
Hardness Against Linear Branching Programs and
More
Eshan Chattopadhyay #

Cornell University, Ithaca, NY, USA

Jyun-Jie Liao #

Cornell University, Ithaca, NY, USA

Abstract
In a recent work, Gryaznov, Pudlák and Talebanfard (CCC ’22) introduced a linear variant of
read-once branching programs, with motivations from circuit and proof complexity. Such a read-once
linear branching program is a branching program where each node is allowed to make F2-linear
queries, and is read-once in the sense that the queries on each path is linearly independent. As their
main result, they constructed an explicit function with average-case complexity 2n/3−o(n) against a
slightly restricted model, which they call strongly read-once linear branching programs. The main
tool in their lower bound result is a new type of extractor, called directional affine extractors, that
they introduced.

Our main result is an explicit function with 2n−o(n) average-case complexity against the strongly
read-once linear branching program model, which is almost optimal. This result is based on a
new connection from this problem to sumset extractors, which is a randomness extractor model
introduced by Chattopadhyay and Li (STOC ’16) as a generalization of many other well-studied
models including two-source extractors, affine extractors and small-space extractors. With this new
connection, our lower bound naturally follows from a recent construction of sumset extractors by
Chattopadhyay and Liao (STOC ’22). In addition, we show that directional affine extractors imply
sumset extractors in a restricted setting. We observe that such restricted sumset sources are enough
to derive lower bounds, and obtain an arguably more modular proof of the lower bound by Gryaznov,
Pudlák and Talebanfard.

We also initiate a study of pseudorandomness against linear branching programs. Our main
result here is a hitting set generator construction against regular linear branching programs with
constant width. We derive this result based on a connection to Kakeya sets over finite fields.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of computa-
tion → Expander graphs and randomness extractors; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases linear branching programs, circuit lower bound, sumset extractors, hitting
sets

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.9

Related Version Preliminary Version: https://eccc.weizmann.ac.il/report/2022/153/

Funding Supported by NSF CAREER award 2045576.

Acknowledgements We thank Jason Gaitonde for collaboration during initial stages of this project.
We thank anonymous reviewers for helpful comments.

1 Introduction

The central goal of complexity theory is to understand the power and limitation of different
computation models. Motivated by this goal, it is natural to study the lower bound problem:
given a computation model and a corresponding complexity measure, can we find an explicit
function (e.g. computable in polynomial time) that has large complexity? Researchers have
studied this problem on many interesting circuit models such as bounded-depth circuits

© Eshan Chattopadhyay and Jyun-Jie Liao;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 9; pp. 9:1–9:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eshan@cs.cornell.edu
https://orcid.org/0000-0001-9140-3160
mailto:jjliao@cs.cornell.edu
https://orcid.org/0000-0003-3332-1460
https://doi.org/10.4230/LIPIcs.CCC.2023.9
https://eccc.weizmann.ac.il/report/2022/153/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Hardness Against Linear Branching Programs and More

(AC0), DeMorgan formula and branching programs, and many interesting results have been
found. For example, one of the most notable results in this field is that it requires exponential
number of gates to compute parity in AC0 [54, 31]. (See the excellent book by Jukna [34] for
more about circuit lower bound problems.)

Interestingly, circuit lower bound problems have found connections with randomness
extraction, another central problem in complexity theory. The theory of randomness extraction
is concerned with the following problem: we are given an unknown distribution X which is
guaranteed to have some amount of entropy, and our goal is to find an efficiently computable
function Ext, which is called a randomness extractor, such that Ext(X) is (close to) the
uniform distribution. Unfortunately, it turns out to be impossible to design extractors in
this generality, and a central line of inquiry has been to consider extracting random bits
assuming some additional structure on X. Randomness extractors have also found a variety
of applications in other areas of theoretical computer science, including proving lower bounds
for various computational models. For example, the state-of-the-art lower bound for Boolean
circuits is based on affine extractors [40], which are extractors that work for weak sources
that are uniform over affine subspaces. Affine extractors were also used to obtain almost
optimal lower bounds for DNF of parities and parity decision trees [19]. As another example,
extractors for sources sampled by small-space algorithms [35] were shown to be average-case
hard against read-once branching program [8].

The main idea behind this connection is as follows. Suppose one can show that for every
function f : X → {0, 1} with small complexity measure, the uniform distribution over the
larger pre-image (say, f−1(0)) is a source X with some specific structure. If one can construct
an extractor for weak sources with this structure, then f(X) is a constant while Ext(X) is
close to uniform, immediately implying that f and Ext cannot be the same function. In
fact, f cannot even approximately compute Ext much better than a random guess, i.e., Ext
exhibits average-case hardness against f . For instance, to derive average-case lower bounds
for parity decision trees, for which it is not hard to see that the pre-image is a disjoint union
of affine subspaces, one can choose Ext to be an affine extractor. However, the choice of
the extractor is not always obvious. For example, the connection between general Boolean
circuits and affine extractors [20, 25, 40] is more non-trivial.

In this paper, we study the lower bound problem for read-once linear branching pro-
grams [29]. Our main contribution is a new connection between lower boundS for read-once
linear branching programs and sumset extractors [10], which we will discuss in later sections.

1.1 Linear branching programs

Read-once linear branching programs (ROLBPs) were first studied by Gryaznov, Pudlák
and Talebanfard [29], motivated by its connection to proof complexity. Roughly speaking,
a ROLBP is a read-once branching program that can make linear queries. We leave the
definition of “read-once” for later and define a linear branching program first.

▶ Definition 1 (Linear branching program [29]). A linear branching program on Fn
2 is a

directed acyclic graph P with the following properties:
There is only one source s in P .
There are two sinks in P , labeled with 0 and 1 respectively.
Every non-sink node v is labeled with a linear function ℓv : Fn

2 → F2, which is called the
(linear) query on node v. Moreover, there are exactly two outgoing edges from v, one is
labeled with 1 and the other is labeled with 0.

E. Chattopadhyay and J.-J. Liao 9:3

The size of P is the number of non-sink nodes in P . We say P computes a boolean function
f : Fn

2 → {0, 1} in the following way. For every input x ∈ Fn
2 , we define the computation

path of x as starting from s, and when on a node v which is not a sink, moving to the next
node following the edge with label ℓv(x) ∈ {0, 1}. We repeat this process until the path ends
at a sink. f(x) is defined to be the label on this sink.1

The most natural definition of “read-once” for a linear branching program is that the queries
made on every path is linearly independent. In this paper, we focus on a more restricted
model called strongly read-once.2

▶ Definition 2 (Strongly Read-Once [29]). For every node v in a branching program P , define
Prev to be the span of all queries that appear on any path from the source to v, and Postv

to be the span of all queries that appear on any path from v to a sink. (For every non-sink
node v, both Prev and Postv include ℓv. For any sink w we define Postw = {0}.) We say P

is strongly read-once if the following two properties hold.
For every edge e = (u → v), Preu ∩ Postv = {0}.
For every non-sink node v, Prev ∩ Postv = {0, ℓv}.

As pointed out in [29], although being more restricted than the natural definition of read-once,
strongly read-once linear branching programs still generalize two important models: parity
decision trees and read-once branching programs. A parity decision tree is a decision tree
which can make linear queries. This model was first defined by Kushilevitz and Mansour [37]
for its connection with Fourier analysis, and has recently received attention because of
its connections to special cases of the log-rank conjecture in communication complexity
[51, 32] and quantum query complexity [28]. A read-once branching program is another
generalization of decision tree such that different paths can share nodes, and can be used to
model streaming algorithms and randomized small-space algorithms. Similar to how decision
trees are generalized to parity decision trees, it is natural to study ROBPs with linear queries.

The lower bound problem we are trying to answer is the following:

▶ Question 3. For a function f : Fn
2 → F2, let ROLBP(f) denote the smallest possible

size of a strongly read-once linear branching program that computes f . Can we find an
explicit function f which is computable in polynomial time such that ROLBP(f) is as large
as possible?

Note that every function f has a trivial size upper bound ROLBP(f) ≤ 2n (e.g. a trivial
decision tree of depth n), so our goal is to find a function f such that ROLBP(f) is as close
to 2n as possible. We are also interested in answering the average-case lower bound problem:

▶ Question 4. For a function f : Fn
2 → F2 and any ε > 0, let ROLBPε(f) denote the smallest

size of strongly read-once linear BP P such that

Pr
x∼Fn

2

[P (x) = f(x)] ≥ 1
2 + ε.

Can we find a function f which is computable in polynomial time such that ROLBPε(f) is as
large as possible?

1 In this paper, we sometimes abuse notation and also use P to denote the function computed by P .
2 Our definition here is slightly more general than the original one in [29], but we don’t view it as a

substantial difference. We choose the definition here merely for simpler notation in the proofs. See
Appendix A for further discussions.

CCC 2023

9:4 Hardness Against Linear Branching Programs and More

1.2 Prior work
To obtain a lower bound for strongly read-once linear branching programs, [29] introduced a
new type of extractor called directional affine extractors. (We refer the reader to Section 2
for standard notation in the context of extractors.)

▶ Definition 5 (Directional Affine Extractor [29]). We say DAExt : Fn
2 → F2 is a (d, ε)-

directional affine extractor if for any distribution X ∈ Fn
2 which is uniform over an affine

subspace of dimension d, and any non-zero vector a ∈ Fn
2 , it holds that

DAExt(X + a) + DAExt(X) ≈ε U1.

[29] proved that a directional affine extractor for small dimension has a large average-case
lower bound for strongly read-once linear BP.

▶ Theorem 6 ([29, Theorem 17]). Let DAExt be a (d, ε)-directional affine extractor. Then

ROLBP√
2ε(DAExt) ≥ ε2n−d−1.

In [29], they constructed a directional affine extractor for dimension (2/3 + o(1))n, which
implied a 2n/3−o(n) average-case lower bound for ROLBPs. A natural open question left
in [29] was to construct a directional affine extractor for dimension d = o(n), which would
directly imply a 2n−o(n) average-case lower bound for ROLBPs. However, this seems like a
challenging problem. Indeed, even constructing affine extractors for dimension d = o(n) has
been a difficult task that has been recently resolved [41, 7]; a directional affine extractor is
an affine extractor with additional non-malleable properties (see Appendix B) and it is not
clear how to use known techniques to construct such extractors for low dimension.

1.3 Our results
In this work, we take a different approach and show that to get an average-case lower bound
strongly read-once linear BP, it suffices to construct a sumset extractor. Informally, a sumset
extractor is a function that can extract uniform randomness from sum of two independent
weak sources (such sources are called sumset sources). The formal definition of sumset
extractors is as follows.3

▶ Definition 7 (Sumset Extractor [10]). A function SumExt : Fn
2 → {0, 1} is a (k1, k2, ε)-

sumset extractor if for any two independent distributions A, B on Fn
2 with H∞(A) ≥ k1 and

H∞(B) ≥ k2,

SumExt(A + B) ≈ε U1.

