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Abstract
This paper presents a specification framework for monadic, recursive, interactive programs that
supports auto-active verification, an approach that combines user-provided guidance with automatic
verification techniques. This verification tool is designed to have the flexibility of a manual approach
to verification along with the usability benefits of automatic approaches. We accomplish this by
augmenting Interaction Trees, a Coq datastructure for representing effectful computations, with
logical quantifier events. We show that this yields a language of specifications that are easy to
understand, automatable, and are powerful enough to handle properties that involve non-termination.
Our framework is implemented as a library in Coq. We demonstrate the effectiveness of this framework
by verifying real, low-level code.
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1 Introduction

Formal verification is starting to see adoption in industry as a tool for ensuring the security
and correctness of software. For instance, the formally verified seL4 microkernel [13] has
established a foundation that is seeing investment from a wide variety of industrial partners.
Block-chain companies are using formal verification to ensure the security of cryptocur-
rency [15]. Amazon has even incorporated formal verification into the CI/CD process of
their s2n cryptographic library [7].

Unfortunately, formal verification still remains expensive, not just in terms of time and
effort but also in terms of the expertise required to formally verify a system. A number of
powerful frameworks have been developed for manual formal verification, including Iris [12],
VST [2], and FCSL [24]. These frameworks can specify a wide array of behaviors on a
wide array of languages, but they require an expert to be used effectively. Other powerful
frameworks have been developed for automatic verification, including approaches such as
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30:2 Interaction Tree Specifications

bounded model-checking [4] and property-directed reachability [5]. While these approaches
can be operated by non-experts, they are limited in their expressiveness, leaving important
properties unverified.

It is particularly difficult to reason about low-level code that contains complicated
manipulations of pointer structures on the heap, as is common in languages like C, C++,
and LLVM. Recently, researchers have tackled this problem using the observation that
programs that are well-typed in a memory-safe, Rust-like type system are basically functional
programs [9, 17, 18, 3, 10]. That is, there exists a program in a functional language whose
behavior is equivalent to the original, heap-manipulating program. We call this functional
program a functional specification. While many projects rely only implicitly on the functional
specification, some, like the Heapster project [9], reify functional specifications into concrete
code. Engineers can then verify properties about the derived functional code, and ensure
those properties hold on the original program.

The Heapster tool consists of two components: a memory-safe type system for LLVM code,
and a translation tool that produces an equivalent functional program from any well-typed
LLVM program. Heapster uses these components to break verification of heap manipulating
programs into two phases: a memory-safe type-checking phase that generates a monadic,
recursive, interactive program that is equivalent to the original program; and a behavior-
verification phase that ensures that the generated program has the correct behavior. Previous
work has left open major questions about the behavior verification phase, namely, what
should the language of specifications be and how do we actually prove that the programs
satisfy the specifications.

This work answers these questions by developing a logic well-suited to reasoning about
the programs output by Heapster, as well as tools to work with these logical formulae. Taken
together, the Heapster tool and this work form a two-step pipeline for verifying low-level,
heap manipulating programs. Heapster transforms low-level, heap manipulating programs
into equivalent functional programs. The techniques in this paper enable proof engineers to
write and prove specifications over the resulting functional programs.

In this work, we present interaction tree specifications, or ITree specifications. ITree
specifications are an auto-active verification framework for monadic, recursive, interactive
programs based on interaction trees [29], or ITrees. Auto-active verification is a verification
technique that merges user input and automated reasoning to leverage the benefits of each.
Monadic, recursive, interactive programs have the ability to diverge, can interact with
their environment, but otherwise act as pure functional programs. Interactions with the
environment can include making a system call, sending a message from a server, and throwing
an error. ITrees are a model for monadic, recursive, interactive programs formalized in Coq.
ITree specifications are designed to be able to write and verify specifications about the output
programs of the Heapster translation tool, which are written in terms of ITrees.

The main body of work that takes on the task of verifying monadic programs is the
Dijkstra monad literature [16, 28, 1, 27]. However, most of the Dijkstra monad literature
cannot handle the kinds of termination sensitive specifications that we need. These papers
either assume a strongly normalizing language, or handle only partial specifications. The
exception to this is the work of Silver and Zdancewic [25]. However, while that work does
have a rich enough specification language for our goals, it has two significant shortcomings.
First, the work provides no reasoning principles for arbitrary recursive specifications. Second,
the work does not attempt to automate the verification of these specifications. Our work
accomplishes both of these goals.
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This work is based on the idea of augmenting ITrees with operations for logical quantifiers.
We show that this idea leads to a language of specifications that is:

easy to read, because the specifications are simply programs annotated with logical
quantifiers,
capable of encoding recursive specifications, because the underlying computational lan-
guage has a powerful recursion operator, and
amenable to auto-active verification, because specifications are syntactic constructs
enabling syntax-directed inference rules.

ITrees represent computations as potentially infinite trees whose nodes are labelled with
events. Events are syntactic representations of computational effects, like raising an error,
or sending data from a server. ITrees can be used to represent the semantics of recursive,
monadic, interactive programs. ITree specifications are ITrees enriched with events for logical
quantifiers. This language of specifications has the capability to express purely executable
computations, fully abstract specifications, and combinations of both. For example, consider
the following executable specification server_impl for a simple server program that sorts lists
which are sent to it:

Definition server_impl : unit → itree_spec E void :=
rec_fix_spec (fun rec _ ⇒

l � trigger rcvE;;
ls � sort l;;
trigger (sendE ls);;
rec tt

).

This specification is defined with rec_fix_spec, a recursion operator (defined in Section 4)
where applications of the rec argument correspond to recursive calls. The body of the recursive
function first calls trigger rcvE, which triggers the use of the receive event rcvE, causing the
program to wait to receive data. The list l that is received is then passed to the sort function,
defined in Section 6, which is a recursive implementation of the merge sort algorithm. Finally,
the sorted list returned by sort is sent as a response with trigger (sendE ls), and the server
program loops back to the beginning by calling rec.

Now, consider the following specification of the behavior of our server using a combination
of executable and abstract features:

Definition server_spec : unit → itree_spec E void :=
rec_fix_spec (fun rec _ ⇒

l � trigger rcvE;;
ls � exists_spec (list nat);;
assert_spec (Permutation l ls);;
assert_spec (sorted ls);;
trigger (sendE ls);;
rec tt).

This function acts mostly like server_impl but, instead of computing a sorted list, it uses the
existential quantification operation exists_spec to introduce the list value ls, which it then
asserts is a sorted permutation of the initial list. By leaving this part of the specification
abstract, it allows the user to express that it is unimportant how the list is sorted, as long as
the response is a sorted permutation of the input list. The send and receive events, however,
are left concrete, allowing the user to specify what monadic events should be triggered in
what order. This specification implicitly defines a liveness property of the server, it will
reject any program that fails to eventually perform the next send or receive. By using a
single language for programs and specifications, our approach provides a natural way for
users to control how concrete or abstract the various portions of their specifications are. Our
approach then provides auto-active tools for proving that programs refine these specifications.
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Class EncodingType (E:Type) : Type :=
response_type : E → Type.

Figure 1 EncodingType typeclass definition.

Necessary background explaining ITrees and Heapster is given in Section 2 and Section 3.
The contributions of this paper are as follows:

ITree specifications, a data structure for representing specifications over monadic, recursive,
interactive programs, presented in Section 4
a specification refinement relation over ITree specifications, along with collection of
verified, syntax-directed proof rules for refinement also presented in Section 4,
tools for encoding and proving refinements involving total correctness specifications in
ITree specifications presented in Section 5,
an auto-active verification technique briefly discussed in Section 6
an evaluation of the presented techniques in the form of verifying a collection of realistic
C functions using ITree specifications and Heapster presented in Section 6.

2 Background

ITrees are a formalization for denotational semantics implemented as a coinductive variant of
the free monad in Coq. ITrees represent programs as potentially infinite trees. The nodes of
these trees are labelled with events. Events can, depending on the context, either represent
algebraic effects or recursive function calls. The ITree type is parameterized by a return
type R and a type family E, where E has an instance of the EncodingType type class defined in
Figure 1. The EncodingType type class consists of function, named response_type, from E to
Type. A value of type itree E R is a potentially infinite tree whose internal nodes are each
labelled with an event e of type E, with one branch for each element of the response_type e
whose leaves are labelled with an element of type R. Such a tree represents an effectful
computation, where the leaves represent termination of the computation with a return value
in R while the nodes represent uses of monadic effects. The event e of type E that labels
a node represents a monadic effect that returns a value of type response_type e, and the
children of that node represent the possible continuations of that computation depending on
the return value of the effect. This is formalized in the following Coq code1.

