
The Dolorem Pattern: Growing a Language Through
Compile-Time Function Execution (Artifact)
Simon Henniger #

Technische Universität München, Germany

Nada Amin #

Harvard University, Cambridge, MA, USA

Abstract
Programming languages are often designed as static,
monolithic units. As a result, they are inflexi-
ble. We show a new mechanism of programming
language design that allows to more flexible lan-
guages: by using compile-time function execution

and metaprogramming, we implement a language
mostly in itself. Our approach is usable for creating
feature-rich, yet low-overhead system programming
languages. We illustrate it on two systems, one that
lowers to C and one that lowers to LLVM.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its engineering
→ Language features
Keywords and phrases extensible languages, meta programming, macros, program generation, compila-
tion
Digital Object Identifier 10.4230/DARTS.9.2.13

Related Article Simon Henniger and Nada Amin, “The Dolorem Pattern: Growing a Language Through
Compile-Time Function Execution”, in 37th European Conference on Object-Oriented Programming
(ECOOP 2023), LIPIcs, Vol. 263, pp. 41:1–41:27, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact is a VM with Fedora Linux and the following software components pre-installed on
the desktop:

Code of dolorem-c and dolorem-llvm (both can be found on the desktop or in /home/artifact/
Desktop)
Binaries of dolorem-c (with gcc), dolorem-llvm (with tcc), and dolorem-llvm
Examples and benchmarks
This means the artifact comes with a caveat: Since it is a virtual machine, any measurements

within it will always be more noisy than measurements on real hardware (like the measurements
in the paper).

The following from the paper can be seen in the artifact:

Running code in dolorem-c – no specific claim, but we feel the artifact is useful to test the
language
Running code in dolorem-llvm (again, no specific claim)
Running dolorem-llvm Pong
dolorem-llvm Compile speed measurements (figure 3 on p. 25)
Time spent in the C compiler for dolorem-c (claims from section 5.5)
See below for precise instructions.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Simon Henniger and Nada Amin;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 13, pp. 13:1–13:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:s.henniger@tum.de
mailto:namin@seas.harvard.edu
https://doi.org/10.4230/DARTS.9.2.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


13:2 The Dolorem Pattern: Growing a Language (Artifact)

2 Content

The artifact package includes:
the VM image.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on Zenodo.
The artifact is available at: https://zenodo.org/record/7720029

4 Tested platforms

The VM was tested in VirtualBox 7.0, but should work with other hypervisors as well.

5 License

Anything newly written for the artifact is availble under CC-BY-AT.

6 MD5 sum of the artifact

9b5d480f8227dfbfcaf693506a960fec

7 Size of the artifact

3.3 GB

A Getting Started

Start the VM. It contains a Fedora Linux install with only one user, “artifact”. The user does
not have a password. When prompted for a passwort, simply press Enter. Note that, by default,
the VM uses a US layout. You can change this by right-clicking on the American flag in the
bottom-right corner and pressing “Keyboard Handler Settings”, adding your keyboard layout to
the list and then clicking the flag in the panel to switch layouts.

You will find three desktop folders with source code and binaries, one each for dolorem-c (with
gcc), dolorem-c with tcc, and dolorem-llvm.

Right-click the implemenation you want and use “Open in Terminal”. Important: For every
implementation, you first need to type “source confld.sh” in your terminal to setup a local variable.
Otherwise, you will see a dl error.

Here’s how to verify our claims:

A.1 Running code in dolorem-c
The artifact can be used to try and develop code for dolorem-c (both with clang and with tcc).
Try ./dolorem rlpl.dlr for a loop that generates C code for dolorem-c code you type in. Note
that the VM is quite slow for dolorem-c with clang (see caveat above). A few suggestions:

Start with something simple. Type in a number or a string literal.
Then maybe use an operator. Try (add 1 1).
Try calling a function, like (puts "hello, world").

https://zenodo.org/record/7720029


S. Henniger and N. Amin 13:3

Now, let’s make a function. Try (function hello-world () void (puts "hello, world")).
Write (compile (function hello-world () void (puts "hello, world"))). (You may
know this is equivalent to (defun hello-world () void (puts "hello, world")) because
of how “defun” is defined.)
You should have seen that (obviously) compiling yields no new C code. But after com-
pilation, our function is available to use! So let’s write a macro that uses it: (defmacro
hello-world-macro (progn (hello-world) (make-cexp "" "" "" "")))
Finally, call the macro: (hello-world-macro)

A.2 Running code in dolorem-llvm
You can do something similar for dolorem-llvm. The file “a.dlr” contains some example code that
shows off a few language features. We recommended you open a text editor and change this file.
Then run it with ./dolorem a.dlr.

A.3 Pong
We reference a Pong implementation that runs based on SDL2 and dolorem-llvm (with two small
C adaptor functions we link in). Run it by typing ./dolorem pong.dlr in the dolorem-llvm
folder and play Pong. Use the arrow keys to control the game, and Esc to quit.

A.4 Compile speed measurements
Type ./benchmark_compile.sh to get the numbers for figure 4.

If your performance measurements are all zeros, remember to type source confld.sh.

A.5 Time spent in the C compiler for dolorem-c
In section 5.5, we make various claims on how much time is spent in the C compiler. To check
the claims, run ./dolorem -M def.dlr for both dolorem-c with gcc, and dolorem-c with tcc and
compare the results. You can also try this on other dolorem-c code.

DARTS


	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Getting Started
	A.1 Running code in dolorem-c
	A.2 Running code in dolorem-llvm
	A.3 Pong
	A.4 Compile speed measurements
	A.5 Time spent in the C compiler for dolorem-c