Our main theorem is as follows:

▶ Theorem 8. Let SumExt be a (k1, k2, ε)-sumset extractor. Then

ROLBP9ε(SumExt) > 2n−k1−k2−2.

Sumset extractors were first introduced by Chattopadhyay and Li [10] as a “unified”
extractor model for many other important extractor problems such as two-source extractors,
affine extractors and small-space extractors. (We refer the reader to [13] for a more elaborate
discussion on sumset extractors.) A recent work [13] gave an explicit construction of sumset
extractors for polylogarithmic entropy.

3 For simplicity, we present the definition where the output length of the extractor is just 1 bit.

E. Chattopadhyay and J.-J. Liao 9:5

▶ Theorem 9 ([13]). There is a (polylog(n), polylog(n), n−Ω(1))-sumset extractor that can
be computed in polynomial time.

Plugging this extractor into Theorem 8, we improve the best lower bound for strongly
read-once linear BP from 2n/3−o(n) to 2n−o(n), which is almost optimal.

▶ Theorem 10. There is a function SumExt which can be computed in polynoimal time such
that

ROLBPn−Ω(1)(SumExt) > 2n−polylog(n).

1.4 On average-case lower bound with negligible error
One drawback of the average-case lower bound based on Theorem 8 is that we don’t yet
know any explicit construction of (k1, k2, ε)-sumset extractors such that k1 + k2 ≤ n and
ε = n−ω(1).4 Thus we cannot directly use Theorem 8 to derive non-trivial average-case lower
bound in the negligible correlation setting (for functions in P). (Note that the 2n/3−o(n)

lower bound in [29] does have negligible correlation.) However, a closer inspection at the
proof of Theorem 8 actually shows that it suffices to construct extractors for sumset sources
A + B with two additional properties, that we describe below.

▶ Theorem 11. Let SumExt′ : Fn
2 → {0, 1} be a function such that SumExt′(A + B) ≈ε U1

for any independent distributions A, B ∈ Fn
2 which satisfy H∞(A) ≥ k1, H∞(B) ≥ k2 and

the following two additional properties.
B is almost affine: the span of Supp(B) is of dimension ≤ k2 + 1.
A and B have non-intersecting span: span(Supp(A)) ∩ span(Supp(B)) = {0}.

Then

ROLBP9ε(SumExt′) > 2n−k1−k2−2.

Next we show two different extractor constructions that utilize the first and second property,
respectively. The first construction is exactly the directional affine extractors in [29]. Our
main observation is that directional affine extractors can extract from the restricted class of
sumset sources with the almost affine property in Theorem 11, which gives an alternative
proof of the average-case lower bound in [29] (Theorem 6). Furthermore, the proof of this
statement is just a simple application of leftover hash lemma [33]. We view this as a more
modular proof of the lower bound result in [29].

We note that a directional affine extractor is a strictly stronger notion than a sumset
extractor with the almost affine property. Indeed, given any sumset extractor, one can modify
it to get a new sumset extractor so that the extractor ignores its first bit of input; however it
is easy to see that the modified sumset extractor is not a directional affine extractor (see
Remark 36). Thus, it could be an easier task to build sumset extractors with the almost
affine property.

Our second construction is based on the interleaved-source extractor constructed in [12].
An interleaved source is a source over {0, 1}2n of the form (A ◦ B)π, where A, B are
independent sources over {0, 1}n, and π is a fixed but unknown permutation of the 2n bits.
We observe that their extractor construction can be extended to work for for a more general
class of sources: sumset sources with the non-intersecting span property. In fact, we prove a
slightly more general result.

4 A Paley graph extractor [17] with proper choice of parameters is actually a (k1, k2, ε)-sumset extractor
for k1 + k2 = (1

2 + γ)n and negligible ε, for any constant γ > 0. (See [14, Theorem 4.2].) However, it is
not known how to compute such an extractor in polynomial time.

CCC 2023

9:6 Hardness Against Linear Branching Programs and More

▶ Theorem 12. For every constant δ > 0, there is a function ILExt : Fn
2 → {0, 1} computable

in polynomial time such that for every independent sources A, B ∈ Fn
2 which satisfy H∞(A) ≥

(1
3 + δ)n, H∞(B) ≥ (1

3 + δ)n and H∞(A + B) ≥ (2
3 + 2δ)n,

ILExt(A + B) ≈2−Ω(n) U1.

It’s not hard to see that the additional entropy requirement on A + B is implied by the
non-intersecting span property, and hence we can apply Theorem 11 on the extractor in
Theorem 12. Interestingly, while the two constructions are very different, they give the same
average-case lower bound as in [29].

▶ Corollary 13. For every constant δ > 0, there exists a constant γ > 0 and a function
f : Fn

2 → {0, 1} computable in polynomial time such that

ROLBP2−γn(f) > 2(1/3−δ)n.

1.5 Pseudorandomness against linear branching programs
Motivated by close connections between hardness and pseudorandomness [47], we initiate the
study of obtaining pseudorandomness results against linear branching programs. Generally
speaking, in the pseudorandomness problem for a function class F , our goal is to construct
a pseudorandom distribution which can be generated with only r ≪ n random bits but
is indistinguishable from the n-bit uniform distribution Un by any function in F . We
now formally define a hitting set generator (HSG), which is the one-sided variant of a
pseudorandom generator (PRG).

▶ Definition 14 (Hitting Set Generators). We say a set H ⊆ {0, 1}n is a hitting set with
error ε for a class of functions F (on n-bit input), if for every function f : {0, 1}n → {0, 1}
in F such that Prx∼Un

[f(x) = 1] ≥ ε, there exists h ∈ H such that f(h) = 1. Moreover,
G : {0, 1}d → {0, 1}n is called a hitting set generator (HSG) with error ε for a class of
functions F if {G(s)}s∈{0,1}d is a hitting set for F , and s is called the seed length of G.

Constructing good HSGs for (standard) read-once branching programs is a central problem
in complexity theory. If one can construct an explicit HSG with seed length O(log(n)) and
O(1) error for ROBPs of size poly(n), this would imply RL = L, which is a major open
problem in complexity theory. Interestingly, it was recently shown [15] that HSGs suffice to
even derandomize BPL.

We note that for the above derandomization applications, it suffices to construct a HSG
for oblivious ROBPs with ordered input. That is, given an n-bit input x = (x1, . . . , xn),
the ROBPs read the bits x1, x2, . . . , xn in order, regardless of what x is. For oblivious
ROBPs with ordered input, the best known construction is due to Nisan [46] that has seed
length O(log2(n)) (which in fact is a pseudorandom generator). However, in spite of the
improvement in several restricted sub-classes of ROBPs, Nisan’s result remains the best
known construction in the general setting after three decades of work.

A recent research direction has been to find approaches that are completely different
from Nisan’s construction. In this direction, researchers considered the task of constructing
PRGs (and HSGs) for a natural generalization of ROBPs called as (oblivious) unordered
ROBPs for which it is known that Nisan’s construction fails to work [52, 5]. An unordered
ROBPs still read the bits of x in a fixed order that does not depend on x, but this order
is unknown. By an impressive line of work culminating with a beautiful construction by
Forbes and Kelley [27], we now have explicit PRGs with seed length O(log3(n)) for unordered

E. Chattopadhyay and J.-J. Liao 9:7

ROBPs. The general approach used to construct PRGs for this model is based on analyzing
the effects of random restrictions on ROBPs and leveraging bounds on the Fourier spectrum
of branching programs [49, 9].

This gives us further motivation to study pseudorandomness against oblivious ROLBPs,
which is a further generalization of unordered ROBPs.

▶ Definition 15 (Oblivious ROLBPs). We say a read-once linear branching programs P on
input Fn

2 is oblivious if the nodes can be divided into layers L0, . . . , Ln such that
L0 only contains the source, and Ln consists of all the sinks.
For every 0 ≤ i < n, every edge from nodes in Li connects to a node in Li+1.
For every 0 ≤ i < n, every node on Li is labeled with the same linear query ℓi.
(ℓ0, . . . , ℓn−1) is a basis of Fn

2 .
The width of P is defined as maxi∈[n](|Li|).

We note that unordered ROBPs correspond to the case of (ℓ0, . . . , ℓn−1) being a permutation
of the standard basis. Thus, Nisan’s PRG construction fails to work for oblivious ROLBPs.
Further, it is not clear how to use the techniques of random restriction based constructions
employed for unordered ROBPs when the layers can be arbitrary linear functions. Thus, it
looks like we need new ideas to obtain pseudorandomness against oblivious ROLBPs.

Our first observation is that the case of width w = 2 is easy since it is well known that a
small-biased distribution [45, 1, 50] fools such programs.5 This follows since small-biased
distributions are invariant under full-rank linear transformations. Further, [3] proved that
sum of small-biased distributions fools width-2 ROBPs that reads multiple bits. Thus, one
can obtain a similar result for the linear analogue of these programs. It has been asked by
Vadhan and Reingold (see [39]) whether sums of small-biased distributions can be employed
to construct PRGs (or HSG) for general ROBPs. Indeed a positive answer to this question
would immediately imply a PRGs (or HSG) for oblivious ROLBPs. We are not able to
resolve this conjectured approach, and take a different route that we describe below.

We take an initial step towards constructing HSGs against oblivious ROLBPs of width
more than 2, and focus on the sub-class of regular oblivious ROLBPs. A regular linear
branching program is a linear branching program in which every non-source node has in
degree 2. We note that the sub-class of regular (standard and unordered) ROBPs have been
well-studied [6, 49, 4, 38]. In fact, a recent result [4] proved that obtaining a HSG against
regular ROBPs would imply a HSG with similar parameters against all ROBPs.

As our main result here, we construct a hitting set generator with (1 − Ω(1))n seed length
for regular oblivious ROLBPs with constant width.

▶ Theorem 16. For every w ∈ N, there is an explicit construction of HSG for regular
oblivious ROLBPs of width w with seed length (w − 1) + ⌈(1 − 2−(w−1))n⌉.

Interestingly, our construction is based on a well-studied problem called rank-r Kakeya
set [24, 36], which is a set that contains a r-dimensional affine subspace in every direction.

▶ Definition 17. A set K ⊆ Fn
2 is called a rank-r Kakeya set (over Fn

2) if for every
r-dimension subspace V ⊆ Fn

2 , there exists b ∈ Fn
2 such that V + b ⊆ K.

We prove the following theorem.

