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Abstract
Reliable storage systems must be crash consistent – guaranteed to recover to a consistent state after a
crash. Crash consistency is non-trivial as it requires maintaining complex invariants about persistent
data structures in the presence of caching, reordering, and system failures. Current programming
models offer little support for implementing crash consistency, forcing storage system developers to
roll their own consistency mechanisms. Bugs in these mechanisms can lead to severe data loss for
applications that rely on persistent storage.

This paper presents a new synthesis-aided programming model for building crash-consistent
storage systems. In this approach, storage systems can assume an angelic crash-consistency model,
where the underlying storage stack promises to resolve crashes in favor of consistency whenever
possible. To realize this model, we introduce a new labeled writes interface for developers to identify
their writes to disk, and develop a program synthesis tool, DepSynth, that generates dependency
rules to enforce crash consistency over these labeled writes. We evaluate our model in a case study
on a production storage system at Amazon Web Services. We find that DepSynth can automate
crash consistency for this complex storage system, with similar results to existing expert-written
code, and can automatically identify and correct consistency and performance issues.
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1 Introduction

Many applications build on storage systems such as file systems and key-value stores to reliably
persist user data even in the face of full-system crashes (e.g., power failures). Guaranteeing
this reliability requires the storage system to be crash consistent: after a crash, the system
should recover to a consistent state without losing previously persisted data. The state of
a storage system is consistent if it satisfies the representation invariants of the underlying
persistent data structures (e.g., a free data block must not be linked by any file’s inode). Crash
consistency is notoriously difficult to get right [34, 22, 35], due to performance optimizations
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35:2 Synthesis-Aided Crash Consistency for Storage Systems

in modern software and hardware that can reorder writes to disk or hold pending disk writes
in a volatile cache. In normal operation, these optimizations are invisible to the user, but a
crash can expose their partial effects, leading to inconsistent states.

A number of general-purpose approaches exist to implement crash consistency, including
journaling [23], copy-on-write data structures [24], and soft updates [11]. However, imple-
menting a storage system using these approaches is still challenging for two reasons. First,
practical storage systems combine crash consistency techniques with optimizations such as
log-bypass writes and transaction batching to improve performance [30]. These optimizations
and their interactions are subtle, and have led to severe crash-consistency bugs in well-tested
storage systems [17, 7]. Second, developers must implement their system using low-level
APIs provided by storage hardware and kernel I/O stacks, which offer no direct support
for enforcing consistency properties. Instead they provide only durability primitives such
as flushes, and require the developer to roll their own consistency mechanisms on top of
them. While prior work offers testing [18, 34] and verification [8, 27] tools for validating
crash consistency, these tools do not alleviate the burden of implementing crash-consistent
systems.

This paper presents a new synthesis-aided programming model for building crash-
consistent storage systems. The programming model consists of three parts: a high-level
storage interface based on labeled writes; a synthesis engine for turning labeled writes and a
desired crash consistency property into a set of dependency rules that writes to disk must
respect; and a dependency-aware buffer cache that enforces the synthesized rules at run
time. Together, these three components let developers keep their implementation free of
hardcoded optimizations and mechanisms for enforcing consistency. Instead, developers can
focus on the key aspects of their storage system – functional correctness, crash consistency,
and performance – one at a time. Their development workflow consists of three steps.

First, developers implement their system against a higher-level storage interface by
providing labels for each write their system makes to disk. Labels provide information about
the data structure the write targets and the context for the write (e.g., the transaction it is
part of). For example, a simple journaling file system might require two writes to append to
the journal: one to append the data block to the tail of the journal (labeled data) and one to
update a superblock that records a pointer to that tail (labeled superblock). This higher-level
interface allows the developer to assume a stronger angelic nondeterminism model for crashes
– the system promises that crash states will always satisfy the developer’s crash consistency
property if possible – simplifying the implementation effort.

Second, to make their implementation crash consistent even on relaxed storage stacks, the
developer uses a new program synthesizer, DepSynth, to automatically generate dependency
rules that writes to disk must respect. A dependency rule uses labels to define an ordering
requirement between two writes: writes with one label must be persisted on disk before
corresponding writes with the second label. The DepSynth synthesizer takes three inputs:
the storage system implementation, a desired crash consistency predicate for disk states
of the storage system (i.e., a representation invariant for on-disk data structures), and a
collection of small litmus test programs [2, 5] that exercise the storage system. Given these
inputs, DepSynth searches a space of happens-before graphs to automatically generate a
set of dependency rules that guarantee the crash-consistency predicate for every litmus test.
Although this approach is example-guided and so only guarantees crash consistency on the
supplied tests, the dependency rule language is constrained to make it difficult to overfit to
the tests, and so in practice the rules generalize to arbitrary executions of the storage system.
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Third, developers run their storage system on top of a dependency-aware buffer cache
that enforces the synthesized dependency rules. For example, in a journaling file system, the
superblock pointer to the tail of the journal must never refer to uninitialized data. DepSynth
will synthesize a dependency rule enforcing this consistency predicate by saying that data
writes must happen before superblock writes. At run time, the dependency-aware buffer cache
enforces this rule by delaying sending writes labeled superblock to disk until the corresponding
data write has persisted. The dependency-aware buffer cache is free to reorder writes in any
way to achieve good performance on the underlying hardware (e.g., by scheduling around
disk head movement or SSD garbage collection) as long as it respects the dependency rules.

We evaluate the effectiveness and utility of DepSynth in a case study that applies it to
ShardStore [4], a production key-value store used by the Amazon S3 object storage service.
We show that DepSynth can rapidly synthesize dependency rules for this storage system. By
comparing those rules to the key-value store’s existing crash-consistency behavior, we find
that DepSynth achieves similar results to rules hand-written by experts, and even corrects an
existing crash-consistency issue in the system automatically. We also show that dependency
rules synthesized by DepSynth generalize beyond the example litmus tests used for synthesis,
and that DepSynth can be used for storage systems beyond key-value stores.

In summary, this paper makes three contributions:
A new programming model for building storage systems that automates the implementa-
tion of crash consistency guarantees;
DepSynth, a synthesis tool that can infer the dependency rules sufficient for a storage
system to be crash consistent; and
An evaluation showing that DepSynth supports different storage system designs and
scales to production-quality systems.

The remainder of this paper is organized as follows. Section 2 gives a walk-through of building
a simple storage system with DepSynth. Section 3 defines the DepSynth programming model,
including labeled writes and dependency rules. Section 4 describes the DepSynth synthesis
algorithm for inferring dependency rules, and Section 5 details DepSynth’s implementation
in Rosette. Section 6 evaluates the effectiveness of DepSynth. Section 7 discusses related
work, and Section 8 concludes.

2 Overview

This section illustrates the DepSynth development workflow by walking through the imple-
mentation of a simple storage system. We show how a developer can build a storage system
with labeled writes while assuming a strong crash consistency model, and use DepSynth to
automatically make that system crash consistent on real storage stacks.

2.1 Log-structured storage systems
A log-structured storage system persists user data in a sequential log on disk [25]. This
design forsakes complex on-disk data structures in favor of one with simple invariants and, as
a result, simpler crash consistency requirements. However, although log-structured storage
systems are well studied, their precise consistency requirements can be subtle in the face of
the caching and reordering optimizations used by the modern storage stack.