CoInductive itree (E : Type) {̀EncodingType E} (R : Type) :=
| Ret (r : R)
| Tau (t : itree E R)
| Vis (e : E) (k : response_type e → itree E R).

The ITree datatype has three constructors. The Ret constructor represents a pure computation
that simply returns a value. The Ret constructor forms the leaves of an ITree. The Tau
constructor represents one step of silent internal computation followed by another ITree.
Finally, the Vis constructor contains an event e along with a continuation function k which
defines all the branches of this Vis node.

Because ITrees are defined coinductively, we can construct ITrees with infinitely long
branches. Such ITrees represent divergent computations. For example, the following code
describes an ITree that consists of an infinite stream of Tau constructors with no events.

1 In the actual formalization, we use a negative coinductive types presentation of this data structure.
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Class ReSum (E1 : Type) (E2 : Type) {̀EncodingType E1} {̀EncodingType E2} :=
{

resum : E1 → E2;
resum_ret : forall {e : E1}, response_type (resum e) → response_type e;

}.

Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2} {̀EncodingType E1} {̀EncodingType E2} {̀E1 -< E2} :forall (e1
: E1), (itree E2 (response_type e1)) :=

fun e ⇒ Vis (resum e) (fun x ⇒ Ret (resum_ret x)).

Figure 2 ReSum Definition.

CoFixpoint spin : itree E R := Tau spin.

In practice, ITrees often end up using an event type family E that is a composition of
several smaller type families combined in a large sum. This can easily clutter and complicate
the notation. To avoid this burden, the ITrees library introduces the ReSum typeclass defined
in Figure 2. An instance of ReSum E1 E2, written E1 -< E2, contains two functions: the
resum function that injects an element of E1 into E2, and the resum_ret function that maps
elements from the response type of resum e to the response type of e. It can be thought
of as a kind of subevent typeclass. The ReSum typeclass allows for the definition of the
trigger function in Figure 2. The trigger function takes an event e : E1 and injects it into
itree E (response_type e) by injecting e into E2, placing that in a Vis node, and applying
the resum_ret function to the response.

2.1 Equivalence up to Tau
One of the major advantages of the ITrees library is its rich equational theory. The primary
notion of equivalence used for ITrees is called eutt or equivalence up to tau. Xia et al. [29]
defines eutt as a bisimulation relation that quotients out finite differences in the number
of Tau constructors. We use this relation because Tau constructors are supposed to indicate
silent steps of computation. Ignoring finite numbers of Tau constructors lets us equate two
ITrees that vary only in the number of silent computation steps.

The eutt relation is parameterized by a relation RR over return values. If the relation
RR is heterogeneous, relating values over distinct types R1 and R2, then eutt RR is also a
heterogeneous relation over itree E R1 and itree E R2. Intuitively, if eutt RR t1 t2, then the
Vis nodes of t1 precisely match those of t2, and if equivalent paths in t1 and t2 lead to the
leaves Ret r1 and Ret r2 then the values r1 and r2 are related by RR. Often, we are interested
in eutt eq and denote this relation with the symbol ≈.

The eutt relation is implemented in Coq using both inductive and coinductive techniques.
Observe the following definition of eutt:

Inductive euttF (RR : R1 → R2 → Prop) (sim : itree E R1 → itree E R2 → Prop) :
itree E R1 → itree E R2 → Prop :=

| eutt_Ret (r1 : R1) (r2 : R2) : euttF RR sim (Ret r1) (Ret r2)
| eutt_Tau (t1 : itree E R1) (t2 : itree E R2) :

sim t1 t2 → euttF RR sim (Tau t1) (Tau t2)
| eutt_Vis (e : E) (k1 : response_type e → itree E R1)

(k2 : response_type e → itree E R2) :
(forall a, sim (k1 a) (k2 a)) → euttF RR sim (Vis e k1) (Vis e k2)

| eutt_TauL (t1 : itree E R1) (t2 : itree E R2) :

ECOOP 2023
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Example spin ≈ spin.

Example ∼(spin ≈ Ret 0).

Example Tau (Ret 0) ≈ Ret 0.

Figure 3 eutt Examples.

euttF RR sim t1 t2 → euttF RR sim (Tau t1) t2
| eutt_TauR (t1 : itree E R1) (t2 : itree E R2) :

euttF RR sim t1 t2 → euttF RR sim t1 (Tau t2).

Definition eutt (RR : R1 → R2 → Prop) := gfp (euttF RR).

The euttF relation is an inductively defined relation, defined in terms of the sim argument.
The eutt relation is then defined as the greatest fixpoint of euttF. In this paper, all greatest
fixpoints are defined using the paco library[11] for coinductive proofs. Calls to the sim
argument in the definition of euttF correspond to coinductive calls of eutt. Recursive calls
to euttF correspond to inductive calls of eutt. This method of defining eutt allows the
coinductive constructors to be called infinitely often in sequence, while only a finite number
of calls to inductive constructors can be called without an intervening call to a coinductive
constructor. Specifically, only finitely many eutt_TauL and eutt_TauR steps, that remove a
Tau from only one side, are allowed before one of the remaining rules must be used to relate
the same constructor on both sides.

This definition allows us to achieve our goal of ignoring any finite difference in numbers
of Tau constructors. In particular the equations and inequalities presented in Figure 3 hold.

ITrees form a monad. Monads are type families with a ret combinator that denotes a
pure value, and a bind combinator that sequentially composes two monadic computations
into one. The ret combinator is implemented with the Ret constructor, while the bind t k
combinator is implemented as a coinductive function that traverses the ITree t and replaces
each leaf Ret r with the new subtree k r. This is implemented in the following Coq code:

CoFixpoint bind (t : itree E R) (k : R → itree E S) :=
match t with
| Ret r ⇒ k r
| Tau t ⇒ Tau (bind t k)
| Vis e kvis ⇒ Vis e (fun x ⇒ bind (kvis x) k)
end.

2.2 Mutually Recursive Computations
This section explains the recursion operator introduced by Xia et al. [29]. That work
demonstrated how to use events as a piece of syntax for writing collections of mutually
recursive functions over ITrees. Specifically, it introduced the mrec combinator, which lifts
a collection of function bodies that syntactically reference one another to a collection of
actually recursive functions. A similar recursion combinator is used extensively in Section 4
and Section 6.

When using the mrec combinator, you must first choose an event type D, with an
EncodingType instance, to serve as the type of recursive calls. An element d : D packages
together the choice of the function being called along with the arguments being supplied
to that function. The return type of the function call d is response_type d. In this context,
an ITree with the type itree (D + E) R represents the body of a mutually recursive function
viewing the recursive calls as inert D events. This ITree defines a recursive function in terms of
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Variant evenoddE : Type:=
| even (n : nat) : evenoddE
| odd (n : nat) : evenoddE.

Instance EncodingType_evenoddE : EncodingType evenoddE := fun _ ⇒ bool.

Definition evenodd_body : forall eo : evenoddE, (itree (evenoddE + voidE)) (
response_type eo) :=

fun eo ⇒
match eo with
| even n ⇒ if Nat.eqb n 0

then Ret true
else trigger (odd (n -1))

| odd n ⇒ if Nat.eqb n 0
then Ret false
else trigger (even (n -1))

end.
Definition evenodd : evenoddE → itree voidE bool :=

mrec evenodd_body.

Figure 4 evenodd Definition.

syntactic recursive calls. In order to resolve these syntactic recursive calls, we need a mapping
from recursive calls to a single layer of unfolding of the recursive function. This is represented
as a function of type bodies : forall (d:D), itree (D + E) (response_type d). The variable
name bodies refers to the fact that this term represents the body of each function in this
collection of mutually recursive functions. We can then take this ITree, corecursively replace
each d : D event with the unfolded function body bodies d, and then repeat the process with
the resulting ITree. This is formalized in the following interp_mrec function.

CoFixpoint interp_mrec {R : Type}
(bodies : forall (d:D), itree (D + E) (response_type d))
(t : itree (D + E) R) : itree E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec bodies t)
| Vis (inr e) k ⇒ Vis e (fun x ⇒ interp_mrec bodies (k x))
| Vis (inl d) k ⇒ Tau (interp_mrec bodies (bind (bodies d) k))
end.