5 This result is due to Saks and Zuckerman. See [3] for sketch of a proof.

CCC 2023

9:8 Hardness Against Linear Branching Programs and More

▶ Theorem 18. A rank-r Kakeya set is a hitting set for oblivious read-once regular linear
BP of width (r + 1).

To get an efficiently computable HSG, we take the following simple construction of rank-r
Kakeya set constructed by Kopparty, Lev, Saraf and Sudan [36].

▶ Theorem 19 ([36]). For every r, n ∈ N s.t. r ≤ n, there is an explicit construction of
rank-r Kakeya set Kn,r ⊆ Fn

2 with size at most 2⌈(1−2−r)n⌉+r, which is defined as follows.
Let I1, . . . , I2r be a parition of [n], each having size at least ⌊2−rn⌋. Then

Kn,r =
2r⋃

t=1
span ({ei}i ̸∈Ii) .6

In other words, Kn,r is the union of 2r boolean subcubes where the i-th subcube contains
every point x ∈ Fn

2 such that the xIi
is 0.

To prove Theorem 16, observe that we can construct an efficient HSG with seed length
r+⌈(1−2−r)n⌉ that uses the first r bits to select a set Ii and use the remaining ⌈(1−2−r)n⌉ ≥
n − |Ii| bits to choose a point in the subcube corresponding to Ii.

We note our approach based on Kakeya set does not seem to extend beyond regular
ROLBPs. For non-regular oblivious ROLBPs, we observe that the construction in Theorem 19
is not a hitting set for width 3, because a read-once CNF

∧2r

t=1(
∨

i∈It
xi) always outputs 0

on Kn,r, and a read-once CNF can be computed by a width-3 ROBP.
Further, while one might hope to extend our result to larger width (for regular ROLBPs)

with a better construction of Kakeya sets, we show that the construction in Theorem 19 is
essentially optimal. This negative result also answers an open question in [36] (for the case
of Fn

2), where they asked whether there is a better construction of rank-r Kakeya sets than
Theorem 19. This lower bounds may be of independent interest.

▶ Theorem 20. Every rank-r Kakeya set over Fn
2 has size at least 2(1−2−r)(n+2)−r.

1.6 Subsequent Works and Future Directions

In the preliminary version of this work, we asked whether one can obtain an lower bound for
ROLBPs with negligible correlation that is greater than 2n/3. This problem is recently solved
by Li and Zhong [43]: they showed how to construct a directional affine extractor DAExt
with 2−nΩ(1) for o(n) entropy. As proved in [29], this implies an average-case lower bound of
size 2n−o(n) and exponentially small correlation, i.e. ROLBP2−nΩ(1) (DAExt) ≥ 2n−o(n).

In addition, an amazing recent work by Li [42] showed how to improve the entropy
requirement of explicit sumset extractors to O(log(n)) in the constant error regime. By
Theorem 8, such an extractor implies a 2n/ poly(n) average-case lower bound with constant
correlation.

Another natural open problem raised in this work is to construct improved hitting set
generators (and more ambitiously pseudorandom generators) for oblivious ROLBPs. As
discussed above, one way to make progress on this question would be to show that sum of
small-biased distributions are pseudorandom against (standard) oblivious ROBPs. Another
direction is to see if objects from linear algebraic pseudorandomness [26] can be leveraged
for derandomization in this setting.

E. Chattopadhyay and J.-J. Liao 9:9

1.7 Organization
We introduce preliminaries in Section 2. We prove Theorem 8 (and Theorem 11, which is a
stronger version of Theorem 8) in Section 3. We discuss average-case lower bound results
based on Theorem 11 in Section 4. We prove our results about HSGs and Kakeya sets
(Theorem 18 and Theorem 20) in Section 5.

2 Preliminaries

2.1 Notation
Distributions and random variables

We sometimes abuse notation and treat distributions and random variables as the same. We
always write a random variable/distribution in boldface font. Every log in this paper is of
base 2 unless specified. We use Supp(X) to denote the support of a distribution. We use
Un to denote the uniform distribution on {0, 1}n. When Un appears with other random
variables in the same joint distribution, Un is considered to be independent of other random
variables. When there is a sequence of random variables X1, X2, . . . , Xt in the context, for
every set S ⊆ [t] we use XS to denote the sequence of random variables which use indices in
S as subscript, i.e. XS := {Xi}i∈S .

Notation for Fn
2

Throughout this paper, we treat Fn
2 and {0, 1}n as the same. We use ei ⊆ Fn

2 to denote
the i-th standard basis vector, which as its i-th coordinate being 1 and other coordinates
being 0. We sometimes use a vector ℓ ∈ Fn

2 to represent a function f : Fn
2 → F2 defined as

f(x) = ⟨ℓ, x⟩.

2.2 Statistical Distance
▶ Definition 21. Let D1, D2 be two distributions on the same universe Ω. The statistical
distance between D1 and D2 is

∆ (D1; D2) := max
T ⊆Ω

(
Pr [D1 ∈ T] − Pr [D2 ∈ T]

)
= 1

2
∑
s∈Ω

|D1(s) − D2(s)| .

We say D1 is ε-close to D2 if ∆(D1; D2) ≤ ε, which is also denoted by D1 ≈ε D2. When
there are two joint distributions (X, Z) and (Y, Z) such that (X, Z) ≈ε (Y, Z), we write
(X ≈ε Y) | Z for short.

Throughout this paper, we frequently use the following standard properties without explicit
referencing.

▶ Lemma 22. For every distribution D1, D2, D3 on the same universe, the following proper-
ties hold:

For every function f , ∆ (f(D1); f(D2)) ≤ ∆ (D1; D2).
(Triangle inequality) ∆ (D1; D3) ≤ ∆ (D1; D2) + ∆ (D2; D3).
For any distribution Z,

∆ ((D1, Z); (D2, Z)) = E
z∼Z

[∆ (D1|Z=z; D2|Z=z)] .

CCC 2023

9:10 Hardness Against Linear Branching Programs and More

(Markov argument) For any distribution Z, if (D1 ≈ε D2) | Z, then

Pr
z∼Z

[
D1|Z=z ≈√

ε D2|Z=z

]
≥ 1 −

√
ε

2.3 Conditional Min-entropy
In this work we use a fine-grained definition of conditional min-entropy called average
conditional min-entropy which was introduced in [22].

▶ Definition 23 ([22]). For a joint distribution (X, Z), the average conditional min-entropy
of X given Z is

H̃∞(X | Z) := − log
(

E
z∼Z

[
max

x
(Pr [X = x | Z = z])

])
.

For average conditional min-entropy we have the following nice property called chain rule:

▶ Lemma 24 ([22]). Let X, Y, Z be (correlated) random variables such that Supp(Y|Z=z) ≤
2λ for every z ∈ Supp(Z). Then

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y) | Z) − λ ≥ H̃∞(X | Z) − λ.

The average conditional min-entropy can be converted into worst-case conditional min-entropy
with the following lemma.

▶ Lemma 25 ([22, 44]). Let X, Z be (correlated) random variables. For every ε > 0,

Pr
z∼Z

[
H∞(X|Z=z) ≥ H̃∞(X | Z) − log(1/ε)

]
≥ 1 − ε.

2.4 Extractors
First we define a more general form of seeded extractors. (In the standard definition of
seeded extractor, we consider Y to be the uniform distribution over S.)

▶ Definition 26. Let X , S be two finite sets. Let Y be a distribution over S. We say
Ext : X × S → {0, 1}m is a (k, ε)-extractor with seed Y if for every distribution X ∈ X
independent of Y such that H∞(X) ≥ k,

Ext(X, Y) ≈ε Um.

Furthermore, we say Ext is strong in g(Y) for some deterministic function g if

(Ext(X, Y) ≈ε Um) | g(Y).

When Ext is strong in Y we simply say Ext is strong.

For strong seeded extractor we have the following standard lemma.

▶ Lemma 27. Suppose Ext : X × S → {0, 1}m is a (k, ε)-strong extractor with seed Y, where
Y is the uniform distribution over a set S ⊆ S. Then for every Y′ such that Supp(Y′) ⊆ S

and H∞(Y′) ≥ H∞(Y) − ∆, Ext is a (k, 2∆ε)-strong extractor with seed Y′.

We need the following form of leftover hash lemma. This is more general than the original
lemma in [33], but is also standard in the literature. (See, e.g., [53, Problem 6.3].)

E. Chattopadhyay and J.-J. Liao 9:11

▶ Lemma 28 (Leftover Hash Lemma [33]). Consider any h : {0, 1}n × S → {0, 1}m and any
distribution Y ∈ S such that for every distinct x1, x2 ∈ {0, 1}n, Pry∼Y [h(x1, y) = h(x2, y)] ≤
(1 + ε)2−m. (We say h is ε-almost universal over randomness Y if h and Y satisfy the
condition above.) Then h is a strong (m + log(1/ε),

√
ε/2)-extractor with seed Y.

We will also use the following lemma for seeded extractors on conditional min-entropy from
[53, Problem 6.8]. We need a more general form which works for the general seeded extractors
defined above. We include a proof in Appendix C for completeness. (In the standard form of
the following lemma, Y is a uniform over S, and Xe = X for every e.)

▶ Lemma 29. Let (X, Y, E) be a joint distribution such that X ∈ X and Y ∈ S are
independent conditioned on E, and H̃∞(X | E) ≥ k. Let Ext : X × S → {0, 1}m be a function
which satisfies the following conditions for an error parameter ε > 0 and a deterministic
function g: for every e ∈ Supp(E), there exists a set Xe ⊆ X with size at least 2k+1 such
that Ext when restricted to the domain Xe × S is a (k, ε)-extractor with seed Y|E=e and is
strong in g(e, Y). Then

(Ext(X, Y) ≈3ε Um) | (E, g(E, Y)).

3 Linear BP lower bounds based on sumset extractors

In this section, we prove Theorem 11 that we restate below. We note that Theorem 8 follows
as a special case of this theorem.

▶ Theorem 11 (restated). Let SumExt′ : Fn
2 → {0, 1} be a function such that SumExt′(A +

B) ≈ε U1 for any independent distributions A, B ∈ Fn
2 which satisfy H∞(A) ≥ k1, H∞(B) ≥

k2 and the following two additional properties.
B is almost affine: the span of Supp(B) is of dimension ≤ k2 + 1.
A and B have non-intersecting span: span(Supp(A)) ∩ span(Supp(B)) = {0}.

Then

ROLBP9ε(SumExt′) > 2n−k1−k2−2.