Consider implementing a simple key-value store as a log-structured storage system. The
on-disk data structure comprises two parts as shown in Figure 2a: a log that stores key-value
pairs (with one pair per block), and a superblock that holds pointers to the head and tail
of the log. We will assume that single-block writes (disk.write) are atomic, that each
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class KeyValueStore(DepSynth):
def __init__(self):

self.superblock = disk.read(0)
if self.superblock.empty(): # initialize an empty disk

self.superblock_head, self.superblock_tail = 1, 1
else:

self.superblock_head, self.superblock_tail = from_block(superblock)
self.epoch = 0

def put(self, key: int, value: int):
address = self.superblock_tail
self.superblock_tail += 1

new_block = to_block(key, value)
disk.write(address, new_block, ("log", self.epoch))

new_superblock = to_block(self.superblock_head, self.superblock_tail)
disk.write(0, new_superblock, ("superblock", self.epoch))

self.epoch += 1

def get(self, key: int) -> Optional[int]:
address = self.superblock_tail - 1
while address >= self.superblock_head:

block = disk.read(address)
current_key, current_value = from_block(block)
if current_key == key:

return current_value
address -= 1

return None

Figure 1 Implementation of a simple log-structured key-value store.

key-value pair fits in one block, and that the log does not run out of space. To implement
this system, the developer writes put and get methods that interact with the disk as shown
in Figure 1.

Calls to disk.read and disk.write illustrate our new higher-level storage interface:
disk.read is unchanged from the usual system call, taking as input an address on the disk
to read from; and disk.write takes as input an address on the disk to write to, the block
data to write to that address, and a third label argument. A label is a pair of a string name
and an integer epoch. Labels serve as identities for writes: the name describes the data
structure the write targets, while the epoch relates writes across different data structures.
This implementation uses the name part of the label to distinguish writes of new log blocks
and writes to the superblock,1 and uses the epoch part as a logical clock that relates the two
writes generated by a single put call. Labels exist only in memory while a write is in-flight,
and are never persisted to disk.

1 For this system we could distinguish the two data structures without labels – superblock writes are to
address 0 while log writes are to non-zero addresses – but in general, storage systems reuse addresses
over time and so this mapping is not static.
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(1, 3) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

head

tail

(a) On-disk layout of a simple log-structured key-
value store. Each block holds a (key, value) pair.
The first block is a superblock that holds pointers
to the head and tail of the log.

(1, 4) (0, 42) (1, 81) ∅

b0 b1 b2 b3 b4 …

head

tail

(b) Possible on-disk state after a crash, leaving the
superblock pointing to a range that includes an
invalid block.

Figure 2 The on-disk layout of a simple key-value store. Arrows denote pointers and boxes are
blocks.

While this implementation is functionally correct, it would not be crash consistent if
implemented on a classical storage stack. The issue is with the ordering of log and superblock
writes: even though the code suggests that the superblock write comes after the log write,
optimizations in the storage stack could reorder the two writes and lead to a crash state
where the superblock is updated but its corresponding new log block is not, as Figure 2b
shows. This would leave the superblock_tail pointer referring to an uninitialized disk
block. What we need for consistency is a way to preclude this reordering. One solution in
the DepSynth programming model would be for the developer to manually implement a
dependency rule that prevents this reordering:

def __init__(self):
self.rule("superblock", "log", eq)

A dependency rule rule("a", "b", eq) specifies an ordering constraint: a write labeled with
name "a" must not be sent to disk until after a write labeled with name "b". We say that
such a rule means write "a" depends on write "b", or equivalently that write "b" must happen
before write "a". The third argument to rule is an epoch predicate that scopes the rule using
the epoch in each label. Here, the eq predicate restricts the rule to only apply to pairs of
writes whose labels have equal epochs. This rule means that superblock updates cannot be
persisted on disk until a log block write with the same epoch is persisted first, ruling out the
reordering behavior that could make the log inconsistent.

2.2 Dependency rule synthesis
While the developer could specify the above dependency rule manually, our programming
model does not require them to, and distilling the correct set of rules for a complex storage
system is difficult to do by hand. The challenge is a semantic gap: the developer’s desired
high-level consistency property is about the on-disk data structure as a whole, but the
implementation of consistency can only refer to individual block-sized writes. We bridge this
gap with DepSynth, a program synthesis tool that can automatically infer the dependency
rules sufficent to make a storage system crash consistent.

DepSynth takes three inputs. First, it takes as input the implementation of the storage
system. Second, it takes as input a crash consistency predicate, written as an executable
checker over a disk state. The crash consistency predicate defines the property that should be
true of every state of the disk, including after crashes. For our log-structured key-value store,
our desired consistency property is that the superblock_tail pointer never gets ahead of
the blocks that have been written to the log. We can implement this property by checking
that all blocks in the log are valid log blocks (we omit an implementation of valid for brevity,
but it could validate a checksum of the block):

ECOOP 2023
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def consistent(self) -> bool:
ret = True
for address in range(self.superblock_head, self.superblock_tail):

block = disk.read(address)
ret = ret and valid(block)

return ret

Finally, DepSynth takes as input a collection of litmus tests, small programs that exercise
the storage system. Litmus tests are widely used to communicate the semantics of memory
consistency models [2, 32], and have also been used to communicate crash consistency
models [5]. A DepSynth litmus test comprises two executable programs initial and main.
Both programs take as input a reference to the storage system. The initial program sets
up some initial state in the system, and cannot crash. The main program manipulates the
system state, and can crash at any point. For example, this is a simple litmus test that starts
from a single log entry and appends two more:

class SingleEntry_TwoAppend(LitmusTest):
def initial(self, store: KeyValueStore):

store.put(0, 42)

def main(self, store: KeyValueStore):
store.put(1, 81)
store.put(2, 37)

As with previous work on memory consistency models [2, 6], the developer can draw litmus
tests from a number of sources: they may be hand-written by the developer, drawn from a
common set of tests for important properties, generated automatically by a fuzzer or program
enumerator, or intelligently generated by analyzing the on-disk data structures used by the
storage system [1].

Given these three inputs, DepSynth automatically synthesizes a set of dependency rules
that suffice to guarantee the crash-consistency predicate holds on all crash states generated
by all litmus tests. For our example log-structured key-value store, DepSynth synthesizes
two dependency rules:

def __init__(self):
self.rule("superblock", "log", eq)
self.rule("superblock", "superblock", gt)

The first rule is the same rule we hand-wrote earlier. The second rule fixes a subtle crash-
consistency bug in our hand-written implementation: while the first rule ensures consistency
for a single put operation, it still allows superblock_tail to get ahead of the log if writes
from multiple puts are reordered with each other (for example, reordering writes from the
first and second puts in the litmus test above). The second rule prevents this reordering
using the gt epoch predicate, which specifies that a superblock write with epoch i cannot
be persisted to disk until all superblock writes with lower epochs j < i are persisted first.
The combination of these rules precludes the problematic reordering and guarantees that the
superblock always refers to a valid range of log blocks, rather than only requiring the block
at superblock_tail to be valid.
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3 Reasoning About Crash Consistency

The DepSynth workflow includes a new high-level interface for building storage systems
and a synthesis tool for automatically making those systems crash consistent. This section
describes the high-level interface, including labeled writes and dependency rules, and presents
a logical encoding for reasoning about crashes of systems that use this interface. Section 4
then presents the DepSynth synthesis algorithm for inferring sufficient dependency rules to
make a storage system crash consistent.

3.1 Disk Model and Dependency Rules
In the DepSynth programming model, storage systems run on top of a disk model d that
provides two operations:

d.write(a, v, l): write a data block v to disk address a with label l

d.read(a): read a data block at disk address a

We assume that single-block write operations are atomic, as in previous work [27, 8]. These
interfaces are similar to the standard POSIX pwrite and pread APIs, except that the write
operation additionally takes as input a label for the write. A label l = ⟨n, t⟩ is a pair of a
name string n and an epoch integer t. Labels allow the developer to provide identities for
each write their system performs, which dependency rules (described below) can inspect to
enforce ordering requirements. Although the two components of a label together identify a
write, developers use them for separate purposes: the name indicates which on-disk data
structure the write targets, while the epoch associates related writes with different names.
Names are strings but are not interpreted by our workflow other than to check equality
between them. Epochs are integers that dependency rules use as logical clocks to impose
orderings on related writes.

3.1.1 Dependency rules
DepSynth synthesizes declarative dependency rules to enforce consistency requirements for a
storage system that uses labeled writes.