Given this function that can resolve the recursive calls in an ITree, we can define the mrec
function that takes an initial recursive call init : D and computes its result.

Definition mrec (bodies : forall (d:D), itree (D + E) (response_type d)) (init : D)
:=

interp_mrec bodies (bodies init).

Figure 4 provides an example of a mutually recursive function defined with mrec. The
evenoddE type represents calls to compute the parity of a natural number. The evenodd
function computes either the even or the odd function depending on the initial recursive call
event that it is given. The evenodd function defines these computations mutually recursively
using the mrec function.

This section briefly introduces the classes of relations that we will need in order to reason
about specification refinement in the presence of mutually recursive computations. The
definition of eutt is parameterized by a return relation, making it easy to define a relation for
ITrees that have identical tree structures up to Taus, with identical event nodes, but allows
freedom to choose what conditions to enforce on return values. It is natural to consider
generalizing eutt to allow variation not only in the return values but also in the event nodes.

ECOOP 2023
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Definition Rel (A B : Type) : Type := A → B → Prop.
Definition PostRel (D1 D2 : Type) {̀EncodingType D1} {̀EncodingType D2} : Type :=

forall (d1 : D1) (d2 : D2), response_type d1 → response_type d2 → Prop.

Inductive RComposePostRel
(R1 : Rel D1 D2) (R2 : Rel D2 D3) (PR1 : PostRel D1 D2) (PR2 : PostRel D2 D3) :
PostRel D1 D3 :=
| RComposePostRel_intros (d1 : D1) (d3 : D3) (a : response_type d1) (c :

response_type d3) :
(forall (d2 : D2), R1 d1 d2 → R2 d2 d3 →
exists b, PR1 d1 d2 a b ∧ PR2 d2 d3 b c) →

RComposePostRel R1 R2 PR1 PR2 d1 d3 a c.

Figure 5 Heterogeneous Event Relation Types.

This kind of generalization is explored in Silver and Zdancewic [25]2. The generalized relation
analyzes uninterpreted events, typically those representing recursive function calls, with
respect to pre-conditions and post-conditions. We want to relate Vis nodes whose events
satisfy the pre-condition and whose continuations are related given any inputs that satisfy
the post-condition. This corresponds to assuming that two function calls return related
outputs as long as they are given related inputs.

Definitions of pre-condition and post-condition types are presented in Figure 5. Pre-
conditions, Rel, are encoded as two-argument, heterogeneous relations, i.e. functions of type
D→E→Prop, and utilize standard relational combinators like relational sums, sum_rel, and
relational composition, rcompose. Post-conditions, PostRel, are encoded as four-argument, de-
pendent relations. In particular, forall (d:D) (e:E), encoded_by d → encoded_by e → Prop,
where both D and E have an EncodingType instance. Intuitively, post-conditions are a function
from events to relations over their response types. These post-conditions admit a standard
definition of relational sums. For relational composition, in addition to requiring two PostRel
relations, it also requires two standard relations, called coordinating relations. The full
definition is presented in Figure 5.

To relate four values d1:D1, d3:D3, a:encoded_by d1, c:encoded_by d3, we require that
given any d2:D2 that is related by the coordinating relations to d1 and d3, there exists a
b:encoded_by d2 such that both PR3 d1 d2 a b and PR4 d2 d3 b c.

Later in the paper, we recover an eutt-like definition of specification refinement by
specializing the event relations to be an appropriate form of equality. For Rel, this is precisely
the equality relation. For PostRel, we define an inductive datatype that enforces equality on
response values.

Variant PostRelEq : PostRel E E :=
PostRelEq_intro e a : PostRelEq e e a a.

3 Specification Extraction with Heapster

This section introduces the Heapster tool for specification extraction. We present Heapster
in order to provide context for the evaluation of this work in Section 6. In the evaluation, we
demonstrate how effective ITree specifications can be when paired with a tool like Heapster.
We start with a collection of low-level, heap manipulating C programs, use Heapster to
produce equivalent functional programs, and finally use ITree specifications to specify and
verify the output programs.

2 In Silver and Zdancewic [25] this relation is referred to as euttEv. It has since been renamed to rutt in
release branches of the Interaction Trees library.
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Value Types T ::= bv n | llvmptr n | · · ·
Expressions e ::= n | llvmword e | · · ·
RW Modality rw ::= W | R
Permissions τ ::= ptr((rw, e) 7→ τ) | τ1 ∗ τ2 | τ1 ∨ τ2 | ∃x :T.τ | eq(e) | µX.τ | X | · · ·

Figure 6 An Abbreviated Grammar of the Heapster Type System.

There is a growing body of work [9, 17, 18, 3] based on the idea that programs that
satisfy memory-safe type systems like Rust can be represented with equivalent functional
programs. Rust’s pointer discipline, which ensures that all pointers in a program are either
shared read or exclusive write, allows us to reason about the effects of pointer updates purely
locally. This locality property can be used to define a pure functional model, referred to as a
functional specification, of the behaviors of a program, which can in turn be used to verify
properties of that program.

Whereas some work uses this notion of a functional model implicitly, specification ex-
traction is the idea that the functional model can be extracted automatically as an artifact
that can be used for verification. Specification extraction separates verification into two
phases: a type-checking phase, where the functions in a program are type-checked against
user-specified memory-safe types; and a behavior verification phase, where the user verifies
the specifications that are extracted from this type-checking process. The Heapster tool [9] is
an implementation of the idea of specification extraction. Heapster provides a memory-safe,
Rust-like type system for LLVM, along with a typechecker. Heapster also provides a transla-
tion from well-typed LLVM programs to monadic, recursive, interactive programs, modeled
with ITrees, that describe a behavioral model of the original program. This translation is
inspired by the Curry-Howard isomorphism. Heapster types are essentially a form of logical
propositions regarding the heap, so, by the Curry-Howard isomorphism, it is natural to view
typing derivations, a form of proof, as a program. We give a brief overview of the Heapster
type system and its specification extraction process in this section and illustrate it with an
example.

The Heapster type system is a permission type system. Typing assertions of the form
x : τ mean that the current function holds permissions to perform actions allowed by τ

on the value contained in variable x. The central permission construct of Heapster is the
permission to read or write a pointer value. Like Rust, Heapster is an affine type system,
meaning that the permissions held by a function can change at different points in the function.
In particular, a command can consume a permission, preventing further commands from
using that permission again. Also like Rust, Heapster allows read-only permissions to be
duplicated, allowing multiple read-only pointers to the same address, but does not allow
write permissions to be duplicated. This enforces the invariant that all pointers are either
shared read or exclusive write, a powerful property for proving memory-safety.

Figure 6 gives an abbreviated grammar for the Heapster type system. The value types T

are inhabited by pieces of first order data. In particular, they contain the type bv n of n-bit
bitvectors (i.e., n-bit binary values) and the type llvmptr n of n-bit LLVM values, among
other value types not discussed here. Heapster uses the CompCert memory model [14],
where LLVM values are either a word value or a pointer value represented as a pair of a
memory region plus an offset in that region. The expressions e include numeric literals n and
applications of the llvmword constructor of the LLVM value type to build an LLVM value
from a word value.

ECOOP 2023



30:10 Interaction Tree Specifications

The first permission type in Figure 6, ptr((rw, e) 7→ τ), represents a permission to read
or write (depending on rw) a pointer at offset e. Write permission always includes read
permission. This permission also gives permission τ to whatever value is currently pointed
to by the pointer with this permission. Permission type τ1 ∗ τ2 is the separating conjunction
of τ1 and τ2, giving all of the permissions granted by τ1 or τ2, where τ1 and τ2 contain no
overlapping permissions. Permission type τ1 ∨ τ2 is the disjunction of τ1 and τ2, which either
grants permissions τ1 or τ2. The existential permission ∃x :T.τ gives permission τ for some
value x of value type T . The equality permission eq(e) states that a value is known to be
equal to an expression e. This can be viewed as a permission to assume the given value
equals e. Finally, µX.τ is the least fixed-point permission, where permission variable X is
bound in τ . This satisfies the fixed-point property, that µX.τ is equivalent to [µX.τ/X]τ .

As a simple example, the user can define the Heapster type

int64 = ∃x :bv 64.eq(llvmword x)

This Heapster type describes an LLVM word value, i.e., an LLVM value that equals llvmword x

for some bitvector x.
As a slightly more involved example, consider the following definition of a linked list

structure in C:

typedef struct list64_t { int64_t data;
struct list64_t *next; } list64_t ;

A C value of type list64_t* represents a list, where a NULL pointer represents the empty list
and a non-NULL pointer to a list64_t struct represents a list whose head is the 64-integer
contained in the data field and whose tail is given by the next field.