We first discuss the main ideas behind the proof before formally proving it. Given a
read-once linear BP P : Fn

2 → {0, 1} and any b ∈ {0, 1}, the uniform distribution over the
pre-image P −1(b) corresponds to the uniform distribution over all the computation path
from the source s to the sink labeled b. For every edge e, whether a computation path
pass goes through e and ends at a sink labeled b can be divided into two events: whether
a path starting from s would reach e, and whether a path starting from e would end at a
sink labeled b. The strongly read-once property guarantees that we can divide Fn

2 into two
complemented subspaces VA, VB such that the first event is determined by the projection of
the input x ∈ Fn

2 on VA, and the second event is determined by the projection of x on VB.
Given a uniform input X ∈ Fn

2 , the two projections are independent. Therefore, conditioned
on the computation path passing through e and end at a sink labeled b, X can be written as
the sum of two independent sources A + B, where Supp(A) ⊆ VA and Supp(B) ⊆ VB. It
remains to choose a cut E such that for every choice of e ∈ E, the two sources A, B stated
above both have enough entropy.

We formalize the ideas above as the following structural lemma:

▶ Lemma 30. Let X be a uniform random variable over Fn
2 . For every strongly read-once

linear BP f : Fn
2 → {0, 1} of size s and every d ∈ [n], there exists a random variable E, and

random variables A, B ∈ Fn
2 , s.t.

CCC 2023

9:12 Hardness Against Linear Branching Programs and More

E has support size at most 2s.
X = A + B
For every e ∈ Supp(E), define Ae = A|E=e and Be = B|E=e. Then we have

Ae and Be are independent.
Be is uniform over an affine subspace V B

e of dimension d

There exists a complemented subspace V A
e of V B

e such that Ae ∈ V A
e

There is a deterministic function g s.t. g(E, B) = f(X).

Proof. We show that there exist some functions E, A, B s.t. E = E(X), A = A(X), B = B(X)
satisfy the above claim. Fix any x ∈ Fn

2 . Consider the computation path of x, and let v be the
first node on this path which satisfies that dim(Postv) ≤ d. Note that v is well-defined because
the last node w on this path satisfies dim(Postw) = 0 ≤ d. Then we define E(x) := (u → v)
to be the edge right before v in this path. (If v is the source, we define u to be a dummy
node ⊥, and define Pre⊥ = {0}.) First we claim that dim(Preu) ≤ n − d. If u = ⊥ then the
claim is trivially true. Otherwise, observe that dim(Postu) ≥ d + 1 by the definition of v,
and by the strongly read-once property we have

dim(Preu) ≤ n + dim(Preu ∩ Postu) − dim(Postu) ≤ n + 1 − (d + 1) = n − d.

Observe that Preu ∩ Postv = {0} by the strongly read-once property. Now we choose an
arbitrary basis (b1, b2, . . . , bn) of Fn

2 such that span({bi}1≤i≤dim(Preu)) = Preu and
span({bn−i}0≤i<dim(Postv)) = Postv. Define Pre′

u = span({bi}1≤i≤n−d) and
Post′

v = span({bi}n−d<i≤n). Note that Preu ⊆ Pre′
u, Postv ⊆ Post′

v and Pre′
u and Post′

v are
complemented subspaces. Then define (A(x), B(x)) to be the unique pair in (Post′

v)⊥ ×
(Pre′

u)⊥ s.t. A(x) + B(x) = x. It remains to prove that E = E(X), A = A(X), B = B(X)
satisfy our claim.

First it’s easy to see that the support size of E is upper bounded by 2s: if the source s

satisfies dim(Posts) ≤ d, v is always the source s and E has support size 1; otherwise E is an
edge in the branching program, and there are at most 2s choices. Moreover, X = A + B
by definition of A and B. To prove the remaining two claims, consider any possible fixing
E = e := (u → v). Let (Ae(x), Be(x)) denote the unique pair in (Post′

v)⊥ × (Pre′
u)⊥ s.t.

Ae(x) + Be(x) = x. We claim that there exists a set S ⊆ (Post′
v)⊥ so that E(x) = e if and

only if Ae(x) ∈ S. This implies that (A, B)|E=e is exactly the uniform distributions over
S × (Pre′

u)⊥, which satisfies the third claim by taking V B
e = (Pre′

u)⊥ and V A
e = (Post′

v)⊥.
To prove this claim, observe that whether E(x) = e can be decided by the following
procedure. We follow the computation path of x, but stop and answer “NO” if we reach
any node w such that either w cannot reach u (so that E(x) can never be e regardless of
the remaining queries) or dim(Postw) ≤ d (so that E(x) would be the edge ending at w

instead of e). Otherwise, if we reach the edge e we stop and answer “YES” . Observe that
every linear query ℓ we made in this procedure is in Preu. Moreover, for every such query,
ℓ(x) = ℓ(Ae(x)) + ℓ(Be(x)) = ℓ(Ae(x)) because Be(x) ∈ (Pre′

u)⊥ ⊆ (Preu)⊥. Therefore, the
event E(x) = e is completely determined by Ae(x), which proves our claim. Finally, observe
that conditioned on E(x) = e, the value of f(x) is determined by queries in Postv, and
every such query ℓ satisfies that ℓ(x) = ℓ(Ae(x)) + ℓ(Be(x)) = ℓ(Be(x)) = ℓ(B(x)) because
Ae(x) ∈ (Post′

v)⊥ ⊆ (Postv)⊥. Therefore by choosing g(e, ·) to be the subprogram of f

starting at v, the last condition is also satisfied. ◀

Now we are ready to prove Theorem 11.

E. Chattopadhyay and J.-J. Liao 9:13

Proof of Theorem 11. Let SumExt′ be a function which satisfies the conditions in The-
orem 11 with parameters (k1, k2, ε), and let f : Fn

2 → {0, 1} be any strongly read-once linear
BP of size s = 2n−k1−k2−2. Let X be a uniform random variable over Fn

2 . We want to show
that

(SumExt′(X), f(X)) ≈9ε (U1, f(X)), (1)

which would imply Prx∼X
[
f(x) = SumExt′(x)

]
≤ 1

2 + 9ε for every f of size s, and hence
ROLBP9ε(SumExt′) > s.

Let E, A, B be the random variables depending on X as in Lemma 30, by taking d = k2 +1.
Recall that E, A, B have the following properties:

E has support size at most 2s.
X = A + B
For every e ∈ Supp(E), define Ae = A|E=e and Be = B|E=e. Then we have

Ae and Be are independent.
There exist complemented subspaces V A

e , V B
e of dimension n − d and d such that Be

is uniform over V B
e and Ae ∈ V A

e .
There is a deterministic function g s.t. g(E, B) = f(X).

Therefore we can rewrite Equation (1) as

(SumExt′(A + B) ≈9ε U1) | g(E, B). (2)

Consider the function Ext : (Fn
2)2 → {0, 1} defined as Ext(a, b) = SumExt′(a + b). We

claim that for every e ∈ Supp(E), Ext restricted on the domain V A
e × Fn

2 is a (k1, 3ε)-
extractor with seed Be and is strong in g(e, Be). This would imply Equation (2) because of
the following. Observe that

H̃∞(A | E) = H̃∞(A | (B, E)) ≥ H̃∞((A, B) | E) − d ≥ (n − log(2s)) − d ≥ k1,

where the first equality is by the fact that A and B are independent conditioned on E, and
the first and second inequalities are by chain rule (Lemma 24). Furthermore, we can w.l.o.g.
assume that k1 + k2 ≤ n − 2 (since otherwise the bound is trivial), and this would imply
|V A

e | = 2n−d ≥ 2k1+1. Therefore we can apply Lemma 29 on Ext to get Equation (2).
Next we prove the claim. Let A′ ∈ V A

e be any distribution such that H∞(A′) ≥ k1.
By definition of SumExt′, we have that for every random variable B′ ∈ V B

e such that
H∞(B′) ≥ dim(V B

e) − 1 = k2,

SumExt′(A′ + B′) ≈ε U1.

In other words, the function Ext′ : V B
e × Fn

2 → {0, 1} defined as Ext′(b, a) = SumExt′(a + b)
is a (k2, ε)-extractor with seed A′. By chain rule, H̃∞(Be | g(e, Be)) ≥ H∞(Be) − 1 = k2.
Therefore, by Lemma 29 we can conclude that

(SumExt′(A′ + Be) ≈3ε U1) | g(e, Be),

and this is exactly what we claimed. ◀

CCC 2023

9:14 Hardness Against Linear Branching Programs and More

4 Average-case lower bound with negligible error

As we discussed in the introduction, Theorem 8 only implies average-case lower bound
with polynomially small error because it is not known how to construct a (k1, k2, ε)-sumset
extractor for entropy k1 + k2 < n with negligible error ε. However, we proved a stronger
theorem, Theorem 11, which says that we only need an extractor for sumset sources A + B
with two additional properties:

B is almost affine: Supp(B) is contained in a linear subspace of dimension H∞(B) + 1,
and
A and B have non-intersecting span: span(Supp(A)) ∩ span(Supp(B)) = {0}.

In this section we will see that we only need either of the two properties to prove a 2(1/3−γ)n

average-case lower bound with exponentially small error.

4.1 Sumset extractors for almost affine source
In this section, we show that a directional affine extractor can work for a sumset source
A + B as long as B is almost affine. The proof is simply an application of leftover hash
lemma (Lemma 28).

▶ Lemma 31. Let DAExt : Fn
2 → {0, 1} be any (d, ε/2)-directional affine extractor. Then

for any B ∈ Fn
2 which is uniform over an affine subspace of dimension d, and any A ∈ Fn

2
independent of B such that H∞(A) ≥ log(1/ε) + 1,

(DAExt(A + B) ≈√
ε/2 U1) | B.

Proof. Observe that for every distinct a1, a2 ∈ Fn
2 ,

Pr
b∼B

[DAExt(a1+b) = DAExt(a2+b)] = Pr
b∼B

[(DAExt(a1+b)+DAExt(a2+b)) = 0] ≤ 1 + ε

2 ,

by definition of (d, ε/2)-directional affine extractor. This means the function h(a, b) =
DAExt(a + b) is ε-almost universal over randomness B. By leftover hash lemma (Lemma 28),
h is a (log(1/ε)+1,

√
ε/2)-strong extractor with seed B. In other words, for every distribution

A ∈ Fn
2 independent of B such that H∞(A) ≥ log(1/ε) + 1,

(DAExt(A + B) ≈√
ε/2 U1) | B. ◀

▶ Corollary 32. Let DAExt : Fn
2 → {0, 1} be any (d, ε/2)-directional affine extractor. Then

for any independent distributions A, B ∈ Fn
2 such that H∞(A) ≥ log(1/ε)+1, H∞(B) ≥ d−1

and dim(span(Supp(B))) ≤ d,

DAExt(A + B) ≈3
√

ε/2 U1.