▶ Definition 1 (Dependency rule). A dependency rule n1 ⇝p n2 comprises two names n1
and n2 and an epoch predicate p(t1, t2) over pairs of epochs. Given two labels la = ⟨na, ta⟩
and lb = ⟨nb, tb⟩, we say that a dependency rule n1 ⇝p n2 matches la and lb if na = n1,
nb = n2, and p(ta, tb) is true.

Dependency rules define ordering requirements over all writes with labels that match them,
and the dependency-aware buffer cache enforces these rules at run time. More precisely, the
dependency-aware buffer cache enforces dependency safety for all writes it sends to disk:

▶ Definition 2 (Dependency safety). A dependency-aware buffer cache maintains dependency
safety for a set of dependency rules R if, whenever a storage system issues two writes
d.write(a1, s1, l1) and d.write(a2, s2, l2), and a rule na ⇝p nb ∈ R matches l1 and l2, then
the cache ensures the write to a1 does not persist until the write to a2 is persisted on disk.

In other words, all crash states of the disk that include the effect of the first write must
also include the effect of the second write. Section 3.3 will specify dependency safety more
formally by defining the crash behavior of a disk in first-order logic.

The epoch predicate of a dependency rule reduces the scope of the rule to only apply to
some writes labeled with the relevant names. Given two labels l1 = ⟨n1, t1⟩ and l2 = ⟨n2, t2⟩, a
dependency rule n1 ⇝p n2 can use one of three epoch predicates: =, >, and <, which restrict
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the rule to apply only when t1 = t2, t1 > t2, and t1 < t2, respectively. These variations allow
dependency rules to specify ordering requirements over unbounded executions of the storage
system without adding unnecessary dependencies between all operations with certain names.

Together, the name and epoch components of labels allow dependency rules to define a
variety of important consistency requirements, depending on how the developer chooses to
label their writes. For example, if all writes generated by a related operation (e.g., a top-level
API operation like put in a key-value store) share the same epoch t, then rules using the
= epoch predicate can impose consistency requirements on individual operations, such as
providing transactional semantics. As another example, rules using the > epoch predicate
can be used as barriers for all previous writes, and so can help to implement operations like
garbage collection that manipulate an entire data structure.

3.1.2 Dependency-aware buffer cache
At run time, storage systems implemented with the DepSynth programming model execute
on top of a dependency-aware buffer cache. This buffer cache is configured with a set of
dependency rules at initialization time, and enforces those rules on all writes executed by
the storage system.

The dependency-aware buffer cache is inspired by previous higher-level storage APIs
such as those used by Featherstitch [10] and ShardStore [4], which also provide interfaces for
specifying ordering requirements for writes. Both of these interfaces are imperative: they
require the developer to manually construct a dependency graph for each write they execute,
and so closely intertwine the ordering requirements with the implementation, as constructing
these graphs requires sharing graph nodes (patchgroups in Featherstitch and dependencies in
ShardStore) across threads and operations. In contrast, the dependency-aware buffer cache
interface is declarative: the dependency rules are configured once, and then automatically
applied to all relevant writes without requiring the developer to manually construct graphs
or invoke consistency primitives like fsync.

The implementation details of the dependency-aware buffer cache are outside the scope
of this paper and follow the examples of Featherstitch and ShardStore. An implementation
could use a variety of consistency and durability primitives provided by disks, including
force-unit-access writes, cache flush commands, or ordering barriers. We trust the correctness
of the dependency-aware buffer cache, and specifically we assume it enforces dependency
safety (Definition 2).

3.2 Storage Systems and Litmus Tests
To apply DepSynth, developers provide three inputs: a storage system implementation, a
collection of litmus tests that exercise the storage system, and a crash consistency predicate
for the system.

3.2.1 Storage system implementations
Developers implement a storage system for DepSynth by defining a collection of API operations
O and an implementation function for each operation:

▶ Definition 3 (Storage system implementation). A storage system implementation O =
{Oa, Ob, . . . } is a set of API operations Oi and, for each Oi, an implementation function
IOi(d, x) that takes as input a disk state d and a vector of other inputs x and issues write
operations to mutate disk d.
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DepSynth requires implementation functions to support being symbolically evaluated with
respect to a symbolic disk state d. In this paper, we use Rosette [28] as our symbolic
evaluator; this requires implementation functions to be written in Racket and allows them
to be automatically lifted to support the necessary symbolic evaluation, so long as their
executions are deterministic and bounded.

We say that a program P is a sequence of calls [O1(x1), . . . , On(xn)] to API operations
Oi ∈ O. Given a program P , we write EvaluateO(P ) for the function that symbolically
evaluates each IOi

(d, xi) in turn, starting from a symbolic disk d, and returns a trace of
labeled write operations [w1, . . . , wn] that the program performed. The trace does not need
to include read operations as they cannot participate in ordering requirements.

3.2.2 Litmus tests

DepSynth synthesizes dependency rules from a set of example litmus tests, which are small
programs that exercise the storage system and demonstrate its desired consistency behavior.
A litmus test T = ⟨Pinitial, Pmain⟩ is a pair of programs that each invoke operations of the
storage system. The initial program Pinitial sets up an initial state of the storage system
by, for example, prepopulating the disk with files or objects. It will be executed starting
from an empty disk, and cannot crash. The main program Pmain then tests the behavior of
the storage system starting from that initial state. DepSynth will exercise all possible crash
states of the main program.

Litmus tests are widely used to communicate the semantics of memory consistency models
to developers [2, 32], and have also been used to communicate crash consistency [5] and to
search for crash consistency bugs in storage systems [18]. DepSynth is agnostic to the source
of the litmus tests it uses so long as they fit the definition of a program (i.e., are straight-line
and deterministic).

3.2.3 Crash consistency predicates

To define crash consistency for their system, developers also provide a crash-consistency
predicate Consistent(d) that takes a disk state d and returns whether the disk state should
be considered consistent. The crash-consistency predicate should include representation
invariants for the storage system’s on-disk data structures. For example, a file system like
ext2 might require that all block pointers in inodes refer to blocks that are allocated (i.e., no
dangling pointers). These properties correspond to those that can be checked by an fsck-like
checker [12]. The crash-consistency predicate can also include stronger properties such as
checking the atomic-replace-via-rename property for POSIX file systems [5, 22].

3.3 Reasoning About Crashes

To reason about the crash behaviors of a storage system, we encode the semantics of
dependency rules and litmus tests in first-order logic based on existing work on storage
verification [27]. We first encode the behavior of a single write operation, and then extend
that encoding to executions of entire programs.
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3.3.1 Write operations

We model the behavior of a disk write operation as a transition function fwrite(d, a, v, s),
that takes four inputs: the current disk state d, the disk address a to write to, the new block
value v to write, and a crash flag s, a boolean that is used to encode the effect of a crash
on the resulting disk state. Given these inputs, fwrite returns the resulting disk state after
applying the operation. The effect of a write operation is visible on the disk only if s is true:

fwrite(d, a, v, s) = d[a 7→ if s then v else d(a)].

3.3.2 Program executions

Given the trace of write operations [w1, . . . , wn] = EvaluateO(P ) executed by a program P

against storage system O, and for each write its corresponding crash flag si, we can define
the final disk state of the program by just applying the transition function in sequence:

Run ([write(a1, v1, l1), w2, . . . , wn], [s1, . . . , sn], d)
= Run ([w2, . . . , wn], [s2, . . . , sn], fwrite(d, a1, v1, s1))

Run ([], [], d) = d

We call the vector s = [s1, . . . , sn] of crash flags for each operation in the trace a crash
schedule.

Not all crash schedules are possible. At run time, the dependency-aware buffer cache
constrains the set of valid crash schedules by applying the dependency rules it is configured
with:

▶ Definition 4 (Valid crash schedule). Let [w1, . . . , wn] = EvaluateO(P ) be the trace of
operations executed by a program P on storage system O, R be a set of dependency rules,
and s = [s1, . . . , sn] the crash schedule for the trace. The crash schedule s is valid for the
program P and set of rules R, written ValidR(s, P ), if for all operations wi = write(ai, vi, li)
and wj = write(aj , vj , lj), whenever there exists a rule na ⇝p nb ∈ R that matches li and
lj, then si → sj.

