The rank of Q,
denoted rankQ, is the smallest s ∈ N such that we can write Q =

∑s
i=1 aibi with ai, bi ∈ S1.

If rankQ = s, then a decomposition Q =
∑s

i=1 aibi with ai, bi ∈ S1 is called a minimal
representation of Q.

▶ Proposition 8. If ϕ : S1 → S1 is an invertible linear map and ψ : S → S is the map
extending ϕ, then for any Q ∈ S2 we have rankQ = rankψ(Q). If U ⊆ S1 is a vector space
of dimension k, and Q is the image of Q in S/ (U), then rankQ ≥ rankQ− k.

Proof. Suppose rankQ = r and Q =
∑r

i=1 aibi. We have ψ(Q) =
∑r

i=1 ψ(ai)ψ(bi) therefore
rankψ(Q) ≤ r. If rankψ(Q) = r′ and ψ(Q) =

∑r′

i=1 cidi then Q =
∑r′

i=1 ψ
−1(ci)ψ−1(di),

which shows that rankQ = rankψ(Q).
Suppose u1, . . . , uk is a basis for U , and suppose Q =

∑r′

i=1 aibi. Then Q =
∑r

i=1 aibi +∑k
j=1 uivi for some vi ∈ S1. Therefore rankQ ≤ rankQ+ k. ◀

▶ Remark 9. Let Q =
∑

i aiix
2
i +

∑
i<j 2aijxixj be a quadratic form in S. Recall that there

is an one-to-one correspondence between quadratic forms Q ∈ S2 and symmetric bilinear
forms. Let M be the symmetric matrix corresponding to the symmetric bilinear form of Q.
Note that the (i, j)-the entry of M is given by aij . If M is of rank r, then after a suitable
linear change of variables, we can write Q = x2

1 + · · · + x2
r. Since the rank of a quadratic

form is invariant under a linear change of variables(Proposition 8), we have rank(Q) = ⌈r/2⌉,
if M is of rank r.

In the next sections, we will need to use the following notion of a vector space of a
quadratic form, which is a slight modification on the definition first given in [36]. The only
modification that we make is that we preserve the quadratic form if its rank is high enough.

▶ Definition 10 (Vector space of a quadratic form). Let Q be a quadratic form of rank s, so
that Q =

∑s
i=1 aibi. Define the vector space Lin (Q) := spanC {a1, . . . , as, b1, . . . , bs}. Define

L (Q) as:

L (Q) =
{

spanC {Q} , if s ≥ 5
Lin (Q) , otherwise.

We also extend the definition of Lin to linear forms in the natural way as follows.

▶ Definition 11. For a linear form ℓ ∈ S1 define L (ℓ) := spanC {ℓ}.
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Note that L (Q) is always a vector space of O (1) dimension (in fact, it is of dimension at
most 10), while Lin (Q) can have non constant dimension. While a minimal representation
Q =

∑s
i=1 aibi is not unique, the vector space Lin (Q) is unique and hence well-defined. The

following lemma, which appears in [29, Fact 2.15] characterizes Lin (Q) as the smallest vector
space of linear forms defining the algebras that contain Q.

▶ Lemma 12. If Q =
∑r

i=1 xiyi with xi, yi ∈ S1 then Lin (Q) ⊆ spanC {xi, yj |i, j ∈ [r]}.

▶ Remark 13. The space Lin (Q) can also be defined as the space of first order partial
derivatives of Q (see Lemma 16). However, we decided to not state this definition in this
manner as this definition does not generalize well to forms of higher degree, as it is done in
the works [2, 28].

We now state some useful results related to the rank and linear spaces of quadratics,
some of which appear in [29, 16].

▶ Lemma 14. Suppose Q ∈ S2 is such that rankQ = r. Then dim Lin (Q) = 2r or
dim Lin (Q) = 2r − 1. In the second case, we can write Q = a2

r +
∑r−1

i=1 aibi.

Proof. Suppose v1, . . . , vd is a basis for Lin (Q) for some d ≤ 2r. We then have Q ∈
C [v1, . . . , vd]. By Remark 9, we can write Q =

∑d′

i=1 u
2
i for some d′ ≤ d, where each

ui ∈ spanC {v1, . . . , vd}. By Lemma 12 we have Lin (Q) ⊆ spanC {u1, . . . , ud′} whence d′ = d.
If d is even then we get d/2 ≥ r. Since we also have d ≤ 2r we get d = 2r. If d is odd, we
must have (d − 1)/2 + 1 ≥ r. Since we also have d ≤ 2r we get d = 2r − 1. In this case,
u2

d +
∑d/2−1

j=1 (u2j−1 + u2j)(u2j−1 − u2j) is a minimal representation of Q, proving the last
statement. ◀

▶ Remark 15. By the above lemma, given any Q ∈ S2 such that rankQ = r we can write
Q =

∑r
i=1 aibi such that a1, . . . , ar, b1, . . . , br−1 are linearly independent, and either br = ar

or br is independent of a1, . . . , ar, b1, . . . , br−1.

▶ Lemma 16. Let Q ∈ S = C [x1, . . . , xN ] be a quadratic form. Then Lin (Q) =
spanC

{
∂Q
∂x1

, · · · , ∂Q
∂xN

}
is the space of all first order partial derivatives of Q.

Proof. Suppose rankQ = r and
∑r

i=1 aibi be a decomposition of Q as in Remark 15. Then
note that ∂Q

∂ai
= bi and ∂Q

∂bi
= ai for all i ≤ r − 1. If br = ar, then ∂Q

∂ar
= 2ar, and

otherwise we have ∂Q
∂ar

= br and ∂Q
∂br

= ar. Therefore Lin (Q) ⊂ spanC

{
∂Q
∂x1

, · · · , ∂Q
∂xN

}
.

Since Q =
∑r

i=1 aibi, we have ∂Q
∂xj

∈ Lin (Q) for all j ∈ [N ]. ◀

The following lemma from [29] shows that adding a product of new variables increases the
rank of a quadratic. In Lemma 18, we extend this to sums of quadratics in distinct variables.

▶ Lemma 17 ([29, Claim 2.7]). Suppose Q ∈ C [x1, . . . , xm] is a polynomial of rank r. If
y, z are new variables then rank(Q + yz) = r + 1. In particular, Lin (Q+ yz) = Lin (Q) +
spanC {y, z}.

▶ Lemma 18. Suppose P ∈ C [x1, . . . , xm] and Q ∈ C [y1, . . . , yn] are two quadratics in
distinct variables. Then Lin (P +Q) = Lin (P ) + Lin (Q).

Proof. Note that we have ∂(P +Q)
∂xi

= ∂P
∂xi

and ∂(P +Q)
∂yj

= ∂Q
∂yj

for all i ∈ [m] and j ∈ [n].
Therefore, by Lemma 16, we have that Lin (P +Q) = Lin (P ) + Lin (Q). ◀
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▶ Lemma 19. Let W ⊆ S1 be a vector space. Suppose Q ∈ S2 is such that rankQ = r in
S and rankQ = r′ < r where Q is the image of Q in S/ (W ). Then W ∩ Lin (Q) ≠ {0}. In
particular if Q ∈ (W ) then W ∩ Lin (Q) ̸= 0.

Proof. Suppose Q =
∑r

i=1 aibi is the minimal representation guaranteed by Remark 15.
Assume towards a contradiction that Lin (Q) ∩W = {0}. Since a1, . . . , ar, b1, . . . , br−1 are
independent in S, and either br = ar or br is independent of a1, . . . , ar, b1, . . . , br−1, by
assumption the same holds in S/ (W ). We can now repeatedly apply Lemma 17 to deduce
that rank(arbr +

∑r−1
i=1 aibi) = r, contradicting assumption. ◀

2.2 General Projections
We now recall the definition and properties of projection maps from [36, 29, 28].

▶ Definition 20 (Projection maps). Let S = C[x1, · · · , xn] be a polynomial ring. Let W ⊂ S1
be a subspace of linear forms and y1, · · · , yt be a basis of W . Let y1, · · · , yn be a basis of S1
that extends the basis y1, · · · , yt of W . Let z be a formal variable not in {y1, · · · , yn}. For
α = (α1, · · · , αt) ∈ Ct, we define the projection map φα,W as the C-algebra homomorphism
φα,W : S → C[z, yt+1, · · · , yn] = S[z]/(W ) defined by

yi 7→

{
αiz, if 0 ≤ i ≤ t

yi, otherwise

For simplicity we will often drop the subscripts W or α, and write φα or φ for a projection
map when there is no ambiguity about the vector space W or the vector α.

General projections. Fix a vector space W ⊂ S1 as in Definition 20. We will say that a
property holds for a general projection φα, if there exists a non-empty open subset U ⊂ Ct

such that the property holds for all φα with α ∈ U . Here U ⊂ Ct is open with respect to
the Zariski topology, hence U is the complement of the zero set of finitely many polynomial
functions on Ct. The general choice of the element α defining a general projection φα allows us
to say that such projection maps will avoid any finite set of polynomial constraints. As shown
in [36, 29], general projection maps preserve several important properties of polynomials.

▶ Proposition 21 ([28, Proposition 2.6]). Let F ∈ S be a polynomial and W ⊂ S1 be a vector
space of linear forms.
(a) If F ̸∈ C[W ], then φ(F ) ̸∈ C[z] for a general projection φ : S → S[z]/(W ).
(b) If F ̸= 0, then φ(F ) ̸= 0 for a general projection.
(c) Suppose F is a form which does not have any multiple factors and F ∈ (W ). If

φ(F ) = zkG where G ̸∈ (z), then G does not have any mulitple factors.

The next proposition is from [29, Claim 2.23].

▶ Proposition 22. Let F,G ∈ S be two polynomials which have no common factor and
W ⊂ S1 a subspace of linear forms. For a general projection φ : S → S[z]/(W ), we have
gcd(φ(F ), φ(G)) ∈ C[z]. In particular, if F,G are homogeneous then gcd(φ(F ), φ(G)) = zk

for some k ∈ N.

The following result shows that general projections preserve linear independence for
polynomials outside the algebra generated by W .