Proof. Let V be a linear subspace of dimension d such that Supp(B) ⊆ V , and let B′ denote
the uniform distribution over V . Define Ext : (Fn

2)2 → {0, 1} to bet Ext(a, b) = DAExt(a+b).
By Lemma 31, Ext is a strong (log(1/ε) + 1,

√
ε/2)-extractor with seed B′. Since H∞(B) ≥

d − 1 = H∞(B′) − 1, by Lemma 27, Ext is a strong (log(1/ε) + 1, 3
√

ε/2)-extractor with
seed B, which is exactly what we want to prove. ◀

Apply Theorem 11 on Corollary 32 by taking k1 = log(1/ε) + 1 and k2 = d − 1, we get an
alternative proof of [29, Theorem 17].

E. Chattopadhyay and J.-J. Liao 9:15

▶ Theorem 33. If DAExt is a (d, ε/2)-directional affine extractor, then

ROLBP27
√

ε/2(DAExt) ≥ ε2n−d−1.

▶ Remark 34. The error in the above theorem is worse than [29, Theorem 17] by a constant
factor 27, but we note that our proof above is just a modular presentation of the proof in [29,
Theorem 17], and the factor 27 can be removed by a more careful analysis of this specific
construction. That is, in the proof of Theorem 11 we actually need an affine source with 1-bit
leakage instead of an almost affine source, so a factor 9 incurred by arguments related to
average conditional min-entropy is unnecessary. Second, a seeded extractor based on leftover
hash lemma can in fact work for average conditional min-entropy without any loss (see [22]),
so we can remove another factor 3.

Recall that [29, Theorem 15] shows that there is an explicit (d + log(1/ε), ε/2)-directional
affine extractor. This implies the following corollary:

▶ Corollary 35. For every constant γ > 0, there exists an explicit function DAExt : Fn
2 →

{0, 1} such that

ROLBP2−γn(DAExt) > 2(1/3−2γ)n−O(1).

▶ Remark 36. We note that while directional affine extractors imply sumset extractors with
the additional “almost affine” restriction, the converse is not true. For example, if we take
any sumset extractor Ext on n-bit input, and construct a new function Ext′ on (n + 1)-bit
input which simply ignore the first bit and compute Ext on the last n bits, then Ext′ is
still a sumset extractor, but Ext′ cannot be a directional affine extractor, because the shift
a = (1, 0, . . . , 0, 0) ∈ Fn+1

2 would make Ext′(X + a) + Ext′(X) = 0 for every source X.

4.2 Sumset extractors for non-intersecting span
To utilize the non-intersecting span property, we show that the interleaved-source extractor
in [12] can be extended to work for the sum of two independent sources A, B as long as
both A, B has entropy rate greater than 1/3 and A + B has entropy rate greater than 2/3.
Formally, we prove the following theorem which extends Theorem 8.1 in [12].7

▶ Theorem 12 (restated). For every constant δ > 0, there exists constants γ, τ > 0 and an
explicit function ILExt : Fn

2 → {0, 1}m, m = γn, such that for any two independent sources
A, B ∈ Fn

2 which satisfies that
H∞(A), H∞(B) ≥ (1

3 + δ)n
H∞(A + B) ≥ (2

3 + 2δ)n
we have

ILExt(A + B) ≈2−τn Um.

This theorem also implies a roughly 2n/3 average-case lower bound:

▶ Corollary 37. For every constant δ > 0, there exists a constant τ > 0 and an explicit
function ILExt : Fn

2 → {0, 1} such that

ROLBP2−τn(ILExt) > 2(1/3−2δ)n.

7 Note that we also improve the error from 2n−Ω(1)
in [12] to 2−Ω(n). This improvement comes from a

better construction of affine correlation breakers in more recent works [7, 13].

CCC 2023

9:16 Hardness Against Linear Branching Programs and More

Proof. Let ILExt be the extractor in Theorem 12 with parameter δ > 0, and let τ > 0 be the
corresponding constant in Theorem 12. (The output of ILExt is truncated to 1 bit.) Observe
that given any two independent sources A, B ∈ Fn

2 , span(Supp(A)) ∩ span(Supp(B)) = {0}
implies that for every x ∈ Supp(A + B), there is a unique pair (a, b) ∈ Supp(A) × Supp(B)
such that a + b = x, where a is the projection of x on span(Supp(A)) and b is the projection
of x on span(Supp(B)). This implies H∞(A + B) = H∞(A) + H∞(B). Therefore, we can
apply Theorem 11 on ILExt by taking k1 = k2 = (1/3 + δ)n and conclude that

ROLBP2−τn(ILExt) > 2(1/3−2δ)n. ◀

Before we formally prove Theorem 12, first we recall the construction of the interleaved-
source extractor in [12]. The construction can be viewed as an affine variant of the three-
source extractor in [18], which is as follows. Suppose we have three independent sources
X, Y, Z ∈ {0, 1}n with min-entropy δn. The first step is to apply a somewhere random
condenser on Z to get t = O(1) correlated sources (S1, . . . , St) ∈ ({0, 1}d1)t such that there
exists an unknown i∗ ∈ [t] for which Si∗ is guaranteed to have min-entropy (1 − β)d1, for
some small enough constant β > 0. The second step is to compute Ri = Ext(Y, Si) for every
i ∈ [t] with some strong seeded extractor Ext. This makes sure that Ri∗ is close to uniform,
but we still don’t know i∗, and Ri∗ is correlated with other Ri. To fix this problem, the
final step is to apply a correlation breaker to “break the correlation” between (R1, . . . , Rt)
with the help of the remaining independent source X, and merge them into a single uniform
string by computing their parity.

In the interleaved source/sumset source setting, we are only given one source A + B. To
apply the above three-source extractor construction, [12] takes a prefix of A + B of length
n1, denoted by A0 + B0, to play the role of Z in the above construction. Then A and B
would play the roles of X and Y in the above construction respectively. In fact, since we do
not have access to A and B separately, we would actually use A + B to play the role of both
X and Y. We would take Ext to be a strong linear seeded extractor, and the correlation
breaker to be an affine correlation breaker, so that A + B can play the role of B and A
respectively in the analysis. We will see the definitions of these primitives later.

To see why taking Z to be the prefix A0 + B0 could possibly work, first observe that in
the above construction, we only need a block source (Z, X) and another independent source
Y, instead of three independent sources. That is, we only need (X, Z) to be independent of
Y, and X to have enough entropy conditioned on Z, because we would fix Z after the first
step in the analysis. Therefore, as long as A0 has enough entropy, we can fix B0 in the first
step, and (A, A0 + B0) would become independent of B. For the analysis to work, we need
to make sure that after fixing both A0 and B0, both A and B still have enough entropy.
Therefore, we need H∞(A), H∞(B) to be greater than n1. At the same time, we also need
n1 to be large enough so that A0 contains enough entropy. (Note that A, B are symmetric
in the construction, so the analysis can also work if B0 contains enough entropy instead.) It
turns out that it suffices to take n1 = n/3 if A + B is an interleaved source, and this is the
only place where [12] needs A + B to be an interleaved source. We observe that what we
actually need in the analysis is that H∞(A + B) is larger than 2n/3.

Next we introduce the primitives that we mentioned in the above construction. First we
define somewhere random sources and somewhere random condenser.

▶ Definition 38. We say (R1, . . . , Rt) ∈ ({0, 1}n)t is an elementary somewhere random
k-source if there exists i ∈ [t] s.t. H∞(Ri) ≥ k. A somewhere random k-source is a convex
combination of elementary somewhere random k-sources.

E. Chattopadhyay and J.-J. Liao 9:17

▶ Definition 39. We say SRCon : {0, 1}n → ({0, 1}m)t is a (α1 → α2, ε)-somewhere random
condenser if for every X ∈ {0, 1}n such that H∞(X) ≥ α1n, SRCon(X) is ε-close to a
somewhere random (α2m)-source.

▶ Lemma 40 ([2, 48, 55]). For every constants δ, β > 0, there exist constants t ∈ N and
γ1, γ2 > 0 such that the following holds. For every large enough n ∈ N, there exists an explicit
(δ → 0.99, ε)-somewhere random condenser SRCon : {0, 1}n → ({0, 1}γ1n)t where ε = 2−γ2n.

The second primitive we need is a strong linear seeded extractors. We say a seeded extractor
Ext : X × S → {0, 1}n is linear if for every s ∈ S, Ext(·, s) is a linear function. We need a
linear seeded extractor with good dependence on the error, which can be constructed with a
composition of GUV condenser [30] and leftover hash lemma [33]. (See, e.g., [7] for a proof.)

▶ Lemma 41. For every m and ε > 0, and every d ≥ 2m + 8 log(n/ε) + O(1), there is an
explicit (k, ε)-strong linear extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m with seed Ud, where
k ≥ m + 2 log(1/ε) .

Specifically, we want to choose ε small enough to get a seeded extractor that works for
high-entropy seed.

▶ Lemma 42. For every d ≥ 200 log(n), there is an explicit function LExt : {0, 1}n ×
{0, 1}d → {0, 1}d/3, such that for every distribution Y ∈ {0, 1}d which satisfies H∞(Y) ≥
0.99d, LExt is a (0.5d, 2−0.02d)-strong extractor with seed Y.

Proof. We claim that we can take LExt to be the (k, ε)-extractor in Lemma 41, where
ε = 2−0.03d and k = 0.5d. Note that the restriction on k and d is satisfied by our choice of
parameters. Since LExt is a strong-(k, 2−0.03d) extractor with seed Ud, Lemma 27 implies
that for every distribution Y ∈ {0, 1}d with min-entropy 0.99d, LExt is a (k, 2−0.02d)-strong
extractor with seed Y. ◀

Finally we introduce (a special case of) affine correlation breakers. Roughly speaking, if
we are given correlated random variables (Y1, . . . , Yt) where Yi is uniform, we can feed
(Y1, . . . , Yt) into a correlation breaker, and break the correlation of the i-th output from the
other output, with the help of an extra independent source X. We say a correlation breaker
is an affine correlation breaker if we allow the extra source to be in the form X = A + B
where A is an independent source but B can be correlated with (Y1, . . . , Yt).

▶ Definition 43 ([41, 10]). We say ACB : {0, 1}n × {0, 1}d × [t] → {0, 1}m is a (t, k, ε)-affine
correlation breaker if for every distribution A, B ∈ {0, 1}n, Y1, . . . , Yt ∈ {0, 1}d and every
i∗ ∈ [t] such that

H∞(A) ≥ k,
A is independent of (B, Y1, . . . , Yt),
Yi∗ = Ud,

it holds that

(ACB(A + B, Yi∗ , i∗) ≈ε Um) | {ACB(A + B, Yi, i)}i∈[t]\{i∗}

We need the following construction of affine correlation breaker which can work for ε = 2−Ω(n).

