
Dependent Merges and First-Class Environments
Jinhao Tan #

The University of Hong Kong, China

Bruno C. d. S. Oliveira #

The University of Hong Kong, China

Abstract
In most programming languages a (runtime) environment stores all the definitions that are available
to programmers. Typically, environments are a meta-level notion, used only conceptually or
internally in the implementation of programming languages. Only a few programming languages
allow environments to be first-class values, which can be manipulated directly in programs. Although
there is some research on calculi with first-class environments for statically typed programming
languages, these calculi typically have significant restrictions.

In this paper we propose a statically typed calculus, called Ei, with first-class environments.
The main novelty of the Ei calculus is its support for first-class environments, together with an
expressive set of operators that manipulate them. Such operators include: reification of the current
environment, environment concatenation, environment restriction, and reflection mechanisms for
running computations under a given environment. In Ei any type can act as a context (i.e. an
environment type) and contexts are simply types. Furthermore, because Ei supports subtyping,
there is a natural notion of context subtyping. There are two important ideas in Ei that generalize
and are inspired by existing notions in the literature. The Ei calculus borrows disjoint intersection
types and a merge operator, used in Ei to model contexts and environments, from the λi calculus.
However, unlike the merges in λi, the merges in Ei can depend on previous components of a merge.
From implicit calculi, the Ei calculus borrows the notion of a query, which allows type-based lookups
on environments. In particular, queries are key to the ability of Ei to reify the current environment,
or some parts of it. We prove the determinism and type soundness of Ei, and show that Ei can
encode all well-typed λi programs.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases First-class Environments, Disjointness, Intersection Types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.34

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.2

Funding Hong Kong Research Grant Council projects number 17209520 and 17209821 sponsored
this work.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

In most programming languages, (runtime) environments are used to store all the available
definitions at a given point in a program. Typically, an environment is a dictionary that maps
variable names to values. However, environments are normally a meta-level concept, which
does not have any syntactic representation in source programs. Environments may be used
internally in the implementation of programming languages. For example, in implementing
functional languages, closures are often used to keep the lexical environment of a function
around. However, it is impossible for programmers to write directly a closure or manipulate
environments explicitly.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Jinhao Tan and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 34; pp. 34:1–34:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jhtan@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://doi.org/10.4230/DARTS.9.2.2
https://doi.org/10.4230/DARTS.9.2.2
https://doi.org/10.4230/DARTS.9.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Dependent Merges and First-Class Environments

First-class environments [18,23,24,29,36], are environments that can be created, com-
posed, and manipulated at runtime. In programming languages with first-class environments,
programs have an explicit syntactic representation for environments that enables them to
be first-class values. As argued by Gelernter et al. [18], with first-class environments, the
distinction between declarations and expressions can be eliminated. Furthermore many
programming language constructs – including closures, modules, records and object-oriented
constructs – can be modelled with first-class environments. However, only a few programming
languages allow environments to be first-class values. These languages are mainly dynamically
typed languages such as dialects of Lisp [18] and the R language [17]. Typically, operations
on environments include: reification (transforming environments into data objects), reflection
(treating data objects as environments), environment restriction (returning part of an envir-
onment), and environment composition/concatenation. While dynamically typed languages
with first-class environments give users high flexibility in manipulating environments, several
runtime type errors are unavoidable due to the absence of static typing.

Compared with work on dynamically typed languages, there is much less research
on statically typed languages with first-class environments [44, 45, 47]. In these works,
environments as first-class values have a special kind of type which is called an environment
type. Although static typing prevents some of the runtime errors, subtyping is not included
in existing type systems with environment types. At the term level, there are two constructs
for environments: one is an evaluation operation eJaK that evaluates the expression a under
an environment e, and the other is an operator returning the current environment. While
these two constructs model importing and exporting of environments respectively, there are
no facilities for concatenation or restriction of environments in these calculi.

In this paper we propose a statically typed calculus, called Ei, with first-class environments.
The main novelty of the Ei calculus is its support for first-class environments with an
expressive set of operators that manipulate first-class environments. In Ei, both reflection
mechanisms for running computations under a given environment and reification of the
current environment are supported. Moreover, compared with previous work on typed calculi
with first-class environments, environment concatenation and environment restriction are
allowed. In Ei, types and contexts (i.e. environment types) are completely unified. That is,
any type can act as a context and contexts are simply types. Unlike previous calculi, Ei also
supports subtyping and has a natural notion of subtyping of environments. In Ei, users can
benefit from static typing for handling type errors at compile-time, while still having various
flexible mechanisms to manipulate environments.

In order to model environments, the Ei calculus borrows disjoint intersection types and
the merge operator from the λi calculus [32]. The novelty in Ei is to additionally use
intersection types to model environment types (or contexts), and disjointness to model
disjointness/uniqueness of variables in an environment. Correspondingly, in Ei, the merge
operator enables constructing and concatenating environments. Moreover, unlike λi, the
merges in Ei can depend on previous components of a merge. In other words, merges in Ei are
dependent (note that the dependency in a merge is term-level dependency, and it should not
be confused with dependent types). Unifying contexts and types enables type information
flowing from the left branch to the right branch in a merge, such that the type of the left
branch becomes part of the context of the right branch. Consequently, with reification, the
right branch of a merge can construct an expression based on the left branch of a merge. For
example, the following program (with syntactic sugar)

{x = 1} # {y = x}

J. Tan and B. C. d. S. Oliveira 34:3

is well-typed in Ei. Here y in the right branch can access x and build a value under the
environment {x = 1}. The merge will be evaluated to {x = 1} # {y = 1}. Dependent merges
are useful for modelling dependent declarations, which are not expressible in λi since a field
in a single record cannot access the field in a previous record in a merge.

Instead of looking up values by names as in traditional lambda calculi, the Ei calculus
borrows the notion of a query, which enables type-based lookups on environments, from
implicit calculi [12,31,46]. In implicit calculi, queries are used to query implicit environments
by type. However, in Ei, queries are applied directly to runtime environments instead,
and they are key to the ability of Ei to reify the current environment, or some parts of it.
Effectively, a query can synthesize the current context (in typing) and the current environment
(during reduction). With type annotations, queries can choose part of the environment based
on those annotations, modelling environment restriction.

In our work, we prove the determinism and type soundness of Ei, and show that Ei can
encode all λi programs. The Ei calculus and all the proofs presented in this paper have been
formalized in the Coq theorem prover [9]. In summary, the contributions of this paper are:

Dependent merges as first-class environments: We propose the novel notion of
dependent merges, which allow dependencies appearing in merges. With dependent
merges, dependent declarations and first-class environments can be modelled easily in a
natural way.
The Ei calculus: We present a statically typed calculus called Ei with support for
creation, reification, reflection, concatenation and restriction of first-class environments.
In addition, we study an extension with fixpoints (shown in the appendix). Both calculi
are deterministic and type sound.
Encoding of the λi calculus: We show that Ei can encode the type system of the λi [32]
via a type-directed translation. In other words, standard variables, lambda abstractions,
and non-dependent merges can be fully encoded in Ei.
Coq formalization: All the results presented in this paper have been formalized in the
Coq theorem prover and they are available in the artifact associated to this paper:
https://github.com/tjhao/ecoop2023

2 Overview

This section gives an overview of our work. We start with some background on the merge
operator, first-class environments and program fragments. Then we discuss challenges of
modelling first-class environments as merges and finally we discuss the key ideas in our work.

2.1 Background
The merge operator and disjoint intersection types. The original non-dependent merge
operator (denoted here by , ,) was firstly introduced by Reynolds [38] and later refined by
Dunfield [15]. Merges add expressiveness to terms, enabling constructing values that inhabit
intersection types. Essentially, with the merge operator, values are allowed to have multiple
types. For example, the following program is valid:

let x : Bool & Int = true ,, 1 in (not x, succ x)

In the program above, the variable x has types Bool and Int, encoded by the intersection type
Bool & Int. At the term level, x is created with the merge operator and can be regarded as
either a boolean or an integer when used. For instance, in the program above there are two
uses of x , one as a boolean (as the argument to not) and one as an integer (as the argument
to succ). A language with the merge operator is able to extract the value of the right type

ECOOP 2023

https://github.com/tjhao/ecoop2023

34:4 Dependent Merges and First-Class Environments

Table 1 Summary of common operators on environments. E denotes an environment, I denotes
a set of identifiers, and T1 and T2 denote terms in the language.

Operator Description
export Exports/reifies the full current environment.

E\I
Returns a new restricted environment that only contains the
identifiers in I from the environment E.

import(T1, T2) Evaluates T1 to be an environment E1, and uses E1 to evaluate T2.

import(I, T1, T2)
Evaluates T1 to be an environment E1, checks that a set of
identifiers I are defined in E1, then uses E1 to evaluate T2.

E1, E2 Composes/concatenates two environments.

from merges. In many classical systems with intersection types, but without the presence of
the merge operator, the type Bool & Int cannot be inhabited and the program above is not
expressible [34].

An important issue that the merge operator introduces is ambiguity. What happens if
merges contain multiple values of the same type? For example, we could have (1,,2):Int,
but if this is allowed, then it could result in either 1 or 2. To address the ambiguity problem,
Oliveira et al. [32] presented the λi calculus, which imposed a restriction where only merges
of values that have disjoint types are accepted (we use A ∗ B to represent that A is disjoint
with B). In this way, ambiguous programs such as 1,,2 are rejected since Int is not disjoint
with itself. However, Bool and Int are disjoint, and thus true,,1 is a well-typed expression.

As Dunfield [15] argued, with the merge operator, many language features such as dynamic
typing, multi-field records, and operator overloading can be easily encoded. After that, several
non-trivial programming language features, including dynamic mixins [2], first-class traits [5],
nested composition [6,22] have been enabled with the help of the merge operator and disjoint
intersection types. These features provide the foundations for compositional programming [51],
which is a programming paradigm that enables a simple and natural solution to the Expression
Problem [49] and other modularity problems. Compositional programming is realized in the
CP language [51], which has been used to demonstrate the expressive power of the paradigm.

First-class environments. Normally, environments are not a syntactic entity of a pro-
gramming language. Instead, environments exist implicitly at the meta-level for defining
formal semantics and implementing languages. However, some dynamically typed languages,
including dialects of Lisp [18] or the R language [17], include support for first-class environ-
ments. There is a line of research work on first-class environments for dynamically typed
languages [18,23,24,29,36]. First-class environments provide a lot of expressive power, and
they are used to model many other language constructs. With first-class environments, it is
possible to model closures, modules, records or object-oriented constructs [18]. Moreover, it
is also possible to model declarations directly, eliminating the need to distinguish between
declarations and expressions.

To allow environments manipulated by not only compilers or interpreters but also
programmers, a form of reification and reflection of environments is needed. Reification
transforms environments into data objects and reflection enables data objects to be treated
as environments [23,24]. While formalizations differ, generally speaking, environments are
formalized as a mapping from variables to data objects, which can be manipulated at runtime.
We summarize typical supported operators to manipulate environments [36] in Table 1 (with
notations slightly changed).

J. Tan and B. C. d. S. Oliveira 34:5

Work on first-class environments for typed languages [44,45,47] comes with significant
restrictions compared to what is supported in dynamically typed languages. In these calculi,
types and environment types are defined such that environment types are a special kind of
type. The definition of types is A, B ::= A → B | . . . | E, and each environment type E

has the form of {x1 : A1, . . . , xm : Am} where Ai (1 ≤ i ≤ m) is a type and each variable xi

must be distinct (or disjoint) with each other. Environment types encode exactly the normal
typing context, which is a set that consists of typing assumptions xi : Ai. Correspondingly,
an environment has the form of {a1/x1, . . . , am/xm} that binds variables xi with terms
ai [44, 47]. There are two constructs related to environments:

The first construct returns the current environment which acts similarly to export.