This definition is a logical encoding of dependency safety (Definition 2): if si → sj , then
write wj is guaranteed to be persisted on disk whenever write wi is.

Finally, we can define crash consistency for a litmus test T = ⟨Pinitial, Pmain⟩ as a function
of a set of dependency rules R:

▶ Definition 5 (Single-test crash consistency). Let T = ⟨Pinitial, Pmain⟩ be a litmus test. Let
dinitial = Run (EvaluateO(Pinitial), ⊤, d0) be the disk state reached by running the program
Pinitial against storage system O on the all-true (i.e., crash-free) crash schedule ⊤ starting
from the empty disk d0. A set of dependency rules R makes T crash consistent if, for all crash
schedules s such that ValidR(s, Pmain) is true, Consistent(Run (EvaluateO(Pmain), s, dinitial))
holds.

▶ Example 6. Consider the SingleEntry_TwoAppend litmus test from Section 2. Interpreting
the initial and main programs gives two traces:
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Interpret(Pinitial) = [write(1, to_block((0, 42)), ⟨log, 0⟩),
write(0, to_block((1, 2)), ⟨superblock, 0⟩)]

Interpret(Pmain) = [write(2, to_block((1, 81)), ⟨log, 1⟩),
write(0, to_block((1, 3)), ⟨superblock, 1⟩),
write(3, to_block((2, 37)), ⟨log, 2⟩),
write(0, to_block((1, 4)), ⟨superblock, 2⟩)]

Let s = [s1, s2, s3, s4] be a crash schedule for Pmain. Applying the two synthesized rules from
Section 2 restricts the valid crash schedules (Definition 4):

superblock⇝= log requires s2 → s1 and s4 → s3.
superblock⇝> superblock requires s4 → s2.

Combined, these constraints yield seven valid crash schedules. Besides the two trivial
crash schedules s = ⊤ and s = ⊥, the other five crash schedules yield five distinct disk
states:

(1)
[s1 = ⊤, s2 = ⊥, s3 = ⊥, s4 = ⊥]
(only the first log block is on disk)

(1, 2) (0, 42)

b0 b1 b2 b3 b4 …

(1, 81)

(2)
[s1 = ⊥, s2 = ⊥, s3 = ⊤, s4 = ⊥]
(only the second log block is on disk)

(1, 2) (2, 37)

b0 b1 b2 b3 b4 …

(0, 42)

(3)
[s1 = ⊤, s2 = ⊥, s3 = ⊤, s4 = ⊥]
(both log blocks are on disk)

(1, 2) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

(2, 37)

(4)
[s1 = ⊤, s2 = ⊤, s3 = ⊥, s4 = ⊥]
(the first log block and first superblock write
are on disk)

(1, 3) (0, 42)

b0 b1 b2 b3 b4 …

(1, 81)

(5)
[s1 = ⊤, s2 = ⊤, s3 = ⊤, s4 = ⊥]
(the first log block, first superblock write, and
second log block are on disk)

(1, 3) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

(2, 37)

Each of these states satisfies the key-value store’s crash-consistency predicate Consistent(d)
defined in Section 2, as in each case the superblock’s head and tail pointers refer only to
log blocks that are also on disk. Some states result in data loss after the crash – for example,
neither key can be retrieved from crash state 1 above, as the superblock is empty – but these
states are still consistent (i.e., they satisfy the log’s representation invariant). This set of two
rules therefore makes the SingleEntry_TwoAppend litmus test crash consistent according to
Definition 5.

If the second rule superblock⇝> superblock was excluded, the rule set with one remaining
rule allows 2 additional crash states:

(6)

[s1 = ⊤, s2 = ⊥, s3 = ⊤, s4 = ⊤]
(the first log block, second log block, and
second superblock write are on disk)

(1, 4) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

(2, 37)
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(7)

[s1 = ⊥, s2 = ⊥, s3 = ⊤, s4 = ⊤]
(the second log block and second superblock
write are on disk)

(1, 4)

b0 b1 b2 b3 b4 …

(0, 42) (2, 37)

State 6 satisfies the crash-consistency predicate despite losing the first superblock write, as
the second superblock write already contains the effects of the first one. However, state 7
violates the crash-consistency predicate: the first log block is invalid, but is included in the
range between the superblock’s head and tail pointers. The set containing only the first
rule therefore does not make SingleEntry_TwoAppend crash consistent.

4 Dependency Rule Synthesis

This section describes the DepSynth synthesis algorithm, which automatically generates a
set of dependency rules that are sufficient to guarantee crash consistency for a set of litmus
tests. It formalizes the dependency rule synthesis problem, gives an overview of DepSynth’s
approach to synthesizing dependency rules, and then presents the core DepSynth algorithm
(Figure 3).

4.1 Problem Statement
DepSynth solves the problem of finding a single set of dependency rules R that makes
every litmus test T in a set of tests T crash consistent (Definition 5). While Definition 5
suffices to find a set of rules R that guarantees crash consistency, it does not rule out cyclic
solutions that cannot be executed on real hardware. For example, consider a program
P where EvaluateO(P ) = [write(a1, v1, ⟨n1, t1⟩), write(a2, v2, ⟨n2, t2⟩)]. The set of rules
R = {n1 ⇝= n2, n2 ⇝= n1} makes P crash consistent. These two rules do not admit any
valid crash schedules other than the trivial s = ⊤ and s = ⊥ schedules, as Definition 4
forces s1 = s2. In effect, crash consistency for P requires both writes to happen “at the same
time”. But on real disks the level of write atomicity is only a single data block, so there is no
way for both writes to happen at the same time. To rule out cyclic solutions, we follow the
example of happens-before graphs [14] from distributed systems and memory consistency,
and require the set of synthesized dependency rules R to be acyclic.

4.2 The DepSynth Algorithm
The DepSynth algorithm (Figure 3) takes as input a storage system implementation O, a
set of litmus tests T , and a crash-consistency predicate Consistent. Given these inputs, it
synthesizes a set of dependency rules that is acyclic and sufficient to make all tests T crash
consistent.

DepSynth does not try to generate a sufficient set of dependency rules for all tests in T
at once, since this would require a prohibitively expensive search over large happens-before
graphs. Instead, it works incrementally: at each iteration of its top-level loop, DepSynth
chooses a single test T that is not made crash consistent by the current candidate set of
dependency rules (line 4 in Figure 3), invokes the procedure RulesForTest (Section 4.3)
to synthesize dependency rules that make T crash consistent, and adds the new rules to
the candidate set (line 11). Working incrementally reduces the number of litmus tests for
which DepSynth needs to synthesize rules; for example, in Section 6.1 we show that only 10
of 16,250 tests were passed to RulesForTest to synthesize a sufficient set of dependency
rules for a production key-value store. This reduction relieves developers from being selective
about the set of litmus tests they supply to DepSynth, and makes it possible to, for example,
use the output of a fuzzer or random test generator as input.
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1 function DepSynth(O, T , Consistent)
2 R← {}
3 loop
4 T ← NextTest(T , R,O, Consistent)
5 if T = ⊥ then ▷ R makes all tests in T crash consistent
6 return R
7 T ← T \ T
8 R′ ← RulesForTest(T,O, Consistent)
9 if R′ = ⊥ then

10 return UNSAT ▷ No rules can make T crash consistent
11 R← R ∪R′

12 if ¬Acyclic(R) then ▷ Fail if new rules create a cycle in the rule set
13 return UNKNOWN

14 function NextTest(T , R, O, Consistent)
15 for T ∈ T do
16 if ¬CrashConsistent(T, R,O, Consistent) then
17 return T
18 return ⊥

▷ Check Def. 5 with an SMT solver
19 function CrashConsistent(T = ⟨Pinitial, Pmain⟩, R, O, Consistent)
20 dinitial ← Run (EvaluateO(Pinitial), ⊤, d0)
21 return ∀s. ValidR(s, Pmain)⇒ Consistent(Run (EvaluateO(Pmain), s, dinitial))

Figure 3 The DepSynth algorithm takes as input a storage system implementation O, a set of
litmus tests T , and a crash-consistency predicate Consistent, and returns an acyclic set of dependency
rules that make all tests in T crash consistent (Definition 5). The search synthesizes dependency
rules for one litmus test at a time. If the rules generated for two or more tests result in a cycle, this
algorithm fails; Section 4.4 discusses an extension for continuing the search for an acyclic solution.