The following Heapster type describes this linked list structure:

list64⟨rw⟩ = µX.eq(llvmword 0) ∨ (ptr((rw, 0) 7→ int64) ∗ ptr((rw, 8) 7→ X))

The list64⟨rw⟩ type is parameterized by a read-write modality rw, which says whether it
describes a read-only or read-write pointer to a linked list. The permission states that the
value it applies to either equals the NULL pointer, represented as llvmword 0, or points at
offset 0 to a 64-bit integer and at offset 83 to an LLVM value that itself recursively satisfies
the list64⟨rw⟩ permission. Note that the fact that it is a least fixed-point implicitly requires
the list to be loop-free.

Figure 7 illustrates the process of Heapster type-checking on a simple function is_elem
that checks if 64-bit integer x is in the linked list l. Note that Heapster in fact operates
on the LLVM code that results from compiling this C code, but the type-checking is easier
to visualize on the C code rather than looking at its corresponding LLVM. Ignoring the
Heapster types for the moment, which are displayed with a grey background in the figure,
is_elem first checks if l is NULL, and if so returns 0 to indicate that the check has failed. If
not, it checks if the head of the list in l->data equals x, and if so, returns 1. Otherwise, it
recurses on the tail l->next.

The Heapster permissions for this function are

x : int64, l : list64⟨R⟩ ⊸ r : int64

3 We assume a 64-bit architecture, so offset 8 references the second value of a C struct.
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int64_t is_elem ( int64_t x, list64_t *l) {
x : int64, l : list64⟨R⟩
x : int64, l :eq(llvmword 0) OR x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ list64⟨R⟩)
if (l == NULL) {

x : int64, l :eq(llvmword 0)
return 0;

} else {
x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ list64⟨R⟩)
if (l->data == x) { return 1; }
else {

list64_t *l2 = l->next;
x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ eq(l2)), l2 : list64⟨R⟩
return is_elem (x, l2);

}}}

Figure 7 Type-checking the is_elem Function Against Type x : int64, l : list64⟨R⟩ ⊸ r : int64.

The lollipop symbol, ⊸, is used to write Heapster function types. This type means that
input x is a 64-bit integer and l is a read-only linked list pointer and the return value r is a
64-bit integer value.

To type-check is_elem, Heapster starts by assuming the input types for the arguments.
This is displayed in the first grey box of Figure 7. In order to type-check the NULL comparison
on l, Heapster must first unfold the recursive permission on l and then eliminate the resulting
disjunctive permission. This latter step results in Heapster type-checking the remaining
code twice, once for each branch of the disjunct. More specifically, the remaining code is
type-checked once under the assumption that l equals NULL and once under the assumption
that it points to a valid list64_t struct. In the first case, the NULL check is guaranteed
to succeed, and so the if branch is taken with those permissions, while in the second, the
NULL check is guaranteed to fail, so the else branch is taken.

In the if branch, the value 0 is returned. Heapster determines that this value satisfies the
required output permission int64. In the else branch, l->data is read, by dereferencing l
at offset 0. This is allowed by the permissions on l at this point in the code. If the resulting
value equals x, then 1 is returned, which also satisfies the output permission int64. Otherwise,
l->next is read, by dereferencing l at offset 0, and the result is assigned to local variable
l2. This assigns list64⟨R⟩ permission to l2. The permission on offset 8 of l is updated to
indicate that the value currently stored there equals l2. The list64⟨R⟩ permission on l2 is
then used to type-check the subsequent recursive call to is_elem.

Once a function is type-checked, Heapster performs specification extraction to extract a
pure functional specification of the function’s behavior. Specification extraction translates
permission types to Coq types and typing derivations to Coq programs. The type translation
is defined as follows:

Jptr((rw, e) 7→ τ)K = JτK Jτ1 ∗ τ2K = Jτ1K ∗ Jτ2K
Jτ1 ∨ τ2K = Jτ1K + Jτ2K J∃x :T.τK = {x : JT K & JτK}

Jeq(e)K = unit JµX.τK = user-specified type A

isomorphic to J[µX.τ/X]τK

Pointer permissions ptr((rw, e) 7→ τ) are translated to the result of translating the permission
τ of the value that is pointed to. This means that specification extraction erases pointer
types, which are no longer needed in the resulting functional code. Conjuctive permissions are
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Definition is_elem_spec : bitvector 64 * list (bitvector 64) →
itree_spec E (bitvector 64) :=

rec_fix_spec (fun rec ’(x,l) ⇒
either

unit (bitvector 64 * list (bitvector 64)) (* input types *)
(itree_spec _ (bitvector 64)) (* output type *)
(fun _ ⇒ Ret (intToBv 64 0)) (* nil case *)
(fun ’(hd,tl) ⇒ (* cons case *)

if bvEq 64 hd x then Ret (intToBv 64 1) (* return 1 *)
else rec (x,tl)) (* recursive call *)

(unfoldList l)). (* unfolded argument *)

Figure 8 Extracted Specification for is_elem.

translated to pairs, disjunctive permissions are translated to sums, and existential permissions
are translated to dependent pairs (using a straightforward translation JT K of value types that
we omit here). The equality type eq(e) is translated to the Coq unit type unit, meaning that
they contain no data in the extracted specifications. We already proved the equality in the
typechecking phase, and we have no use for the particular equality proof the typechecker
provided. To translate a least fixed-point type µX.τ , the user specifies a type that satisfies
the fixed-point equation, meaning a pair of functions

fold : J[µX.τ/X]τK → JµX.τK unfold : JµX.τK → J[µX.τ/X]τK

that form an isomorphism.
As an example, the translation of int64 is the Coq sigma type {x:bitvector 64 & unit}.

Note that Heapster will in fact optimize away the unnecessary unit type, yielding the type
bitvector 64. As a slightly more complex example, in order to translate the list64⟨rw⟩
described above, the user must provide a type T that is isomorphic to the type

unit + ( bitvector 64 * T)

The simplest choice for T is the type list (bitvector 64). In this way, the imperative
linked list data structure defined above in C is translated to the pure functional list type.

Rather than defining the translation of Heapster typing derivations into Coq programs
here, we illustrate the high-level concepts with our example and refer the interested reader
to He et al. [9] for more detail. The translation of is_elem is given as a Coq specification
is_elem_spec in Figure 8. At the top level, this specification uses rec_fix_spec to define
a recursive function to match the recursive definition of is_elem. This binds a local variable
rec to be used for recursive calls to the specification.

To understand the rest of the specification, we step through the Heapster type-checking
depicted in Figure 7. The first step of that type assignment unfolds the permission type
list64⟨W ⟩ on l. The corresponding portion of the specification is the call to unfoldList,
which unfolds the input list l to a sum of a unit or the head and tail of the list. The next step
of the Heapster type-checking is to eliminate the resulting disjunctive permission on l. The
corresponding portion of the specification is a call to the either sum elimination function.
In the left-hand case of the disjunctive elimination, the NULL test of the C program succeeds,
and 0 is returned. Similarly, in the Coq specification, the nil case returns the 0 bitvector
value.

In the right-hand case of the disjunctive elimination of the Heapster type-checking, the
NULL test fails, and so l is a valid pointer to a C struct with data and next fields. This is
represented by the pattern-match on the cons case in the Coq specification, yielding variables
hd and tl for the head and tail of the list. The body of this case then tests whether the head
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equals the input variable x, corresponding to the x==l->data expression in the C program.
If so, then the bitvector value 1 is returned. Otherwise, the specification performs a recursive
call, passing the same value for x and the tail of the input list for l.

4 ITree Specifications and Refinement

In this paper, we introduce a specialization of the ITree data type that encodes specifications
over ITrees. To do this, we take some base event type family E, and extend it with constructors
for universal and existential quantification. This is formalized in the following definition for
SpecEvent.

Inductive SpecEvent (E : Type) {̀EncodingType E} : Type :=
| Spec_vis (e : E) : SpecEvent E
| Spec_forall (A : type) : SpecEvent E
| Spec_exists (A : type) : SpecEvent E

.

The Spec_vis constructor allows you to embed a base event e : E into the type SpecEvent E.
The Spec_forall constructor signifies universal quantification, and the Spec_exists constructor
signifies existential quantification. For the purposes of specifying Heapster programs, we
only need to quantify over a fixed grammar of first order types4. This includes natural
numbers, bit vectors, functions, products, logical propositions, and sums. We have omitted
the definition of the particular fixed grammar of types used in this work for space.