▶ Corollary 23 ([28, Corollary 2.8]). Let F,G ∈ S be linearly independent irreducible forms
and W ⊂ S1 be a vector space of linear forms. If F,G ̸∈ C[W ] then φ(F ), φ(G) are linearly
independent, for a general projection φ : S → S[z]/(W ) .
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The next proposition follows from [29, Claim 2.26].

▶ Proposition 24. Let W ⊂ S1 be a vector space of linear forms. Let F ⊂ S2 be a finite set of
quadratic forms. Suppose there is an integer D > 0 such that dim spanC

{⋃
F ∈F L (φ(F ))

}
≤

D for a general projection φ : S → S[z]/(W ). Then dim spanC
{⋃

F ∈F L (F )
}

≤ (D + 1) ·
dimW .

The proposition above can be sharpened if we have extra information about the linear
forms in F . We state this sharpening in the next proposition

▶ Proposition 25. Let W ⊂ S1 be a vector space of linear forms and F ⊂ S2 be a finite
set of quadratic forms such that F ∩ (W ) and s(F ) < s for each F ∈ F . Suppose there
is an integer D > 0 such that dim spanC

{⋃
F ∈F L (φ(F ))

}
≤ D for a general projection

φ : S → S[z]/(W ). Then we have dim spanC
{⋃

F ∈F L (F )
}

≤ (D + 1) · s.

3 Sylvester–Gallai configurations

We now formally define the Sylvester-Gallai configurations that we deal with in this work.
Before we do this, we state the current known bounds on dimensions of linear Sylvester–Gallai
configurations, these will be useful in our proofs.

3.1 Linear Sylvester–Gallai configurations
For this subsection, we let L be a finite set of pairwise non-associate linear forms and δ ∈ (0, 1]
be a constant. We begin by defining ordinary and elementary spaces, as was done in [20, 5].

▶ Definition 26 (Ordinary spaces). Let ℓ1, . . . , ℓk ∈ L, and let V = spanC {ℓ1, . . . , ℓk}. The
space V is called ordinary with respect to L if there are ℓ′

1, . . . , ℓ
′
k−1 ∈ S1, and ℓ ∈ L such

that V ∩ L ⊆ spanC {ℓ′
1, . . . , ℓ

′
k−1} ∪ {ℓ}.

▶ Definition 27 (Elementary spaces). Let ℓ1, . . . , ℓk ∈ L, and let V = spanC {ℓ1, . . . , ℓk}. The
space V is called elementary with respect to L if V ∩ L = {ℓ1, . . . , ℓk}.

▶ Definition 28. The set L is a δ − SG∗
k configuration if for every linearly independent

ℓ1, . . . , ℓk ∈ L, there are δ · |L| forms ℓ in L such that either
1. ℓ ∈ spanC {ℓ1, . . . , ℓk},
2. or the linear space spanC {ℓ1, . . . , ℓk, ℓ} contains a form in L \ (spanC {ℓ1, . . . , ℓk} ∪ {ℓ}).

▶ Definition 29. The set L is a δ − SGk configuration if for every linearly independent
ℓ1, . . . , ℓk ∈ L there are δ · |L| forms ℓ ∈ L such that either
1. ℓ ∈ spanC {ℓ1, . . . , ℓk},
2. or the linear space spanC {ℓ1, . . . , ℓk, ℓ} is not elementary.

Given the above definitions, the following theorem was proved in [12, Theorem 1.14],
improving on [5].

▶ Theorem 30. If L is a δ − SG∗
k configuration then dim spanC {L} = O (k/δ). If L is

a δ − SGk configuration then dim spanC {L} = O
(
Ck/δ

)
where C is a universal constant

independent of k.

In the case when k = 1, Definition 28 and Definition 29 coincide, and match the usual
notion of robust linear Sylvester–Gallai configurations. In this case, the constant C is explicit.

▶ Theorem 31 ([11, Theorem 1.6]). If L is a δ−SG1 configuration then dim spanC {L} ≤ 4/δ.
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▶ Remark 32. Note that in [5, 12], the SG configurations are described in terms of points in
Cn, instead of linear forms in S. Both settings are equivalent via duality between points in
Cn and linear forms in S1.

3.2 Radical Sylvester-Gallai configurations
We now define the higher dimension analogues of the above configurations. Let F be a finite
set of irreducible forms of degree at most d that are pairwise non-associate.

▶ Definition 33 (Relevant sets). Let P = {P1, . . . , Pt} be a set of forms in S≤d. We say that
P is relevant if for every 1 ≤ i ≤ t, Pi ̸∈ rad (P \ Pi).

A relevant set of forms of size k is called a k-relevant set.

Geometrically, a set P is relevant if no subset of P define the same variety as P . We can
now extend Definition 28 and Definition 29 to configurations with forms of higher degree.

▶ Definition 34 (k-ordinary set). Let P ⊂ F be a k-relevant set. We say that P is k-ordinary
with respect to F if there are forms F1, . . . , Fk ∈ F such that

rad (P) ∩ F ⊂ rad (F1, . . . , Fk−1) ∪ {Fk} .

▶ Definition 35 (k-elementary set). Let P ⊂ F be a k-relevant set. We say that P is
k-elementary with respect to F if rad (P) ∩ F = P.

▶ Definition 36 (Radical Sylvester Gallai condition for tuples). Let F := {F1, . . . , Fm} ⊂ S≤d

be a finite set of irreducible forms and k ∈ N. We say that F is a δ− SG∗
k(d) configuration if

for every i ̸= j we have Fi ̸∈ (Fj) and for every k-relevant subset P ⊂ F , there are δ(m− k)
many forms F ∈ F \ P such that either

F ∈ rad (P) or
rad (F,P) ∩ F contains a form R not in rad (P) ∪ {F}.

Note that the robust SG problem from [31, 16] is the δ−SG∗
1(2). The higher codimensional

radical SG problem for quadratics that we address here can be stated as follows: what is
the maximum vector space dimension of any 1 − SG∗

k (2) configuration? Our main theorem,
which we now formally state, gives an answer to this question.

▶ Theorem 37 (Radical SG Theorem for tuples of quadratics). Let F be a 1 − SG∗
k(2)

configuration. There is a universal constant c > 0 such that dim(spanC {F}) ≤ 3c·4k .

4 Commutative algebraic preliminaries

4.1 Basic Definitions
In this section we recall the necessary definitions and results needed from commutative
algebra and algebraic geometry [3, 14].

▶ Definition 38 (Regular sequence). Let R be a commutative ring with unity. A sequence of
elements f1, f2, · · · fn ∈ R is called a regular sequence if
(1) (f1, f2, · · · , fn) ̸= R, and
(2) for all i ∈ [n], we have that fi is a non-zero divisor on R/(f1, · · · , fi−1)R.
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Ideals generated by regular sequences are well-behaved. For example, if f1, · · · , fm is a
regular sequence in S = C[x1, · · · , xn], we know that the ideal I = (f1, · · · , fm) is Cohen-
Macaulay [14, Proposition 18.13]. Cohen-Macaulayness imposes a simple and well-behaved
structure on the primary decomposition of I. In particular, every associated prime of I is
a minimal prime and the height/codimension of every minimal prime of I is the same, i.e.
Cohen-Macaulay ideals are unmixed and equidimensional [14, Corollaries 18.11, 18.14].

We note that if f1, · · · , fm is a regular sequence of forms in S, then f1, · · · , fm are
algebraically independent. Therefore the subalgebra generated by f1, · · · , fm is isomorphic
to a polynomial ring. In particular, the ring homomorphism C[y1, · · · , ym] → S defined by
yi 7→ fi is an isomorphism onto its image.

Even though the C-algebra C[f1, . . . , fm] ⊂ S is isomorphic to a polynomial ring, its
elements may not behave well when seen as elements of S. We next present a sufficient
condition which will ensure to us that the subalgebra is well behaved with respect to S, in a
way which we formalize later in Section 5.

▶ Definition 39 (Rη-property). Let η be a non-negative integer. We say that a Noetherian
ring R satisfies the Rη property if the local ring Rp is a regular local ring for all prime ideals
p ⊂ R such that height(p) ≤ η.

We recall the definition of an Rη-sequence below [2]. A subalgebra generated by an
Rη-sequence has several inetresting properties such as intersection flatness, which were
essential in [2, 28].

▶ Definition 40. Let η ∈ N and R a Noetherian ring. A sequence of elements f1, . . . , fn ∈ R

is called a prime sequence (respectively an Rη-sequence) if
1. f1, · · · , fn is a regular sequence, and
2. R/(f1, · · · , fi) is an integral domain (respectively, satisfies the Rη property) for all i ∈ [n].

▶ Remark 41. Note that a prime sequence in a ring R is also an R-regular sequence. Further,
if R is a polynomial ring and η ≥ 1, then any Rη-sequence is also a prime sequence.

4.2 Discriminant lemma

The following result provides an elimination theoretic criterion for a complete intersection
ideal to be radical. It is a direct application of [28, Lemma 3.22].

▶ Lemma 42. Let A = K[x1, . . . , xr, y1, . . . , ys], B := K[y1, . . . , ys]. Let F1, · · · , Fk, P be a
regular sequence of irreducible forms in A where F1, · · · , Fk ∈ B. Suppose P ∈ A\(y1, . . . , ys).
If I = (F1, · · · , Fk) ⊂ B is radical and discx1 (P ) ̸∈ q · S where q is any minimal prime of I
in B, then the ideal (F1, · · · , Fk, P ) is radical in A

Proof. Let p be a minimal prime of the ideal (F1, · · · , Fk, P ) in A. Since F1, · · · , Fk, P is a
regular sequence we have codim (p) = r + s− k − 1. Let q = p ∩ B. Note that q is a prime
ideal containing F1, · · · , Fk in B. Therefore codim (q) ≥ s − k. If codim (q) > s − k, then
codim (q · A) > r + s− k. Since q · A ⊂ p, we must have q · A = p, which is a contradiction
as P ∈ p, whereas P ̸∈ (y1, · · · , ys). Therefore we must have that codim (q) = s− k. Then q

is a minimal prime of (F1, · · · , Fk) in B and by [28, Lemma 3.22] we conclude that the ideal
(F1, · · · , Fk, P ) is radical in A. ◀
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5 Wide vector spaces and relative linear spaces

5.1 Wide vector spaces and algebras
We now define the main object that we will use in order to prove that Sylvester-Gallai
configurations are low dimensional: wide Ananyan-Hochster vector spaces. Such spaces
were used in [28] to give a positive solution to the radical SG problem for cubic forms. Our
definition is slightly simpler than the one from [28, Definition 4.8], as we don’t need the
multiplicative factor used there.