However, because the rules for each test are generated independently, it is possible for
the union of the generated rules to contain a cycle – even if the rules for each individual
test do not – and so be an invalid solution (Section 4.1). The algorithm in Figure 3 returns
UNKNOWN if such a cycle is found. We have not seen this failure mode occur for the
storage systems we evaluated (Section 6), but it is possible in principle. In Section 4.4, we
explain how to extend DepSynth to recover from cycles by generalizing RulesForTest to
synthesize rules for multiple tests at once.

DepSynth delegates checking for crash consistency to the procedure CrashConsistent
(line 19), which takes as input a single litmus test and a set of dependency rules, and checks
whether the rules make the test crash consistent according to Definition 5. This procedure
uses symbolic evaluation of the storage system implementation O to generate the logical
encoding described in Section 3.3, and solves the resulting formulas using an off-the-shelf
SMT solver [20].

4.3 Synthesizing Dependency Rules with Happens-Before Graphs

The core of the DepSynth algorithm is the RulesForTest procedure in Figure 4, which
takes as input a litmus test T , a storage system implementation O, and a crash-consistency
predicate Consistent, and synthesizes a set of dependency rules that makes T crash consistent.
RulesForTest frames the rule synthesis problem as a search over happens-before graphs [14]
on the writes performed by the test. An edge (w1, w2) between two writes in a happens-before
graph says that write w1 must persist to disk before write w2. Happens-before graphs and
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22 function RulesForTest(T = ⟨Pinitial, Pmain⟩, O, Consistent)
23 W ← {w | w ∈ EvaluateO(Pmain)}
24 return Phase1(T , [], W,O, Consistent)

25 function Phase1(T , order, W , O, Consistent) ▷ Search for total orders over writes
26 if W = ∅ then
27 G← {(order[i], order[j]) | 0 ≤ i < j < |order|}
28 return Phase2(T , G, O, Consistent) ▷ G is a total order; minimize it in Phase 2
29 for w ∈W do
30 order′ ← order + [w]
31 W ′ ←W \ {w}
32 G← {(order[i], order[j]) | 0 ≤ i < j < |order|} ∪

{(w1, w2) | w1 ∈ order ∧ w2 ∈W}∪
{(w1, w2) | w1, w2 ∈W}

33 if ¬CrashConsistent(T, RulesForGraph(G),O, Consistent) then
34 continue
35 R← Phase1(T, order′, W ′,O, Consistent)
36 if R ̸= ⊥ then
37 return R
38 return ⊥

39 function Phase2(T , G, O, Consistent) ▷ Minimize graph G by removing individual edges
40 R← RulesForGraph(G)
41 if ¬CrashConsistent(T, R,O, Consistent) then
42 return ⊥
43 for (w1, w2) ∈ G do ▷ Try removing each edge from G
44 G′ ← G \ {(w1, w2)}
45 R′ ← Phase2(T, G′,O, Consistent)
46 if R′ ̸= ⊥ then
47 return R’
48 if Acyclic(R) then
49 return R ▷ G makes T crash consistent and no subgraph of G suffices
50 else
51 return ⊥

52 function RulesForGraph(G) ▷ Generalize a happens-before graph into dependency rules
53 R← {}
54 for (w1, w2) ∈ G do
55 ⟨n1, t1⟩ ← Label(w1) ▷ Get label l1 = ⟨n1, t1⟩ for write w1 = write(a1, s1, l1)
56 ⟨n2, t2⟩ ← Label(w2)
57 if t1 < t2 then
58 R← R ∪ {n2 ⇝> n1} ▷ Invert order, as a rule na ⇝p nb says na happens after nb

59 else if t1 = t2 then
60 R← R ∪ {n2 ⇝= n1}
61 else
62 R← R ∪ {n2 ⇝< n1}
63 return R

Figure 4 The algorithm for generating sufficient dependency rules for a litmus test T searches
the space of happens-before graphs over the writes performed by T . The first phase searches for
total orders over the writes that are sufficient for crash consistency. Once such a total order is found,
the second phase removes edges from it until the happens-before graph is minimal.
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dependency rules have a natural correspondence: if a happens-before graph includes an edge
(w1, w2), a dependency rule n2 ⇝p n1 that matches the writes’ labels is sufficient to enforce
the required ordering. RulesForTest searches for a minimal, acyclic happens-before graph
that is sufficient to ensure crash consistency for T , and then syntactically generalizes that
happens-before graph into a set of dependency rules.

RulesForTest searches for a happens-before graph by first finding a total order on the
writes that makes T crash consistent (Phase1), and then searching for a minimal partial
order within this total order that is both sufficient for crash consistency and yields an acyclic
set of dependency rules (Phase2). The algorithm is exhaustive: it tries all total orders and
all minimal partial orders within a total order, until it finds a solution or fails because a
solution does not exist.

RulesForTest builds on the observation that crash consistency (Definition 5) is mono-
tonic with respect to the subset relation on dependency rules – if a set of dependency rules
R is not sufficient for crash consistency, then no subset of R is sufficient either:

▶ Theorem 7 (Monotonicity of crash consistency). Let T be a litmus test and R a set of
dependency rules for a storage system O. If R does not make T crash consistent (according
to Definition 5), then no subset R′ ⊂ R can make T crash consistent.

Proof sketch. If R does not make T crash consistent, there exists a valid crash schedule s

(Definition 4) that does not satisfy the crash consistency predicate Consistent. By Definition 4,
each rule in R only adds additional constraints on the possible valid crash schedules. Removing
a rule from R therefore only allows more valid crash schedules, and so if s was a valid crash
schedule for R, it is also a valid crash schedule for any subset of R. ◀

RulesForTest applies this property by checking crash consistency for a happens-before
graph G before exploring any subgraphs of G; if G is not sufficient, then neither is any
subgraph of G, and so that branch of the search can be skipped.

4.3.1 Total order search
Phase1 (line 25) explores all possible total orders over the writes in T that are sufficient for
crash consistency. At each recursive call, the list order represents a total order over some of
T ’s writes, and the set W contains all writes not yet added to that order. Phase1 tries to
add each write in W to the end of the total order. Each time, it checks whether the new
total order leads to a crash consistency violation (line 33) and if so, prunes this branch of
the search. For Phase1 to be complete, this check must behave angellically for the writes in
W that have not yet been added to the order – if there is any possible set of dependency
rules for the remaining writes that would succeed, the check must succeed. We make the
check angelic by including every possible dependency rule for the remaining writes (line 32).
If the test cannot be made crash consistent even with every possible rule included, then by
Theorem 7 no subset of those rules (i.e., formed by completing the rest of the total order) can
succeed either, so the prefix is safe to prune. Phase1 continues until every write has been
added to the total order and then moves to Phase2 to further reduce the happens-before
graph.

4.3.2 Partial order search
Starting from a happens-before graph G that reflects a total order over all writes in T ,
Phase2 (line 39) removes edges from the graph until it is minimal, i.e., removing any further
edges would violate crash consistency. Phase2 removes one edge at a time from the graph
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G (line 44), checks if the graph remains sufficient for crash consistency (line 41), and if
so, recurses to remove more edges. By greedily removing one edge at a time, Phase2 is
guaranteed to find a minimal result, and because Phase2 considers removing every possible
edge from G (except those that cannot lead by solutions by Theorem 7), it is complete – if
an acyclic solution exists, Phase2 will reach it.