We define ITree specifications as the type of ITrees with a SpecEvent as the event type.
Definition itree_spec (E : Type) {̀EncodingType E} (R : Type) :=

itree (SpecEvent E) R.

Because ITree specifications are actually a special kind of ITree, they inherit all the
useful metatheory and code defined for ITrees. In particular, we can reason about them
equationally with eutt, and apply the monad functions to them.

4.1 ITree Specification Refinement
The notion that a program adheres to a specification is defined with the notion of refinement.
Refinement is the main judgment involved in using ITree specifications, and is for instance
the primary form of proof goal proved by the provided automation tool. Intuitively, the
logical quantifier events mean that an ITree specification represents a set of computations. A
fully concrete ITree specification, with no logical quantifier events, represents a singleton set,
while a more abstract specification might represent a larger set. The refinement relation is
then defined such that, if one ITree specification refines another, then the former represents a
subset of the latter. So, for instance, if we prove that a concrete specification refines a more
abstract specification, then we have shown that the singleton program in the set represented
by the concrete specification satisfies the specification. Note that refinement is actually a
coarser relation than subset; this is discussed later in Section 4.4.

The ITree specification refinement relation is based on the idea of refinement of logical
formulae with the eutt relation. As in a sequent calculus, we can eliminate quantifiers in our
specification logic using quantifiers in the base logic, in this case Coq. Quantifiers on the
right of a refinement get eliminated to the corresponding Coq quantifiers, while quantifiers on

4 While we could quantify over Type in these definitions, this introduces universe level constraints that
we prefer to avoid
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the left get eliminated to the dual of the corresponding Coq quantifier. This means that both
a Spec_forall on the right and a Spec_exists on the left get eliminated to a Coq forall. And
both a Spec_exists on the right and a Spec_forall on the left get eliminated to a Coq exists.
ITree specifications form a lattice with refinement serving as the preorder, Spec_forall acting
as the complete meet, and Spec_exists acting as the complete join. The portions of ITree
specifications with computational content, including the Ret leaves, Spec_vis nodes, and silent
Tau nodes, get compared as they do in the eutt relation.

The ITree specification refinement relation shares many mechanical details with the
eutt relation. Both are defined by taking the greatest fixed point of an inductively defined
relation to get a mixture of inductive and coinductive properties. Both behave identically
on Tau and Ret nodes. The refinement relation differs in its inductive rules for eliminating
logical quantifiers, and in its usage of heterogeneous event relations to enforce pre- and post-
conditions on Spec_vis events. These pre- and post- conditions are necessary in order to give
the refinement relation the flexibility needed to state the reasoning principle for mrec. The
initial inductively defined relation, refinesF, contains the following header code.

Inductive refinesF
(RPre : Rel E1 E2) (RPost : PostRel E1 E2) (RR : Rel R1 R2)
(sim : itree_spec E1 R1 → itree_spec E2 R2 → Prop)

: itree_spec E1 R1 → itree_spec E2 R2 → Prop :=

Much like in the definition of euttF, the sim argument represents corecursive calls of the
refines relation, and the RR argument is the relation used for return. Unlike in euttF, refinesF
takes in arguments for a PreRel and a PostRel. These arguments are included in order to
represent pre- and post- conditions on mutually recursive function bodies.

The refinesF relation has several constructors that work precisely the same as the
corresponding euttF constructors. These constructors define the relation’s behavior on Ret
and Tau nodes.

| refines_Ret (r1 : R1) (r2 : R2) : RR r1 r2 → refinesF RPre RPost RR sim (Ret r1)
(Ret r2)

| refines_Tau (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2 R2) : sim phi1 phi2
→

refinesF RPre RPost RR sim (Tau phi1) (Tau phi2)
| refines_TauL (t1 : itree_spec E1 R1) (t2 : itree_spec E2 R2) :

refinesF RPre RPost RR sim t1 t2 → refinesF RPre RPost RR sim (Tau t1) t2
| refines_TauR (t1 : itree_spec E1 R1) (t2 : itree_spec E2 R2) :

refinesF RPre RPost RR sim t1 t2 → refinesF RPre RPost RR sim t1 (Tau t2)

The constructor dealing with Spec_vis nodes generalizes the constructor dealing with Vis
nodes in euttF. This constructor relates Spec_vis nodes as long as two conditions hold on
the events, e1 and e2, and the continuations, k1 and k2. The ITree specifications must satisfy
the precondition, by having e1 and e2 satisfy RPre. And the ITree specifications must satisfy
the post condition by having k1 a refine k2 b, whenever a and b are related by RPost e1 e2.

| refines_Spec_vis (e1 : E1) (e2 : E2)
(k1 : response_type e1 → itree_spec E1 R1) (k2 : response_type e2

→ itree_spec E2 R2) :
RPre e1 e2 → (forall a b, RPost e1 e2 a b → sim (k1 a) (k2 b)) →
refinesF RPre RPost RR sim (Vis (Spec_vis e1) k1) (Vis (Spec_vis e2) k2)

The added complications of this rule allow us to reason about mutually recursive functions.
It ensures that related function outputs assume that function calls with arguments related
by the precondition return values related by the post condition when analyzing mutually
recursive functions.

Finally, we need constructors dealing with quantifier events. This definition uses only
inductive constructors to eliminate quantifier events. We made this choice to avoid certain
peculiar issues related to ITree specifications that consist of infinite trees of only quantifiers.
Given coinductive constructors for quantifier events, we would be able to prove that such
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Class CoveredType (A : Type) := {
encoding : type; surjection : response_type encoding → A;
surjection_correct : forall a : A, exists x, surjection x = a; }.

Definition forall_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_forall encoding)

(fun x ⇒ Ret (surjection x)).

Definition assume_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
forall_spec P;; Ret tt.

Definition exists_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_exists encoding)

(fun x ⇒ Ret (surjection x)).

Definition assert_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
exists_spec P;; Ret tt.

Figure 9 Basic Specifications.

ITree specifications both refine and are refined by any other arbitrary ITree specification.
That choice would cause certain ITree specifications to serve as both the top and bottom
elements of the refinement order. This would serve as a counterexample to the transitivity of
refinement, a desired property. So we chose to only use inductive constructors for quantifier
events. This means that ITree specifications that consist of infinite trees of only quantifiers
cannot be related by refinement to any other ITree specifications.

Quantifiers on the right get directly translated into Coq level quantifiers.
| refines_forallR (t : itree_spec E1 R1) (A:type) (k : response_type A →

itree_spec E2 R2) :
(forall a, refinesF RPre RPost RR sim t (k a)) →
refinesF RPre RPost RR sim t (Vis (Spec_forall A) k)

| refines_existsR (t : itree_spec E1 R1) (A : type) (k : response_type A →
itree_spec E2 R2) :

(exists a, refinesF RPre RPost RR sim t (k a)) →
refinesF RPre RPost RR sim t (Vis (Spec_exists A) k)

Quantifiers on the left get translated into their dual quantifier at the Coq level. Eliminating
a Spec_forall on the left gives you an exists. Eliminating a Spec_exists on the left gives you
an forall.

| refines_forallL (A : type) (k : response_type (Spec_forall A) → itree_spec E1 R1)
(t : itree_spec E2 R2) :

(exists a, refinesF RPre RPost RR sim (k a) t) →
refinesF RPre RPost RR sim (Vis (Spec_forall A) k) t

| refines_existsL (A : type) (k : response_type (Spec_exists A) → itree_spec E1 R1)
(t : itree_spec E2 R2) :

(forall a, refinesF RPre RPost RR sim (k a) t) →
refinesF RPre RPost RR sim (Vis (Spec_exists A) k) t

This refinesF relation is used to define the refines relation as follows.
Definition refines RPre RPost RR := gfp (refinesF RPre RPost RR).

4.2 Padded ITrees
Useful refinement relations should respect the eutt relation. When using ITrees as a denota-
tional semantics, eutt is the basis of any program equivalence relation. Equivalent programs
and specifications should not be observationally different according to the refinement relation.
However, the refines relation does not respect eutt

We can easily demonstrate this with the following three ITree specifications.
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CoFixpoint spin : itree_spec E R := Tau spin.
CoFixpoint phi1 : itree_spec E R := Vis (Spec_forall t) (fun _ ⇒ Tau (phi1)).
CoFixpoint phi2 : itree_spec E R := Vis (Spec_forall t) (fun _ ⇒ phi2).