▶ Definition 43 (Wide vector spaces). A vector space V = V1 + V2 where Vi ⊂ Si is said to
be r-wide if, for any nonzero Q ∈ V2 we have rankQ ≥ dimV + r. In this case, we also say
that C[V ] is an r-wide algebra.

We note that an r-wide vector space is a special case of the (w, t)-wide AH vector spaces
from [28]. An r-wide vector space is precisely a (r, 1)-wide AH vector space according to [28].

▶ Proposition 44 ([28], Proposition 4.11). Suppose U = U1 + U2 is a vector space in S and
suppose r ∈ N. There exists an r-wide vector space V = V1 + V2 with C [U ] ⊆ C [V ] such that
dimV2 ≤ dimU2 and dimV1 ≤ 3dim U2+1 · (r + dimU).

We now list some basic properties regarding these spaces. The first three of these are
algebraic properties that show how these spaces are useful, and the next three show how we
can build and modify these spaces, and how they behave with respect to projection.

▶ Theorem 45 ([2], Theorem 1.10). Let V ⊂ S2 be a vector space of dimension d such that
rankQ ≥ d− 1 + ⌈η/2⌉. Then every sequence of linearly independent elements of V is an
Rη sequence.

▶ Corollary 46. Suppose V = V1 + V2 is a r-wide vector space with r ≥ 1. If ℓ1, . . . , ℓa is
a linearly independent sequence in V1 and Q1, . . . , Qb is a linearly independent subset of
V2, then the sequence ℓ1, . . . , ℓa, Q1, . . . , Qb is a prime sequence. In particular, the ideal
(Q1, . . . , Qb) is a prime ideal in the quotient ring S/ (ℓ1, . . . , ℓa).

Proof. That ℓ1, . . . , ℓa form a prime sequence follows from the fact that they are independent
linear forms. Let U := spanC

{
Q1, . . . , Qb

}
be the vector space spanned by Q1, . . . , Qb in

S/ (ℓ1, . . . , ℓa). Every nonzero form in U has rank at least dimV1 + dimV2 + r − a, which
is greater than dimU . Therefore, by Theorem 45, the forms ℓ1, . . . , ℓa, Q1, . . . , Qb form a
R1 sequence. By [2, Discussion 1.3], such a sequence is also a prime sequence. The last
statement follows by the definition of prime sequences (Definition 40). ◀

▷ Claim 47. Suppose V := V1 + V2 is r-wide with Vi ⊂ Si. If Q ∈ C [V ] is a quadratic form
of rank less than r, then Q ∈ C [V1]. If P ∈ (V ) is a quadratic form of rank less than r, then
P ∈ (V1).

Proof. Suppose Q = Q2 + Q1 with Qi ∈ C [Vi]. We have Q2 = Q − Q1 whence rankQ2 ≤
r + dimV1. Therefore Q2 = 0. Similarly, suppose P = P1 + P2 with P2 ∈ V2 and P1 ∈ (V1).
We have P2 = P − P1 whence rankP2 ≤ r + dimV1. Therefore P2 = 0. ◁

▶ Remark 48. Suppose V = V1 + V2 is a r-wide vector space, and suppose U ⊂ S1 is a vector
space of dimension k. We have dimV + U ≤ dimV + k. Further, we have (V + U)2 = V2.
For every Q ∈ (V +U)2 we therefore have rankQ ≥ (r− k) + dim(V +U). Therefore V +U

is a r − k-wide vector space.
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▶ Remark 49. Suppose V = V1 + V2 is a r-wide vector space and φ := φα,V1 is a projection
mapping as defined in Definition 20. If Q ∈ V2 is such that rankφ(Q) = a in S [z] / (V1) then
a − 1 ≤ rankQ ≤ a in S/ (V1). Since V is r-wide, this proves that a ≥ r + dimV2. Since
dimϕ(V1) = 1, and since dimϕ(V2) ≤ dimV2, we get a ≥ r − 1 + (dimϕ(V1) + dimϕ(V2).
This shows that ϕ(V ) is at least r − 1 wide.

The following lemmas show that radical membership among linear forms and certain
elements in the ideal (V ) imply relationships between the “low rank” and “high rank” parts
individually.

▶ Lemma 50. Let F1, . . . , Fk ∈ S≤2 be irreducible forms. Let V = V1 + V2 be r-wide with
r ≥ k + 2 and let z ∈ V1. Suppose each Fi is either of the form Fi = xi with xi ∈ S1 or of
the form Fi = Qi + zxi with Qi ∈ V2 and xi ∈ S1. If

Fk ∈ rad (F1, . . . , Fk−1)

then zxk ∈ (x1, . . . , xk−1) and Qk ∈ spanC {Q1, . . . , Qk−1} where Qi = 0 if Fi ∈ S1.

Proof. Let U := (x1, . . . , xk). In the ring S/U , the vector space V is (r − k)-wide by
Remark 48. By Corollary 46, (Q1, . . . , Qk−1) is a prime ideal in S/U . Therefore we have
Qk =

∑k−1
i=1 αiQ in S/ (U) for αi ∈ C. This implies Qk =

∑k−1
i=1 αiQi + E in S, where

E ∈ (U). Since rankE ≤ dimU ≤ k, and since V is r-wide, we must have E = 0, proving
the first required statement.

Let I := (Q1, . . . , Qk−1, x1, . . . , xk−1). Since (U) is prime, and (Q1, . . . , Qk−1) is prime in
S/ (U), the ideal I is prime. Since Qk ∈ spanC {Q1, . . . , Qk−1} and since Fi ∈ I for i ≤ k− 1,
we have zxk ∈ I. Since W is r-wide, this implies zxk ∈ (x1, . . . , xk−1), completing the
proof. ◀

▶ Lemma 51. Let F1, . . . , Fk ∈ S≤2 be irreducible forms. Let V = V1 + V2 be r-wide with
r ≥ k + 2 and let z ∈ V1. Suppose each Fi is either of the form Fi = xi with xi ∈ S1 or of
the form Fi = Qi + zxi with Qi ∈ V2 and xi ∈ S1. Suppose further that z, x1, . . . , xk−1 are
linearly independent. If

Fk ∈ rad (F1, . . . , Fk−1) ,

and if xk ∈ (x1) in S/ (z), then F1 = Fk.

Proof. First assume that Q1 ̸= 0. By relabelling F2, . . . , Fk we can assume that
spanC {Q1, . . . , Qk−1} = spanC {Q1, . . . , Qt} for some t ≤ k − 1. For each i ∈ [t+ 1, k − 1],
suppose Qi =

∑t
j=1 βijQj . For each such i, let yi := xi −

∑t
j=1 βijxj . Note that

x1, . . . , xt, yt+1, . . . , yk−1 are linearly independent in S/ (z). We have (F1, . . . , Fk−1) =
(F1, . . . , Ft, zyt+1, . . . , zyk−1). Let J = (yt+1, . . . , yk−1). By Remark 48 the vector space
V is r − k-wide in S/J , therefore rank(Q1, . . . , Qt) ≥ t + r − k, and consequently
rank(F1, . . . , Ft) ≥ t + r − k − 1. By Theorem 45, the ideal (F1, . . . , Ft) is prime in S/J ,
therefore (F1, . . . , Ft) + J is a prime ideal containing rad (F1, . . . , Fk−1).

Let xk = x1 +αz. Suppose Fk ∈ S2. By Lemma 50 we have Qk ∈ spanC {Q1, . . . , Qt}, say
Qk =

∑t
j=1 γiQi. We have Fk−

∑t
j=1 γiQi = z(αz+x1−

∑t
j=1 γjxj) ∈ (F1, . . . , Ft)+J . Since

the latter ideal is a graded prime ideal, we have either z ∈ J or (αz+x1 −
∑t

j=1 γjxj) ∈ J . By
the linear independence assumption on the xi, this is only possible if (αz+x1−

∑t
j=1 γjxj) = 0.

This implies α = 0 and γ1 = 1 and γj = 0 for j ≥ 2. This implies F1 = Fk as required.
Suppose now that Fk ∈ S1. We then have Fk ∈ (F1, . . . , Ft)+J , and therefore x1+αz ∈ J ,

which contradicts the linear independence assumption.
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We are left with the case when Q1 = 0. After rearranging the forms, let Q2, . . . , Qt

be such that spanC {Q1, . . . , Qk−1} = spanC {Q2, . . . , Qt}, and let yi be defined as in the
previous case. Note that y1 = x1. Let J := (y1, yt+1, . . . , yk+1). The ideal (F2, . . . , Ft) + J

is a prime ideal containing rad (F1, . . . , Fk−1). As before suppose xk = x1 + αz.
Suppose Fk ∈ S2 so Qk =

∑t
j=2 γiQi. We have Fk −

∑t
j=2 γiFi = z(x1+αz−

∑t
j=2 γixi ∈

(F2, . . . , Ft) + J . Therefore, either z ∈ J , or x1 + αz −
∑t

j=2 γixi ∈ J . By the linear
independence assumption, this implies αi = 0 for i = 2, . . . , t contradicting the fact that
Fk ∈ S2.

Suppose Fk ∈ S1. In this case we have F1 − Fk = αz ∈ (F2, . . . , Ft) + J , which
implies αz ∈ J . By the independence assuption, we must have α = 0, whence F1 = Fk as
required. ◀

5.2 Relative linear spaces
Now that we have proved some properties of wide vector spaces, we introduce the notion of
relative linear spaces and establish some properties which will be useful to us in the next
section. This notion of relative linear spaces was used in [16] in their proof of the robust SG
theorem for quadratics.

