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Abstract
We propose restrictable variants as a simple and practical alternative to extensible variants. Re-
strictable variants combine nominal and structural typing: a restrictable variant is an algebraic
data type indexed by a type-level set formula that captures its set of active labels. We introduce
new pattern-matching constructs that allows programmers to write functions that only match on a
subset of variants, i.e., pattern-matches may be non-exhaustive. We then present a type system for
restrictable variants which ensures that such non-exhaustive matches cannot get stuck at runtime.

An essential feature of restrictable variants is that the type system can capture structure-
preserving transformations: specifically the introduction and elimination of variants. This property
is important for writing reusable functions, yet many row-based extensible variant systems lack it.

In this paper, we present a calculus with restrictable variants, two partial pattern-matching
constructs, and a type system that ensures progress and preservation. The type system extends
Hindley-Milner with restrictable variants and supports type inference with an extension of Algo-
rithm W with Boolean unification. We implement restrictable variants as an extension of the Flix
programming language and conduct a few case studies to illustrate their practical usefulness.
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1 Introduction

“Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.” – Antoine de Saint-Exupéry

In functional programming, algebraic data types and pattern matching have been hugely
successful. So successful that many non-functional mainstream programming languages,
including Kotlin and Rust have also adopted them. While algebraic data types, i.e. sum and
variant types, are widely used, their cousins extensible variants and extensible records are
far less available. Extensible variants and records, based on row-polymorphic type systems,
have been known for several decades [11, 16, 37]. Yet one has to look far to find usable
implementations. OCaml does not support extensible records, but does support a form of
extensible variants as a “language extension”, but this implementation is far less powerful
than simple row-polymorphic systems. PureScript supports extensible records, but not
extensible variants.1 Elm had support for extensible records, but this feature was removed.2
We speculate that there are at least a few reasons for this lack of support: (i) lack of real (or
perceived) use cases, (ii) implementation difficulty, and (iii) hitting the “right” expressiveness.

1 https://github.com/purescript/documentation/blob/master/language/Records.md
2 https://github.com/elm/compiler/issues/985

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 17; pp. 17:1–17:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:magnusm@cs.au.dk
https://orcid.org/0000-0002-7510-8724
mailto:jls@cs.au.dk
https://orcid.org/0000-0002-0931-7878
mailto:mlutze@cs.au.dk
https://orcid.org/0000-0002-2904-5099
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/DARTS.9.2.12
https://doi.org/10.4230/DARTS.9.2.12
https://github.com/purescript/documentation/blob/master/language/Records.md
https://github.com/elm/compiler/issues/985
https://doi.org/10.4230/DARTS.9.2.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Restrictable Variants

To expand on (iii), we believe we have identified a major practical weakness in existing
row-based extensible variant systems. We illustrate the problem with an example: In a
compiler pipeline, we can view each compiler phase as a function, and the whole compiler as
the composition of these functions. For example, we might have:
let compile = ... >> typecheck >> lambdalift >> codegen

where >> is forward function composition. The lambdalift phase performs closure conversion
and lambda lifting which is required before we can generate machine code. Concretely, we can
imagine that the lambdalift function replaces Lambda expressions with Closure expressions in
the abstract syntax tree. We say that lambdalift introduces the Closure variant and eliminates
the Lambda variant. Importantly, we must run lambdalift before we can run codegen.

As compiler writers, it would be very useful if we could type check the abstract syntax
trees produced by lambdalift. That is, we would like to write:
let compile = ... >> typecheck >> lambdalift >> typecheck >> codegen

This requires us to extend the typecheck function to handle Closure expressions, but that is
simple; type checking them is similar to type checking lambdas.

We might think that the above scenario can be programmed with row-based extensible
variants, but, unfortunately, this is not the case. The problem is the following: The codegen
phase cannot handle abstract syntax trees unless they have been closure-converted and
lambda-lifted, i.e. unless the Lambda expression has been eliminated. But after the second
call to typecheck, a row-based system loses the knowledge that the Lambda variant has been
eliminated, hence the above program does not type check.

We call this phenomenon the co-domain problem for extensible variants:

The Co-Domain Problem: Type systems with extensible variants based on row
polymorphism are unable to precisely capture the introduction and elimination of
variants in pattern-matches. (We expand on the details in Section 5.)

To overcome this issue, we propose restrictable variants. A restrictable variant is a sum
type indexed by a type-level set formula that over-approximates the “active” set of labels
of the sum. We can think of a restrictable variant as a form of refinement type [10, 36]
where the type-level index refines the possible labels of an expression of that type. In this
way, restrictable variants combine nominal and structural typing. With restrictable variants,
programmers can write one data type definition and reuse it in different contexts. This is in
contrast to the standard functional programming approach of writing multiple, but similar,
data types definitions or using a purely structural type system.