The spin specification represents a silently diverging computation. The phi1 specification
is an infinite stream that alternates between Spec_forall nodes and Tau constructors. The
phi2 specification is a similar ITree to phi1 that just lacks the Tau nodes. As these ITree
specifications all diverge along all paths and lack any Spec_vis nodes, the RPre, RPost, and RR
relations that we choose do not matter. Given any choice for those relations, spin refines
phi1 as we can use the inductive refines_forallL rule to get rid of the Spec_forall nodes,
allowing us to match Tau nodes on both trees and apply the coinductive refines_Tau rule.
This process can be extended coinductively allowing us to construct the refinement proof.
The phi1 ITree specification is eutt to phi2, as the only difference between the specifications
is a single Tau node after every Vis_forall node. However, spin does not refine phi2, as there
is no coinductive constructor that we can apply in order to write a proof for these divergent
ITree specifications. Problems like this arise with any ITree specifications that consist of
infinitely many quantifier nodes with nothing between them.

To fix this problem, we restrict our focus to a subset of ITrees that does not include ones
like phi2. This is the set of padded ITrees, in which every Vis node must be immediately
followed by a Tau. We formalize this with the coinductive padded predicate, whose definition
has been omitted to save space. The refinement relation does not distinguish between different
ITree specifications that are eutt to one another as long as they are padded. This means
that can rewrite one ITree specification into another under a refinement according to eutt as
long as both are padded.

Furthermore, it is easy to take an arbitrary ITree, and turn it into a padded ITree. That
is implemented by the pad function, which corecursively adds a Tau after every Vis node.
From here, we can focus primarily on the following definition of padded_refines which pads
out all ITree specifications before passing them to the refines relation.

Definition padded_refines RPre RPost RR phi1 phi2 :=
refines RPre RPost RR (pad phi1) (pad phi2).

In Figure 9, we introduce several simple ITree specifications that implement quantifi-
cation over some types, and assumption and assertion of propositions. The forall_spec
and exists_spec specifications rely on the CoveredType type class. A CoveredType instance
for a type A contains an element of the restricted type grammar, encoding, whose inter-
pretation corresponds to A. It also contains a valid surjection from the interpreted type
response_type encoding to the original type A. In practice, we always instantiate this sur-
jection with the identity function, but this type class formalization gives us the tools that
we need without needing to do too much dependently typed programming. We can use
forall_spec and exists_spec to define assumption and assertion, respectively, as Prop is part
of the restricted grammar of types that SpecEvent can quantify over.

4.3 Padded Refinement Meta Theory
This subsection introduces some of the useful, verified metatheory we provide for ITree
specifications in terms of padded_refines relation.

We prove that we can compose refinement results with the monadic bind operator.
Theorem padded_refines_bind (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2 R2)

(kphi1 : R1 → itree_spec E1 S1)
(kphi2: R2 → itree_spec E2 S2) :

padded_refines RPre RPost RR phi1 phi2 →
(forall r1 r2, RR r1 r2 → padded_refines RPre RPost RS (kphi1 r1) (kphi2 r2)) →
padded_refines RPre RPost RS (bind phi1 kphi1) (bind phi2 kphi2).
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CoFixpoint interp_mrec_spec {R : Type}
(bodies : forall (d:D), (itree_spec (D + E)) (response_type d)) (t : itree_spec (D + E

) R) : itree_spec E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec_spec bodies t)
| Vis (Spec_forall A) k ⇒ Vis (@Spec_forall E _ A) (fun x : response_type (Spec_forall

A) ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_exists A) k ⇒ Vis (@Spec_exists E _ A) (fun x ⇒ interp_mrec_spec bodies (

k x))
| Vis (Spec_vis (inr e)) k ⇒ Vis (Spec_vis e) (fun x ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inl d)) k ⇒ Tau (interp_mrec_spec bodies (bind (bodies d) k))
end.

Definition mrec_spec (bodies : forall (d:D), (itree_spec (D + E)) (response_type d)) (
init : D) :=

interp_mrec_spec bodies (bodies init).

Figure 10 mrec_spec Definition.

We prove that the padded_refines relation is transitive. To state the transitivity result in
full generality, we need to use the composition relation introduced in Figure 5.

Theorem padded_refines_trans : forall (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2
R2) (phi3 : itree_spec E3 R3),

padded_refines RPre1 RPost1 RR1 phi1 phi2 →
padded_refines RPre2 RPost2 RR2 phi2 phi3 →
padded_refines (RCompose RPre1 RPre2)

(RComposePostRel RPre1 RPre2 RPost1 RPost2) (RCompose RR1 RR2) phi1 phi3.

We prove a reasoning principle for mutually recursive specifications as well. To do
this, we first provide a slightly different definition of mutual recursion that handles the
quantifier events correctly, defined in Figure 10. The key to proving refinements between
mrec_spec specifications is to use the PreRel and PostRel relations to establish pre- and post-
conditions on recursive calls. This involves choosing a PreRel over recursive call events,
RPreInv, and a PostRel over recursive call events, RPostInv. Just like any form of invariants
in formal verification, correctly choosing RPreInv and RPostInv requires striking a careful
balance between choosing preconditions that are weak enough to hold, but strong enough to
imply post conditions. The rule is expressed in the following code.

Theorem padded_refines_mrec : forall (init1 : D1) (init2 : D2),
RPreInv init1 init2 →
(forall d1 d2, RPreInv d1 d2 →

padded_refines (SumRel RPreInv RPre)
(SumPostRel RPostInv RPost)
(RPostInv d1 d2)
(bodies1 d1) (bodies2 d2)) →

padded_refines RPre RPost (RPostInv init1 init2)
(mrec_spec bodies1 init1)
(mrec_spec bodies2 init2).

The hypotheses in this theorem state that the initial recursive calls, init1 and init2, are in
the precondition RPreInv, and that given any two recursive calls related by the precondition,
d1 and d2, the recursive function bodies refine one another, where recursive calls are related
by RPreInv and RPostInv and any other events are related by RPre and RPost. These reasoning
principles allow us to prove complicated propositions involving the coinductively defined
refinement relation without needing to perform direct coinduction.

While we include several parameter relations with the definition of padded_refines, at the
top level, we are typically interested in the case where all relations are set to equality. We
call this relation strict refinement, and refer to it with the ≤ symbol.
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Notation "phi1 ’≤ ’ phi2" :=
(padded_refines eq PostRelEq eq phi1 phi2).

Strict refinement is a transitive relation, and is strong enough to allow rewrites under the
context of any other application of padded_refines.

4.4 ITree specification Incompleteness
One way to interpret ITree specifications is as sets of ITrees. The following code defines
concrete ITree specifications, which correspond to executable ITrees.

Variant concreteF {E R} {̀EncodingType E} (F : itree_spec E R → Prop) : itree_spec E
R → Prop :=

| concreteRet (r : R) : concreteF F (Ret r)
| concreteTau (t : itree_spec E R) : F t → concreteF F (Tau t)
| concreteVis (e : E) (k : response_type e → itree_spec E R) :

(forall a, F (k a)) → concreteF F (Vis (Spec_vis e) k).
Definition concrete {E R} {̀EncodingType E} : itree_spec E R → Prop := gfp concreteF.

A concrete ITree specification contains no quantifiers along any of its branches. We can map
each ITree specification to the set of concrete ITree specifications that refine it.

However, ITree specifications are not complete with respect to this interpretation. In
particular, there are pairs of ITree specifications that represent equivalent sets of concrete
ITree specifications, but do not refine one another. To see why, consider the following two
ITree specification over an empty event signature voidE.

Definition top1 : itree_spec voidE unit :=
forall_spec void;; Ret tt.

Definition top2 : itree_spec voidE unit :=
or_spec spin (Ret tt).

Both top1 and top2 are refined by all concrete ITree specifications of type
itree_spec voidE unit. We can prove the refinement for top1 by applying the right forall
rule, and reducing to a trivially satisfied proposition. For top2, we know that every concrete
ITree specification of this type is eutt to either spin or Ret tt5. In each case, apply the right
exists rule and choose the corresponding branch. However, given any relations RE, REAns,
RR, we cannot prove padded_refines RE REAns RR top1 top2. This is because the only way to
eliminate the Spec_forall on the left is to provide an element of the void type, which does
not exist. This, along with the transitivity theorem, demonstrates that padded_refines is
strictly weaker than the subset relation on sets of refining concrete ITree specification.