The second construct is an evaluation operation eJaK that evaluates the expression a

under an environment e. Note that, this operation is similar to import(T1, T2) in Table 1
(where T1 corresponds to e and T2 corresponds to a).

With these two constructs, one can create an environment at run-time and use it for
evaluation. However, types are not totally unified with environment types in this setting,
which results in special treatment of environments. For example, the expression e in eJaK
can only be an environment. To avoid runtime errors, the typing rule for eJaK restricts the
type that e has to be an environment type. Existing type systems with environment types
do not consider subtyping. At the term level, though environments can be computed by
evaluation under other environments and function applications, concatenation or restriction
of environments are not supported. Therefore, an environment with a larger/smaller width
cannot be constructed on the fly either. In short, there is no subtyping and the operations
that are supported in dynamically typed languages in Table 1 are not fully supported in
typed calculi with first-class environments.

Program fragments and separate compilation. To motivate our work we will show how
first-class environments can be helpful to model a simple form of modules. Our form of
modules is inspired by Cardelli’s [7] program fragments. Here we first introduce the notion of
program fragments, and in Section 2.3 we will see how we can model program fragments
in Ei.

A program fragment, or module, is a syntactically well-formed expression where free
variables may occur [7]. Separate compilation decomposes a program into program fragments
that can be typechecked and compiled separately. A program fragment may contain free vari-
ables. However, if the required interface that contains adequate type information is specified,
then the types of the free variables can be found (without any concrete implementation).
Thus, the typechecking of a program fragment can still be carried out separately.

In a conventional calculus, such as the simply typed lambda calculus (STLC), we express
abstractions over a variable annotated with a type. However, there are no facilities for
abstracting over an interface that may consist of multiple (nested) type assumptions. In
other words, the STLC is not powerful enough to model separate compilation.

Cardelli [7] proposed a calculus of program fragments for the STLC, and specified
high-level abstractions for modules and interfaces. In Cardelli’s framework, interfaces are
interpreted as typing contexts that are external to the language. A module that may require
an interface/context is represented as a binding judgment E ⊢ d ∴ S, where E is a context,
d a list of definitions, S a list of type declarations. Take the following modules from Cardelli
as an example:

ECOOP 2023

34:6 Dependent Merges and First-Class Environments

module
import nothing
export x:Int
begin

x : Int = 3
end.

module
import x:Int
export f:Int → Int, z:Int
begin

f : Int → Int = λ(y:Int).y+x
z : Int = f(x)

end.

These two modules can be modelled as two binding judgments:

∅ ⊢ (x : Int = 3) ∴ (x : Int)
x : Int ⊢ (f : Int → Int = λ(y : Int).y + x, z : Int = f(x)) ∴ (f : Int → Int, z : Int)

A module is encoded as a list of definitions d, with an import list modelled as a context
E and an export list as type declarations S. In the second module, z relies on f. To
model such dependency, the binding judgment E ⊢ d ∴ S is designed to be dependent: each
component depends on its previous components in d, in the sense that every free variable
in this component can refer to its corresponding type. To check whether z : Int = f(x) is
matched by z : Int, the type declaration f : Int → Int is appended to the original context
x : Int to be a type assumption. In this way, the second binding judgment can be checked
separately since each variable can access sufficient type information.

Though each binding judgment can be separately compiled to a self-contained entity
called a linkset, user-defined abstractions cannot be expressed in Cardelli’s work, since a
binding judgment itself is a meta-level notion that cannot be created by programmers. In
our work, we also regard interfaces as typing contexts. However, we unify typing contexts
and types, and there are first-class constructs that abstract over a type/interface. We will
discuss our ideas in detail in Section 2.3.

2.2 Limitations of Non-Dependent Merges
As Section 2.1 argued, both the (non-dependent) merge operator and first-class environments
are useful to model a variety of other language constructs. Some of these language constructs
can even be modelled by both merges or first-class environments. Given the overlap between
merges and first-class environments it is reasonable to try to unify them, to obtain a more
powerful model of statically typed languages with first-class environments. Our goal is to
use merges to model first-class environments. However, non-dependent merges in existing
calculi such as λi are inadequate for this purpose. This section discusses the limitations of
non-dependent merges that are addressed by us.

No support for reification and reflection of environments. Intersection types and the
merge operator are powerful tools that enable many language features, one of which is
multi-field records [40]. In fact, multi-field record types can be turned into an intersection of
single-field record types:

{l1 : A1, . . . , ln : An} ≡ {l1 : A1} & · · · & {ln : An}

Recall the syntax of conventional typing contexts: Γ ::= · | Γ, x : A. A typing context is a list
of pairs that bind variables with types. If we view variables as labels, typing contexts can be
encoded as multi-field records, which are further desugared to intersections of single-field
record types. Similarly, at the term level, a multi-field record is expressed as a merge of
single-field ones:

J. Tan and B. C. d. S. Oliveira 34:7

{l1 = e1, . . . , ln = en} ≡ {l1 = e1} , , . . . , , {ln = en}

For example, {x = 2, y = 4} is encoded as {x = 2} , , {y = 4}. In calculi with a merge
operator, merges are always first-class expressions and thus they can be passed to functions.

However, in previous calculi with the merge operator [15, 32, 38], merges are not used
to model environments. Therefore, there are no reification and reflection facilities for
environments in those calculi. Furthermore, intersection types are not used to model
contexts, and there is no construct that enables running some computation under a local
environment. In short, previous calculi with the merge operator support concatenation, but
they do not support other operations in Table 1.

No dependent merges. An important limitation of merges in previous work with respect
to environments is that they cannot be dependent. Many programming languages, as well as
Cardelli’s program fragments, support declarations such as:

let x = 2
let y = 4

which allows several declarations to be associated with expressions. For the declarations
above, we can easily model them as a (non-dependent) merge of two single field records:

{x = 2},,{y = 4}

where variables x and y are encoded as field names (or labels), and the values assigned to
variables are modelled as record fields.

The previous declarations are non-dependent, in the sense that the expression assigned
to y does not refer to x. However, in practice many declarations are dependent, where the
current declaration relies on previous ones. For instance, fairly often we may have a program:

let x = 2
let y = x + x
let main = x + y

where y depends on x and main depends on both y and x. The traditional non-dependent
merge operator cannot capture such cases. To be concrete, consider the typing rule for
merges from λi [32]:

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B A ∗ B

Γ ⊢ e1 , , e2 ⇒ A & B
Typ-merge

Here A ∗ B expresses that A and B are disjoint types. For typing a merge e1 , , e2, the typing
context for the right branch e2 is Γ and does not contain any type information about the
left branch e1. When typing e2, the type of e1 is never used during the typing procedure.
As a result, e2 cannot be built by referring to e1. Moreover, to cooperate with the static
semantics, the two branches of e1 , , e2 are evaluated separately without dependency involved
in the dynamic semantics of λi. That is, the environment for evaluating e2 does not contain
the evaluation result of e1.

The incapacity of encoding dependent declarations as first-class expressions exposes
that λi is not able to fully model module-related language features. Since dependent
definitions/declarations often occur in a module, as shown in our discussion on program
fragments in Section 2.1.

ECOOP 2023

34:8 Dependent Merges and First-Class Environments

2.3 Key Ideas
In this work, we utilize the merge operator together with new constructs to enable dependent
merges and first-class environments. We concretize these ideas in a new calculus called Ei.
The key ideas of our work are discussed next.

Typing contexts as types. In Ei the typing context in the typing judgment is a type instead
of an association list. Our grammar for both types and contexts is:

A, B, Γ ::= Int | Top | A → B | A & B | {l : A}

A typing assumption x : A in conventional calculi is modelled as a record type, and the
intersection of two types plays a similar role to the concatenation of two association lists.
However, the contexts in our work are not restricted to intersections of record types. In
fact, any type (e.g., Int) defined in the syntax of Ei can be a typing context. If a context
consists only of Top (the top type), then there is no type information in this context, which
corresponds to an empty association list. As we will see, viewing typing contexts as types
opens up the possibility of creating interesting language features.

Unifying environments and expressions. Just as typing contexts are types in Ei, envir-
onments in the reduction semantics are just values instead of association lists which bind
variable names to values. Hence, environments are first-class in our setting. The top value ⊤
is used to model the empty environment. A merge of two values can be viewed as concatena-
tion of two environments. For example, the merge {x = 1} # {y = 2} is a valid environment
that binds 1 and 2 to x and y respectively. In Ei, we denote the merge operator by a single
comma (#) to follow the notation conventionally used in programming languages to denote
the concatenation of two environments. With record projection, the value bound to a label
can be accessed. Note that unifying environments and values and viewing variables as labels
means that extra syntax (or data structures) for environments is not needed. This is different
from previous work on typed calculi with first-class environments where an explicit notion of
environments is introduced [44,45,47].

In Ei, we have two constructs to support reification (or exporting) and reflection (or
importing) of environments. For reification, we employ the query construct ?. The query
construct is inspired by the implicit calculus [12], where queries are used to query implicit
environments by type. In Ei we apply queries directly to runtime environments instead,
whereas in the implicit calculus, access to the regular environments is done conventionally
using named variables. The typing rule for ? is simply:

Γ ⊢ ? ⇒ Γ

i.e. the query ? synthesizes the current context. For example, {x : Int} ⊢ ?.x ⇒ Int is valid.
Here ? obtains the current environment and accesses the field x.

Regarding the reflection of environments, there is a construct e1 ▷ e2 that is called box in
Ei. In a box, e2 is assigned an expression e1, which is evaluated to be a value that acts as an
environment for evaluating e2. Take {x = 1 + 1} ▷ ?.x + 1 as an example. The expression
{x = 1 + 1} is given as the environment to ?.x + 1. Then {x = 1 + 1} is evaluated to {x = 2},
under which ?.x + 1 is evaluated to 3. The box construct can be seen as the inverse operator
of the query, since ? ▷ e is equivalent to e in the sense that ? exports the full environment by
default. Allowing e1 in the box e1 ▷ e2 to be any well-typed expression instead of a value
adds expressiveness to reflection. For example, environment injection can be encoded as
(? # v) ▷ e where v is added to the original environment for e locally.

J. Tan and B. C. d. S. Oliveira 34:9

In Ei, type annotations play a role in information hiding. For example, for a merge with an
annotation ({x = 1} # {y = 2}) : {x : Int}, only {x = 1} is visible. Type annotations provide
a mechanism to enable restriction, since they are able to prevent visibility of certain values.
Since environments are values in our setting, type annotations can seal the environment, such
that only components named in the type are accessible. Therefore, reification and reflection
are type-directed in Ei. With type annotations, users can choose part of the environment
that they desire. In summary, Ei can essentially model all the operations on environments in
Table 1 with the following expressions:

? reifies the entire environment;
? : A obtains part of the environment that has type A;
e1 ▷e2 evaluates e1 to an environment and uses that to evaluate e2 under that environment;
(e1 : A) ▷ e2 evaluates e1, but restricts the resulting environment to A and uses that to
evaluate e2;
e1 # e2 concatenates two environments e1 and e2.