▶ Lemma 44 ([7, 13]). For every t = O(1), there exists a universal constant C such that
for ε > 0 and m ∈ N, there exists an explicit (t, k, ε)-affine correlation breaker ACB :
{0, 1}n × {0, 1}d × [t] → {0, 1}m such that d = C log(n/ε) and k = C(m + log(n/ε)).

CCC 2023

9:18 Hardness Against Linear Branching Programs and More

Now we are ready to prove Theorem 12.

Proof of Theorem 12. The construction of ILExt is as follows.
1. Take X1 to be a length-(n/3) prefix of X.
2. Compute (S1, S2, . . . , St) = SRCon(X1), where SRCon : {0, 1}n/3 → ({0, 1}γ1n)t is the

(3δ → 0.99, 2−γ2n) somewhere random condenser from Lemma 40. (t ∈ N, γ1 > 0, γ2 > 0
are constants depending on δ. Specifically, we can make γ1 < δ.)

3. Define γ3 = min(δ/3t, γ1/3), and let LExt : {0, 1}n × {0, 1}γ1n → {0, 1}γ3n be the
(0.5γ1n, 2−0.01γ1n)-strong linear extractor from Lemma 42 which can work for any seed
with 0.99γ1n min-entropy. Note that for every constant γ1 > 0 we can guarantee that
γ1n ≥ 200 log(n) for large enough n.8
For every i ∈ [t], compute Ri = LExt(X, Si).

4. Output ILExt(X) :=
⊕

i∈[t] ACB(X, Ri, i), where ACB : {0, 1}n × {0, 1}γ3n × [t] →
{0, 1}γn is the (t, (δ/2)n, 2−γ4n)-affine correlation breaker from Lemma 44, where γ4, γ > 0
are small enough constants that satisfy the constraints γ3n ≥ C log(n/ε) and (δ/2)n ≥
C(log(n/ε) + γn) in Lemma 44. (C is a constant depending on t.) It suffices to choose
γ4 = min(γ3/2C, δ/4C) and γ = δ/8C.

Next we prove the correctness of this construction. Let A0 be the prefixes of A of length
(1/3)n respectively, and B0 be the prefixed of B of length (1/3)n. First observe that either
H∞(A0) ≥ δn or H∞(B0) ≥ δn, since

H∞(A0) + H∞(B0) ≥ H∞(A0 + B0) ≥ H∞(A + B) − (2/3)n ≥ 2δn.

Note that A and B are symmetric in this theorem, so without loss of generality we assume
that H∞(A0) ≥ δn. By Lemma 24 and Lemma 25, we have H∞(B|B0=b0) ≥ (δ/2)n with
probability 1 − 2−(δ/2)n over the fixing B0 = b0. For the rest of the proof we fix B0 = b0 and
only consider b0 which makes H∞(B) ≥ (δ/2)n, and add back the 2−(δ/2)n = 2−Ω(n) error in
the end.

Observe that H∞(X0) = H∞(A0 + b0) ≥ δn. Therefore S[t] is 2−γ2n-close to a somewhere
random 0.99γ1n-source. For every i ∈ [t], define RA,i = LExt(A, Si) and RB,i = LExt(B, Si).
Note that Ri = RA,i + RB,i. Now assume that there exists i ∈ [t] such that Si has min-
entropy 0.99γ1n. Because Si is independent of B, and H∞(B) ≥ 0.5δn ≥ 0.5γ1n, we have
then RB,i ≈2−Ω(n) Uγ3n with probability 1 − 2−Ω(n) over the fixing of Si by our choice of
parameters of LExt and Markov argument. Moreover, after fixing Si, RB,i is independent of
A0. Therefore, with probability 1 − 2−Ω(n) over the fixing of A0 (which would also fix Si),
RB,i ≈2−Ω(n) Uγ3n. Then observe that we can remove the assumption and use the fact that
S[t] is 2−γ2n-close to a somewhere random 0.99γ1n-source to conclude that with probability
1−2−Ω(n) over the fixing of A0, there exists i∗ ∈ [t] such that RB,i∗ ≈2−Ω(n) Uγ3n. Moreover,
since RA,[t] is independent of RB,i∗ after fixing A0, we have Ri∗ ≈2−Ω(n) Uγ3n over any
further fixing of RA,[t].

Next, observe that by Lemma 24,

H̃∞(A | (A0, RA,1, . . . , RA,t)) ≥ H∞(A) − (1/3)n − (tγ3)n ≥ (2/3)δn.

By Lemma 25 and union bound, we can conclude that with probability 1 − 2−Ω(n) over
the fixing of A0, RA,1, . . . , RA,t, we have Ri∗ ≈2−Ω(n) Uγ3n and H∞(A) ≥ δ/2n. Moreover,
observe that under any such fixing, A is independent of (B, R[t]). Therefore, by Lemma 44
we can conclude that

8 If γ3 < 1/3 we can simply take the prefix of length γ3n of the output. The output is still uniform, and
LExt is still linear.

E. Chattopadhyay and J.-J. Liao 9:19

(ACB(A + B, Ri∗ , i∗) ≈2−γ4n Uγn) | {ACB(A + B, Ri, i)}i∈[t]\{i∗},

which implies

ILExt(A + B) =
⊕
i∈[t]

ACB(A + B, Ri∗ , i∗) ≈2−γ4n Uγn.

Finally, after adding back all the 2−Ω(n) error that we mentioned above, the error is still
2−Ω(n). ◀

5 Kakeya sets and HSGs for regular ROLBPs

In this section, we prove Theorem 18, which says that rank-r Kakeya set is a hitting set for
oblivious ROLBPs of width (r + 1), and Theorem 20, a size lower bound for rank-r Kakeya
set over Fn

2 .
In [6], it was proved that a Hamming ball of radius (w − 1) is a hitting set for regular

read-once branching program of width w.9 Their proof relies on the fact that there are only
(w − 1) “crucial layers” such that we can only make a “fatal decision” which goes from a
“possibly accept” node to an “always reject” node in these layers. The formal statement is as
follows.

▶ Lemma 45 ([6]). For a ROBP f on Fn
2 with layers L0, L1, . . . , Ln, we say a layer Li is

crucial if there exists v ∈ Li and an edge (u → v) such that u can reach an accepting state
but v cannot.10 Then for every w ∈ N, a regular ROBP of width w has at most (w − 1)
crucial layers.

Based on this lemma, [6] observed that in order to find an input x of which the computation
path reaches an accepting state, we only need to make sure that we do not make any fatal
decision in the crucial layers, and the bits read in the other layer can simply be set to 0.
Therefore, the Hamming ball of radius (w − 1) centered around 0 is a hitting set for regular
ROBPs of width w, because the Hamming ball covers every possible decision in the crucial
layers, no matter where the crucial layers are. This makes sure that we can find a string
which does not make any fatal decision, and this string would reach the sink labeled with 1
in the end.

To generalize this argument to the setting of regular ROLBPs, we want to find a set H

such that for every possible rotation R of Fn
2 , the rotation of H (denoted by R(H)) contains

a string which does not make any fatal decision. A naive idea is to find a set which contains
every possible rotation of Hamming balls centered at 0. However, this contains exactly the
whole set Fn

2 . To deal with this issue, we observe that for the argument in [6] to work, we
only need to make sure that for every possible choices of crucial layers Li1 , . . . , Liw−1 , where
I = {i1, . . . , iw−1} ⊆ [n], there exists a fixing of the bits outside the crucial layer, such that
we enumerate over every possible choice of bits in the crucial layers. Note that the fixing
does not need to be 0 and can depend on the choice of crucial layers I. That is, for every set
I ⊆ [n] of size at most (w − 1), we need to enumerate over a subcube with free bits in I and
arbitrary fixing outside I. To ensure this for every possible rotation, what we need is exactly
a Kakeya set. Next we give a formal proof of our argument.

9 A Hamming ball of radius r centered around c ∈ {0, 1}n is the set of all the strings which are different
from c in at most r bits.

10 Accepting states are the sinks with label 1.

CCC 2023

9:20 Hardness Against Linear Branching Programs and More

▶ Lemma 46. Let H ⊆ Fn
2 be a set which satisfies the following: for every I ⊆ [n] of size

(w − 1), there exists b ∈ Fn
2 such that b + span({ei}i∈I) ⊆ H. Then H is a hitting set for

regular branching programs of width w.

Proof. Let f be a regular branching program of width w which accepts at least one string.
By Lemma 45, there are at most (w − 1) crucial layers in f . Let I denote the set of indices
of these crucial layers. By assumption there exists b ∈ Fn

2 such that b + span({ei}i∈I) ⊆ H.
Now we define a string b′ ∈ Fn

2 inductively as follows. Let v0 be the source of f , and for
every non-sink node v and every b ∈ {0, 1} let next(v, b) denote the node which v connects
to with an edge of label b. For i from 1 to n, we define b′

i (the i-th bit of b′) as follows:
If i ̸∈ I, then set b′

i = bi.
If i ∈ I, then set b′

i = 0 if next(vi−1, 0) can reach a accepting state. Otherwise set b′
i = 1.

Then we define vi = next(vi−1, b′
i). First observe that b′ only differ from b on the bits with

indices in I. Therefore b′ ∈ H. It remains to prove that f(b′) = 1. Next we prove by
induction that every vi can reach a accepting state. This means vn is a accepting state, i.e.
f(b′) = 1. For the base case, note that v0 is the source and hence can reach a accepting
state by assumption. To prove that vi can reach an accepting state assuming that vi−1 can
reach an accepting state, consider two cases. If i ̸∈ I, then the i-th layer is not crucial,
which means vi can reach a accepting state. If i ∈ I, observe that at least one node in
{next(vi−1, 0), next(vi−1, 1)} should be able to reach a accepting state, because they are the
only nodes that vi−1 can connect to, and vi−1 can reach a accepting state. Therefore vi can
also reach a accepting state by definition of b′

i. ◀

Now we are ready to prove Theorem 18.

Proof of Theorem 18. Let K be a rank-r Kakeya set, and f be any oblivious ROLBP of
width (r + 1) that accepts at least one string. Observe that there exists a full-rank matrix
R ∈ Fn×n

2 and a read-once regular BP f ′ of width (r + 1) such that for every x ∈ Fn
2 we have

f(x) = f ′(Rx). We claim that f ′ accepts at least one string in H = {Rx : x ∈ K}, which
implies that f accepts at least one string in K.

For every I ⊆ [n] of size r, observe that there exists b ∈ Fn
2 such that

b + span({R−1ei}i∈I) ⊆ K,

by definition of Kakeya set. This implies that Rb + span({ei}i∈I) ⊆ H. By Lemma 46, H is
a hitting set for regular branching programs of width (r + 1). Therefore f ′ accepts at least
one string in H. ◀

▶ Corollary 47. For every r, n ∈ N s.t. r ≤ n, there is an explicit hitting set K ⊆ Fn
2 for

oblivious read-once regular linear BP of width (r + 1) such that |K| ≤ 2⌈(1−2−r)n⌉+r.