▶ Definition 52 (Forms close to a vector space). Given a vector space V = V1 + V2 where
Vi ⊆ Si, we say that a quadratic form P is s-close to V if there is a form Q ∈ C[V ] such
that rank(P −Q) ≤ s. If a form P is not r-close to V , for any r ≤ s, we say that P is s-far
from V .

Given a linear form ℓ, we say ℓ is 1-close to V if ℓ ̸∈ V1.

▶ Remark 53. Given a set of forms F , we will say that F is s-close to V if all forms in F are
at most s-close to V .

▶ Proposition 54 (Quadratics close to wide vector spaces). Let V = V1 + V2 be an r-wide
vector space and s < r/2. If P is s-close to V , then for any Q,Q′ ∈ C[V ] such that
rank(P −Q) = rank(P −Q′) = s, we have that

Lin (P −Q) + V1 = Lin (P −Q′) + V1.

In other words, (Lin (P −Q) + V1)/V1 = (Lin (P −Q′) + V1)/V1 for any two decompositions.

Proof. Let R = P −Q and R′ = P −Q′. Thus, we have that R−R′ = Q′ −Q ∈ C[V ] and
we have rank(Q′ −Q) = rank(R−R′) ≤ rank(R) + rank(R′) ≤ 2s < r. Hence, by Remark
47, we have that Q′ − Q ∈ C[V1]. Now, from R = R′ + (Q′ − Q) and Q′ − Q ∈ C[V1], we
have that Lin (R) ⊆ Lin (R′) + V1, and similarly, we have that Lin (R′) ⊆ Lin (R) + V1. ◀

▶ Definition 55 (Relative space of linear forms). Let r,B be integers such that r > 2B + 1. If
V is an r-wide vector space and P is s-close to V for s < r/2 we can define

LV (P ) :=


L (P ) + V1, if P ∈ S1

Lin (P −Q) + V1, if P ∈ S2, s ≤ B

spanC {P} , otherwise

where Q ∈ C[V ] is a form such that rank(P −Q) = s. We also define the quotient space

LV (P ) :=
{
LV (P ) /V1, if s ≤ B

0, otherwise



A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:17

Further, we define PH
V to be the unique polynomial in V2 such that P − PH

V is s-close to V1.
Finally we define PL

V = P −PH
V . Note that LV (P ) = LV

(
PL

V

)
. The superscript H indicates

that PH
V is the high-rank part of P with respect to V and the superscript L indicates that PL

V

is the low-rank part of P with respect to V .

Note that while the definition of LV (P ) depends on the parameter B, we suppress this
from the notation for brevity. It will be clear from context the value of the parameter B
whenever we use LV (P ).

Here are some useful results about relative linear spaces, and how they change when V is
modified. Lemma 58 characterises exactly when dimLV (F ) is unchanged when LV (G) is
added to V1. As the lemma shows, this happens when F and G do not share any common
variables other than those that occur in V .

▶ Proposition 56. Suppose V is a r-wide space and P is s-close to V for 2s < r. If P ∈ (V )
then PH

V ∈ V2 and PL
V ∈ (V1).

Proof. Since P is s-close to V we can write P = PH
V +PL

V . Since PH
V ∈ V2, we have PL

V ∈ (V )
by assumption. We can write PL

V = P2 +P1 with P1 ∈ (V1) and P2 ∈ V2. In S/ (V1) we have
P2 = 0. Since V is r-wide, this implies P2 = 0 in S. Therefore PL

V ∈ (V1). ◀

▶ Proposition 57. Suppose V = V1 + V2 is a r-wide vector space with r > 2B + 1, and
suppose P ∈ S2 is B-close to V . Then Y := LV (P ) + V2 is a r − 2B wide vector space.
If further r > 4B + 1 then for any other polynomial Q that is also B close to V we have
QH

V = QH
Y .

Proof. The first statement follows since Y is obtained by adding at most 2B linear forms to
a basis of V . We now have Q = QH

V +QL
V = QH

Y +QL
Y whence QH

V −QH
Y = QL

Y −QL
V . Here,

we use the fact that B < 4r + 1 to ensure that QH
Y , Q

L
Y are well defined. Since both QL

Y , Q
L
V

have rank at most B in S/ (Y ) we obtain that QH
V = QH

Y . ◀

▶ Lemma 58. Suppose V = V1 + V2 is a r-wide vector space with r > 4B + 1, and suppose
F,G ∈ S2 are both B close to V . Let Y := LV (G) + V2. Then the following hold.
1. LY (F ) = LV (G) + LV (F ).
2. dimLV (F ) = dimLY (F ) if and only if LV (F ) ∩ LV (G) = {0}.
3. If F ̸∈ (V ) and dimLV (F ) = dimLY (F ) then F ̸∈ (Y ).

Proof. By Proposition 57 we have H := FH
V = FH

Y . Let P,R be such that F −H − P = R

with P ∈ C [V1] and LV (F ) = Lin (R) + V1. Let P ′, R′ be such that F −H − P ′ = R′ with
P ′ ∈ C [Y1] and LY (F ) = Lin (R′) + Y1. We have the equation R′ + P ′ = R + P , which
implies that Lin (R′) + Y1 = Lin (R) + Y1. Since V1 ⊂ Y1, we have

Lin (R′) + Y1 = Lin (R) + V1 + Y1. (1)

Substituting LV (F ) ,LY (F ) in Equation (1) and using the fact that Y1 = LV (G) we get
LY (F ) = LV (G) + LV (F ).

Equation (1) also implies

LY (F ) = Lin (R′) + Y1

Y1
= LV (F ) + Y1

Y1
= LV (F )

LV (F ) ∩ Y1

therefore

dimLV (F ) = dimLY (F ) ⇐⇒ dimV1 = dim (LV (F ) ∩ Y1)
⇐⇒ V1 = LV (F ) ∩ Y1 (since V1 ⊆ LV (F ) ∩ Y1)
⇐⇒ {0} = LV (F ) ∩ LV (G) ,

proving the second item.
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Assume now that F ∈ (Y ). By Proposition 56 we have F − H ∈ (Y1). Further,
by assumption we have F − H ̸∈ (V1). In S/ (V1) we have 0 ̸= F −H = R ∈ (Y1)
which in turn implies that Lin

(
R

)
∩ Y1 ̸= {0} by Lemma 19. We have R =

∑
aibi for

linear forms a1, . . . , at, b1, . . . , bt where ai, bj span LV (F ). Therefore Lin
(
R

)
=

∑
aibi,

whence Lin
(
R

)
⊆ LV (F ). This shows that LV (F ) ∩ LV (G) ≠ 0, which by item 2 implies

dimLV (F ) ̸= dimLY (F ), contradicting the assumption. ◀

Note that the condition LV (F ) ∩ LV (G) = {0} is symmetric in F and G. Therefore, we
have that dimLV (F ) = dimLLV (G)+V2 (F ) if and only if dimLV (G) = dimLLV (F )+V2 (G).
Further, in this case we have F ̸∈ (LV (G) , V2) and also G ̸∈ (LV (F ) , V2) if F,G ̸∈ (V ).
In the next subsection, we introduces the notion of integral sequences that generalises the
above.

6 Integral sequences and strong sequences

In this section we define two special types of sequences of forms, namely integral sequences
and strong sequences. We will use the strong sequences to construct our core algebra, that
is, to prove that there is a small algebra such that all quadratics are close to it. We will then
use integral sequence to handle the case where all the quadratics are close to a core algebra.
We will prove that the ideals generated by integral and strong sequences are always radical
and prime, respectively.

6.1 Integral sequences
Item 2 of Lemma 58 gives us a condition for when the relative linear spaces of two linear
forms are disjointed. Intuitively, this is equivalent to the forms depending on disjoint sets of
variables, other than those occurring in V . This is made formal in Corollary 62. The notion
of integral sequences extends this to more that two forms. As in Lemma 58, we will require
the forms to be close to a wide vector space for the notion to be well defined.

▶ Definition 59 (Integral Sequences). Let r,B, t be integers with r > 4tB + 1. Suppose
V = V1 + V2 is a r-wide vector space. Let F1, . . . , Ft ∈ F be a sequence of forms that are
B-close to V . Let U0 := V and let Ui := LUi−1 (Fi) + V2. The sequence F1, . . . , Ft is called
an integral sequence over V if for each i we have

dimLV (Fi) = dimLUi−1 (Fi), and
Fi ̸∈ (V )

When V is clear from context we just call F1, . . . , Ft an integral sequence.

In the rest of this section, we will assume that r > 4tB + 1.

▶ Proposition 60. Suppose V is a r-wide vector space. Suppose F1, . . . , Ft are a sequence of
forms, and suppose Ui := LUi−1 (Fi) + V2 with U0 := V . Then
1. Ut =

∑t
j=1 LV (Fj) + V2.

2. dimLV (Fi) = dimLUi−1 (Fi) for every 2 ≤ i ≤ t if and only if for every 2 ≤ i ≤ t we
have

LV (Fi) ∩

i−1∑
j=1

LV (Fj)

 = {0} .

3. If additionally Fi ̸∈ (V ) for every 1 ≤ i ≤ t, then Fi ̸∈ (Ui−1) for 2 ≤ i ≤ t.
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Proof. We prove the statements by induction on t. We will prove the additional statement
that LUt−1 (Ft) =

∑t
i=1 LV (Ft). Each of the three items are true by definition when t = 1.