Dependent merges. To model dependent declarations, the merges in our work are dependent.
The right branch can refer to the type of the left branch. The typing rule for dependent
merges is:

Γ ⊢ e1 ⇒ A Γ & A ⊢ e2 ⇒ B A ∗ Γ A ∗ B

Γ ⊢ e1 # e2 ⇒ A & B
Typ-dmerge

Modelling typing contexts as types enables type information flowing from the left branch to
the right branch in a merge. Specifically, for e1 # e2, the type of e1 is added into the current
context such that e2 synthesizes a type under the intersection type Γ & A.

Suppose that the current context Γ is a subtype of some type B, with type annotation,
? : B exports B from Γ. With the query construct, a dependent declaration can be encoded
as a dependent merge:

{x = 2} # {y = (?:{x:Int}).x + (?:{x:Int}).x}

which has type {x : Int} & {y : Int}. The annotated query ? : {x : Int} exports {x : Int} from
the context, and projection (? : {x : Int}).x infers the type Int. Note that Ei is meant as a
minimal core calculus and it is not built with convenience in mind. So the expression above
is more cumbersome than what a programmer would expect to write in a source language.
With some basic support for type inference and syntactic sugar in a source language, we
could write instead:

{x = 2} # {y = ?.x + ?.x}

or even:
{x = 2} # {y = x + x}

In Section 5 we show how some of this syntactic sugar and inference can be achieved. For
readability purposes, in the following examples, we will take the liberty to use a more
lightweight syntax for the examples written in Ei as well.

In general, dependent declarations can be modelled as a merge of expressions e1 # · · · # en,
where the type information accumulates from e1 to en. Modelling declarations as merges
means that while we can benefit from the expressiveness of the merge operator, we do not
need to introduce an additional syntax for declarations. Besides the condition A ∗ B that
avoids conflicts between two branches in a merge, in the typing rule for dependent merges
there is an extra disjointness condition A ∗ Γ to ensure that the new environment has no
conflicts. This extra disjointness condition is needed to ensure that reduction is deterministic
in Ei.

ECOOP 2023

34:10 Dependent Merges and First-Class Environments

TDOS environment-based semantics. In Ei, an environment-based semantics, expressed
by a reduction relation of the form v ⊢ e1 ↪→ e2, is employed to capture the dynamic behavior
of expressions. In contrast to more conventional small-step reduction relations, which are
typically based on substitution and beta reduction, here v plays the role of the runtime
environment and no substitution is needed during reduction. Basically, an environment
is stored during evaluation and the expression being evaluated can access it. During the
reduction procedure, the environment can be changed locally. For example, suppose that
the current environment is v, to evaluate a dependent merge e1 # e2. The left branch e1 is
evaluated to a value v1 first. After that, v1 is merged with v such that e2 is evaluated under
v # v1. As a result, e2 is able to access and fetch v1. For instance, the dependent merge

{x = 2} # {y = ?.x + ?.x}

is evaluated to {x = 2} # {y = 4} under ⊤, since

{y = ?.x + ?.x}

is evaluated to {y = 4} under the environment ⊤ # {x = 2}.
The reduction semantics is based on a type-directed operational semantics (TDOS),

following the semantics of calculi with the merge operator [21]. As we have seen, type
annotations can be used to remove information from values. Thus, unlike many other calculi,
the semantics of Ei is type-dependent. That is, types affect the runtime behavior. To
deal with such type-dependent semantics based on giving an operational behavior to type
annotations we use a TDOS. In the TDOS there is a casting relation v ↪→A v′, where types
are used to guide reduction. Since an environment can be selected by a type annotation,
casting also acts as a tool for synthesizing values in Ei. During the reduction of an annotated
query ? : A under environment v, casting is triggered, and v′ is synthesized as the result.
Take the program above as an example, to evaluate ? : {x : Int}, which is needed in the
projection ?.x, the following cast is triggered:

⊤ # {x = 2} ↪→{x:Int} {x = 2}

In essence, the cast extracts the value {x = 2} matching the type being cast. With this
value, we can further build an expression for the right part of the merge.

Abstractions in Ei. In Ei, an abstraction has the form {e}m where m denotes a mode.
There are two modes for abstractions: • and ◦. Here we focus on {e}•. Compared with a
normal lambda abstraction λx.e, there is no variable binding in {e}•, since values in the
environment are looked up by types via the query construct instead of by variable names. For
example, after {?}• : Int → Int is applied with integer 1, the input 1 is put in the environment
for evaluating ? : Int, and then the query construct looks up a value of type Int, which is 1.
We require that a well-typed abstraction {e}• has a type annotation. The (slightly simplified)
typing rule for abstractions is:

Γ ∗ A Γ & A ⊢ e ⇐ B

Γ ⊢ {e}• : A → B ⇒ A → B
Typ-abs

Similarly to typing normal lambda abstractions, where a typing assumption x : A is added
to the typing context, for typing {e}• in Ei, the input type of {e}• is added into the context
to type check the body e. For example, Top ⊢ {?}• : Int → Int ⇒ Int → Int is valid, since
under Top & Int, ? can check against Int. Besides, there is also a disjointness condition in
this rule, which ensures that there are no conflicts between the context and the input type.

J. Tan and B. C. d. S. Oliveira 34:11

Ambiguity would happen without such a condition since, if the body e contains a ?, there
would be different answers to the query ?, as shown in the following example (Γ ⊢ e is used
to denote the situation that the current context for e is Γ):

Int ⊢ ({?}• : Int → Int) 2

Suppose that the current environment contains only the value 1, which is of type Int. After
the function is applied to 2, both 1 and 2 appear in the environment, and they have the
same type Int. If ? desires a value of type Int, then there are two candidates, which results
in ambiguity. Thus the condition Γ ∗ A prevents such programs. On the other hand, the
following program is safe in the context Int, since there is only one value, which is 1, having
type Int in the environment.

Int ⊢ ({?}• : Bool → Int) true

In general, conventional calculi where variables are involved normally ensure that a typing
context is unique, i.e., all variables in it are distinct. In our calculus, disjointness plays
a similar role as uniqueness. A function cannot accept expressions that have overlapping
types with the current context. For record types, {x : Int} is not disjoint with itself, so the
following is not allowed:

{x : Int} ⊢ ({?.x}• : {x : Int} → Int) {x = 1}

In contrast, the following expression is well-typed in the context {x : Int}, since two record
types are disjoint if they have distinct labels:

{x : Int} ⊢ ({?.x}• : {y : Int} → Int) {y = 1}

Note that the use of records and distinct label names is how we can model conventional
functions that take several arguments of the same type. That is, we can use labels to
unambiguously distinguish between arguments of the same type, similarly to the use of
distinct variable names in conventional lambda abstractions.

The abstractions in Ei essentially abstract over an interface if we view interfaces as types.
The example from Cardelli in Section 2.1 can be encoded in our calculus:

{M = {x = 3}}

{N = {{f = {?.y + ?.x}◦ : {y : Int} → Int} # {z = (?.f) (?.x)}}• : {x : Int} → {f : Int → Int} & {z : Int}}

Each module is modelled as a record (if the module does not import anything) or a function
that returns a record (if the module imports something). A group of related definitions is
expressed as a dependent merge of some other records. An interface, such as the interface of
N , that contains typing assumption(s) is encoded as input type(s) of an abstraction, and the
export list is the output type. Since merges are dependent in Ei, in the second module z

is able to call f . With the ◦ mode abstraction, standard lambda abstractions can also be
encoded (we will discuss this in Section 5). Both modules are typeable separately (in the
empty context). Moreover, we can apply N with M , since (?.N) (?.M) is typeable in the
context containing N and M . Note that such an application is not expressible in Cardelli’s
work, since modules are not first-class in his setting.

Closures as a special case of boxes. As in usual environment-based semantics, closures
are used in Ei to keep lexical environments around. However, given that we have the box
construct in Ei, we do not need to invent a separate construct for closures. In fact, closures

ECOOP 2023

34:12 Dependent Merges and First-Class Environments

have the form of v ▷ {e}• : A → B, which is just a special case of a box. In a box closure, the
environment is a value and the expression under the environment is an annotated abstraction.
Note that closures are values and the abstraction inside is not evaluated. Instead, when a
closure is applied with a value, the value is put in the environment of the closure, and the
body of the abstraction is going to be evaluated under the extended environment. Take the
following evaluation as an example:

({{?}• : Int → Bool}• : Bool → Int → Bool) true 1
↪→ (⊤ ▷ {{?}• : Int → Bool}• : Bool → Int → Bool) true 1
↪→∗ (⊤ # true ▷ {?}• : Int → Bool) 1

↪→ ⊤ # true # 1 ▷ ? : Bool

↪→∗ true

The abstraction takes a boolean and an integer as input and returns the boolean. At first, it
is packed up with the empty environment to form a closure. Then the two values true and 1
are merged with the environment to evaluate the body ? : Bool. With casting, the annotated
query is evaluated to true.

Encoding λi. To demonstrate the expressiveness of Ei we show that it can encode all
well-typed programs in the λi calculus [32]: an existing calculus with non-dependent merges
and without first-class environments. There are two non-obvious obstacles in the encoding.
Firstly, unlike Ei, the λi calculus is a conventional lambda calculus with conventional lambda
abstractions and variables. Our encoding of λi shows that queries and abstractions in Ei can
encode conventional variables and lambda abstractions. The second obstacle in the encoding
is that dependent merges have more disjointness constraints than non-dependent merges.
Therefore, it is not clear how some non-dependent merges may be encoded. However, a
combination of dependent merges and other constructs in the Ei calculus enables an encoding
of all non-dependent merges. Section 5 details the encoding and proves that all typeable
programs in λi are encodable and typeable in Ei.

3 The Ei Calculus

In this section we present the Ei calculus, which is a calculus with dependent merges and
first-class environments. In Ei, type contexts are types, and run-time environments can be
assembled, composed, manipulated explicitly, and used to run computations under such
environments.

3.1 Syntax
The syntax of Ei is as follows:

Labels l, x, y, z, . . .
Types and Contexts A, B, Γ ::= Int | Top | A → B | A & B | {l : A}
Function modes m ::= • | ◦
Expressions e ::= ? | i | ⊤ | {e}m | e1 ▷ e2 | e1 e2 | e1 # e2 | e : A | {l = e} | e.l
Values v ::= i | ⊤ | v ▷ ({e}• : A → B) | v ▷ ({e}◦ : {l : A} → B) | {l = v} | v1 # v2

Types and contexts. In Ei there is no syntactic distinction between types and contexts:
contexts are types and any type can be a context. In standard calculi typing contexts are
lists of typing assumptions of the form x : A that associates variable x with type A. This

J. Tan and B. C. d. S. Oliveira 34:13

particular case is encoded in Ei with a single-field record type {x : A}. For clarity, we use
different meta-variables to denote different uses of types (A, B, C, etc.) and contexts (Γ).
Two basic types are included: the integer type Int and the top type Top. Function types and
intersection types are created with A → B and A & B respectively. {l : A} denotes a record
type in which A is the type of the field. Multi-field record types can be desugared to an
intersection of single-field record types [32,40].

Expressions. Meta-variable e ranges over expressions. Expressions include some constructs
in standard calculi with a merge operator: integers (i); a canonical top value ⊤, which can
be seen as a merge of zero elements; annotated expressions (e : A); application of a term e1
to term e2 (denoted by e1 e2); and merge of expressions e1 and e2 (e1 # e2). The expression
{l = e} denotes a single-field record where l is the label and e is its field. Similarly to record
types, a multi-field record can be viewed as a merge of single-field records. Projection e.l
selects the field from e via the label l.

