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Abstract
Modeling sequential and parallel composition of
effectful computations has been investigated in a
variety of languages for a long time. In particular,
the popular do-notation provides a lightweight ef-
fect embedding for any instance of a monad. Idiom
bracket notation, on the other hand, provides an
embedding for applicatives. First, while monads
force effects to be executed sequentially, ignoring
potential for parallelism, applicatives do not sup-
port sequential effects. Composing sequential with
parallel effects remains an open problem. This is
even more of an issue as real programs consist of
a combination of both sequential and parallel seg-

ments. Second, common notations do not support
invoking effects in direct-style, instead forcing a
rigid structure upon the code.

In this paper, we propose a mixed applicative/-
monadic notation that retains parallelism where
possible, but allows sequentiality where necessary.
We leverage a direct-style notation where sequen-
tiality or parallelism is derived from the structure
of the code. We provide a mechanisation of our
effectful language in Coq and prove that our compil-
ation approach retains the parallelism of the source
program.
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17:2 A Direct-Style Effect Notation for Sequential and Parallel Programs

1 Scope

The artifact comprises a Docker image containing a Coq proof and a Scala program. The proof of
the paper is mechanised in Coq. The compiler is implemented as well in Scala 3 via Macros, and
a few tests.

2 Content

In the paper we have described the formal definition of a structurally recursive code-to-code
translation function from a direct-style effect notation to monadic and applicative combinators,
together with a proof of preservation of important properties. These can be found in the coq
folder. Additionally, we mentioned an implementation in Scala, that works similar. These can be
found in the scala folder.

More specifically the listings, figures, definitions, lemmas, and theorems of the paper correspond
to the Coq source code in the following way:

Listing 1 in the paper defines the class Monad, and the class LawfulMonad
Listing 2 in the paper defines the inductive ty, the function EVAL, the inductive ef, the function
EF, the inductive tm, the function eval, and the function relabel
Listing 3 in the paper defines the function PURE, the function AP, and the function JOIN
Figure 4 in the paper defines the function SPAN which corresponds to the use of (fun _ => nat)
in the mechanisation, the function WORK which corresponds to the use of (fun _ => nat) in the
mechanisation, the function span, and the function work
Thereom 1 in the paper corresponds to the definition of the function PURE itself, e.g., the
well-formedness of the translated term is guaranteed by the fact that PURE is well-typed.
Lemma 2 “(AP respects semantics)” in the paper corresponds to the function AP_eval in the
mechanisation
Lemma 3 “(JOIN respects semantics)” in the paper corresponds to the function JOIN_eval in
the mechanisation
Lemma 4 “(relabel respects semantics)” in the paper corresponds to the functions to_eval_src,
to_eval_tgt in the mechanisation
Theorem 5 “(PURE preserves semantics)” in the paper corresponds to the function eval_pres
in the mechanisation
Theorem 5 “(PURE preserves semantics)” in the paper corresponds to the function eval_pres
in the mechanisation
Lemma 6 “(AP respects span and work)” in the paper corresponds to the functions AP_span
and AP_work in the mechanisation
Lemma 7 “(JOIN respects span and work)” in the paper corresponds to the functions JOIN_span
and JOIN_work in the mechanisation
Lemma 8 “(com is side-effect free)” in the paper corresponds to the functions span_com_zero
and work_com_zero in the mechanisation
Lemma 9 “(relabeled terms remain effect-free)” in the paper are separated into two steps, first
the functions to_span_src, to_span_tgt, to_work_src, to_work_tgt in the mechanisation show
that the span and work is preserved, and second the function span_com_zero and work_com_zero
show that the span and work is not only preserved, but also equal to zero.
Theorem 10 “(PURE preserves span and work)” in the paper corresponds to the functions
span_pres and work_pres in the mechanisation

The Scala implementation provides a direct-style notation as an alternative to the for-
comprehensions (do-notation), that compiles not only to sequential (monadic), but also parallel
(applicative) combinators. This can be re-used by importing it. An example of how our artifact
can be reused in new applications can be found in the the Readme inside the artifact.
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3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/stg-tud/parseq-notation.

4 Tested platforms

Hardware: There are no special hardware requirements. The device you execute the docker image
should provide a performance comparable to a modern Computer or a Laptop. Software: We
expect artifact reviewers to have preinstalled docker, a text editor, a terminal (tested with bash),
and a .tar.gz extraction tool.

5 License

The artifact is available under Apache 2.0 License.

6 MD5 sum of the artifact

4a0db8605896be17ef789fc3bc4b7f59

7 Size of the artifact

1.00 GiB
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