4.3.3 Generating rules from happens-before graphs

The RulesForTest search operates on happens-before graphs, but its goal is to synthesize
dependency rules (Definition 1). The RulesForGraph procedure (line 52) bridges this gap
by taking as input a happens-before graph G and returning a set of dependency rules R that
are sufficient to enforce the ordering requirements that G dictates. RulesForGraph uses
a simple syntactic approach to generate a rule for each edge in G: if (w1, w2) ∈ G, where
writes w1 and w2 have labels l1 = ⟨n1, t1⟩ and l2 = ⟨n2, t2⟩, respectively, then it generates
a rule of the form n2 ⇝ n1 (reversing the order because G is a happens-before graph but
dependency rules are happens-after edges). To choose an epoch predicate for the generated
rule, we compare the two epochs t1 and t2 and select the predicate that would make the rule
match the labels l1 and l2.

This approach can lead to rules that are too general, as some rules it generates may only
need to apply to certain individual epochs but will instead apply to all epochs that match
the predicate. Overly general rules risk sacrificing performance by preventing reordering
or caching optimizations that would be safe. However, this same generality also allows
RulesForTests to avoid overfitting to the input litmus tests. In Section 6.1 we show that
generated rules generalize well in practice (i.e., are not overfit), and that they filter out few
additional schedules compared to expert-written rules.

4.3.4 Properties of RulesForTest

The RulesForTest algorithm is sound: all paths that return a solution are guarded by
checks of crash consistency and of acyclicity, and so satisfy the requirements of Section 4.1.
RulesForTest is also complete: each of Phase1 and Phase2 are complete, as discussed
above, and so together form a complete search over the space of total orders. Every possible
acyclic solution must be a subgraph of some total order, since the transitive closure of edges
in any happens-before graph is a (strict) partial order, and so exploring all total orders
suffices to reach any possible acyclic solution. Finally, RulesForTest is minimal, in the
sense that removing any rule from a returned set R would violate crash consistency. Phase2
continues removing edges from a candidate graph G until Theorem 7 says it cannot be made
smaller, and is therefore guaranteed to find a minimal happens-before graph. Every rule
in R is justified by (at least) one edge in that graph, and since dependency rules cannot
overlap (in Definition 1, the possible epoch predicates are disjoint), removing any rule would
incorrectly allow reordering of its corresponding edge(s).

▶ Example 8. Consider running RulesForTest for the simple log-structured key-value
store and SingleEntry_TwoAppend litmus test from Section 2. From Example 6 we know
that this test produces a set W of four writes:
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w1 = write(2, to_block((1, 81)), ⟨log, 1⟩),
w2 = write(0, to_block((1, 3)), ⟨superblock, 1⟩),
w3 = write(3, to_block((2, 37)), ⟨log, 2⟩),
w4 = write(0, to_block((1, 4)), ⟨superblock, 2⟩)

Phase1 first chooses the first write to add to the total order. Suppose it chooses w2. This
choice results in the following graph G at line 32 (shaded nodes are in order; white nodes
are in W ):

w2 w1 w3 w4

The check at line 33 finds that this graph is not crash consistent: it allows a crash schedule
where w2 is on disk but no other writes are, which violates the crash-consistency predicate
as w2 is a superblock write pointing to a log block that is not on disk. Phase1 therefore
continues (line 34), which prunes any total order that starts with [w2] from the search, and
chooses a next write to consider, say w3. The total order starting with [w3] does pass the
crash consistency check, so Phase1 recurses with order = [w3] and W = {w1, w2, w4}. In
this recursive call, suppose we again first choose w2 to add to the total order. This choice
results in the following graph G:

w3 w2 w1 w4

Again, line 33 finds that this graph is not crash consistent, for the same reason as before
(superblock write w2 can be on disk when log write w1 is not), and so the search continues,
pruning any total order that starts with [w3, w2]. Suppose it next chooses w1 to add to
the total order. This choice succeeds, making the recursive call with order = [w3, w1] and
W = {w2, w4}. From here, any choice Phase1 makes will succeed. Supposing it choses w2
first, Phase1 eventually reaches line 28 and continues to Phase2 with the following initial
graph G:

w3 w1 w2 w4

Phase2 proceeds by trying to remove one edge at a time from G. Suppose it first chooses
to remove edge (w3, w1), and so recurses at line 45 on the graph G′ = G \ {(w3, w1)}. This
graph still ensures crash consistency at line 41, as writing w1 before w3 does not affect
consistency. The recursion can continue twice more by choosing and successfully removing
edges (w3, w2) and then (w1, w4) as well, eventually reaching line 43 with the following graph
G (now with write labels shown):

w3 w1 w2 w4

〈log, 2〉 〈log, 1〉 〈superblock, 1〉 〈superblock, 2〉
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From here, the loop in Phase2 now tries to remove each of the three remaining edges, but
each attempted G′ violates crash consistency and so returns ⊥ from the next recursive call.
Phase2 therefore exits the loop with the above graph G, which we now know is minimal
as no further edges can be removed. Applying RulesForGraph to G yields the two rules
from Section 2:

superblock⇝= log from edges (w3, w4) and (w1, w2)
superblock⇝> superblock from edge (w2, w4).

4.4 Resolving Cycles in Dependency Rules
The top-level DepSynth algorithm generates rules for each litmus test independently. Even
though the rules generated for each test are guaranteed to be acyclic, it is possible for the
union of those rules to contain a cycle, and so violate the requirements of Section 4.1. In
practice, we have not seen this happen for the storage systems we evaluate in Section 6, and
so the version of DepSynth presented in Figure 3 fails if the synthesized rules contain a
cycle.

To handle cyclic rules, RulesForTest can be extended to support synthesizing rules for
multiple litmus tests at once. This extension adds the writes from all the tests into the set
of writes W , searches for a total order over that entire set in Phase1, and then searches for
a minimal happens-before graph over the entire set in Phase2. Edges between writes from
different tests cannot influence the crash consistency of individual tests (in Definition 4 they
will just lead to spurious additional implications), and they will eventually be removed by
Phase2, creating a forest of disjoint happens-before graphs. Phase2 is therefore guaranteed
to return an acyclic set of dependency rules for all the tests it was provided.

In the limit, DepSynth could just invoke RulesForTest with its entire input set
T , but this would be prohibitively expensive for any non-trivial set of tests. Instead, our
implementation resolves cycles in DepSynth by identifying which individual litmus tests
caused the cycle (i.e., which tests the rules in the cycle were generated from), and passes
only that subset of tests to the extended RulesForTest.

5 Implementation

We implement both the DepSynth algorithm and the storage systems we study in Section 6
in Rosette [28], an extension of Racket [9] with support for verification and synthesis.
Using Rosette as our host language gives us symbolic evaluation of the storage system
implementation for free, and simplifies implementing the CrashConsistent query in
Figure 3. The choice of Rosette and Racket is not fundamental; recent work has shown how
to extend the symbolic evaluation approach to languages such as Python [27] or C [19] in
which storage systems are more commonly implemented.

5.1 Ordering
The DepSynth algorithm in Figure 3 is sensitive to the order in which NextTest chooses
tests to generate dependency rules for. Our implementation chooses tests in increasing order
of size, minimizing the number of happens-before graphs for RulesForTest to explore.
Similarly, RulesForTest is sensitive to the order it considers writes (Phase1) and edges
(Phase2). In both cases, we exploit the following observation: while an execution that
persists writes in program order is not required to be crash consistent (e.g., because storage
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systems might selectively buffer or coalesce writes), it is often so in practice. RulesForTest
therefore prefers to choose writes in Phase1 in program order, and prefers to remove edges
in Phase2 that contradict program order.

