
A Direct-Style Effect Notation
for Sequential and Parallel Programs (Artifact)
David Richter #

Technische Universität Damstadt, Germany
Timon Böhler #

Technische Universität Damstadt, Germany

Pascal Weisenburger #

Universität St. Gallen, Switzerland
Mira Mezini #

Technische Universität Damstadt, Germany
hessian.AI, Darmstadt, Germany

Abstract
Modeling sequential and parallel composition of
effectful computations has been investigated in a
variety of languages for a long time. In particular,
the popular do-notation provides a lightweight ef-
fect embedding for any instance of a monad. Idiom
bracket notation, on the other hand, provides an
embedding for applicatives. First, while monads
force effects to be executed sequentially, ignoring
potential for parallelism, applicatives do not sup-
port sequential effects. Composing sequential with
parallel effects remains an open problem. This is
even more of an issue as real programs consist of
a combination of both sequential and parallel seg-

ments. Second, common notations do not support
invoking effects in direct-style, instead forcing a
rigid structure upon the code.

In this paper, we propose a mixed applicative/-
monadic notation that retains parallelism where
possible, but allows sequentiality where necessary.
We leverage a direct-style notation where sequen-
tiality or parallelism is derived from the structure
of the code. We provide a mechanisation of our
effectful language in Coq and prove that our compil-
ation approach retains the parallelism of the source
program.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Software
and its engineering → Concurrent programming structures; Software and its engineering → Parallel
programming languages
Keywords and phrases do-notation, parallelism, concurrency, effects
Digital Object Identifier 10.4230/DARTS.9.2.17
Funding David Richter : German Federal Ministry of Education and Research iBlockchain project (BMBF
No. 16KIS0902)
Timon Böhler : Hessian Ministry of Higher Education, Research, Science and the Arts (HMWK) via the
project 3rd Wave of AI (3AI)
Pascal Weisenburger : The University of St. Gallen (IPF, No. 1031569); Swiss National Science Foundation
(SNSF, No. 200429)
Mira Mezini: Hessian Ministry of Higher Education, Research, Science and the Arts (HMWK) via the
project 3rd Wave of AI (3AI); German Federal Ministry of Education and Research iBlockchain project
(BMBF No. 16KIS0902); German Federal Ministry of Education and Research and Hessian Ministry of
Higher Education, Research, Science and the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE

Related Article David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini, “A Direct-Style
Effect Notation for Sequential and Parallel Programs”, in 37th European Conference on Object-Oriented
Programming (ECOOP 2023), LIPIcs, Vol. 263, pp. 25:1–25:22, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 17, pp. 17:1–17:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:timon.boehler@stud.tu-darmstadt.de
https://orcid.org/0009-0002-9964-7367
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/DARTS.9.2.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


17:2 A Direct-Style Effect Notation for Sequential and Parallel Programs

1 Scope

The artifact comprises a Docker image containing a Coq proof and a Scala program. The proof of
the paper is mechanised in Coq. The compiler is implemented as well in Scala 3 via Macros, and
a few tests.

2 Content

In the paper we have described the formal definition of a structurally recursive code-to-code
translation function from a direct-style effect notation to monadic and applicative combinators,
together with a proof of preservation of important properties. These can be found in the coq
folder. Additionally, we mentioned an implementation in Scala, that works similar. These can be
found in the scala folder.

More specifically the listings, figures, definitions, lemmas, and theorems of the paper correspond
to the Coq source code in the following way:

Listing 1 in the paper defines the class Monad, and the class LawfulMonad
Listing 2 in the paper defines the inductive ty, the function EVAL, the inductive ef, the function
EF, the inductive tm, the function eval, and the function relabel
Listing 3 in the paper defines the function PURE, the function AP, and the function JOIN
Figure 4 in the paper defines the function SPAN which corresponds to the use of (fun _ => nat)
in the mechanisation, the function WORK which corresponds to the use of (fun _ => nat) in the
mechanisation, the function span, and the function work
Thereom 1 in the paper corresponds to the definition of the function PURE itself, e.g., the
well-formedness of the translated term is guaranteed by the fact that PURE is well-typed.
Lemma 2 “(AP respects semantics)” in the paper corresponds to the function AP_eval in the
mechanisation
Lemma 3 “(JOIN respects semantics)” in the paper corresponds to the function JOIN_eval in
the mechanisation
Lemma 4 “(relabel respects semantics)” in the paper corresponds to the functions to_eval_src,
to_eval_tgt in the mechanisation
Theorem 5 “(PURE preserves semantics)” in the paper corresponds to the function eval_pres
in the mechanisation
Theorem 5 “(PURE preserves semantics)” in the paper corresponds to the function eval_pres
in the mechanisation
Lemma 6 “(AP respects span and work)” in the paper corresponds to the functions AP_span
and AP_work in the mechanisation
Lemma 7 “(JOIN respects span and work)” in the paper corresponds to the functions JOIN_span
and JOIN_work in the mechanisation
Lemma 8 “(com is side-effect free)” in the paper corresponds to the functions span_com_zero
and work_com_zero in the mechanisation
Lemma 9 “(relabeled terms remain effect-free)” in the paper are separated into two steps, first
the functions to_span_src, to_span_tgt, to_work_src, to_work_tgt in the mechanisation show
that the span and work is preserved, and second the function span_com_zero and work_com_zero
show that the span and work is not only preserved, but also equal to zero.
Theorem 10 “(PURE preserves span and work)” in the paper corresponds to the functions
span_pres and work_pres in the mechanisation

The Scala implementation provides a direct-style notation as an alternative to the for-
comprehensions (do-notation), that compiles not only to sequential (monadic), but also parallel
(applicative) combinators. This can be re-used by importing it. An example of how our artifact
can be reused in new applications can be found in the the Readme inside the artifact.



D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 17:3

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/stg-tud/parseq-notation.

4 Tested platforms

Hardware: There are no special hardware requirements. The device you execute the docker image
should provide a performance comparable to a modern Computer or a Laptop. Software: We
expect artifact reviewers to have preinstalled docker, a text editor, a terminal (tested with bash),
and a .tar.gz extraction tool.

5 License

The artifact is available under Apache 2.0 License.

6 MD5 sum of the artifact

4a0db8605896be17ef789fc3bc4b7f59

7 Size of the artifact

1.00 GiB

DARTS

https://github.com/stg-tud/parseq-notation

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