Suppose the statements are true for t− 1.
Now the space Ut−2 is 4B + 1 wide by Remark 48. Applying Lemma 58 to Ut−2, Ft,

and Ft−1 we can deduce that LUt−1 (Ft) = LUt−2 (Ft) + LUt−2 (Ft−1). The space Ut−3 is
also 4B + 1 wide, therefore applying Lemma 58 to Ut−3, Ft, and Ft−2 we can deduce that
LUt−2 (Ft) = LUt−3 (Ft) + LUt−3 (Ft−2). Repeating this and substituting, we deduce that
LUt−1 (Ft) = LV (Ft) +

∑t
i=2 LUt−i

(Ft−i+1). By the induction hypothesis, we get that
LUt−i (Ft−i+1) =

∑t−i
j=1 LV (Fj). Therefore we get LUt−1 (Ft) =

∑t
i=1 LV (Fi). The first item

now follows by adding V2 to both sides.
Suppose now that dimLV (Fi) = dimLUi−1 (Fi) for every 2 ≤ i ≤ t − 1. Sup-

pose dimLV (Ft) = dimLUt−1 (Ft). This implies dimLUt−1 (Ft) = dimLUt−2 (Ft), since
V ⊂ Ut−2 ⊂ Ut−1. By item 2 of Lemma 58 applied to Ut−2, Ft−1, Ft we can deduce that
LUt−2 (Ft) ∩LUt−2 (Ft−1) = {0}. Using the fact that LUt−1 (Ft) =

∑t
i=1 LV (Fi), this is equi-

valent to LV (Fi) ∩
(∑i−1

j=1 LV (Fj)
)

= {0}. Conversely, starting with this assumption we can
deduce that dimLUt−1 (Ft) = dimLUt−2 (Ft). Note that F1, . . . , Ft−2, Ft also satisfy the con-
ditions of item 2. Therefore, by induction we can deduce that dimLUt−2 (Ft) = dimLV (Ft).
This completes the proof of item 2.

Applying the induction hypothesis to F1, . . . , Ft−2, Ft, we can deduce that Ft ̸∈ (Ut−2).
We can now apply Lemma 58 to Ut−2, Ft and Ft−1 to deduce that Ft ̸∈ (Ut−1), proving
item 3. ◀

▶ Corollary 61. If F1, . . . , Ft is a integral sequence, then so is any permutation of F1, . . . , Ft.

Proof. The second condition for integral sequences holds irrespective of the order of the
forms. By Proposition 60, the first condition for integral sequences is equivalent to

LV (Fi) ∩

i−1∑
j=1

LV (Fj)

 = {0}

for every 2 ≤ i ≤ t. This in turn is equivalent to dim
∑t

j=1 LV (Fj) =
∑t

j=1 dimLV (Fj),
which is independent of the order of the forms. ◀

▶ Corollary 62. Let F1, . . . , Ft be an integral sequence with respect to V and A :=
C

[
V2,

∑t
i=1 LV (Fi)

]
. There exist vector spaces of linear forms Y1, . . . , Yt ⊂ A such

that Yi ∩ (V + Y1 + · · · + Yi−1) = (0) for all i and Fi ∈ C [V, Yi]. Furthermore,
Fi ̸∈ (V, Y1, · · · , Yi−1, Yi+1, · · · , Yt).

Proof. By Proposition 60 we can take Yj := LV (Fj) . By Corollary 61, we may switch Fi and
Ft. Then by Proposition 60 part (3), we see that Fi ̸∈ (V, Y1, · · · , Yi−1, Yi+1, · · · , Yt). ◀

▶ Lemma 63. Suppose V is a r-wide vector space and F1, . . . , Ft is an integral sequence
with respect to V . Suppose F0 ∈ C [V ] \ {0}. Then F0, F1, . . . , Ft is a regular sequence in S.

Proof. Note that by Corollary 62 we may assume that there exist vector spaces of linear
forms Y1, . . . , Yt of A such that Yi ∩ (V + Y1 + · · · + Yi−1) = (0) and Fi ∈ C [V, Yi]. Let
U = V + Y1 + · · · + Yt and A = C[U ]. Since V is r-wide and r > 4Bt+ 1, we know that U is
2Bt+ 1-wide, and hence has a basis consisting of a prime sequence. Thus A → S is a free
extension (see [2, Section 2]) and hence any regular sequence in A is also a regular sequence
in S (see [38, Tag 00LM]). Therefore it is enough to prove that F0, F1, · · · , Ft is a regular
sequence in A = C[U ].
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Note that the element F0 is a regular sequence in A = C[V +Y1 + · · · +Yt]. We will prove
by induction that if F0, · · · , Fi is a regular sequence in A, then so is F0, · · · , Fi+1. Suppose
F0, · · · , Fi is a regular sequence in A (and hence in Ai = C[V + Y1 + · · · + Yi]). If Fi+1 is a
zero divisor in A/(F0, · · · , Fi), then Fi+1 is in a minimal prime p of (F0, · · · , Fi) in A. Since
Ai → A is a free extension and Ai is generated by a prime sequence in S, we must have
that p = q · A for some minimal prime (F0, · · · , Fi) ⊂ q in Ai. Note that by Proposition 60
we know that Fi+1 ̸∈ (V + Y1 + · · · + Yi). This is a contradiction since Fi+1 ∈ q · A and
q ⊂ (V + Y1 + · · · + Yi). ◀

▶ Lemma 64. Suppose V is a r-wide vector space and F1, . . . , Ft is an integral sequence
with respect to V . Then (F1, . . . , Ft) is radical and for any minimal prime p ⊃ (F1, . . . , Ft)
we have that p ∩ C[V ] = (0).

Proof. Note that by Corollary 62 we may assume that there exist vector spaces of linear
forms Y1, . . . , Yt of A such that Yi ∩ (V + Y1 + · · · + Yi−1) = (0) and Fi ∈ C [V, Yi]. By
Lemma 63, we know that F1, · · · , Ft is a regular sequence. Hence ht(p) = t for any minimal
prime p ⊃ (F1, . . . , Ft). Let F0 be a non-zero element in C[V ]. Then F0, · · · , Ft is again
a regular sequence and hence ht(F0, · · · , Ft) = t + 1. This implies F0 ̸∈ p, as ht(p) = t

implies that p contains no regular sequence of length t + 1. Therefore we must have that
p ∩ C[V ] = (0).

Now we will show that (F1, · · · , Ft) is a radical ideal in S. Let A = C[V + Y1 + · · · + Yt].
Since A → S is a free extension and the generators of A form a prime sequence in S, it is
enough to prove that (F1, · · · , Ft) is radical in A.

For each i, we assume that Fi is monic in yi ∈ Yi after a possible change of coordinates in Yi.
There exists such a variable since Fi ̸∈ (V ). Let Ui := Yi/spanC {yi} and Z = V +U1+· · ·+Ut.
Then A = C[Z, y1, · · · , yt]. We will show by induction that (F1, · · · , Ft) is radical.

Note that (F1) is prime. Assume the statement holds for i − 1. We have discyi
(Fi) ∈

C [V,Ui]. Note that p ∩ C [V,Ui] = (0) for every minimal prime p of (F1, . . . , Fi−1), as
Fi−1 ̸∈ (V, Y1, · · · , Yi−2, Yi) by Corollary 62. Therefore Lemma 42 implies (F1, . . . , Fi) is
radical. ◀

▶ Corollary 65. Suppose F1, . . . , Ft is an integral sequence with respect to V . Then F1, . . . , Ft

form a t-relevant set.

Proof. The sequence F1, . . . , Ft−1 is an integral sequence, and therefore by Lemma 63 it is a
regular sequence. Since any regular sequence is a relevant set, we are done. ◀

6.2 Strong sequences

Integral sequences are only defined when the forms are close to a wide vector space. One
special case is when every form is of low rank, and therefore every form is close to the vector
space {0}. To deal with forms that are not close to a vector space (which is the general case),
we introduce the notion of strong sequences.

We first extend the notion of the rank of a quadratic form to vector spaces of quadratic
forms.

▶ Definition 66. Let V2 ⊂ S2 be a vector space. Define minrank (V ) as
minQ∈V2,Q ̸=0 rankQ. If Q1, . . . , Qt are quadratic forms then define minrank (Q1, . . . , Qt) =
minrank (spanC {Q1, . . . , Qt}).
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▶ Definition 67. Let k, t ∈ N be such that t ≤ k + 1. Given forms Q1, . . . , Qt ∈ S2
we say that Q1, . . . , Qt is a k-strong sequence if Q1, . . . , Qt are linearly independent and
minrank (Q1, . . . , Qt) ≥ k + 5.

▶ Remark 68. By Theorem 45, if Q1, . . . , Qt is k-strong then Q1, . . . , Qt is a R3 sequence.
By the discussion in [2, Discussion 1.3], the ideal (Q1, . . . , Qt) is prime and the ring
S/ (Q1, . . . , Qt) is a UFD.

▶ Lemma 69. Suppose F2 ⊂ S2, and suppose Q1, . . . , Qt is a maximal k-strong sequence in
F2 with t ≤ k. For any r ≥ 2(k + 5) there exists a r-wide vector space W with dimW1 ≤
7 · r · 3t,dimW2 ≤ t such that every Q ∈ F2 is k + 4-close to W .

Proof. Let U := spanC {Q1, . . . , Qt}. By Proposition 44, there exists r-wide vector space W
such that U ⊂ C[W ], dimW1 ≤ 3t+1 ·(r+t) and dimW2 ≤ t. Let Q ∈ F2 be a form. Consider
the sequence Q1, . . . , Qt, Q, which has length at most k + 1. By assumption, Q1, . . . , Qt, Q

is not a k-strong sequence. Therefore, we have either minrank (Q1, . . . , Qt, Q) ≤ k + 4 or
Q ∈ spanC {Q1, . . . , Qt}.

Suppose P = βQ +
∑
αiQi is such that rankP = minrank (Q1, . . . , Qt, Q) ≤ k + 4.

Since Q1, . . . , Qt is k-strong we have β ̸= 0. Therefore after scalar multiple we have
Q =

∑
αiQi + P , and Q is k + 4-close to W . If Q ∈ spanC {Q1, . . . , Qt} then Q ∈ W and

therefore Q is k + 4-close to W . ◀

We now define the notion of strong Sylvester-Gallai configurations. We show that a
constant fraction of the forms in any such configuration is close to a vector space of constant
dimension.5

▶ Definition 70. Let F2 ⊂ S2 be a finite set of forms. Let 0 < ϵ ≤ 1 and k, t ∈ N with
t ≤ k. We say that F2 is a strong (ϵ, k) − SG∗

t (2) configuration if for every k-strong sequence
Q1, . . . , Qt with Qi ∈ F2, there are ϵ(|F2| − 1) forms Qt+1 ∈ F2 such that either:
1. Q1, . . . , Qt, Qt+1 is not a k-strong sequence, or
2. there is a form R ∈ F2 such that R ∈ (Q1, . . . , Qt+1) \ (Q1, . . . , Qt) ∪ (Qt+1).