5.2 Reducing solver queries
Both Phase1 and Phase2 in Figure 4 have symmetry in their search space: for a fixed pair
of writes w1 and w2, there are many different branches of Phase1 that try to order w2 after
w1, and many different branches of Phase2 that try to remove the edge (w1, w2) from a
happens-before graph. If we can determine ahead of time that such a choice for those writes
is always doomed to fail, we can avoid considering these choices at all and so save the cost of
an SMT solver query by CrashConsistent. Our implementation of RulesForTest uses
an SMT solver to pre-compute a set of necessary ordering edges – edges which must be in
the happens-before graph – and uses that set to short-circuit CrashConsistent.

6 Evaluation

This section answers three questions to demonstrate the effectiveness of DepSynth:
1. Can storage system developers use DepSynth to synthesize dependency rules for a realistic

storage system rather than implementing their own crash-consistency approach by hand?
(§6.1)

2. Can DepSynth help storage system developers avoid crash-consistency bugs? (§6.2)
3. Does DepSynth’s approach support a variety of storage system designs? (§6.3)

6.1 ShardStore Case Study
To show that developers can use DepSynth to build realistic storage systems, we implemented
a key-value store that follows the design of ShardStore [4], the exabyte-scale production
storage node for the Amazon S3 object storage service.

6.1.1 Implementation
The first step in using DepSynth is to implement the storage system itself. ShardStore’s
on-disk representation is a log-structured merge tree (LSM tree) [21], but with values stored
outside the tree in a collection of extents. Our ShardStore-like storage system implementation
consists of 1,200 lines of Racket code, including five operations: the usual put, get, and
delete operations on single keys, as well as a garbage collection clean operation that
evacuates all live objects in one extent to another extent, and a flush operation that persists
the LSM tree memtable to disk. Our implementation does not handle boundary conditions
such as running out of disk space or objects too large to fit in one extent, but is otherwise
faithful to the published ShardStore design. As a crash consistency predicate, we wrote a
checker that validates all expected objects are accessible by get after a crash, and that the
on-disk LSM tree contains only valid pointers to objects in extents.

6.1.2 Synthesis
With a storage system implementation in hand, a developer can use DepSynth to synthesize
dependency rules that make the system crash consistent. DepSynth takes as input a set of
litmus tests – we randomly generated 16,250 litmus tests for the ShardStore-like system,
ranging in length from 1 to 16 operations. Executing these tests against the system led to
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Table 1 Valid schedules allowed by the production ShardStore service versus the dependency
rules we synthesized for our ShardStore-like reimplementation. A schedule allowed only by one
implementation means either that implementation is not crash consistent (it allows a schedule it
should forbid) or it admits more reordering opportunities (it allows a schedule it should allow).
“Fixed” results are after fixing two issues in ShardStore (one consistency, one performance) that we
identified by manually inspecting the “original” schedules.

Allowed
by both

Allowed only
by DepSynth

Allowed only
by ShardStore

Test Test Length Writes Original Fixed Original Fixed Original Fixed

T1 1 2 3 3 0 0 0 0
T2 2 6 7 14 7 0 3 3
T3 5 1 2 2 0 0 0 0
T4 5 7 8 15 7 0 3 3
T5 4 7 11 29 9 0 9 0
T6 5 5 6 12 2 0 4 0
T7 7 5 5 11 2 0 5 1
T8 10 5 6 12 2 0 4 0
T9 16 6 8 22 2 0 12 0
T10 13 9 21 41 20 0 9 9

an average of 7.2 and a maximum of 20 disk writes per test. Given these inputs, DepSynth
synthesized a set of 20 dependency rules for ShardStore in 49 minutes. To find a correct
solution for all 16,250 litmus tests, the DepSynth algorithm invoked the RulesForTest
procedure (line 8 in Figure 3) only 10 times, showing that DepSynth’s incremental approach
is effective at reducing the search space.

6.1.3 Comparison to an existing implementation
ShardStore is an existing production system and already supports crash consistency. Its
implementation does not use a dependency-rule language like in DepSynth. Instead, it
implements a soft-updates approach [11] by constructing dependency graphs (i.e, happens-
before graphs) at run time and sequencing writes to disk based on those graphs, similar
to patchgroups in Featherstitch [10]. We therefore compare our synthesized rules against
ShardStore’s dependency graphs to see how well DepSynth may replace an expert-written
crash consistency implementation.

For each of the 10 tests that DepSynth used while synthesizing dependency rules for
ShardStore, we used an SMT solver to compute the set of valid crash schedules (Definition 4)
according to those synthesized dependency rules. We then executed the same test using
the production ShardStore implementation, collected the run-time dependency graph it
generated, and used an SMT solver to compute the set of valid crash schedules according to
that graph. Given these two sets of crash schedules, we computed the set intersection and
difference to classify them into three groups: schedules allowed by both implementations (i.e.,
both implementations agree), and schedules allowed only by one or the other implementation
(i.e., the two implementations disagree).

Table 1 shows the results of this classification across the 10 litmus tests. Overall, the
two implementations agree on the validity of an average of 87% of crash schedules. The
remaining crash schedules are in two categories:
1. Schedules allowed only by DepSynth mean either DepSynth’s rules allow some schedules

that are not crash consistent (a correctness issue in the synthesized rules) or ShardStore
precludes some schedules that are crash consistent (a performance issue in ShardStore).
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We found that every schedule allowed by DepSynth is crash consistent, and that ShardStore
inserts unnecessary edges in its dependency graphs, ruling out some reorderings that
would be safe. These edges are not necessary to guarantee crash consistency of the
overall storage system, and so DepSynth is correct to allow them. However, ShardStore
engineers intentionally include these edges as they make the representation invariant for
an on-disk data structure simpler, even though a more complex invariant that did not
require these edges would still be sufficient for consistency. In other words, ShardStore
engineers favored a stronger, simpler invariant in these cases, where DepSynth is able to
identify opportunities for performance improvements.

2. Schedules allowed only by ShardStore mean either DepSynth’s rules preclude some
schedules that are crash consistent (meaning DepSynth’s output is not optimal) or
ShardStore allows some schedules that are not crash consistent (a correctness issue in
ShardStore). 67% of these schedules are incorrectly allowed by ShardStore due to a
rare crash-consistency issue that was independently discovered concurrently with this
work. We have confirmed with ShardStore engineers that the issue was an unlikely edge
case that could not lead to data loss, but could lead to “ghost” objects – resurrected
pointers to deleted objects, where the object data has been (correctly) deleted, but the
pointer still exists – which result in an inconsistent state. After fixing this issue in
ShardStore, we manually inspected the remaining schedules it allowed and confirmed
they are all cases where DepSynth’s rules generate extraneous edges (i.e., the synthesized
rules are not optimal), and the crash-consistency predicate we wrote for our ShardStore
reimplementation agrees that all the resulting states are consistent.

After fixing the two ShardStore issues discussed above, the synthesized dependency rules agree
with ShardStore on the validity of an average of 99% of crash schedules. The few remaining
schedules are ones that DepSynth’s synthesized dependency rules conservatively forbid due
to the coarse granularity of the dependency rule language. Overall, this study shows that
DepSynth achieves similar results to an expert-written crash consistency implementation,
and can help identify correctness and performance issues in existing storage systems.

6.1.4 Generalization
One risk for example-guided synthesis techniques like DepSynth is that they can overfit
to the examples (litmus tests) and not actually ensure crash consistency on unseen test
cases. DepSynth’s design reduces this risk by using a simple dependency rule language
(Definition 1) that cannot identify individual write operations. To test generalization, we
randomly generated an additional 136,000 litmus tests for our ShardStore-like system. We
also allowed these tests to be significantly longer than those used during synthesis – up to a
maximum of 40 writes rather than the 20 in the input set of litmus tests. For each new test,
we used the synthesized dependency rules to compute all valid crash schedules for the test,
and found that every crash schedule resulted in a consistent disk state according to our crash
consistency predicate. In other words, by limiting the expressivity of our dependency rule
language, the rules we synthesize can generalize well beyond the tests they were generated
from.