In this paper, we introduce restrictable variants and a new partial pattern-matching
construct which comes in two flavors: choose and choose*. The choose expression permits a
non-exhaustive pattern-match on a restrictable variant where only some variants are handled.
The choose* expression goes further and enables programmers to write structure-preserving
transformations which are captured at the type level. Specifically, we can precisely capture
the introduction or elimination of variants. This overcomes the co-domain problem that was
outlined above. We propose a type system for restrictable variants which is an extension of
Hindley-Milner, supports complete type inference, and ensures that programs with partial
pattern-matches (i.e. with choose and choose*) cannot get stuck.

We compare the expressiveness of restrictable variants to other existing systems, including
row-based extensible variants [11, 16, 33, 37], row theories [30], occurrence typing [7], and
relational nullable types [25]. We find that many of these systems are significantly more
expressive (and sometimes more complex) than restrictable variants, yet most cannot express



M. Madsen, J. L. Starup, and M. Lutze 17:3

the simple programming patterns that we use in our case studies. We think that restrictable
variants (like row-based systems) have simple types that will be understandable by ordinary
programmers and which will work well in practice. It is also our hope that restrictable
variants can serve as inspiration for new and more sophisticated type systems that can handle
the use cases we present.

The ideas in this paper are simple, but as far as we can tell, they have not yet been
explored in the literature, and we believe they solve real problems. While we present
restrictable variants as an alternative to extensible variants, we have found that it is natural
to combine restrictable variants with extensible records (a point we return to in Section 6).

We implement restrictable variants as an extension of the Flix programming language.
We discuss how the implementation supports complete type inference as a natural extension
of Algorithm W. The two key ideas are: (i) a type rule, for the choose* expression, which
relates the type-level index of the “input” (scrutinee expression) to the “output” (result
expression), and (ii) a formulation of the type rule as a set equation which is solvable by
Boolean unification in the algebra of sets.

We use the implementation to conduct a case study of a few programs that use restrictable
variants. The first case study models Boolean formulas and is used as a running example
throughout the paper. The second case study combines the Option, List, and Nel (non-empty
list) data types into one restrictable variant. The third case study shows how to combine
restrictable variants with extensible records. The case studies demonstrate that programming
with restrictable variants is simple and valuable.

In summary, the contributions of this paper are:

(Restrictable Variants) We present restrictable variants: a simple alternative to
extensible variants. Restrictable variants offer a new point in the design space with
different trade-offs from existing systems. Moreover, restrictable variants solve the
function composition problem for row-based extensible variants.

(Type System) We present a type system for restrictable variants. We prove the
standard progress and preservation theorems. The type system ensures that a program
with partial pattern-matches (the choose and choose* expressions) cannot get stuck.

(Implementation) We implement restrictable variants as an extension of the Flix
programming language. We discuss how the type system supports type inference via an
extension of Algorithm W with Boolean unification.

(Expressiveness) We compare the expressiveness of restrictable variants to other systems.
We observe that restrictable variants are simple, yet they support reasonable use cases that
cannot be handled by many other systems, in particular those based on row polymorphism.

(Case Study) We present a case study of a few programs that use restrictable variants.
The case study shows that (a) restrictable variants are useful and (b) capture real-world
programming patterns.

This paper is organized as follows: In Section 2 we present restrictable variants and
motivate their use with several examples. In Section 3 we present a type system for restrictable
variants based on type-level set formulas. In Section 4 we discuss our implementation of
restrictable variants and show how to implement type inference. In Section 5 we compare
the expressiveness of restrictable variants to other systems, including row-based extensible
variants. In Section 6 we present a case study on the use of restrictable variants. In Section 7
we present related work and in Section 8 we conclude the paper.

ECOOP 2023



17:4 Restrictable Variants

2 Motivation

We motivate restrictable variants with several examples. We begin with a simple example to
build intuition. Next, we move on to a more realistic example of modeling Boolean formulas,
which we use as a running example throughout the rest of the paper. We show many types,
but, of course, the point is that they can be inferred. All examples are runnable in our
extension of Flix.

▶ Example 1 (Restrictable Variant). We can define a restrictable variant data type:

enum Color[s] {
case Red
case Green
case Blue

}

The Color type is indexed by a type variable s that ranges over the labels of the algebraic
data type. The labels of the Color data type are: Red, Green, and Blue. The index is a set
formula that captures which variants of the data type may be present. For example:

Color[{}] = ∅ Color[{Red,Blue}] = {Red,Blue} Color[Green∁] = {Red,Blue}

We can also have richer indices where a free variable is involved. For example:

Color[s−Red] ⊆ {Green,Blue} {Green,Blue} ⊆ Color[(s−Red)+(s∁)] ⊆ {Red,Green,Blue}

where s is a free variable. In full generality, the index is a type-level set formula whose
valuations capture which variants of the data type may be present. As the examples
show, there are many equivalent set formulas. For example, Green∁ is equivalent to the set
{Red,Blue}. The set formulas may also contain variables, a fact that becomes important
when we consider pattern-matches on restrictable variants.