▶ Lemma 71. Let F2 ⊂ S2 finite, with m := |F2|. Let 0 < ϵ ≤ 1 and k, t ∈ N with 2 ≤ t ≤ k.
If F2 is a strong (ϵ, k) − SG∗

t (2) configuration then either
1. F2 is a strong (ϵ/4, k) − SG∗

t−1(2) configuration, or
2. there exist a vector space W with dimW1 ≤ 7 · r · 3t+1+16/ϵ,dimW2 ≤ t+ 1 + 16/ϵ such

that at least ϵm/4 forms in F2 are k + 4 close to W .

Proof. Let ϵ′ := ϵ/4. Suppose F2 is not a strong (ϵ′, k) − SG∗
t−1(2) configuration. If there

exist no k-strong sequences of length t− 1, then there exists some maximal k-strong sequence
of length at most t− 2, and the required space W exists by Lemma 69. We can therefore
assume that there exists a k-strong sequence Q1, . . . , Qt−1, and a set B ⊂ F2 of size at least
(1 − ϵ′)m such that for every Q ∈ B we have that Q1, . . . , Qt−1, Q is a k-strong sequence, and

F2 ∩ (Q1, . . . , Qt−1, Q) \ (Q1, . . . , Qt−1) = {Q}. (2)

5 As we mentioned in Section 1, we need this notion of strong SG configurations since in our setting we
cannot quotient by quadratic forms, as the quotient ring will not be a polynomial ring and the previous
results on SG configurations may not apply. In particular, this is where our approach is more complex
than [5], as in their case their quotients were all isomorphic to polynomial rings.
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Let V := spanC {Q1, . . . , Qt−1}. Forms P1, P2 ∈ B are pairwise independent over S2/V , since
if (P1) = (P2) in S2/V , then P2 ∈ (Q1, . . . , Qt−1, P1) \ (Q1, . . . , Qt−1) ∪ (P1), contradicting
P1 ∈ B.

Let P ∈ B. The sequence Q1, . . . , Qt−1, P is k-strong by definition of B. Since F2 is a
strong (ϵ, k) − SG∗

t (2) configuration, there are P1, . . . , Ps ∈ F2 with s ≥ ϵm such that either
Q1, . . . , Qt−1, P, Pi is not k-strong, or there is Ri ∈ F2 such that Ri ∈ (Q1, . . . , Qt−1, P, Pi) \
(Q1, . . . , Qt−1, P ) ∪ (Pi).

Let G := {Pi |Q1, . . . , Qt−1, P, Pi is not a k-strong sequence}. Let W be the r-wide
vector space obtained by applying Proposition 44 to V + spanC {P}, we have dimW1 ≤
7 · r · 3t,dimW2 ≤ t. Every form in G is k + 4-close to W . Hence, if |G| ≥ ϵ′m then we are
done.

We are left with the case that |G| ≤ ϵ′m. After relabelling, let P1, . . . , Ps′ be the forms
that are in B \ G. Since |B| ≥ (1 − ϵ′)m and |G| ≤ ϵ′m we have s′ ≥ (ϵ− 2ϵ′)m.

Now for each i ≤ s′, there is a formRi ∈ F2∩(Q1, . . . , Qt−1, P, Pi)\(Q1, . . . , Qt−1, P )∪(Pi)
say Ri =

∑
αjQj +βP +Pi. Since Pi ∈ B we have β ̸= 0. Suppose P1, . . . , Ps′′ are such that

B ∩ ((Q1, . . . , Qt−1, P, Pi) \ (Q1, . . . , Qt−1, P )) = {Pi} . (3)

If Ri = αRj with α ̸= 0 for i, j ≤ s′′, then we have αPj =
∑
α′

iQi + Pi + β′P , contradicting
Equation (3) for Pi. Therefore we have s′′ ≤ |F2 \ B| ≤ ϵ′m. Hence, there are at least ϵ′m
forms Pi such that |spanC {P, Pi} ∩ B| ≥ 3 in S2/V . Since this holds for every P ∈ B, the set
B is a (ϵ′, 2)-linear-SG configuration in S2/V . By Theorem 31 we have that dim spanC {B} ≤
4/ϵ′ in S2/V and that dim spanC {B} + V ≤ t + 1 + 4/ϵ′. Applying Proposition 44 to
spanC {B} + V gives us a r-wide vector space W with dimW1 ≤ 7 · r · 3t+1+4/ϵ′

,dimW2 ≤
t+ 1 + 4/ϵ′ and B ⊂ W . ◀

▶ Lemma 72. Let F2 ⊂ S2 finite, with m := |F2|. Suppose F2 is a strong (ϵ, k) − SG∗
1(2)

configuration. Then there is a r-wide vector space W with dimW1 ≤ 7 · r · 32+16/ϵ,dimW2 ≤
2 + 16/ϵ such that at least ϵm/4 forms in F2 are k + 5 close to W .

Proof. Let ϵ′ := ϵ/4. Let B be the set of forms in F2 of rank at least k+5. If |B| ≤ (1− ϵ′)m,
then there are at least ϵ′m forms that are k + 5 close to the zero vector space and we are
done with W = 0. We are left with the case when |B| ≥ (1 − ϵ′)m.

Let P ∈ B. Let G := {Pi |P, Pi is not a k-strong sequence}. Let W be the r-wide vector
space obtained by applying Proposition 44 to spanC {P}, we have dimW1 ≤ 21·r, dimW2 ≤ 1.
Every form in G is k + 4 close to W . If therefore |G| ≥ ϵ′m then we are done. We are left
with the case that |G| ≤ ϵ′m.

Suppose P1, . . . , Pr′ are the forms in B \ G such that P, Pi is a k-strong sequence and
there exist Ri ∈ (P, Pi) \ (P ) ∪ (Pi). We have r′ ≥ 2ϵ′m. Suppose P1, . . . , Pr′′ are such that
(P, Pi) ∩ B = {P, Pi}. If Ri = βRj for i, j ≤ r′′ then Pj ∈ spanC {P, Pi}, contradicting choice
of Pi. Therefore there are at least ϵ′m many forms Pi such that |(P, Pi) ∩ B| ≥ 3. Since this
holds for every P , we have that B is a (ϵ′, 2)-linear-SG, and by Theorem 31 we have that
dim spanC {B} ≤ 4/ϵ′. If W is the r-wide space obtained by applying Proposition 44 to B
then dimW1 ≤ 7 · r · 34/ϵ′

,dimW2 ≤ 2 + 4/ϵ′ and B ⊂ W , completing the proof. ◀

▶ Corollary 73. Suppose F = F1 ⊔ F2 be a 1 − SG∗
k(2) configuration with |F2| = m2. Then

there exist a r-wide vector space W with dimW1 ≤ 7·r ·3k+1+16·4k−1
,dimW2 ≤ k+1+16·4k−1

such that at least m2/4k forms in F2 are k + 5 close to W .

Proof. We first show that F2 is a strong (1, k) − SG∗
k(2) configuration. Suppose Q1, . . . , Qk

is a k-strong sequence. Every subset of Q1, . . . , Qk is also a k-strong sequence, and hence
generates a prime ideal by Remark 68. By definition Q1, . . . , Qk are linearly independent,
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therefore Q1, . . . , Qk form a k-relavent set. For every Qk+1 ∈ F2, if Q1, . . . , Qk+1 is a
k-strong sequence, then (Q1, . . . , Qk+1) is prime and Qk+1 ̸∈ rad (Q1, . . . , Qk). Therefore
there exists R ∈ F such that R ∈ (Q1, . . . , Qk+1) \ (Q1, . . . , Qk) ∪ (Qk+1). Since Qi ∈ F2 it
must be that R ∈ F2. This shows that F2 is a strong (1, k) − SG∗

k(2) configuration.
Now let t ≥ 1 be the smallest number such that F2 is a strong

(
4k−t, k

)
− SG∗

t (2)
configuration. By the previous paragraph, we have t ≤ k. If t = 1, the required vector space
exists by Lemma 72. If t > 1, we apply Lemma 71. Since F2 is not a strong

(
4k−t−1, k

)
−

SG∗
t−1(2) configuration, case 1 of Lemma 71 does not hold, Therefore there exists a vector

space W with dimW1 ≤ 7 · r · 3t+1+16·4k−t

,dimW2 ≤ t + 1 + 16 · 4k−t such that at least
4k−t−1 ·m2 forms in F2 are k + 4 close to W . ◀

7 Proof of Sylvester-Gallai Theorem

In this section, we prove our main theorem: 1 − SG∗
k(2) configurations have constant vector

space dimension. Throughout this section we denote our 1 − SG∗
k(2) configuration by

F = F1 ⊔ F2 where Fd is the set of forms of degree d in our configuration. Additionally, we
define m := |F|, m1 := |F1| and m2 := |F2|.

Our proof has three main steps. In Section 7.1 we show that given F , we can find a
constant dimensional wide vector space W such that F is close to W . We call any such
C-algebra C[W ] a core algebra of our configuration F . This step uses the notion of strong
sequences. In Section 7.2 we show that given such a vector space W , we can extend it to
obtain a constant dimensional wide vector space W ⊂ V such that F2 ⊂ (V ). This step
uses the notion of integral sequences. In Section 7.3 we show that our main theorem follows
given such a vector space V . This step uses general projections and the bound for linear SG
configurations from [5, 12].

Define functions λ2(r, k) := k+ 1 + 16 · 4k−1, λ1(r, k) := 7 · r · 3λ2(r,k) and B(k) := 3k+ 15.
For the rest of this section, we set the parameter B in the definition of LV (P ) to B(k). Note
that while this parameter depends on k, it is independent of |F|.

7.1 Constructing core algebras

We begin by showing that, to put all forms close to a wide algebra, it is enough to construct
a small wide algebra which contains a constant fraction of the quadratics. More precisely, the
next lemma allows us to increase the fraction of forms close to a given vector space without
increasing the size of the vector space too much, so long as we start with a wide vector space
which contains a constant fraction of the quadratics.6

Before we state and prove the lemma, the following notation will be very useful in this
subsection: if γ ∈ N, G is a set of forms and W is a graded vector space, we let

G(γ,W ) := {P ∈ G | P is γ-close to W}.