Besides these standard constructs, there are some novel constructs in our system. Unlike
standard calculi, where variables are used to lookup values, we borrow the query construct ?
from implicit calculi [12] to synthesize values by types. However, unlike implicit calculi, in
Ei we can completely eliminate the need for variables, since a combination of queries and
other constructs can encode traditional uses of variables. Such encoding will be discussed
in detail in Section 5. The absence of variables simplifies binding in comparison to other
calculi. {e}m stands for abstractions in which m is the mode of an abstraction and can be
either • or ◦. Abstractions play the same role as lambda abstractions, but they abstract over
the input type of the function, instead of abstracting over a variable. The ◦ mode denotes a
special form of abstraction that is useful to encode lambda abstractions. The term e1 ▷ e2 is
called a box. A box assigns a local environment e1 for e2, and e2 is not affected by the global
context or environment. In other words, boxes allow the computation of e2 to be performed
under the runtime environment resulting from e1.

Values. The meta-variable v ranges over values. Values include integers, the canonical ⊤
value, closures, merges of values and records in which the field is a value. Closures are a
special kind of box, in which the local environment e1 is a value and e2 is an annotated
abstraction. For closures, the type annotation for {e}• can be any arrow type, whereas the
input type of the type annotation for {e}◦ can only be a record type.

3.2 Subtyping and Disjointness
Subtyping. The subtyping rules, shown in Figure 1, are standard for a calculus with
intersection types [13], but they include an additional rule S-rcd for subtyping record types.
Note that the combination of the subtyping rules for intersection types and record types
enables us to express both depth and width subtyping for multi-field record types (which are
just encoded as intersections of single-field record types). This extended subtyping relation
is reflexive and transitive [22].

Disjointness. Compared to λi, disjointness is defined in a slightly different way, inspired
by an approach suggested by Rehman et al. [37]. To make two functions or two records
mergeable, we define disjointness based on ordinary types whose definition is shown in
Figure 1. There are two variants of ordinary types in Ei. The one for defining disjointness
contains premises marked in gray. In this variant, ordinary types are inductively defined to
be types where the top type and intersection types can never appear (except as input types
of functions). With the help of ordinary types, we define disjointness as:

ECOOP 2023

34:14 Dependent Merges and First-Class Environments

A <: B (Subtyping)

S-z

Int <: Int

S-top

A <: Top

S-arr
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-andl
A1 <: A3

A1 & A2 <: A3

S-andr
A2 <: A3

A1 & A2 <: A3

S-and
A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-rcd
A <: B

{l : A} <: {l : B}

Ordinary A (Ordinary Types)

O-int

Ordinary Int

O-arrow
Ordinary B

Ordinary A → B

O-rcd
Ordinary B

Ordinary {l : B}

Figure 1 Subtyping and ordinary types.

▶ Definition 1 (Disjointness). A ∗ B ≡ ¬(∃C, Ordinary C ∧ A <: C ∧ B <: C)

Two types are disjoint if and only if the two types do not share any common ordinary
supertype. We have proved that our definition of disjointness is equivalent to the one
employed by Huang et. al [22] in their formulation of λi. This definition states that atomic
values, which can inhabit the two types, cannot have overlapping types. Importantly, our
definition allows two arrow types or two record types to be disjoint. For example, Int → Bool
is disjoint with Int → Char as the two types do not share a common ordinary supertype.
Note that there is also an equivalent algorithmic definition of disjointness, which is shown in
the appendix. Some of the fundamental properties of disjointness are shown next:

▶ Lemma 2 (Disjointness Properties). Disjointness satisfies:
1. If A ∗ B, then B ∗ A.
2. A ∗ (B & C) if and only if A ∗ B and A ∗ C.
3. If A ∗ (B1 → C), then A ∗ (B2 → C).
4. A ∗ B if and only if {l : A} ∗ {l : B}.
5. C ∗ D if and only if (A → C) ∗ (B → D).
6. If A <: B and A ∗ C, then B ∗ C.

3.3 Bidirectional Typing
The type system of Ei shown in Figure 2 is bidirectional. There are two modes of typing,
where ⇒ and ⇐ denote the synthesis and checking modes respectively. The notation ⇔ is a
metavariable for typing modes. The meaning of typing judgment Γ ⊢ e ⇔ A is standard:
under the context Γ (which is a type), expression e can synthesize (with ⇒) or check against
(with ⇐) A.

Typing the query construct. Rule Typ-ctx states that ? can synthesize the context. With
rule Typ-sub, ? checks against any type that is a supertype of the context. In addition, with
rule Typ-anno, under a context Γ, for any supertype A of Γ, ? : A can synthesize A. Since

J. Tan and B. C. d. S. Oliveira 34:15

Γ ⊢ e ⇔ A (Bidirectional Typing)

Typ-lit

Γ ⊢ i ⇒ Int

Typ-ctx

Γ ⊢ ? ⇒ Γ

Typ-top

Γ ⊢ ⊤ ⇒ Top

Typ-anno
Γ ⊢ e ⇐ A

Γ ⊢ e : A ⇒ A

Typ-abs
Γ ∗ A C <: Am Γ & A ⊢ e ⇐ B

Γ ⊢ {e}m : A → B ⇒ C → B

Typ-app
Γ ⊢ e1 ⇒ A → B Γ ⊢ e2 ⇐ A

Γ ⊢ e1 e2 ⇒ B

Typ-box
Γ ⊢ e1 ⇒ Γ1 Γ1 ⊢ e2 ⇒ A

Γ ⊢ e1 ▷ e2 ⇒ A

Typ-rcd
Γ ⊢ e ⇒ A

Γ ⊢ {l = e} ⇒ {l : A}

Typ-proj
Γ ⊢ e ⇒ {l : A}

Γ ⊢ e.l ⇒ A

Typ-sub
Γ ⊢ e ⇒ A A <: B

Γ ⊢ e ⇐ B

Typ-mergev
Γ ⊢ v1 ⇒ A Γ ⊢ v2 ⇒ B v1 ≈ v2

Γ ⊢ v1 # v2 ⇒ A & B

Typ-dmerge
Γ ⊢ e1 ⇒ A Γ & A ⊢ e2 ⇒ B A ∗ Γ A ∗ B

Γ ⊢ e1 # e2 ⇒ A & B

Type Extraction Am

A• = A

{l : A}◦ = A

Figure 2 Bidirectional type system of Ei. The syntax for the bidirectional modes is defined as
⇔ ::= ⇒ | ⇐.

contexts are types in our system, a supertype of a type means a portion of a typing context.
By annotating ? with a supertype of the context, we can proactively pick the desired type
information (or equivalently, hide part of type information) from the context. For example,
Int & Bool ⊢ ? : Int ⇒ Int is valid, and allows us to pick Int from a typing context with
Int & Bool.

Typ-anno

Typ-sub
Int & Bool ⊢ ? ⇒ Int & Bool Int & Bool <: Int

Int & Bool ⊢ ? ⇐ Int
Int & Bool ⊢ ? : Int ⇒ Int

Typing abstractions. Rule Typ-abs is the typing rule for abstractions. An abstraction can
synthesize an arrow type, in which the shape of the input type is determined by the mode.
For {e}• : A → B we simply synthesize the type A → B. For {e}◦ with an annotation, {e}◦ is
well-typed only if the input type is a record type. Furthermore {e}◦ : {l : A} → B synthesizes
A → B where A is extracted from {l : A}. This peculiar treatment of {e}◦ : {l : A} → B

is because we wish to be able to model conventional lambda abstractions of the form
λl. e : A → B faithfully. In conventional lambda abstractions, the labels or variable names
are only used internally, but they are not reflected on the type. The {e}◦ abstractions model
this behavior and also hide the label information on the type. While an abstraction with the
• mode accepts an expression of a type which is the exact input type of its annotation, a
well-typed abstraction with the ◦ mode can only have an annotation of form {l : A} → B.
The label information for the input type is forgotten for the overall type of the abstraction.

Note also that, for obtaining type preservation, there is a subtyping condition in rule Typ-
abs, similarly to the approach employed by Huang and Oliveira [21]. In an implementation
of Ei, this subtyping condition can be omitted and we can let {e}m : A → B infer Am → B

directly, since the condition is only used in Ei to ensure that closures, which are used during

ECOOP 2023

34:16 Dependent Merges and First-Class Environments

reduction at runtime, are type-preserving. In addition to avoiding ambiguity of the type-based
lookups, when we introduce assumptions into the context, we need to ensure that the new
assumptions are disjoint to the existing assumptions in the environment. Thus rule Typ-abs
also has a disjointness premise to ensure this.

Typing dependent merges. Rule Typ-dmerge is the typing rule for merges. Unlike
previous work for intersection types and the merge operator [22], the merges are dependent
in our work. For a specific merge e1 # e2, the right branch e2 may depend on the left branch
e1. The typing context for e2 in the premises is the intersection type Γ & A, which means
that e2 is affected by not only the global context Γ but also the synthesized type of e1. In
this way, e2 can be constructed with the information of e1, as illustrated by the following
example:

{z : Int} ⊢ {x = 1} # {y = (? : {x : Int}).x + 1} ⇒ {x : Int} & {y : Int}

The right branch {y = (? : {x : Int}).x + 1} makes use of the type information of the left
branch, by using ? to pick {x : Int} from {z : Int} & {x : Int}. Then it will be able to utilize
the value information from {x = 1} to evaluate the expression in the right branch of the
merge.

There are two disjointness conditions in rule Typ-dmerge. One is A ∗ B, which makes
two branches e1 and e2 be merged safely without ambiguities as in previous work [22].
However, this condition is not sufficient to prevent all the conflicts between values when the
merges are dependent. An additional disjointness condition A ∗ Γ is needed to ensure that
the synthesized type of the left branch e1 is disjoint with the context. Without this extra
condition, there can be conflicts between e1 and the current environment. Take the following
as an example:

(Int → String) & Int ⊢ 2 # ((? : Int → String) (? : Int))

The context contains type Int → String and Int, and the left branch, 2, has type Int which
clashes with the Int that is already in the context. The right branch is an application, which
picks a closure and another integer value, say 1, from the current environment. Suppose
that the closure returns the string representation of the input integer. Then ? : Int in the
right branch can choose either 1 from the environment or 2 from the left branch, and the
merge above can be non-deterministically evaluated to either 2 # “1” or 2 # “2”. Since we
wish to have deterministic evaluation, we prevent such cases with the additional disjointness
condition A ∗ Γ.