6.2 Crash-Consistency Bugs
To understand how effective DepSynth can be in preventing crash-consistency bugs, we
surveyed all bugs reported by two recent papers [4, 18] in three production storage systems
for which a known fix is available. We manually analyze each bug and determine whether
DepSynth could discover and prevent them.
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Table 2 Sample crash-consistency bugs in three storage systems reported by two recent papers [4,
18]. Each bug includes its identifier (bug number for ShardStore, kernel Git commit for btrfs and
f2fs). Most of these bugs could have been prevented by using DepSynth to automatically identify
missing ordering requirements, but some crash-consistency issues are either not ordering related or
are unlikely to be detected by DepSynth’s litmus-test-driven approach.

Storage system Crash-consistency bug Preventable by DepSynth?

ShardStore Inconsistency in extent allocation (#6) Yes
ShardStore Mismatch between soft and hard write pointers (#7) Yes
ShardStore Index entries persisted before target data (#8) Yes
ShardStore Crash consistency predicate too strong (#9) No – specification bug
ShardStore Data loss after UUID collision (#10) No – unlikely to detect
btrfs Extents deallocated too early in recovery (bf50411) Yes
btrfs Inode rename commits out of order (d4682ba) Yes
f2fs fsync failed after directory rename (ade990f) Yes
f2fs Wrong file size when zeroing file beyond EOF (17cd07a) No – not reordering

Table 2 shows the results of our survey. In six cases, DepSynth could have prevented the
bug by synthesizing a dependency rule to preclude a problematic reordering optimization.
Each of these bugs had small triggering test cases, suggesting they would be reachable by
a litmus-test-based approach like ours. In the other three cases, our analysis shows that
DepSynth would not prevent the bug. One bug in ShardStore was a specification bug in
which the crash consistency predicate was too strong. DepSynth assumes that the crash
consistency predicate is correct, and will miss specification bugs. Another bug in ShardStore
involved a collision between two randomly generated UUIDs. While such a bug would be
possible to find in principle using litmus tests, it would be very unlikely, and without a test
that triggers the issue DepSynth cannot preclude it. One bug in f2fs involved an incorrect
file size being computed when zero-filling a file beyond its existing endpoint. This bug was
a logic issue rather than a reordering one (i.e., occurring even without a crash), and so no
dependency rule would suffice to prevent it. Overall, our analysis indicates that DepSynth
can prevent a range of ordering-related crash-consistency bugs, but other bugs would require
a different approach.

6.3 Other Storage Systems
Beyond ShardStore, we expect DepSynth to effectively generate rules for any storage systems
whose crash consistency properties can be ensured by correctly ordering writes. As Frost et
al. describe in [10], write-before relationships underlie every crash consistency mechanism,
including journaling, synchronous writes, copy-on write data structures, and soft updates.
Though storage systems vary greatly in their mechanisms for storing and retreiving data,
each must enable crash consistency by enforcing write-before relationships. Since DepSynth
is a tool for automatically developing write-before relationships, this leads us to believe that
DepSynth can be a useful tool for automating crash consistency in all such systems.

To demonstrate this point, we have also used DepSynth to implement a log-structured
file system [25]. The file system supports five standard POSIX operations: open, creat,
write, close, and mkdir. While our implementation is simple (300 lines of Racket code)
compared to production file systems, it has metadata structures for files and directories, and
so has its own subtle crash consistency requirements. For example, updates to data and
inode blocks must reach the disk before the pointer to the tail of the log is updated. To
synthesize dependency rules for this file system, we randomly generated 235 litmus tests
with at most 6 operations. DepSynth synthesized a set of 18 dependency rules in 12 minutes
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to make the file system crash consistent, and during the search, invokes RulesForTest for
only 13 tests. This result shows that DepSynth can automate crash consistency for storage
systems other than key-value stores.

7 Related Work

7.1 Verified storage systems
Inspired by successes in other systems verification problems [16, 13], recent work has brought
the power of automated and interactive verification to bear on storage systems as well.
One of the main challenges in verifying storage systems is crash consistency, as it combines
concurrency-like nondeterminism with persistent state. Yggdrasil [27] is a verified file
system whose correctness theorem is a crash refinement – a simulation between a crash-free
specification and the nondeterministic, crashing implementation. This formalization allows
clients of Yggdrasil to program against a strong specification free from crashes, similar to
our angelic crash consistency model. FSCQ [8] is a verified crash-safe file system with
specifications stated in crash Hoare logic, which explicitly states the recovery behavior of the
system after a crash. DFSCQ [7] extends FSCQ and its verification with support for crash-
consistency optimizations such as log-bypass writes and the metadata-only fdatasync system
call. The DepSynth programming model separates crash consistency of these optimizations
from the storage system itself, and so can simplify their implementation.

Another approach to verified storage systems is at the language level. Cogent [3] is a
language for building storage systems with a strong type system that precludes some common
systems bugs. A language-level approach like Cogent is complementary to DepSynth: Cogent
provides a high-level language for implementing storage systems, while DepSynth provides a
synthesizer for making those implementations crash consistent.

7.2 Crash-consistency bug-finding tools
Ferrite [5] is a framework for specifying crash-consistency models, which formally define
the behavior of a storage system across crashes, and for automatically finding violations of
such models in a storage system implementation. One way to specify these models is with
litmus tests that demonstrate unintuitive behaviors; DepSynth builds on this approach by
automatically synthesizing rules from such litmus tests. DepSynth also takes inspiration
from Ferrite’s synthesis tool for inserting fsync calls into litmus tests to make them crash
consistent, but instead focuses on making the storage system itself crash consistent rather
than the user code running on top of it. CrashMonkey [18] is a tool for finding crash-
consistency bugs in Linux file systems. CrashMonkey exhaustively enumerates all litmus
tests with a given set of system calls, runs them against the target file system, and then tests
each possible crash state for consistency. Chipmunk [15] extends the CrashMonkey approach
to persistent-memory file systems by exploring finer-grained crash states to account for the
byte-addressable nature of non-volatile memory. Connecting CrashMonkey-like litmus test
generation with DepSynth could provide developers with a comprehensive set of litmus tests
for their system for free, lowering the burden of applying DepSynth. To give stronger coverage
guarantees that do not depend on enumerating litmus tests, FiSC [33] and eXplode [34] use
model checking to find bugs in storage systems.

One advantage of bug-finding tools is that they are significantly easier to apply to
production systems than heavyweight verification tools. Bornholt et al. [4] describe the use
of lightweight formal methods to validate the crash consistency (and other properties) of
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ShardStore, the Amazon S3 storage node that we study in Section 6.1. Their approach applies
property-based testing to automatically find and minimize litmus tests that demonstrate
crash-consistency issues. DepSynth takes this idea one step further by automatically fixing
such issues once they are found.

7.3 Program synthesis for systems code

Transit [31] is a tool for automatically inferring distributed protocols such as those used
for cache coherence. It guides the search using concolic snippets [26] – effectively litmus
tests that can be partially symbolic – and finds a protocol that satisfies those snippets
for any ordering of messages. MemSynth [6] is a program synthesis tool for automatically
constructing specifications of memory consistency models. MemSynth takes similar inputs to
DepSynth– a set of litmus tests and a target language – and its synthesizer generates and
checks happens-before graphs for those tests. Adopting MemSynth’s aggressive inference
of partial interpretations [29] to shrink the search space of happens-before graphs would be
promising future work.

8 Conclusion

DepSynth offers a new programming model for building crash-consistent storage systems.
By offering a high-level angelic programming model for crash consistency, and automatically
synthesizing low-level dependency rules to realize that model, DepSynth lowers the burden of
building reliable storage systems. We believe that this work presents a promising direction for
building systems software with the aid of automatic programming tools to resolve challenging
nondeterminism and persistence problems.
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