5.1 Limitation to our approach
Next we prove Theorem 20, which proves a lower bound on rank-r Kakeya sets and implies
that the seed length of hitting set generator based on our approach cannot be improved by
much.

▶ Theorem 20 (restated). Every rank-r Kakeya set over Fn
2 has size at least 2(1−2−r)(n+2)−r.

Proof. Let sn,r denote the minimum size of rank-r Kakeya set over Fn
2 . Clearly Sn,0 = 1 for

every n ∈ N. We will show that for every n, r we have S2
n,r ≥ 2n+1Sn−1,r−1, and then the

claimed bound easily follows by induction.

E. Chattopadhyay and J.-J. Liao 9:21

To prove this claim, consider any rank-r Kakeya set over Fn
2 , denoted by K, and for every

non-zero a ∈ Fn
2 define Ka = {v ∈ Fn

2 : v ∈ K ∧ v + a ∈ K}. We claim that for every a we
have |Ka| ≥ 2Sn−1,r−1. (Note that this also implies |K| ≥ 2Sn−1,r−1 because every Ka is a
subset of K.) To prove this, first we assume w.l.o.g. that the n-th bit of a is 1, and define
K ′

a = {v′ ∈ Fn−1
2 : v′ ◦ 0 ∈ Ka}. Note that |K ′

a| = |Ka|/2 because for every v ∈ Fn
2 we have

v ∈ Ka if and only if v + a ∈ Ka, and exactly one of {v, v + a} has the last bit being 0.
We claim that K ′

a is a rank-(r − 1) Kakeya set over size Fn−1
2 , and hence has size at

least Sn−1,r−1. To prove this, consider any subspace V ′ ⊆ Fn−1
2 of dimension (r − 1), and

let V denote the subspace of Fn
2 which consists of vectors in V ′ padded with a 0 in the last

bit. Since K is a rank-r Kakeya set, there exists b ∈ Fn
2 such that b + V + {0n, a} ⊆ K.

W.l.o.g. we can assume that the last bit of b is 0, i.e. b = b′ ◦ 0 for some b′ ∈ Fn−1
2 . Then

observe that V ′ + b′ ⊆ K ′
a, because for every v′ ∈ V ′ we have that (v′ ◦ 0) + (b′ ◦ 0) ∈ K and

(v′ ◦ 0) + (b′ ◦ 0) + a ∈ K, which implies that v′ + b′ ∈ K ′
a.

Since the same argument works for every subspace V ′ of dimension (r − 1), this means
K ′

a is a rank-r Kakeya set. Finally, consider the bijective function f : Fn
2 × Fn

2 → Fn
2 × Fn

2
defined as f(v1, v2) = (v1, v2 − v1). Observe that the image of f on K × K is exactly
(K × {0n}) ∪

⋃
a∈Fn

2 ,a ̸=0n Ka × {a}. This implies |K|2 ≥ 2n+1Sn−1,r−1, which is exactly the
bound we want. ◀

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
2 Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating

independence: New constructions of condensers, ramsey graphs, dispersers, and extractors. J.
ACM, 57(4):20:1–20:52, 2010. doi:10.1145/1734213.1734214.

3 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for
width-2 branching programs. Theory of Computing, 9(1):283–293, 2013.

4 Andrej Bogdanov, William M Hoza, Gautam Prakriya, and Edward Pyne. Hitting sets for
regular branching programs. In 37th Computational Complexity Conference (CCC 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

5 Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan. Pseudorandomness for
read-once formulas. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, pages 240–246, 2011. doi:10.1109/FOCS.2011.57.

6 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

7 Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, pages 622–633, 2021. doi:10.1109/FOCS52979.2021.00067.

8 Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. The space complexity of
sampling. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

9 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudoran-
domness for unordered branching programs through local monotonicity. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, pages 363–375, 2018.

10 Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 299–311, 2016.
doi:10.1145/2897518.2897643.

11 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1171–1184, 2017.

CCC 2023

https://doi.org/10.1145/1734213.1734214
https://doi.org/10.1109/FOCS.2011.57
https://doi.org/10.1109/FOCS52979.2021.00067
https://doi.org/10.1145/2897518.2897643

9:22 Hardness Against Linear Branching Programs and More

12 Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret sharing for
interleaved tampering and composition of tampering. In Theory of Cryptography - 18th
International Conference, TCC 2020, volume 12552 of Lecture Notes in Computer Science,
pages 584–613, 2020. doi:10.1007/978-3-030-64381-2_21.

13 Eshan Chattopadhyay and Jyun-Jie Liao. Extractors for sum of two sources. In STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1584–1597, 2022.
doi:10.1145/3519935.3519963.

14 Eshan Chattopadhyay and David Zuckerman. New extractors for interleaved sources. In 31st
Conference on Computational Complexity, CCC 2016, volume 50 of LIPIcs, pages 7:1–7:28,
2016. doi:10.4230/LIPIcs.CCC.2016.7.

15 Kuan Cheng and William M Hoza. Hitting sets give two-sided derandomization of small space.
In 35th Computational Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

16 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In Theory of Cryptography Conference, pages 440–464. Springer, 2014.

17 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988. doi:
10.1137/0217015.

18 Gil Cohen. Local correlation breakers and applications to three-source extractors and mergers.
SIAM J. Comput., 45(4):1297–1338, 2016. doi:10.1137/15M1029837.

19 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, ITCS 2016, pages 47–58,
2016. doi:10.1145/2840728.2840734.

20 Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n - o(n) lower bound
on the circuit complexity of affine dispersers. In Mathematical Foundations of Computer
Science 2011 - 36th International Symposium, MFCS 2011, volume 6907 of Lecture Notes in
Computer Science, pages 256–265, 2011. doi:10.1007/978-3-642-22993-0_25.

21 Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplification and
non-malleable extractors via character sums. In IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, pages 668–677, 2011. doi:10.1109/FOCS.2011.67.

22 Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139,
2008. doi:10.1137/060651380.

23 Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pages 601–610, 2009. doi:10.1145/1536414.1536496.

24 Jordan S Ellenberg, Richard Oberlin, and Terence Tao. The kakeya set and maximal conjectures
for algebraic varieties over finite fields. Mathematika, 56(1):1–25, 2010.

25 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A better-than-3n lower bound for the circuit complexity of an explicit function. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 89–98, 2016.
doi:10.1109/FOCS.2016.19.

26 Michael A. Forbes and Venkatesan Guruswami. Dimension expanders via rank condensers. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, volume 40 of LIPIcs, pages 800–814, 2015.

27 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, pages 946–955, 2018. doi:10.1109/FOCS.2018.00093.

28 Uma Girish, Avishay Tal, and Kewen Wu. Fourier growth of parity decision trees. arXiv
preprint, 2021. arXiv:2103.11604.

https://doi.org/10.1007/978-3-030-64381-2_21
https://doi.org/10.1145/3519935.3519963
https://doi.org/10.4230/LIPIcs.CCC.2016.7
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1137/15M1029837
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1109/FOCS.2011.67
https://doi.org/10.1137/060651380
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1109/FOCS.2018.00093
https://arxiv.org/abs/2103.11604

E. Chattopadhyay and J.-J. Liao 9:23

29 Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching programs
and directional affine extractors. In 37th Computational Complexity Conference, CCC 2022,
volume 234 of LIPIcs, pages 4:1–4:16, 2022. doi:10.4230/LIPIcs.CCC.2022.4.

30 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. J. ACM, 56(4):20:1–20:34, 2009.
doi:10.1145/1538902.1538904.

31 John Hastad. Almost optimal lower bounds for small depth circuits. Adv. Comput. Res.,
5:143–170, 1989.

32 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for xor functions.
SIAM Journal on Computing, 47(1):208–217, 2018.

33 Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, STOC 1989, pages 12–24, 1989. doi:10.1145/73007.73009.

34 Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

35 Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extractors for
small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011. doi:10.1016/j.jcss.2010.
06.014.

36 Swastik Kopparty, Vsevolod F Lev, Shubhangi Saraf, and Madhu Sudan. Kakeya-type sets in
finite vector spaces. Journal of Algebraic Combinatorics, 34(3):337–355, 2011.

37 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993. doi:10.1137/0222080.

38 Chin Ho Lee, Edward Pyne, and Salil P. Vadhan. Fourier growth of regular branching
programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2022, volume 245 of LIPIcs, pages 2:1–2:21, 2022.
doi:10.4230/LIPIcs.APPROX/RANDOM.2022.2.

39 Chin Ho Lee and Emanuele Viola. Some limitations of the sum of small-bias distributions.
Theory of Computing, 13(1):1–23, 2017.

40 Jiatu Li and Tianqi Yang. 3.1n – o(n) circuit lower bounds for explicit functions. In STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1180–1193, 2022.
doi:10.1145/3519935.3519976.

41 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages
168–177, 2016. doi:10.1109/FOCS.2016.26.

42 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. CoRR,
abs/2303.06802, 2023. doi:10.48550/arXiv.2303.06802.

43 Xin Li and Yan Zhong. Explicit directional affine extractors and improved hardness for linear
branching programs. CoRR, abs/2304.11495, 2023. doi:10.48550/arXiv.2304.11495.

44 Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In
Advances in Cryptology – CRYPTO ’97, 17th Annual International Cryptology Conference,
volume 1294 of Lecture Notes in Computer Science, pages 307–321, 1997. doi:10.1007/
BFb0052244.

45 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

46 Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992. doi:10.1007/BF01305237.

47 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994.

48 Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, STOC 2005, pages 11–20, 2005. doi:10.1145/1060590.
1060593.

CCC 2023

https://doi.org/10.4230/LIPIcs.CCC.2022.4
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1145/73007.73009
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1137/0222080
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.48550/arXiv.2303.06802
https://doi.org/10.48550/arXiv.2304.11495
https://doi.org/10.1007/BFb0052244
https://doi.org/10.1007/BFb0052244
https://doi.org/10.1137/0222053
https://doi.org/10.1007/BF01305237
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1145/1060590.1060593

9:24 Hardness Against Linear Branching Programs and More

49 Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branch-
ing programs via fourier analysis. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 655–670. Springer, 2013.

50 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 238–251,
2017.

51 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the log-rank conjecture. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 658–667. IEEE, 2013.

52 Yoav Tzur. Notions of weak pseudorandomness and gf (2n)-polynomials. Master’s thesis,
Weizmann Institute of Science, 2009.

53 Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

54 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages
1–10, 1985. doi:10.1109/SFCS.1985.49.