Consistency, boxes and closures. Rule Typ-mergev is the typing rule for consistent
merges. This rule is identical to the rule in previous work using non-dependent merges [21].
Like in previous work, rule Typ-mergev is a special run-time typing rule for merges of
values and can be omitted in a programming language implementation. If two consistent
values are well-typed then it is safe to merge them together. One may wonder why in this
rule the context is not extended with A to type-check v2. The reason is that values are
closed, so they cannot depend on the information that is present in the context. During the
reduction process, such information has been already filled in into the values. Consistency is
defined in terms of casting (whose definition is shown in Figure 3):

▶ Definition 3 (Consistency). Two values v1 and v2 are said to be consistent (written as
v1 ≈ v2) if for any type A, the result of casting for the two values is identical.

v1 ≈ v2 ≡ ∀ A, if v1 ↪→A v′
1 and v2 ↪→A v′

2 then v′
1 = v′

2

J. Tan and B. C. d. S. Oliveira 34:17

v ↪→A v′ (Casting)

Casting-int

i ↪→Int i

Casting-top

v ↪→Top ⊤

Casting-arrow
¬⌉D⌈ C <: Am B <: D

v ▷ ({e}m : A → B) ↪→C→D v ▷ ({e}m : A → D)

Casting-arrowtl
⌉D⌈ C <: Am B <: D

v ▷ ({e}m : A → B) ↪→C→D (C → D)↑

Casting-mergevl
v1 ↪→A v′

1 Ordinary A

v1 # v2 ↪→A v′
1

Casting-mergevr
v2 ↪→A v′

2 Ordinary A

v1 # v2 ↪→A v′
2

Casting-and
v ↪→A v1 v ↪→B v2

v ↪→A & B v1 # v2

Casting-rcd
v ↪→A v′

{l = v} ↪→{l:A} {l = v′}

Figure 3 Casting of Ei.

Given two values, if they have disjoint types, then they are consistent:

▶ Lemma 4 (Disjointness implies consistency). If A ∗ B, Γ1 ⊢ v1 ⇒ A, and Γ2 ⊢ v2 ⇒ B,
then v1 ≈ v2.

Rule Typ-box is the rule for boxes. To make a box e1 ▷ e2 well-typed, the global context
Γ is replaced for e2 with type Γ1, which is the synthesized type of the local environment
e1. In other words, the expression e2 in the box is only affected by the local context. As a
special kind of box, closures are closed since the local environment for them is a value and
this information is stored for the abstraction. Thus, it is always safe to change the context
for closures to any other context. However, we cannot do that for abstractions. For example,
if the context for {?}• : Int → Int is changed from Top to Int, then the disjointness condition
in rule Typ-abs is broken.

Generally speaking, changing the typing context may introduce more type information
such that disjointness does not hold anymore. For example, suppose that the current context
is Int, which is disjoint with Char & Bool. If we replace Int with Int & Bool, then the new type
information Bool is introduced in the context and it conflicts with Char & Bool. For disjoint
values, Lemma 4 ensures that the values are also consistent, so they can be merged together.
Therefore, typing two disjoint values does not rely on rule Typ-dmerge, which restricts the
type of the left branch to be disjoint with the context. In fact, another way to describe the
closedness of values is to show that the typing context for values can be replaced arbitrarily:

▶ Lemma 5 (Value closedness). If Γ1 ⊢ v ⇔ A, then Γ2 ⊢ v ⇔ A.

3.4 Semantics

We now introduce the call-by-value semantics of Ei using an environment-based operational
semantics. The semantics employs a type-directed operational semantics (TDOS) [21]. In
TDOS, in addition to a reduction relation, there is also a casting relation, which is introduced
to reduce values based on the type of a given value.

ECOOP 2023

34:18 Dependent Merges and First-Class Environments

Frames F ::= [] : A | [] # e | {l = []} | [].l | [] e | v [] | [] ▷ e

v ⊢ e ↪→ e′ (Reduction)

Step-ctx

v ⊢ ? ↪→ v

Step-annov
v1 ↪→A v′

1

v ⊢ v1 : A ↪→ v′
1

Step-merger
v # v1 ⊢ e ↪→ e′

v ⊢ v1 # e ↪→ v1 # e′

Step-closure

v ⊢ {e}m : A → B ↪→ v ▷ ({e}m : A → B)

Step-box
v1 ⊢ e ↪→ e′ ¬ Closure (v1 ▷ e)

v ⊢ v1 ▷ e ↪→ v1 ▷ e′

Step-boxv

v ⊢ v1 ▷ v2 ↪→ v2

Step-projv

v ⊢ {l = v1}.l ↪→ v1

Step-eval
v ⊢ e ↪→ e′

v ⊢ F [e] ↪→ F [e′]
Step-beta

v1 ↪→Am v′
1

v ⊢ (v2 ▷ ({e}m : A → B)) v1 ↪→ (v2 # A
v′

1
m) ▷ (e : B)

Value Construction Av
m

Av
• = v

{l : A}v
◦ = {l = v}

v ⊢ e ↪→∗ e′ (Multistep Reduction)

Multi-refl

v ⊢ e ↪→∗ e

Multi-step
v ⊢ e ↪→ e′ v ⊢ e′ ↪→∗ e′′

v ⊢ e ↪→∗ e′′

Figure 4 Call-by-value reduction and multistep reduction of Ei.

Casting. The casting relation, shown in Figure 3, is defined on values. The casting relation
is essentially the same as the relation in Huang et al.’s work [22]. The only difference is
that, instead of having lambda abstractions as values, we now have closures as values. So
the rules Casting-arrow and Casting-arrowtl change correspondingly to adapt to
the new form of values. Rule Casting-int casts any integer value to itself under type Int.
Rule Casting-top casts any value to a ⊤ under the top type. For merges, rule Casting-
mergevl and rule Casting-mergevr cast one of the two branches under an ordinary type.
These two rules can be viewed as value selectors for merges. The definition of ordinary types
is the variant without the conditions marked in gray shown in Figure 1. In other words,
ordinary types used in casting are those types that are not the top type or intersection
types. With rule Casting-and, a value is cast under two parts of an intersection type
respectively, and a merge is returned by combining the two results via the merge operator.
Rule Casting-rcd casts a record value under a record type with the same label, and the
result is a new record that is constructed from the result of casting the inner value under the
inner type of the record type.

A closure v ▷ {e}m : A → B can be cast under an arrow type C → D to be a new value.
If D is not top-like, then rule Casting-arrow casts the closure such that the return type
is changed to D. Rule Casting-arrowtl ensures the determinism of casting by casting
a closure to be a value generated by the value generator function (A↑) for top-like types.
Without this rule, casting a merge of two closures via a top-like type can lead to different
results. The definition of top-like types and the value generator are shown in the appendix.

J. Tan and B. C. d. S. Oliveira 34:19

Reduction. Reduction is shown in Figure 4. In the reduction relation v ⊢ e1 ↪→ e2, the
environment v is a value. Since environments are involved in reduction, the definition of multi-
step reduction is changed accordingly as shown in Figure 4. Briefly speaking, v ⊢ e1 ↪→∗ e2
means that e1 can be reduced to e2 by multiple steps under the same environment v, though
the environment is possibly changed locally, during single-step reductions.

Synthesizing values by types. Rule Step-ctx reduces a query ? to the current environment.
Rule Step-annov is the rule for annotated values, which triggers casting. In TDOS, casting
uses type information from type annotations to guide the reduction to ensure determinism.
Moreover, in Ei, casting also allows values to be fetched by types from the environment.

Multi-step

Step-eval

Step-ctx
v ⊢ ? ↪→ v

v ⊢ ? : A ↪→ v : A

v ↪→A v′

v ⊢ v : A ↪→ v′ Step-annov

v ⊢ ? : A ↪→∗ v′

As shown in the derivation tree above, with v ↪→A v′, we can conclude that ? : A will be
evaluated to v′ eventually. That is, the answer to a query that is equipped with a specific
type, is the result of casting the current environment under that type. For example, suppose
that the environment is 1 # true. Then the answer to the query ? : Int is 1 while the answer
to the query ? : Bool is true.

Evaluating dependent merges. Similarly to the reduction strategy in calculi with intersec-
tion types and a merge operator, merges are evaluated from left to right in Ei. That is, for a
merge e1 # e2, the right branch e2 is evaluated only if the left branch e1 is a value. However,
since merges are dependent in Ei, the evaluation of e2 relies on e1. Specifically, for a merge
v1 # e in which v1 is already a value, rule Step-merger evaluates the right branch e under
a new environment v # v1 such that e can access not only the original environment v but
also v1. The following is an example of evaluating dependent merges, assuming an initial
environment ⊤:

{x = 1} # {y = (? : {x : Int}).x + 1}

↪→ {x = 1} # {y = ((⊤ # {x = 1}) : {x : Int}).x + 1}

↪→ {x = 1} # {y = ({x = 1}).x + 1}

↪→ {x = 1} # {y = 1 + 1}

↪→ {x = 1} # {y = 2}

The initial merge is evaluated to {x = 1} # {y = 2}. In every single step of the evaluation
above, rule Step-merger is triggered and the right branch {y = . . . } is evaluated under
⊤ # {x = 1}.

Closures and the beta rule. In our call-by-value semantics, when a function, which is not
a value, is applied with a value, rule Step-closure transforms the function to a closure by
assigning the current environment to it. Then rule Step-beta reduces the application, where
the argument is cast first with the input type of the annotation of the closure. After that,
the casting result is merged with the environment in the closure, and this merge becomes
the local environment of a box. The body of the box is the body of the abstraction inside
the applied closure. Thus, the body of the abstraction will be evaluated further under the
new environment, which is a merge carrying the information from both the argument and
the environment of the closure.

ECOOP 2023

34:20 Dependent Merges and First-Class Environments

In rule Step-beta, the value A
v′

1
m that is added to the environment is different according

to the mode of the abstraction. For v2 ▷ ({e}• : A → B), A• = A and A
v′

1
• = v′

1, which is the
result of casting v1 with type A. If the mode is ◦, then the input type for the abstraction
can only be a record type, say {l : A}. Thus for v2 ▷ ({e}◦ : {l : A} → B), {l : A}◦ = A and
{l : A}v′

1
◦ = {l = v′

1}. That is, v2 ▷ ({e}◦ : {l : A} → B) can accept a value of type A as input,
and the value is given the name l such that it becomes a record during runtime. In this way,
the body of the abstraction e can use the label to access the information in the record. When
the evaluation context is the body of a box, rule Step-eval evaluates the local environment
under the global environment until it is a value. After that, rule Step-box evaluates the
body of the box under the local environment. A condition is set in rule Step-box to prevent
closures from being reduced further. When the body is evaluated to a value, rule Step-boxv
returns that value.

4 Determinism and Type Soundness

In this section, we show that the operational semantics of Ei is deterministic and type-
sound. Unlike previous work on calculi with the merge operator, the typing contexts and the
environments appearing in the theorems are generalized to arbitrary ones, since environments
are first-class and can be manipulated explicitly in our system.

4.1 Determinism

To obtain the determinism of reduction, the determinism of casting is needed. With the help
of consistency, any well-typed value that is cast under the same type results in a unique
value.

▶ Lemma 6 (Determinism of casting). If Γ ⊢ v ⇒ B, v ↪→A v1, and v ↪→A v2, then v1 = v2.

With determinism of casting, we can prove the following generalized version of determinism,
which states that if an expression e is well-typed under the type of the environment v, then
the reduction result is the same.

▶ Theorem 7 (Generalized determinism). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, v ⊢ e ↪→ e1, and
v ⊢ e ↪→ e2, then e1 = e2.

We cannot prove the standard theorem (where the typing context for e is Top and the
environment v is ⊤) directly. The reason is that the environment is changed in rule Step-
merger (from v to v # v1) and rule Step-box (from v to v1). If we prove the standard
theorem directly, then the premises in the inductive hypothesis restrict the environment to
be ⊤, which is not strong enough. Therefore, we generalize the theorem. Also note that the
typing context for v can be any type in the theorem, since from Lemma 5 we know that
the context for a well-typed value can be arbitrary. This fact is important for the proofs
of metatheory. When a value is well-typed, we want it also to be well-typed under the
context (say Top) appearing in the formalization of the theorem. Consider rule Step-box
for example. The environment v1 in the box is well-typed under the type of v, and it is also
well-typed under Top, which meets the condition in the inductive hypothesis.