5 Total Correctness Specifications

This section discusses how to encode and prove simple pre- and post- condition specifications
using ITree specifications. We also discuss how these definitions relate to our syntax-directed
proof automation.

Suppose we have a program that takes in values of type A and returns values of type B.
Suppose we want to prove that if given an input that satisfies a precondition Pre : A → Prop,
it will return a value that satisfies a postcondition Post : A → B → Prop without triggering
any other events. The postcondition is a relation over A and B to allow the postcondition to
depend on the initial provided value. We can encode these conditions in the following ITree
specification.

5 Proving this fact requires a nonconstructive axiom like the Law of The Excluded Middle.
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Definition call_spec (a : A) : itree_spec (callE A B + E) B := trigger (inl (Call a)).

Definition calling’ {F} {̀EncodingType F} : (A → itree F B) →
(forall (c : callE A B) , itree F (response_type c)) :=

fun f c ⇒ f (unCall c).
Definition rec_spec (body : A → itree_spec (callE A B + E) B) (a : A) :

itree_spec E B :=
mrec_spec (calling’ body) (Call a).

Definition rec_fix_spec
(body : (A → itree_spec (callE A B + E) B) → A →
itree_spec (callE A B + E) B) :

A → itree_spec E B :=
rec_spec (body call_spec).

Figure 11 rec_fix_spec Definition.

Definition total_spec : A → itree_spec E B :=
fun a ⇒ assume_spec (Pre a);;

b � exists_spec B;;
assert_spec (Post a b);;
Ret b.

The specification assumes that the input satisfies the precondition, existentially introduces
an output value, asserts the post condition holds, and finally returns the output.

The total_spec specification can be effectively used compositionally. Consider a merge
sort implementation, named sort, built on top of two recursively defined helper functions,
one for splitting a list in half, named halve, and one for merging sorted lists, named merge.
If we have already proven specializations of total_spec for these sub functions, it becomes
easier to prove a specification for sort. Immediately we can replace these sub functions with
their total correctness specification. Now consider how this total correctness specification
will behave on the left side of a refinement. First, we can eliminate assume_spec (Pre a) as
long as we can prove Pre a. Once we have done that, we get to universally introduce the
output b, along with a proof that it satisfies the post condition. We are finally left with only
Ret b with the assumption Post a b. This is a much simpler specification than our initial
executable specification, which relied on several control flow operators including a recursive
one.

However, this easy to use specification is not easy to directly prove. The
padded_refines_mrec rule gives us a sound reasoning principle for proving that a recur-
sively defined function refines another recursively defined function, but it does not give any
direct insight into how to prove any refinement that does not match that syntactic structure.
To address this, we introduce a recursively defined version of total_spec_fix that we can
apply our recursive reasoning principle on.

First, we introduce a specialization of the mrec_spec combinator called rec_fix_spec,
defined in Figure 11. The rec_fix_spec function has a type similar to that of a standard
fixpoint operator. The first argument, body, is a function that takes in a type of recursive
calls A → itree_spec (callE A B + E) B and an initial argument of type A and produces a
result in terms of an ITree specification. It relies on the calling’ function to transform
this value into a value of type forall (c:callE A B), itree_spec (callE A B + E) B which the
mrec_spec function requires. From there it relies on the call_spec and rec_spec functions to
wrap values of type A into Call events and trigger them.

Given this recursion operator, we introduce an equivalent version of the total correctness
specification, total_spec_fix.
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Definition total_spec_fix : A → itree_spec E B :=
rec_fix_spec (fun rec a ⇒

assume_spec (Pre a);;
n � exists_spec nat;;
trepeat n (

a’ � exists_spec A;;
assert_spec (Pre a’ ∧ Rdec a’ a);;
rec a’

);;
b � exists_spec B;;
assert_spec (Post a b);;
Ret b).

This specification is reliant on the trepeat n t function, with simply binds an ITree, t, onto
the end of itself n times. Note that total_spec_fix is defined recursively, and contains the
elements of total_spec inside the recursive body. This makes it easier to relate to recursively
defined functions. It begins by assuming the precondition and ends by introducing an output,
asserting it satisfies the post condition, and returning the output. What comes between these
familiar parts requires more explanation. Recall the discussion of the padded_refines_mrec
rule. This reasoning principle lets you prove refinement between two recursively defined
ITree specifications when a single layer of unfolding of each specification match up one to
one with recursive calls.

This means that to have a useful, general, and recursively defined version of total
correctness specification we need to allow our recursive definition for total correctness
specification to choose the number of recursive calls the function requires. For this reason,
total_spec_fix existentially introduces a number n that specifies how many recursive calls are
needed for one level of unfolding of the recursive function starting at a. The specification then
includes n copies of a specification that existentially chooses a new argument a’, asserts a
predicate holds on it, and then recursively calls the specification on this new argument. This
asserted predicate contains two parts. First, we assert the precondition. A correct recursively
defined function should not call itself on an invalid input if given a valid input. Second, we
assert that a’ is less than a according to the relation Rdec. In order for total_spec_fix to
actually be equivalent to total_spec, we need to assume that Rdec is well-founded6. The
fact that Rdec is well-founded ensures that this specification contains no infinite chains of
recursive calls. This allows us to prove that total_spec_fix refines total_spec as long as Rdec
is well-founded.

Theorem total_spec_fix_correct :
well_founded Rdec → forall (a : A), total_spec_fix a ≤ total_spec a.

This theorem allows us to initially prove refinement specifications for recursive functions
using the padded_refines_mrec rule with total_spec_fix and then replace it with the easier
to work with total_spec.

Both total_spec and total_spec_fix do not accept any ITree specifications that trigger
any events. As a result, these total correctness specifications do not allow any exceptions to
be raised, as you would expect with total correctness specifications.

5.1 Demonstration
To demonstrate how to work with total_spec, we describe how to verify the merge function,
a key component of the merge sort algorithm. The merge function takes two sorted lists
and combines them into one larger sorted list which contains all the original elements. In

6 We use the Coq standard library’s definition of well-foundedness for this.
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Definition merge : (list nat * list nat)
→

itree_spec E (list nat) :=
rec_fix_spec (fun rec ’(l1,l2) ⇒

b1 � is_nil l1;;
b2 � is_nil l2;;
if b1 : bool then

Ret l2
else if b2 : bool then

Ret l1
else

x � head l1;;
tx � tail l1;;
y � head l2;;
ty � tail l2;;
if Nat.leb x y then

l � rec (tx, y::ty);;
Ret (x :: l)

else
l � rec (x::tx, ty);;
Ret (y::l)).

Definition merge_pre p :=
let ’(l1,l2) := p in
sorted l1 ∧ sorted l2.

Definition merge_post ’(l1,l2) l :=
sorted l ∧ Permutation l (l1 ++ l2).

Definition rdec_merge ’(l1,l2) ’(l3,l4) :=
length l1 < length l3 ∧

length l2 = length l4 ∨
length l1 = length l3 ∧

length l2 < length l4.

Theorem merge_correct : forall l1 l2,
merge (l1,l2) ≤ total_spec merge_pre

merge_post (l1,l2).

Figure 12 Merge implementation.

Figure 12, we present a recursively defined implementation of merge along with relevant
relations and the correctness theorem. The merge function is based on the standard list
manipulating functions is_nil, head, and tail. We assume that the event type E contains
some kind of error event which is emitted if head or tail is called on an empty list.7

The merge function relies on its arguments being sorted and guarantees that its output
is a single, sorted list that is a permutation of the concatenation of the original lists. We
formalize these conditions in merge_pre and merge_post. To prove that merge is correct, we
want to show that it refines the total specification built from its pre- and post- conditions.
To accomplish this, it suffices to choose a well founded relation and prove that merge satisfies
the resulting total_spec_fix specification. For this function, we use rdec_merge which ensures
that the pairs of lists that we recursively call merge on either both decrease in length, or one
decreases in length and the other has the same length.

This leaves us with a refinement goal between two recursively defined specifications. We
can then apply the padded_refines_mrec_spec theorem. For the relational precondition, we
require that each pair of Call events is equal, and that Pre holds on the value contained
within the call. For the relational postcondition, we require that equal Call events return
equal values and that Post holds on them. Finally, we can prove that the body merge refines
the body of total_spec_fix given these relation pre- and postconditions. We accomplish this
by setting the existential variables on the right to make a single recursive call and give it the
same argument as the recursive call that the body of merge makes.