▶ Lemma 74 (Increasing algebra intersection). Let 0 < δ ≤ 1, r, γ, k ∈ N be such that
r > 2γ ≥ k + 5 and W be a r-wide vector space. If |F(γ,W )| ≥ δm then there is a r-wide
vector space Y with dimY1 ≤ 3k · (dimW + r), dimY2 ≤ dimW2 + k such that either
|F(γ, Y )| ≥ 3δm/2, or F = F(3γ, Y ).

6 This is similar in spirit to [5, Proposition 7.11] and [16, Lemma 5.15].
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Proof. Note that F1 ⊆ F(γ,W ). Let H := F2 \ F(3γ,W ). In other words, H is the set
of forms that are 3γ-far from W . Let H1, . . . ,Ht ∈ H be the longest sequence of linearly
independent forms such that
1. minrank (H1, . . . ,Ht) ≥ k + 5, and
2. No nonzero form in spanC {H1, . . . ,Ht} is 2γ-close to W .

Suppose t < k. Let Y be the r-wide vector space obtained by applying Proposition 44 to
W + spanC {H1, . . . ,Ht}. Since H1, . . . ,Ht is the longest linearly independent sequence that
satisfies the above conditions, for every other H ∈ H, it must be that

either H ∈ spanC {H1, . . . ,Ht}, or
minrank (H,H1, . . . ,Ht) ≤ k + 4, or
there exists R ∈ spanC {H,H1, . . . ,Ht} \ spanC {H1, . . . ,Ht} such that R is 2γ-close to
W .

In each of these three cases, it follows that H ∈ F(3γ, Y ). Therefore in this case, Y is the
required vector space.

We are now in the case where t ≥ k. Consider the k elements H1, . . . ,Hk. Note
that H1, . . . ,Hk are linearly independent, and also satisfy minrank (H1, . . . ,Hk) ≥ k + 5.
Therefore, H1, . . . ,Hk is a k-strong sequence. By Remark 68, the ideal (H1, . . . ,Hk) is prime
and k-relevant, and S/ (H1, . . . ,Hk) is a UFD. Let Y be the r-wide vector space obtained by
applying Proposition 44 to W + spanC {H1, . . . ,Hk}, so dimY1 ≤ 3k · (dimW + r),dimY2 ≤
dimW2 + k.

Now for each Gi ∈ F(γ,W ) we have Gi ̸∈ (H1, . . . ,Hk). In the graded UFD
S/ (H1, . . . ,Hk), the image of Gi must be irreducible: if not then Gi = ab +

∑
αjHj

in S, with a, b ∈ S1, contradicting the fact that spanC {H1, . . . ,Hk} does not con-
tain forms 2γ-close to W . The ideal (H1, . . . ,Hk, Gi) is therefore prime, and we have
Ri ∈ (H1, . . . ,Hk, Gi) \ (H1, . . . ,Hk) since F is a 1 − SG∗

k(2) configuration. We have
Ri ∈ F(γ, Y ).

If Ri ∈ F1 then we must have Ri ∈ (Gi), contradicting the pairwise independence of
elements of F2, therefore Ri ∈ F2. After scaling we have either Ri −Gi ∈ spanC {H1, . . . ,Hk}
(if Gi ∈ F2) or Ri − aGi ∈ spanC {H1, . . . ,Hk} (if Gi ∈ F1). Therefore Ri ̸∈ F(γ,W ) since
otherwise spanC {H1, . . . ,Hk} contains a form 2γ-close to W . If Gj is another form such
that Ri = Rj , then Ri − Gj or Ri − bGj is in spanC {H1, . . . ,Ht}, and it must be that
Gi, Gj ∈ F1 and aGi = bGj so Gj ∈ (a) , Gi ∈ (b). This shows that |{Ri}i| ≥ δm/2. Since
F(γ,W ) ∪ {Ri}i ⊆ F(γ, Y ), we are done. ◀

We are now ready to prove the main lemma of this subsection.

▶ Lemma 75 (Constructing core algebras). Suppose F is a 1−SG∗
k(2) configuration. For any r

there exists a r-wide vector space W with dimW1 ≤ 2·3k2 ·λ1(r, k) and dimW2 ≤ 4k2+λ2(r, k)
such that F = F(B(k),W ).

Proof of Lemma 75. We build a sequence of vector spaces W (i) such that either F =
F(B(k),W (i)) or

∣∣F(k + 5,W (i))
∣∣ ≥ (3/2)i ·m/4k.

Set W (0) to be the r-wide vector space obtained by Corollary 73. By Corollary 73, at
least m2/4k forms in F2 are k+ 5 close to W (0). Further, every form in F1 is 1-close to W (0).
Since m1 +m2/4k ≥ m/4k, we have

∣∣F(k + 5,W (0)
∣∣ ≥ m/4k. Therefore, W (0) satisfies the

above property. We have dimW
(0)
i ≤ λi(r, k).

Given W (i), if F = F(B(k),W (i)) then terminate. If not, then apply Lemma 74 to
W (i) with γ = k + 5 and δ = (3/2)i · 1/4k to obtain W (i+1). By Lemma 74, either
F = F(B(k),W (i+1) = F or

∣∣F(k + 5,W (i+1))
∣∣ ≥ (3/2)i+1 · m/4k. Therefore W (i+1) also

has the required property.
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The above process must terminate when (3/2)i · 1/4k ≥ 1, which holds when i > 4k.
Further, by induction we have dimW

(4k)
1 ≤ 3k2

λ1(r, k) + 3k2 · 2k · r ≤ 2 · 3k2 · λ1(r, k) and
dimW2 ≤ 4k2 + λ2(r, k). Therefore W (4k) is the required space. ◀

7.2 Finding small ideal containing the quadratic forms
In this section we show that all quadratics in any 1 − SG∗

k(2) must be contained in an ideal
generated by a small number of forms. The main idea is that given any wide vector space,
there exist short maximal integral sequences with respect to the vector space. Recall that
the we set the parameter B in the definition of relative linear spaces to B(k) := 3k + 15.

▶ Lemma 76. Suppose r ≥ 4(k + 2)B(k) + 1. Suppose F is a 1 − SG∗
k(2) configuration, and

suppose W is a r-wide vector space such that every F ∈ F is B(k)-close to W . Then there
exists a maximal integral sequence with respect to inclusion of length at most k with respect
to W .

Proof. For each F ∈ F let FL
W be the image of FL

W in S/ (W1). Define potential function Φ
on integral sequences as

Φ(G1, . . . , Gc) :=
c∑

i=1
dim Lin

(
(Gi)L

W

)
.

If F ⊂ (W ) then there are no integral sequences with respect to W , and the statement
holds vacuously, therefore we can assume that F \ (W ) ̸= ∅. Combined with the fact that
W is r-wide, and that every form in F is B(k)-close to W , there exists nonempty integral
sequences with respect to W . Among all integral sequences of length at most k + 1, pick
F1, . . . , Fc such that the above potential function is maximised. If c ≤ k, then F1, . . . , Fc

is maximal: if not, and if F1, . . . , Fc+1 is an integral sequence that extends F1, . . . , Fc then
Φ(F1, . . . , Fc+1) > Φ(F1, . . . , Fc), contradicting maximality.

We are left with the case where c = k + 1. We will find an integral sequence of length at
most k with the same potential function value, and therefore the new integral sequence will
be maximal. The sequence F1, . . . , Fk is an integral sequence, therefore by Lemma 64 we
have that (F1, . . . , Fk) is a radical ideal. Further, by Corollary 65 we have that F1, . . . , Fk is
a k-relevant set. Similarly, F1, . . . , Fk+1 is a k+ 1-relevant set, therefore Fk+1 ̸∈ (F1, . . . , Fk).

Since F is a 1−SG∗
2(2), we have R ∈ (F1, . . . , Fk+1)\(F1, . . . , Fk), that is, R =

∑k+1
j=1 αjFj

with αk+1 ̸= 0. Without loss of generality, suppose αj = 0 for j = 1, . . . , b and αj ̸= 0 for
j = b+ 1, . . . , k + 1. Since the polynomials in F are pairwise linearly independent we have
b < k.

Now R = RH
W + RL

W =
∑

j>b αiFi =
∑

j>b αi((Fi)H
W + (Fi)L

W ). Since the space
W is r-wide, we have RH

W =
∑

j>b αi(Fi)H
W and RL

W =
∑

j>b αi(Fi)L
W . By Corol-

lary 62, after a change of basis we can assume that there are disjoint sets of vari-
ables Y, Y1, . . . , Yk such that W1 is spanned by Y and (Fi)L

W ∈ C [Y, Yi]. We have
Lin

(
RL

W

)
⊆ C [Y, Yb+1, . . . , Yk+1], whence F1, . . . , Fb, R is an integral sequence by Pro-

position 60. Further RL
W =

∑
j>b αj(Fj)L

W , and since (Fi)L
W ∈ C [Yi], by Lemma 18 we can

deduce that dim Lin
(
RL

W

)
=

∑
j>b dim Lin

(
(Fj)L

W

)
. Therefore F1, . . . , Fb, R is an integral

sequence of length at most k with Φ(F1, . . . , Fb, R) = Φ(F1, . . . , Fk+1). This proves that
F1, . . . , Fb, R is a maximal integral sequence. ◀

▶ Lemma 77. Suppose F is a 1 − SG∗
k(2) configuration. Suppose r ≥ 8(k + 2)B(k)2 + 1.

There exists a
(
r − 4kB(k)2)

-wide vector space W with dimW1 ≤ 3 · 3k2 · λ1(r, k) and
dimW2 ≤ 4k2 + λ2(r, k) such that F2 ⊂ (W ).
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Proof. For any r-wide vector space U such that every polynomial F ∈ F is B(k) close to U ,
define potential function Ψ as

Ψ(U) = max
F ∈F2\(U)

dimLU (F ) .