The standard determinism theorem can then be obtained as a corollary:

▶ Corollary 8 (Determinism). If Top ⊢ e ⇔ A, ⊤ ⊢ e ↪→ e1, and ⊤ ⊢ e ↪→ e2, then e1 = e2.

J. Tan and B. C. d. S. Oliveira 34:21

4.2 Progress and Preservation

For progress and preservation, we need the following properties of casting:

▶ Lemma 9 (Progress of casting). If Γ ⊢ v ⇔ A then there exists v′ such that v ↪→A v′.

▶ Lemma 10 (Transitivity of casting). If v ↪→A v1 and v1 ↪→B v2 then v ↪→B v2.

▶ Lemma 11 (Consistency after casting). If Γ ⊢ v ⇒ C, v ↪→A v1 and v ↪→B v2, then
v1 ≈ v2.

▶ Lemma 12 (Preservation of casting). If v ↪→A v′ and Γ ⊢ v ⇒ B then Γ ⊢ v′ ⇒ A.

These lemmas follow the logic of proving type soundness by Huang and Oliveira [21]. Lemma 9
states that a well-typed value can always be cast with its type. Lemma 10 ensures that
casting results in the same value whether a value is cast directly or not. With this property
and the determinism of casting, we can prove that the casting results of a value are consistent
(Lemma 11), which ensures that casting preserves types (Lemma 12).

Progress and preservation. Similarly to generalized determinism, we have generalized
progress and preservation lemmas. Both theorems are proved by induction on the typing
judgment.

▶ Theorem 13 (Generalized progress). If Γ ⊢ e ⇔ A, then
e is a value, or
for any value v, if Top ⊢ v ⇒ Γ, then there exists e′ s.t. v ⊢ e ↪→ e′.

▶ Theorem 14 (Generalized preservation). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, and v ⊢ e ↪→ e′,
then Γ ⊢ e′ ⇔ A.

With the generalized theorems above, the standard progress and preservation theorem
can then be obtained as corollaries:

▶ Corollary 15 (Progress). If Top ⊢ e ⇔ A, then e is a value, or there exists e′ s.t.
⊤ ⊢ e ↪→ e′.

▶ Corollary 16 (Preservation). If Top ⊢ e ⇔ A and ⊤ ⊢ e ↪→ e′, then Top ⊢ e′ ⇔ A.

Type-safety. Combining generalized progress and preservation, we have generalized type
safety where the multistep relation is involved. Basically, this generalized result indicates
that under a well-typed environment, a well-typed expression will never get stuck.

▶ Corollary 17 (Generalized type safety). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, v is a value, and
v ⊢ e ↪→∗ e′, then either e′ is a value or there exists e′′ s.t. v ⊢ e′ ↪→ e′′.

Thus, the standard type safety is an immediate corollary where the environment is instantiated
to be the top value.

▶ Corollary 18 (Type safety). If Top ⊢ e ⇔ A and ⊤ ⊢ e ↪→∗ e′, then either e′ is a value or
there exists e′′ s.t. ⊤ ⊢ e′ ↪→ e′′.

ECOOP 2023

34:22 Dependent Merges and First-Class Environments

5 Encoding of λi

In this section, we show that Ei can encode the type system of the λi [32] via a type-directed
translation. In other words, every well-typed expression in λi can be translated into a
well-typed expression in Ei. We do not prove the operational correspondence because of the
significant differences between the formulations of the semantics of λi and the environment-
based semantics of Ei. However, as we discussed in Section 2, the Ei calculus enables first-class
environments and dependent merges, which cannot be modelled by λi. The translation of λi

to Ei demonstrates a few different things:
1. Variables and lambda abstractions are encodable. The first purpose of this

translation is to show that standard variables and lambda abstractions can be fully
encoded in Ei. Since λi has conventional lambda abstractions, the translation from λi to
Ei demonstrates that lambdas are encoded in a general way.

2. Non-dependent merges are encodable. The second purpose of the translation is to
show that non-dependent merges are also encodable. This encoding is not obvious since
dependent merges introduce new disjointness restrictions that are not present in calculi
such as λi. We show that a combination of Ei constructs can express all non-dependent
merges without loss of generality.

3. The Ei calculus subsumes λi. Finally, with the two previous points, we can generally
conclude that all typeable programs in λi can be encoded in Ei. So Ei is more powerful
than λi. This is a desirable property since Ei is designed as a potential replacement for
λi. Therefore, we should be able to express all the programs that are expressible in λi.

5.1 Syntax
The definitions of types, expressions, and typing contexts of λi are shown as follows:

Types A, B ::= Int | Top | A → B | A & B

Expressions E ::= x | i | ⊤ | λx. E | E1 E2 | E1 , , E2

Contexts Γ ::= · | Γ, x : A

Note that λi is a conventional lambda calculus with standard lambda abstractions and a
standard context definition. Moreover, in λi contexts are not types, and environments are
not first class.

5.2 Type-Directed Translation of λi to Ei

To utilize the information from λi contexts to construct expressions of Ei, we need to
transform λi contexts to Ei contexts which are types. The translation function for contexts
is defined as follows.

▶ Definition 19 (Context translation). |Γ| transforms contexts of λi to types of Ei.

| · | = Top
|Γ, x : A| = |Γ| & {x : A}

Figure 5 shows the typing rules of λi with an elaboration into Ei. Four of the rules are
straightforward. Rule Styp-lit simply translates an integer to itself. Similarly, Rule Styp-
top translates the top value to itself. Rule Styp-sub produces an expression by adding
a type annotation, which is a super type of the type of the expression in the premise.
Rule Styp-app simply combines the two elaborated expressions into an application in Ei.

J. Tan and B. C. d. S. Oliveira 34:23

Γ ⊢ E : A ⇝ e (Typing with elaboration)

Styp-lit

Γ ⊢ i : Int ⇝ i

Styp-top

Γ ⊢ ⊤ : Top⇝ ⊤

Styp-var
x : A ∈ Γ

Γ ⊢ x : A ⇝ (? : {x : A}).x

Styp-sub
Γ ⊢ E : A ⇝ e A <: B

Γ ⊢ E : B ⇝ e : B

Styp-abs
Γ, x : A ⊢ E : B ⇝ e

Γ ⊢ λx. E : A → B ⇝ {e}◦ : {x : A} → B

Styp-app
Γ ⊢ E1 : A → B ⇝ e1 Γ ⊢ E2 : A ⇝ e2

Γ ⊢ E1 E2 : B ⇝ e1 e2

Styp-merge
Γ ⊢ E1 : A⇝ e1 Γ ⊢ E2 : B ⇝ e2 A ∗ B fresh x

Γ ⊢ E1 , , E2 : A & B ⇝ {x = ?} ▷ (?.x ▷ e1) # ((? : {x : |Γ|}).x ▷ e2)

Figure 5 Type system of λi and its type-directed translation into Ei.

Encoding variables. Rule Styp-var uses labels to model variables. If a variable x has type
A, then x : A must appear in the context. This information from contexts is encoded as a
record type {x : A} in Ei. Thus, it becomes safe to annotate the query ? with {x : A}. To get
the type of x, a record projection is performed to extract the value of type A from {x : A}.

Encoding lambda abstractions. Similarly, the type information of the bound variable x in a
λi lambda abstraction is also translated to {x : A}. For any λx . E of type A → B, rule Styp-
abs encodes it as {e}◦ : {x : A} → B, which has type A → B instead of {x : A} → B. In
this way, it can accept values of type A instead of {x : A}. For example, λx. x with type
Int → Int is translated to {(? : {x : Int}).x}◦ : {x : Int} → Int, which can accept the integer 1
as input in an application.

Encoding non-dependent merges. Merges in λi are non-dependent and are encoded in
an interesting way in Ei. For dependent merges, the global context should be disjoint with
the type of the left branch. To prevent overlapping between |Γ| and A, a fresh label x that
does not appear in the existing types is picked to create a record {x : |Γ|} that holds the
current environment. This record becomes the context for the merge and is disjoint with A,
since x is fresh and consequently A cannot contain a record with a field x. With the box
construct, the merge is assigned the local environment {x = ?}. For the left branch of the
merge, projection ?.x unwraps the context to take back the original context |Γ|. Similarly,
unwrapping is needed for the right branch. However, since A appears in the typing scope for
the right branch in a dependent merge, the annotation {x : |Γ|} is needed for hiding A. In
this way, only |Γ| appears in the typing context of e2.

ECOOP 2023

34:24 Dependent Merges and First-Class Environments

Example. In λi, the merge x , , λy. y can have type Int & (Int → Int) in the context x : Int.
This expression is translated to the following expression in Ei:

{z = ?} ▷ (?.z ▷ (? : {x : Int}).x) # ((? : {z : {x : Int}}).z ▷ {(? : {y : Int}).y}◦ : {y : Int} → Int)

where z is the fresh label that wraps the environment. This Ei expression infers Int & (Int →
Int) in the context {x : Int}.

Type safety of the translation. The following result shows the type-safety of the translation,
and that the type system of λi can be translated into Ei without loss of expressivity.
Importantly, normal lambda abstractions and non-dependent merges are expressible in Ei.

▶ Theorem 20 (Well-typed encoding of λi). If Γ ⊢ E : A ⇝ e , then |Γ| ⊢ e ⇒ A.

6 Related Work

First-class environments. First-class environments enable environments to be manipulated
by programmers. Gelernter et al. [18] invented a programming language called Symmetric
Lisp that enriches Lisp with a kind of first-class environment, which can be used to evaluate
expressions. They argued using several examples that the first-class environments they
defined generalize a variety of constructs including modules, records, closures, and classes.
However, the formal semantics of the language is not included in their work. Miller and
Rozas [29] also proposed an extension to the Scheme programming language. In their work,
environments are created with make-environment, and a binary eval function is used to
perform computations under a first-class environment. Jagannathan [23,24] defined a dialect
of Scheme called Rascal, in which two key operators related to first-class environments are
introduced: reify that returns the current environment as a data object, and reflect which
transforms data objects to an environment.

Queinnec and de Roure [36] present a form of first-class environments as an approach
to share data objects for the Scheme programming language. Operators on environments,
such as composition, importing, and exporting, are supported in their setting. Moreover,
the first-class environments they proposed obey the quasi-static discipline [26] such that
variables are either static or quasi-static during importing and exporting. Note that our
treatment of variable names is similar to the quasi-static scoping approach [26] in some sense.
To solve the issue of name capturing, in quasi-static scoping, a free variable has an internal
name and an external name. The external name is for sharing variable bindings and is not
α-convertible. The programmer has to resolve it before dereferencing. In our setting, the
label x in the abstraction {?.x}• : {x : Int} → Int acts as an external name. In order to avoid
ambiguities, the external names in quasi-static scoping must be different in their setting,
which is similar to our approach where names are ensured to be different via disjointness.