With this technique, we can verify the simple server introduced in Section 1. Recall that
the server_impl program executes an infinite loop of receiving a list of numbers, sorting it,
and sending it back as a message. To verify server_impl, we first verify halve, the remaining
sub function of sort, using the same technique we used to prove the correctness of merge. We
can then use these facts to prove the correctness of sort, and use the correctness of sort to
prove the correctness of server_impl.

Theorem server_correct :
(server_impl tt) ≤ (server_spec tt).

7 We manage this assumption with a Coq type class called ReSum. For more information please read the
original ITrees paper [29] or inspect the associated artifact.
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Function Name Description C LoC Proof LoC
mbox_free_chain Deallocate an mbox chain 11 18

mbox_len Compute the length in bytes of an mbox chain 9 40
mbox_concat Concatenates an mbox chain after a single mbox 5 18

mbox_concat_chains Concatenates two mbox chains 14 24
mbox_split_at Split an mbox chain into two chains 25 147

mbox_copy Copy a single mbox 13 74
mbox_copy_chain Copy an mbox chain 18 173

mbox_detach Detach the first mbox from a chain 18 18
mbox_detach_from_end Detach the first N bytes from an mbox chain 3 50

mbox_randomize Randomize the contents of an mbox 9 121
mbox_drop Remove bytes from the start of an mbox 12 23

Figure 13 Verified mbox functions.

6 Automation and Evaluation

6.1 Auto-active Verification
A key goal of this work is to provide auto-active automation for ITree specifications refinement.
To this effect, the current section presents an automated Coq tactic for proving refinement
goals called prove_refinement. The prove_refinement tactic is designed to reduce proof goals
about refinement of programs to proof goals about the data and assertions used in those
programs. In the spirit of auto-active verification, this is done mostly automatically, but
with the user guiding the automation in places where human insight is needed.

The prove_refinement tactic defers to the user in two specific places. The first is in
defining invariants for uses of the mrec recursive function combinator. The tool defers to the
user to provide these invariants because inferring such invariants is undecidable. The second
place where prove_refinement defers to the user is in proving non-refinement goals regarding
first order data. The user can then apply other automated and/or manual proof techniques
for the theories of the resulting proof goals.

The prove_refinement tactic is defined using a collection of syntax-directed inference rules
for proving refinement goals. The tactic proves refinement goals by iteratively choosing and
applying a rule that matches the current goal and then proceeding to prove the antecedents.
The prove_refinement tactic implements this strategy using the Coq hint database mechanism,
which is already a user-extensible mechanism for proof automation using syntax-directed
rules.

We omit further implementation details both for space and because we do not claim the
implementation of the prove_refinement tactic is novel or interesting. What is novel and
interesting is that ITree specifications are designed in such a way that the straightforward
implementation is able to achieve impressive results.

6.2 Evaluation
He et al. [9] discussed using Heapster to verify the interface of mbox, a key datastructure in
the implementation of the Encapsulating Security Payload (ESP) protocol of IPSec. The
mbox datastructure represents a data packet as a linked list of fixed length arrays. He et al. [9]
type checked and extracted functional specifications for several functions that manipulate
mbox. Using ITree specifications, we specified and verified the behavior of these functional
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specifications using our auto-active verification tool. These functions are nontrivial, combining
loops, recursion, and pointer manipulations. We present the list of verified functions in
Figure 13.

For each function, we include the function’s name, a description of its behavior, the
number of lines of C code in its definition, and the number of lines of Coq code required
to verify it. Lines of code are, of course, a very coarse metric for judging the complexity of
code and proofs. However, these metrics do demonstrate the viability of this verification
approach, showing that the remaining proof burden after the automation is of a reasonable
size. The primary advantage this approach has over others is that the system reduces the
verification down to facts about first order data. In this case, the data is a variant of the
mbox datastructure written in Coq.

7 Related Work

The most closely related work is the work on Dijkstra monads [16, 28, 1, 27]. Dijkstra
monads are a framework for writing specifications over arbitrary monads. This framework is
the basis for verifying programs with effects in F⋆ [26], a programming language specifically
designed for verification. Dijkstra monads arise from the interaction of three structures,
a monad M, a specification monad W, and an effect observation function obs. The monad
M represents computations to be verified, while the specification monad W is a monad for
writing specifications about those computations. The effect observation function obs is a
monad homomorphism that embeds computations in M to the most precise specification in
W that they satisfy. The specification monad is also equipped with a refinement relation
that expresses when one specification implies or is contained in another. As an example,
Dijkstra monads arose out of generalizing the notion of weakest precondition computations,
by viewing the weakest precondition transformer of a computation as itself being a stateful
computation from postconditions to preconditions. The mapping from a computation to its
weakest precondition transformer is then a monad homomorphism from the computation
monad to the weakest precondition monad.

ITree specifications in fact form a Dijkstra monad, where the type itree_spec E R acts
as the specification monad and the corresponding ITree monad itree E R without logical
quantifier events forms the computation monad. The effect observation homomorphism is then
the natural embedding from the ITree type without quantifiers to the type with quantifiers.
Most Dijkstra monads are specialized to act as either partial specification logics, which
always accept any nonterminating computations, or total specification logics, which always
reject any nonterminating computations. This means that most existing Dijkstra monads
cannot reason about termination-sensitive properties like liveness. ITree specifications have
the advantage of admitting specifications that accept particular divergent computations and
not others. For example, an ITree specification could accept any computation that produces
an infinite pattern of messages and responses from a server, and reject any computation that
silently diverges.

A notable exception is the work of Silver and Zdancewic [25], who also provided a Dijkstra
monad for ITrees. Much like ITree specifications it was capable of expressing specifications
that allow for specifying infinite behavior. However, it did not provide reasoning principles
for general recursion. The fact that ITree specifications represent specifications as syntax
rather than semantics, as an ITree rather than some function relating ITrees to Prop, enabled
us to write reasoning principles for general recursion and to build automation around the
refinement rules.
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A lot of work on verifying monadic computations has been based on notions of equational
reasoning. This was in fact a key part of Moggi’s original work [19]. Pitts [21] and Moggi [20]
extend this approach be building general theories of an evaluation predicate for reasoning
about return values of computations. This approach provides no explicit means to reason
about the effects, however, and also has no direct way of handling non-termination in
specifications such as the specifications needed for a server process. Plotkin and Pretnar [22]
further extend this approach with a general-purpose logic for algebraic effects, allowing it to
reason about the effects themselves and not just return values. This approach cannot handle
general Hoare logic assertions, however, and although there is a high-level discussion about
handling recursion, it is not clear how well it works for those sorts of specifications. Rauch
et al. [23] extends monads with native exceptions and non-termination and provides a logic
for these monads. Much like in our work, monads in Rauch et al. [23] can be annotated with
assertions. However, it restricts the language of assertions, and does not provide assumptions,
or general universal or existential quantification. It also handles only tail recursive programs,
and not general, mutual recursion.

One particularly effective approach in the space of equational reasoning was that of
Gibbons and Hinze [8]. This work showed how to use the specialized monad laws of each
sort of effect in a computation to define rewrite rules for simplifying and reasoning about
effectful computations, and then demonstrated that this approach is both straightforward to
use and powerful enough to verify a number of small but interesting programs.

The ultimate goal of this work is to provide techniques for auto-active verification of
imperative code. Therefore, it is natural to compare this work to semi-automated separation
logic tools like VST-Floyd[2] and CFML[6]. We argue this approach has two major advantages
over these related techniques. First, while VST-Floyd is specialized to C and CFML is
specialized to Caml, ITree specifications can be used to specify any programs with an
ITrees based semantics. When paired with Heapster techniques, ITree specifications can be
used to specify a wide array of imperative, heap-manipulating languages with a memory-safe
type system. In particular, the Heapster type system is closely related to the Rust type
system, meaning these techniques should be adaptable to specify and verify Rust code.
Second, the Heapster types are able to perform all the separation logic specific reasoning,
freeing the verifier to focus on the underlying mathematical structures.

8 Conclusion

This paper introduces ITree specifications along with verified metatheory and proof automa-
tion for reasoning about them. ITree specifications are a specialization of ITrees with a
general notion of specification refinement. Unlike previous work developing specifications
for ITrees, this paper provides techniques for working with the general recursion operator
provided by the ITrees library. Finally, this paper demonstrates the effectiveness of its
techniques by applying them on a collection of realistic C functions.
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