55 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

A Definitions of strongly read-once linear branching programs

The difference between the definition of strongly read-once in [29] and our definition (Defin-
ition 2) is as follows. First, let Pre′

u denote the span of all the linear queries on a path
to u, excluding the query ℓu on u. The definition of strongly read-once in [29] is that
Pre′

u ∩ Postu = {0} for every node u. First we show that the definition in [29] implies
Definition 2.

▷ Claim 48. In a linear branching program, if for every node v it holds that Pre′
v∩Postv = {0},

then
For every edge (u, v), Preu ∩ Postv = {0}.
For every node v, Prev ∩ Postv = {0, ℓv}.

Proof. Let P (v) denote the set of all nodes u such that there is an edge (u → v). Observe
that Pre′

v = span(
⋃

u∈P (v) Preu). Therefore, if Pre′
v ∩ Postv = {0}, then (Preu ∩ Postv) ⊆

(Pre′
v ∩ Postv) for every u ∈ P (v), which implies Preu ∩ Postv = {0} for every u ∈ P (v). To

prove the second property, note that Prev = Pre′
v∪(Pre′

v+ℓv). Because Postv is a subspace that
contains ℓv, we have (Pre′

v +ℓv)∩Postv = (Pre′
v +ℓv)∩(Postv +ℓv) = (Pre′

v ∩Postv)+ℓv = {ℓv},
which implies Prev ∩ Postv = {0, ℓv}. ◁
Next we show that our definition is strictly more general.

▷ Claim 49. There exists a linear branching program which satisfies the strongly read-once
definition in Definition 2, but contains some node w such that Pre′

w ∩ Postw ̸= {0}.

Proof. To see why this is the case, consider a linear branching programs with four non-
sink nodes, s, v1, v2, w, and the two edges of w connect to two sink labeled with 0 and 1
respectively. Furthermore, we choose the queries on these nodes to be ℓs = e3, ℓv1 = e1,
ℓv2 = e2 and ℓw = e1 + e2. Then observe that both Pre′

w and Postw contain e1 + e2, but this
linear branching program satisfies the definition in Definition 2. ◁

https://doi.org/10.1561/0400000010
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.4086/toc.2007.v003a006

E. Chattopadhyay and J.-J. Liao 9:25

In fact, from the example above, one can see that our definition of strongly read-once is
technically incomparable with the “weakly read-once” model defined in [29], which requires
that ℓv ̸∈ Pre′

v for every v. However, our definition is closer to strongly read-once in [29]
because we still need the fact that the queries before v and the queries after v do not affect
each other.

Finally let us elaborate what the second property in our definition means, because it
might seem less intuitive. Given the first definition, we see that every edge e = (u → v)
decompose Fn

2 into two complemented subspace. The second property is to make sure that
the dimension of both subspaces in this decomposition change by at most 1 when we move
one step from an edge (u → v) to another edge (v → w). This is to make sure that for every
path we can find an edge e such that the dimension of Preu and Postv is exactly what we
want. Without this property, the size lower bound in Theorem 11 would become roughly
2n−k1−2k2 because the dimension of Postv can drop down to half after one step, and the
directional affine extractor in [29] would no longer work.

B Directional affine extractors are non-malleable

Recently, stronger variants of seeded and seedless extractors, called non-malleable extractors
have been studied, with motivations from cryptography and pseudorandomness [23, 16]. In
this section we show that directional affine extractors are equivalent to affine extractors that
are non-malleable against tampering functions that are constant shift.

We refer the reader to [16] for the general definition of seedless non-malleable extractors,
and present the definition specialized to our setting below.

▶ Definition 50. We say Ext : Fn
2 → {0, 1} is a (d, ε)-non-malleable affine extractor against

shifts if for every source X ∈ Fn
2 which is uniform over an affine subspace of dimension d,

and every non-zero shift a ∈ Fn
2 ,

(Ext(X) ≈ε U1) | Ext(X + a).

It’s easy to see that a (d, ε)-non-malleable affine extractor against shifts is also a (d, ε)-
directional affine extractor. We prove the converse below.

▶ Theorem 51. For every d ∈ N, ε > 0 such that d ≥ log(1/ε), a (d, ε)-directional affine
extractor is also a (d, O(

√
ε))-non-malleable affine extractor.

Proof. To prove this theorem, we need an extension of Vazirani’s XOR lemma, which can
be found in [21, Lemma 3.8]. We only state the special case we need here.

▶ Lemma 52. Let (W, W′) be a random variable over (F2)2. If W ≈ε U1 and (W+W′) ≈ε

U1, then

(W ≈4ε U1) | W′.

With this lemma, it suffices to prove that for every (d, ε)-directional affine extractor DAExt :
Fn

2 → {0, 1} the following holds. for every source X ∈ Fn
2 which is uniform over an affine

subspace of dimension d, and every non-zero shift a ∈ Fn
2 ,

DAExt(X) ≈√
ε U1, and

DAExt(X) + DAExt(X + a) ≈√
ε U1.

The second condition is directly implied by the definition of DAExt. It remains to prove the
first condition. Let V be the linear subspace which is a shift of the affine subspace Supp(X),
and let V denote the uniform distribution over V which is independent of X. Observe that
V + X is the same distribution as X, and H∞(V) ≥ d ≥ log(1/ε). Then, by Lemma 31 we
have DAExt(X + V) ≈O(

√
ε) U1. ◀

CCC 2023

9:26 Hardness Against Linear Branching Programs and More

We note that Chattopadhyay and Li [11] considered the problem of constructing non-
malleable extractors against the more general class of all linear functions, but their results
requires to the affine source to have dimension 0.99n. However, it appears difficult to extend
their techniques to handle smaller min-entropy, even against the weaker class of shifts.

C Extractors for average conditional min-entropy, generalized

In this section we prove the following lemma.

▶ Lemma 29 (restated). Let (X, Y, E) be a joint distribution such that X ∈ X and Y ∈ S are
independent conditioned on E, and H̃∞(X | E) ≥ k. Let Ext : X × S → {0, 1}m be a function
which satisfies the following conditions for an error parameter ε > 0 and a deterministic
function g: for every e ∈ Supp(E), there exists a set Xe ⊆ X with size at least 2k+1 such
that Ext when restricted to the domain Xe × S is a (k, ε)-extractor with seed Y|E=e and is
strong in g(e, Y). Then

(Ext(X, Y) ≈3ε Um) | (E, g(E, Y)).

The proof follows the outline in [53, Problem 6.8], but each step in the proof needs to be
extended to our more general definition of seeded extractors. First we need the following
lemma.

▶ Lemma 53. Let Ext : X × S → {0, 1}m be a (k, ε)-extractor with seed Y, where k ≤
log(|X |) − 1, and is strong in g(Y) for some deterministic function g. Then for every
0 < t ≤ k, Ext : X × S → {0, 1} is also a (k − t, 2t+1ε)-extractor with seed Y that is strong
in g(Y).

Proof. Let G = Supp(g(Y)). It suffices to prove that for every T ⊆ {0, 1}m × G and every
X such that H∞(X) ≥ k − t, it holds that

Pr [(Ext(X, Y), g(Y)) ∈ T] − Pr [(Um, g(Y)) ∈ T] ≤ (2t+1 − 1)ε

For every x ∈ X , define δ(x) = Pr [(Ext(x, Y), g(Y)) ∈ T] − Pr[(Um, g(Y)) ∈ T]. Let
N = |X |, and consider an ordering of the elements in X , x1, . . . , xN such that δ(x1) ≥
δ(x2) ≥ . . . ≥ δ(xN). Define a step function f : (0, N] → R to be f(r) = δ(x⌈r⌉). Note
that f is decreasing. Since Ext is a (k, ε) extractor, observe that for every 0 ≤ m ≤
N − 2k it holds that −ε ≤ 2−k

∫m+2k

m
f(t) dt ≤ ε, because 2−k

∫m+2k

m
f(t) dt corresponds

to Pr [(Ext(X′, Y), g(Y)) ∈ T] − Pr [(Um, g(Y)) ∈ T] for some X′ of min-entropy k. Then
observe that

Pr [(Ext(X, Y), g(Y)) ∈ T] − Pr [(Um, g(Y)) ∈ T]

≤ 2t−k

∫ 2k−t

0
f(t) dt

= 2t−k

(∫ 2k

0
f(t) dt −

∫ 2k

2k−t

f(t) dt

)

≤ 2t−k

(∫ 2k

0
f(t) dt − 2k − 2k−t

2k

∫ N

N−2k

f(t) dt

)
(2k ≤ N − 2k and f is decreasing)

≤ (2t+1 − 1)ε
≤ 2t+1ε. ◀

E. Chattopadhyay and J.-J. Liao 9:27

Next we prove Lemma 29.

Proof of Lemma 29. For every e ∈ Supp(E), write Xe = X|E=e and Ye = Y|E=e for short.
Note that (X, Y) | (E = e) is equivalent to independent distributions (Xe, Ye). Therefore,

∆ ((Ext(X, Y), E, g(E, Y)); (Ext(X, Y), E, g(E, Y)))
= E

e∼E
[∆ ((Ext(Xe, Ye), g(e, Ye)); (Ext(Xe, Ye), g(e, Ye)))]

=
∑

e:H∞(Xe)≥k

Pr[E = e] · ∆ ((Ext(Xe, Ye), g(e, Ye)); (Ext(Xe, Ye), g(e, Ye)))

+
∑

e:H∞(Xe)<k

Pr[E = e] · ∆ ((Ext(Xe, Ye), g(e, Ye)); (Ext(Xe, Ye), g(e, Ye)))

=
∑

e:H∞(Xe)≥k

Pr[E = e] · ε

+
∑

e:H∞(Xe)≥k

Pr[E = e] · 2k+1−H∞(Xe)ε (by Lemma 53)

≤
∑

e

Pr[E = e] · ε +
∑

e

Pr[E = e] · 2k+1−H∞(Xe)ε

= ε + 2−k · 21+H̃∞(X|E) · ε

≤ 3ε. ◀

CCC 2023

	1 Introduction
	1.1 Linear branching programs
	1.2 Prior work
	1.3 Our results
	1.4 On average-case lower bound with negligible error
	1.5 Pseudorandomness against linear branching programs
	1.6 Subsequent Works and Future Directions
	1.7 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Statistical Distance
	2.3 Conditional Min-entropy
	2.4 Extractors

	3 Linear BP lower bounds based on sumset extractors
	4 Average-case lower bound with negligible error
	4.1 Sumset extractors for almost affine source
	4.2 Sumset extractors for non-intersecting span

	5 Kakeya sets and HSGs for regular ROLBPs
	5.1 Limitation to our approach

	A Definitions of strongly read-once linear branching programs
	B Directional affine extractors are non-malleable
	C Extractors for average conditional min-entropy, generalized