All the work above is done in a dynamically typed setting. Regarding typed languages,
there is little work on first-class environments, which are basically based on explicit substitu-
tions [1]. Sato et al. [44, 45] introduced a simply typed calculus called λε with environments
as first-class values. In their work, full reduction is supported, and lambda abstractions
allow local renaming of bounded variables to fresh names. Sato et al. proved some desirable
properties, such as subject reduction, confluence and strong normalizability, for this calculus.
First-class environments are called explicit environments in λε, which are sets of variable-
value pairs. Moreover, there is an evaluation operation eJaK that evaluates the expression
a under an environment e. This construct is similar to the box construct in Ei. However,
reification and environment concatenation are not supported in his work. Nishizaki [47]

J. Tan and B. C. d. S. Oliveira 34:25

proposed a similar calculus with first-class environments, in which a construct called id

is introduced to return the current environment. This construct acts as reification and is
similar to our queries, but Nishizaki’s calculus does not support restriction. In Ei queries
together with type annotations can retrieve parts of an environment, and model environment
restriction. While there is an operator called extension, which can be viewed as a special case
of concatenation in Nishizaki’s work, the types do not accumulate. In contrast, environment
concatenation in Ei is modelled via dependent merges with type information flowing from
left to right. Subtyping is not included in existing type systems with environment types. In
contrast, Ei supports subtyping and has a natural notion of subtyping of environments. As a
result, it enables more applications. For instance, objects and inheritance can be modelled in
Ei [5].

Module systems. Module systems [27] are a key structuring mechanism to build reusable
components in modular programming. In ML-style languages, module systems serve as a
powerful tool for data abstraction. Generally speaking, a module is a named collection of
(dependent) declarations that aim to define an environment. Since dependent merges are
supported in Ei, a simple form of modules is allowed by using records and merges in our
work. For example, the record {M = {x = 1} # {y = ?.x}} in Ei defines a module named
M that contains dependent declarations. Conventionally, ML-style languages are stratified
into two parts: a core language, which is associated with ordinary values and types; and
a module language consisting of modules and module types (or signatures). In this way,
modules are second-class since a module cannot be passed as an argument to a function. In
Ei, a simple form of first-class modules is enabled via first-class environments. Therefore in
our setting, modules can be created and manipulated on the fly. For instance, the above
module M encoded as a record can be passed to a function, such that the values bound with
x and y could be updated.

There is much work on getting around this stratification to enable first-class modules.
One approach is to utilize dependent types. Harper and Mitchell proposed XML calculus [20]
which is a dependent type system to formalize modules as Σ and Π types. After that,
translucent sums [19] and singleton types [48] were present as extensions and refinement of
the XML calculus. On the other hand, Rossberg et al. proposed the F-ing method [42] to
encode the ML module system using System Fω [3] rather than dependent types. Following
the F-ing method, 1ML was proposed by Rossberg [41] in which core ML and modules are
collapsed into one language. Compared with Ei, the calculi in this kind of work are more
expressive due to the use of powerful type systems, where type declarations and abstract types
are typically supported. However, expressions, declarations, and modules are separate in the
syntax. In contrast, we demonstrate a new approach to enable a simple form of first-class
modules via a unified syntax in our work. A variety of entities, including environments,
records, declarations, and modules, are simply expressions in Ei.

Implicit calculi. Implicits are a mechanism for implicitly passing arguments based on
their types, which are supported in Scala as a generic programming mechanism to reduce
boilerplate code. Oliveira et al. [11] investigated the connection between Haskell type classes
and Scala implicits. They showed that many extensions of the Haskell type class system
can be encoded using implicits. After that, Oliveira et al. [12] synthesized the key ideas
of implicits formally in a general core calculus that is called the implicit calculus. The
implicit calculus supports a number of source language features that are not supported by
type classes. In implicit calculi there are two kinds of contexts and/or environments: there
are regular contexts (and environments) tracking variable bindings; and there is also an
implicit environment, which tracks values that can be used to provide implicit arguments

ECOOP 2023

34:26 Dependent Merges and First-Class Environments

automatically. In Ei, we borrow the notion of a query, which enables type-based lookups on
implicit environments, from the implicit calculus. While queries are used to query implicit
environments by type in the implicit calculus, queries in Ei are applied directly to runtime
environments and there is no distinction between implicit and regular environments.

Rouvoet [43] extended the work of Oliveira et al. and showed that the ambiguous
resolution from the implicit calculus is undecidable. Following up on the earlier work on the
implicit calculus [12], Schrijvers et al. [46] reformalized the ideas of implicits and presented a
coherent and type-safe formal model, which supports first-class overlapping implicits and
higher-order rules. Moreover, a more expressive unification-based algorithmic resolution,
which is closely related to the idea of propositions as types [50], is described. While a highly
complex mechanism is imposed to ensure coherence and the semantics is given by elaboration
in their work, in Ei we adopt a TDOS to utilize the type information for guiding reduction
and to enable determinism in a natural way. Odersky et al. [31] proposed the SI calculus.
The SI calculus generalizes implicit parameters in Scala to implicit function types that have
the form of T?→ T, which provides a way to abstract over the contexts consisting of running
code. The idea of this generalization was inspired by an early draft of Schrijvers et al.’s
work. Unlike the work of Schrijvers et al. and our work, SI lacks unambiguity. Thus a
disambiguation scheme is needed in the implementation. While forms of implicit contextual
abstraction are offered in the implicit calculi above, a form of contextual abstraction is
also supported in Ei. Indeed, since environments are first-class values in Ei, one can easily
abstract over the contexts by using abstractions. More recently, Marntirosian et al. [28]
added modus ponens to subtyping to make resolution a special case of subtyping and to
enable implicit first-class environments. Unlike Ei, the runtime environments in their work
are still second class.

The merge operator. The merge operator was firstly proposed by Reynolds in the Forsythe
language [38] to add the expressiveness for calculi with intersection types. Reynolds’ merge
operator is quite restrictive and does not allow, for instance, overloaded functions. Since then,
several other researchers [8,15,32,33] have removed restrictions and shown more applications
of the merge operator. Dunfield [15] presents a powerful calculus with an unrestricted merge
operator and an elaboration semantics that can encode various language features. While
the elaboration semantics is type-safe, determinism or coherence [39] cannot be ensured.
To enable determinism, a disjointness restriction on merges has been proposed in the work
of Oliveira et al. [32]. In this work we borrow the idea of merges, intersection types and
disjointness from previous work on the merge operator. Unlike previous work, our merges are
dependent and Ei has operators to manipulate first-class environments that are not available
in earlier calculi with the merge operator. In previous calculi, environments are not first
class and the only operators supported on merges are concatenation and restriction.

Staged calculi and modal logic. Staging is a technique to separate the computations
of a program, such that abstraction can be realized without loss of efficiency. Davies
and Pfenning [14] proposed a type system that captures staged computation based on
the intuitionistic variant of the modal logic S4 [35]. The modal necessity operator □ is
introduced, and □A represents the type of code that will be evaluated in an upcoming stage.
At the term level, expressions of type □A have the form box(e). Corresponding to the modal
rule of necessitation, box(e) has type □A if e has type A in the empty context. Later, after
this work, the box construct is generalized by Nanevski et al. in the work of contextual
modal type theory [30]. In this work, the box construct has the form box(Ψ.e) where Ψ is a
context and e can utilize the information in Ψ. The construct box(Ψ.e) is similar to e1 ▷ e2 in

J. Tan and B. C. d. S. Oliveira 34:27

Ei in the sense that the context Ψ shadows the current context. Both constructs capture the
dependence of expressions on contexts, in effect modelling data injection. However, since Ψ
is a context, e in box(Ψ.e) can only utilize type information, whereas in e1 ▷ e2, e2 relies on
the concrete environment information from the expression e1 directly. Furthermore, in modal
type theory contexts Ψ are defined in the usual way and are not types, nor are first class in
the language. In contrast, contexts are types in Ei, and environments are first class values.

Abstract machines. Abstract machines, such as the SECD machine [25], Krivine’s machine,
the categorical abstract machine [10], and the CEK machine [16], are state transition systems
that serve as a basis for the implementation of functional languages. Typically, a state in
abstract machines is a tuple that contains an expression, an environment, and some other
entities (such as stack and continuation) for reduction. Similarly, in Ei the semantics is an
environment-based semantics, and closures are used to keep environments around during the
reduction. However, abstract machines are models for lambda calculus, and thus they are
not aimed at providing languages with first-class environments. In contrast, the Ei calculus
supports first-class environments and operators that manipulate environments.

7 Conclusion

In this paper, we have presented a statically typed calculus called Ei, that supports the
creation, reification, reflection, concatenation and restriction of first-class environments. The
Ei calculus borrows disjoint intersection types and a merge operator from the λi [32] calculus,
but employs them to model environments. In Ei, intersection types are used to model
contexts, and disjointness is imposed to model (and generalize) the uniqueness of variables in
an environment. However, unlike previous work, merges in Ei are dependent, which enables
modelling dependent declarations. From implicit calculi [12,31,46], Ei borrows queries to
synthesize the full current context (at the type level) and the entire current environment
(at the term level), and to enable type-based lookups. We prove the determinism and
type-soundness of Ei. Furthermore, we show that the type system of λi can be encoded by
Ei via a type-directed translation. In other words, standard variables, lambda abstractions,
and non-dependent merges are all encodable in Ei, enabling the Ei calculus to subsume λi.
We also study an extension of the calculus with fixpoints. The Ei calculus, as well as the
extension, and all the proofs presented in this paper have been formalized using Coq theorem
prover.

As for future work, we are interested in extensions with more features. For example, we
plan to investigate how to incorporate BCD subtyping [4]. With the merge operator and
BCD subtyping, a powerful form of composition called nested composition [6] can be enabled.
We would also like to extend the current calculus with polymorphism and show that abstract
types can be encoded with the extended calculus. In this setting, since type variables could
occur in contexts, we plan to use labels to model type variables, just like what we have done
for term variables.

References
1 Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. Explicit substitutions. In Proceedings

of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 31–46, 1989.

2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European
Symposium on Programming (ESOP), 2017.

ECOOP 2023

34:28 Dependent Merges and First-Class Environments

3 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154,
1991. doi:10.1017/s0956796800020025.

4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. The journal of symbolic logic, 48(04):931–940, 1983.

5 Xuan Bi and Bruno C. d. S. Oliveira. Typed First-Class Traits. In European Conference on
Object-Oriented Programming (ECOOP), 2018.

6 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The Essence of Nested Composition.
In European Conference on Object-Oriented Programming (ECOOP), 2018.

7 Luca Cardelli. Program fragments, linking, and modularization. In Peter Lee, Fritz Henglein,
and Neil D. Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the
Symposium, Paris, France, 15-17 January 1997, pages 266–277. ACM Press, 1997. doi:
10.1145/263699.263735.

8 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. In Conference on LISP and Functional Programming, 1992.

9 Coq development team. The coq proof assistant. http://coq.inria.fr/.
10 Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract machine.

Sci. Comput. Program., 8(2):173–202, 1987. doi:10.1016/0167-6423(87)90020-7.
11 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and

implicits. In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA, pages 341–360. ACM, 2010. doi:10.1145/1869459.1869489.

12 Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The implicit calculus: a new foundation for generic programming. In Jan Vitek, Haibo Lin,
and Frank Tip, editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 35–44. ACM, 2012.
doi:10.1145/2254064.2254070.

13 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Interna-
tional Conference on Functional Programming (ICFP), 2000.

14 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM,
48(3):555–604, 2001. doi:10.1145/382780.382785.

15 Jana Dunfield. Elaborating intersection and union types. Journal of Functional Programming
(JFP), 24(2-3):133–165, 2014.

16 Matthias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-order
languages. In Conference Record of the Fourteenth Annual ACM Symposium on Principles
of Programming Languages, Munich, Germany, January 21-23, 1987, pages 314–325. ACM
Press, 1987. doi:10.1145/41625.41654.