If Ψ(U) = 0 for some such U , then F2 ⊂ (U).
We now construct W iteratively. Let W (0) be the r-wide vector space whose existence is

guaranteed by Lemma 75. Since every F ∈ F is B(k)-close to W (0) we have Ψ(W (0)) ≤ 2B(k).
The vector space W (0) is r-wide, and r ≥ 4(k + 2)B(k) + 1, therefore by Lemma 76 we
can find a maximal integral sequence F1, . . . , Fc with respect to W (0) with c ≤ k. Set
W (1) =

∑c
i=1 LW (0) (Fi) +W

(0)
2 . That F1, . . . , Fc is maximal implies the following: for every

G ∈ F2 \
(
W (0)) we have dimLW (0) (G) > dimLW (1) (G). Therefore Ψ(W (1)) < Ψ(W (0)).

By Lemma 58, the vector space W (1) is r− 2kB(k)-wide since W (1)
1 is obtained by adding at

most 2kB(k) linear forms to W (0)
1 . In general, given W (i) we use Lemma 76 to find a maximal

integral sequence Fi1, . . . , Fic, and set W (i+1) :=
∑c

j=1 LW (i) (Fij) + W
(i)
2 . Maximality of

the sequence implies Ψ(W (i+1)) < Ψ(W (i)). By the bound on r, at every step W (i) is at
least 4(k + 2)B(k) + 1-wide. After at most 2B(k) steps we find a t such that Ψ(W (t)) = 0.

By Lemma 75 we have dimW
(0)
1 ≤ 2 · 3k2

λ1(r, k). Since W (i+1) is obtained by adding
2B(k)k linear forms to W (i) we get dimW

(t)
1 ≤ 2 · 3k2

λ1(r, k) + 4B(k)2k ≤ 3 · 3k2
λ1(r, k).

Further we have dimW
(i)
2 = dimW

(i−1)
2 for all i, therefore dimW

(t)
2 = dimW

(t)
0 ≤ 4k2 +

λ2(r, k). This completes the proof. ◀

7.3 Basic configuration
In this section we prove Theorem 37 for the special case where all the quadratics are in the
ideal generated by an r-wide algebra.

▶ Lemma 78. Suppose F is a 1 − SG∗
k(2) configuration. Suppose there is an r-wide linear

subspace W with r ≥ k + 5 such that F2 ⊂ (W ). Then there is linear subspace W ′
1 with

dim(W ′
1) =

(
C ′k)

· dimW1, such that F ⊆ W2 + C[W ′
1].

Proof. Let φ := φα,W1 be a projection mapping as defined in Definition 20. By Remark 49,
the space φ(W ) is a r− 1-wide vector space. Let ∆ := dimW1. As F2 ⊆ (W ), every F ∈ F2
satisfies φ(F ) = αφ(FH

W ) + z · ℓ for some linear form ℓ ∈ S [z]1.
Let L be the union of all the linear forms that occur in the above way, and all the linear

forms in F . Formally, L :=
{
ℓ | φ(F ) = αφ(FH

W ) + z · ℓ, F ∈ F2
}

∪φ(F1). Let L/ (z) denote
the image of L in the vector space (S [z] / (z))1, that is, the linear forms modulo z. We show
that L/(z) is a 1 − SGk(1) configuration.

Let ℓ1, . . . , ℓk ∈ L/(z) be independent. Let ℓk+1 ∈ L/(z). We need to show that one of
the following cases holds:
1. ℓ̄k+1 ∈ spanC

{
ℓ1, . . . , ℓk

}
.

2. there is ḡ ∈ spanC
{
ℓ1, . . . , ℓk+1

}
\ {ℓ1, . . . , ℓk} with ḡ ∈ L/ (z).

Consider the corresponding F1, . . . , Fk+1 ∈ F such that φ(Fi) = αiπ(Fi
H
W ) + z · ℓi, with

ℓi/(z) = ℓ̄i, or, if Fi ∈ F1 then Fi = ℓi.
The first step is to show that F1, . . . , Fk form a k-relevant set. Without loss of gener-

ality, assume that F1 ∈ rad (F2, . . . , Fk). We have φ(F1) ∈ rad (φ(F2), . . . , φ(Fk)), and by
Lemma 50 we have zℓ1 ∈ (ℓ2, . . . , ℓk). Since the ideal ℓ2, . . . , ℓk is prime, and since ℓ2, . . . , ℓk

are independent, we get ℓ1 ∈ spanC {ℓ2, . . . , ℓk} contradicting choice of ℓ1, . . . , ℓk. Therefore
F1, . . . , Fk is k-relevant.
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By the same argument, if Fk+1 ∈ rad (F1, . . . , Fk) then ℓk+1 ∈ spanC
{
ℓ1, . . . , ℓk

}
. We are

left with the case when Fk+1 ̸∈ rad (F1, . . . , Fk). Since F is a 1 − SG∗
2(2) configuration, there

exists R ∈ rad (F1, . . . , Fk+1) \ rad (F1, . . . , Fk). Let g be such that φ(R) = αiφ(RH
W ) + z · g

if R ∈ F2, and R = g otherwise. We have φ(R) ∈ rad (φ(F1), . . . , φ(Fk+1)). By Lemma 50,
we have zg ∈ spanC

{
ℓ1, . . . , ℓk+1

}
which implies g ∈ spanC

{
ℓ1, . . . , ℓk+1

}
. Finally, by

Lemma 51, we have that g ̸∈
(
ℓi

)
for any i. This completes the proof that L/ (z) is a

1 − SGk(1) configuration.
By Theorem 30 we have

dim(LW (φ(F)) = dim(L/(z)) + 1 ≤ C ′k,

for some universal constant C ′. Applying Proposition 24 it follows that dim(LW (F)) ≤ C ′k ·∆.
In particular, it follows that there is a linear space of linear forms W ′

1, with dim(W ′
1) ≤ C ′k ·∆,

satisfying F ⊆ W2 + C[W ′
1], completing the proof. ◀

7.4 Proof of main theorem
We now prove the main theorem, which we restate for convenience.

▶ Theorem 37 (Radical SG Theorem for tuples of quadratics). Let F be a 1 − SG∗
k(2)

configuration. There is a universal constant c > 0 such that dim(spanC {F}) ≤ 3c·4k .

Proof. Let r := 8(k+ 2)B(k)2 + k+ 6. By Lemma 77, there exists a k+ 5-wide vector space
W with dimW1 ≤ 3 ·3k2 ·λ1(r, k) and dimW2 ≤ 4k2 +λ2(r, k) such that F2 ⊆ (W ). Applying
Lemma 78 with this W , we obtain a vector space W ′

1 ⊆ S1 with dimW ′
1 ≤ 3 ·3k2 ·λ1(r, k) ·C ′k

such that F ⊆ W2 + C [W ′
1]. If Y ⊆ S2 is the space spanned by pairwise products of forms

in W ′
1, then F ⊆ W2 + Y and dimY ≤ 9 · 9k2 · λ2

1(r, k) · C ′2k. Substituting for λ1, λ2 gives
us the required result. ◀

▶ Remark 79. Suppose the set F does not have any k-relevant sequences. In this case, F is
vacuously an 1 − SG∗

k(2) configuration. There are no k-strong sequences in F of length k,
since any such sequence is a k-relevant set. Therefore every form in such a configuration
is k + 5-close to a r-wide vector space W of dimension 7 · r · 3k by Lemma 69. Further,
such a configuration has no integral sequences of length k + 1. Therefore, by the arguments
in Lemma 76 and Lemma 77, by adding 4kB(k)2 linear forms to W , we get a wide vector
space Y such that F ⊆ Y . If we project to Y1 and pick out the linear forms corresponding
to each element of F as in Lemma 78, then there are no set of k + 1 linearly independent
forms by Lemma 50. Therefore, we can deduce by the properties of the projection map that
dim spanC {F} = 2O(k) in this case.

8 Conclusion

In this work, we prove a higher codimension analogue of the quadratic Sylvester–Gallai
theorem, generalising the results of [36, 20]. Our ability to handle ideals of higher codimension
shows our approach is a promising one towards a full derandomisation of PIT for ΣkΠΣΠ2

circuits.
To prove our main theorem, we build upon the results of [2, 28] and use the wide

algebras developed in these works to control the cancellations in SG configurations. One key
difference between this work and previous works [36, 29, 30, 31, 16, 28] is that we prove our
Sylvester-Gallai theorem without a fine classification of the ideals we deal with.
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Our work leaves several open questions which are of interest to combinatorialists, al-
gebraic geometers, and complexity theorists. On the combinatorial and geometric side,
understanding the different generalizations of Sylvester’s problems to higher codimension
(such as the elementary SG configurations defined in [20] and also studied in [5]) is a problem
of independent interest, as well as the generalization to higher codimension of the “product”
version of Sylvester’s question, defined in [19, 29]. And of course, fully derandomizing PIT
for ΣkΠΣΠ2 is still a major open question.
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A Alternative proof of Lemma 64

We give here an alternative proof suggested by an anonymous reviewer (with proper formal-
izations).

Alternative Proof of Lemma 64. Let I := (F1, . . . , Ft). Since the inclusion A :=
C[V, Y1, . . . , Yt] → S is a free extension, it is enough to prove that I is radical in A. Moreover,
since A is isomorphic to a polynomial ring, by Corollary 62 we can assume that our poly-
nomial ring is A := C[Z, y1, y2, . . . , yt] where Fi ∈ C[Z, yi]. By Lemma 63, we know that
F ∈ C[Z] \ {0} is regular with F1, . . . , Ft, and hence it is not in any minimal prime of I.
Thus, F is not a zero divisor over A/I.

Since B := C(Z)[y1, . . . , yt] is the localization of A over C[Z] \ {0}, by the above, we
have that I is radical in A iff I · B is radical in B. Let R := C(Z)[y1, . . . , yt]. It is easy
to see that I · B is radical in B if I · R is radical over R. To see that I · R is a radical
ideal, note that Fi ∈ C[Z, yi] irreducible implies that discyi (Fi) ∈ C[Z] \ {0} and hence
Fi = (yi −αi)(yi − βi) over R, with αi ̸= βi. Thus, I ·R is the intersection of maximal ideals
and therefore radical. ◀
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