17 Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob Hain, and Jan Vitek. R
melts brains: An ir for first-class environments and lazy effectful arguments. In Proceedings of
the 15th ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2019, pages
55–66. Association for Computing Machinery, 2019.

18 David Gelernter, Suresh Jagannathan, and Thomas London. Environments as first class
objects. In Conference Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, Munich, Germany, January 21-23, 1987, pages 98–110. ACM Press,
1987. doi:10.1145/41625.41634.

19 Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 123–137, 1994.

20 Robert Harper and John C. Mitchell. On the type structure of standard ML. ACM Trans.
Program. Lang. Syst., 15(2):211–252, 1993. doi:10.1145/169701.169696.

https://doi.org/10.1017/s0956796800020025
https://doi.org/10.1145/263699.263735
https://doi.org/10.1145/263699.263735
http://coq.inria.fr/
https://doi.org/10.1016/0167-6423(87)90020-7
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1145/2254064.2254070
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/41625.41634
https://doi.org/10.1145/169701.169696

J. Tan and B. C. d. S. Oliveira 34:29

21 Xuejing Huang and Bruno C. d. S. Oliveira. A type-directed operational semantics for
a calculus with a merge operator. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 26:1–26:32, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.26.

22 Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. Taming the merge operator. Journal
of Functional Programming, 31:e28, 2021. doi:10.1017/S0956796821000186.

23 Suresh Jagannathan. Dynamic modules in higher-order languages. In Henri E. Bal, editor,
Proceedings of the IEEE Computer Society 1994 International Conference on Computer
Languages, May 16-19, 1994, Toulouse, France, pages 74–87. IEEE Computer Society, 1994.
doi:10.1109/ICCL.1994.288391.

24 Suresh Jagannathan. Metalevel building blocks for modular systems. ACM Trans. Program.
Lang. Syst., 16(3):456–492, 1994. doi:10.1145/177492.177578.

25 P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964.
doi:10.1093/comjnl/6.4.308.

26 Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bindings across
multiple lexical scopes. In Mary S. Van Deusen and Bernard Lang, editors, Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, USA, January 1993, pages 479–492. ACM Press, 1993.
doi:10.1145/158511.158706.

27 David B. MacQueen. Modules for standard ML. In Robert S. Boyer, Edward S. Schneider, and
Guy L. Steele Jr., editors, Proceedings of the 1984 ACM Conference on LISP and Functional
Programming, LFP 1984, Austin, Texas, USA, August 5-8, 1984, pages 198–207. ACM, 1984.
doi:10.1145/800055.802036.

28 Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias.
Resolution as intersection subtyping via modus ponens. Proc. ACM Program. Lang.,
4(OOPSLA):206:1–206:30, 2020. doi:10.1145/3428274.

29 James S. Miller and Guillermo Juan Rozas. Free variables and first-class environments. LISP
Symb. Comput., 4(2):107–141, 1991.

30 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic (TOCL), 9(3):1–49, 2008.

31 Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and
Sandro Stucki. Simplicitly: foundations and applications of implicit function types. Proc.
ACM Program. Lang., 2(POPL), 2017.

32 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

33 Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD
thesis, University of Pennsylvania, 1991.

34 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

35 Dag Prawitz. Natural deduction: A proof-theoretical study. Courier Dover Publications, 2006.
36 Christian Queinnec and David De Roure. Sharing code through first-class environments. In

Robert Harper and Richard L. Wexelblat, editors, Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming, ICFP 1996, Philadelphia, Pennsylvania,
USA, May 24-26, 1996, pages 251–261. ACM, 1996. doi:10.1145/232627.232653.

37 Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. Union Types with
Disjoint Switches. In 36th European Conference on Object-Oriented Programming (ECOOP
2022), Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:31, 2022.

38 John C Reynolds. Preliminary design of the programming language forsythe. Technical report,
Carnegie Mellon University, 1988.

39 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in
Computer Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

ECOOP 2023

https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1109/ICCL.1994.288391
https://doi.org/10.1145/177492.177578
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1145/158511.158706
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/3428274
https://doi.org/10.1145/232627.232653

34:30 Dependent Merges and First-Class Environments

40 John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages,
pages 173–233. Birkhauser Boston Inc., 1997.

41 Andreas Rossberg. 1ml - core and modules united. J. Funct. Program., 28:e22, 2018. doi:
10.1017/S0956796818000205.

42 Andreas Rossberg, Claudio Russo, and Derek Dreyer. F-ing modules. Journal of functional
programming, 24(5):529–607, 2014.

43 Arjen Rouvoet. Programs for free: Towards the formalization of implicit resolution in scala.
Master’s thesis, TU Delft, 2016.

44 Masahiko Sato, Takafumi Sakurai, and Rod M. Burstall. Explicit environments. Fun-
dam. Informaticae, 45(1-2):79–115, 2001. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi45-1-2-05.

45 Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A simply typed context
calculus with first-class environments. J. Funct. Log. Program., 2002, 2002. URL: http:
//danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf.

46 Tom Schrijvers, Bruno C. d. S. Oliveira, Philip Wadler, and Koar Marntirosian. COCHIS: stable
and coherent implicits. J. Funct. Program., 29:e3, 2019. doi:10.1017/S0956796818000242.

47 Shin-ya Nishizaki. Simply typed lambda calculus with first-class environments. Publications
of the Research Institute for Mathematical Sciences, 30(6):1055–1121, 1994.

48 Christopher A Stone and Robert Harper. Extensional equivalence and singleton types. ACM
Transactions on Computational Logic (TOCL), 7(4):676–722, 2006.

49 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
50 Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, 2015. doi:10.1145/

2699407.
51 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. Compositional programming. ACM

Transactions on Programming Languages and Systems (TOPLAS), 43(3):1–61, 2021.

A Some Relations

A.1 Algorithmic Disjointness

A ⊓ B (COSTs)

Cost-int

Int ⊓ Int

Cost-andl
A ⊓ C

A & B ⊓ C

Cost-andr
B ⊓ C

A & B ⊓ C

Cost-randl
A ⊓ B

A ⊓ B & C

Cost-randr
A ⊓ C

A ⊓ B & C

Cost-arr
B ⊓ D

A → B ⊓ C → D

Cost-rcd
A ⊓ B

{l : A} ⊓ {l : B}

Here we define a relation called COSTs (Common Ordinary Super Types), which is used to
define algorithmic disjointness as following:

▶ Definition 21 (Algorithmic Disjointness). A ∗a B ≡ ¬(A ⊓ B)

The algorithmic disjointness is equivalent to the specification of disjointness (Definition 1).

▶ Theorem 22 (Disjointness Equivalence). A ∗a B if and only if A ∗ B.

https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1017/S0956796818000205
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf
https://doi.org/10.1017/S0956796818000242
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407

J. Tan and B. C. d. S. Oliveira 34:31

A.2 Top-like Types
⌉A⌈ (Top-like Types)

TL-top

⌉Top⌈

TL-and
⌉A⌈ ⌉B⌈

⌉A & B⌈

TL-arr
⌉B⌈

⌉A → B⌈

TL-rcd
⌉B⌈

⌉{l : B}⌈

A.3 Value Generator
▶ Definition 23 (Value Generator). A↑ generates a value for top-like type A.

Top↑ = ⊤
(A → B)↑ = ⊤ ▷ ({B↑}• : A → B)
(A & B)↑ = A↑ # B↑

{l : A}↑ = {l = A↑}

B Fixpoints

In this section, we discuss an extension of Ei with fixpoints.

Expressions e ::= . . . | fix A.e
Values v ::= . . . | v ▷ (fix A.e : B)

Syntax and typing. Expressions are extended with fixpoint fix A.e in which A is the type
annotation. For values, closures are extended with boxes containing a fixpoint. Note that for
fix A.e in a closure, an additional type annotation B is required. Rule Typ-fix is the typing
rule for fixpoints, which is shown at the top of Figure 6. To make fix A.e well-typed, the
body e needs to be checked under the context extended with A. Similarly to the typing rule
for abstractions, there is also a disjointness condition Γ ∗ A to prevent ambiguities.

Casting and reduction. The extended casting and reduction rules for fixpoints are shown
in Figure 6. Basically, v ▷ (fix A.e : B) is cast with a supertype C and the result depends on
whether C is top-like or not. If C is not a top-like type, then the casting result is v▷(fix A.e : C).
Otherwise, v ▷ (fix A.e : B) is cast to a value generated by the value generator for C. This
is similar to the treatment of casting abstractions for ensuring determinism. Note that C

is required to be ordinary in rule Casting-fix and rule Casting-fixtl. This is to avoid
overlapping with rule Casting-and when C is an intersection type.

For reduction, there are three rules for fixpoints. Rule Step-fix transforms fix A.e to
a closure by assigning the current environment and giving an additional annotation to it.
When v2 ▷ fix C.e : A → B is applied to value v1, rule Step-fixbeta “unwinds” the closure
in the sense that the closure is put into the environment. In this way, when the application
(e : A → B) v1 is evaluated, it can access and utilize the closure containing the fixpoint again.
Note that the closure put in the environment is v2 ▷fix C.e : C instead of v2 ▷fix C.e : A → B.
This is to ensure that the body e of the fixpoint is well-typed under the same context Γ & C

for type preservation. Similarly, when a record projection is required, rule Step-fixproj
“unwinds” the closure, and evaluates (e : {l : B}).l under the environment that contains the
fixpoint information.

ECOOP 2023

34:32 Dependent Merges and First-Class Environments

Γ ⊢ e ⇔ A (Extended Bidirectional Typing)

Typ-fix
Γ ∗ A Γ & A ⊢ e ⇐ A

Γ ⊢ fix A.e ⇒ A

v ↪→A v′ (Extended Casting)

Casting-fix
B <: C ¬⌉C⌈ Ordinary C

v ▷ (fix A.e : B) ↪→C v ▷ (fix A.e : C)

Casting-fixtl
B <: C ⌉C⌈ Ordinary C

v ▷ (fix A.e : B) ↪→C C↑

v ⊢ e ↪→ e′ (Extended Reduction)

Step-fix

v ⊢ fix A.e ↪→ v ▷ (fix A.e : A)

Step-fixbeta

v ⊢ (v2 ▷ fix C.e : A → B) v1 ↪→ (v2 # (v2 ▷ fix C.e : C)) ▷ (e : A → B) v1

Step-fixproj

v ⊢ (v2 ▷ fix A.e : {l : B}).l ↪→ (v2 # (v2 ▷ fix A.e : A)) ▷ (e : {l : B}).l

Figure 6 Extended typing, casting, and reduction rules for Ei with fixpoints.

Determinism and type-soundness. The extension with fixpoints retains the properties of
determinism and type-soundness. All the metatheory does not require significant changes for
this extension and is formalized in the Coq theorem prover.

	1 Introduction
	2 Overview
	2.1 Background
	2.2 Limitations of Non-Dependent Merges
	2.3 Key Ideas

	3 The E-i Calculus
	3.1 Syntax
	3.2 Subtyping and Disjointness
	3.3 Bidirectional Typing
	3.4 Semantics

	4 Determinism and Type Soundness
	4.1 Determinism
	4.2 Progress and Preservation

	5 Encoding of Lambda-i
	5.1 Syntax
	5.2 Type-Directed Translation of Lambda-i to E-i

	6 Related Work
	7 Conclusion
	A Some Relations
	A.1 Algorithmic Disjointness
	A.2 Top-like Types
	A.3 Value Generator

	B Fixpoints