We can write a function that only operates on some colors of a restrictable variant:

def isWarm (c: Color [{Red , Blue }]): Bool = choose c {
case Red => true
case Blue => false

}

Here the type of isWarm, which can be fully inferred, captures that the function can accept
any color which is either Red or Blue. Specifically, the type system ensures that it is a
compile-time type error to call isWarm with the color Green.

This example demonstrates a key feature of the proposed type system: We can write
pattern-matches that are non-exhaustive and have the type system ensure that a function
like isWarm is never invoked with a value that is not handled.

With some intuition in place, we now move on to our running example: a restrictable
variant that models Boolean formulas. We use Boolean formulas since they are well-known
and they are sufficient to illustrate several key features of our system. We want to stress
that the following ideas scale to more complex data types, e.g. abstract syntax trees, as we
shall discuss in Section 6.

A remark on notation: In Flix source code we shall write ~S for S∁, S1 + S2 for S1 ∪S2, and
S1 & S2 for S1 ∩ S2. We use these symbols because they are in ASCII and are reminiscent of
the bitwise operators. In the formal treatment of the calculus and its type system (Section 3),
we will use the standard math symbols.
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▶ Example 2 (Variant Restriction). We can define a restrictable variant for Boolean formulas:

enum Expr[s] {
case Var(Int32)
case Cst(Bool)
case Not(Expr[s])
case Or(Expr[s], Expr[s])
case And(Expr[s], Expr[s])
case Xor(Expr[s], Expr[s])

}

We can write a function which reduces closed terms to a Boolean constant:

def eval(e: Expr [~ Var ]): Bool =
choose e {

// Var case omitted : We can only evaluate closed terms.
case Cst(b) => b
case Not(x) => not eval(x)
case Or(x, y) => eval(x) or eval(y)
case And(x, y) => eval(x) and eval(y)
case Xor(x, y) => eval(x) != eval(y)

}

The evaluator itself is straightforward. We simply pattern-match on each case and implement
the semantics directly. What is interesting is that we cannot evaluate an open term (i.e. a
formula with variables in it), hence we simply omit the Var case from the pattern-match.
The type system then infers that the eval function can passed any Boolean expression as
long as it does not use the Var variant. This is captured by the type Expr[{~Var}] which is
equivalent to Expr[{Cst, Not, Or, And, Xor}].

▶ Example 3 (Variant Elimination). We can also write a Boolean formula simplifier which
eliminates the Xor term by translation:

def simplify (e: Expr[s]): Expr [~ Xor] =
choose e {

case Var(x) => Var(x)
case Cst(b) => Cst(b)
case Not(x) => Not( simplify (x))
case Or(x, y) => Or( simplify (x), simplify (y))
case And(x, y) => And( simplify (x), simplify (y))
case Xor(x, y) =>

let x1 = simplify (x);
let y1 = simplify (y);
Or(And(x1 , Not(y1)), And(Not(x1), y1))

}

The simplifier is also straightforward. The return type of the simplify function now excludes
the possibility that the returned value can contain a Xor variant. This is captured by the
type Expr[{~Xor}] which is equivalent to Expr[{Var, Cst, Not, Or, And].

The unfortunate weakness of the simplifier is that if we know that the input cannot
contain any variables (e.g. the Var variant) then this information is lost in the output. For
example, if we have a closed Boolean formula, we cannot simplify it and then evaluate it
because the return type of simplify includes the Var variant in its type. We lost the knowledge
that the term was closed!

ECOOP 2023



17:6 Restrictable Variants

The fundamental issue is that in simplify we have lost the relation between the type-level
index in the argument type (i.e., Expr[s]) and the result type (i.e., Expr[~Xor]). To overcome
this, we introduce the choose* construct. The choose* construct allows us to maintain a
relation between the input type and the output type, as the following example shows:
▶ Example 4 (Structure-Preserving Map). We can use the choose* construct to write a
structure-preserving map function:

def map(f: Int32 -> Int32 , e: Expr[s]): Expr[s] =
choose * e {

case Var(x) => Var(f(x))
case Cst(b) => Cst(b)
case Not(x) => Not(map(f, x))
case Or(x, y) => Or(map(f, x), map(f, y))
case And(x, y) => And(map(f, x), map(f, y))
case Xor(x, y) => Xor(map(f, x), map(f, y))

}

The map function applies a function f : Int32 → Int32 to every variable in the given expression.
What is essential is that the argument type is Expr[s] and the result type is Expr[s] which
means that information about the “active” variants in the input is preserved in the output.

▶ Example 5 (Simplify – Revisited). Recall that the original version of simplify used choose

and had the signature:
def simplify (e: Expr[s]): Expr [~ Xor] = ...

If we change the implementation to use choose* we instead get the more precise signature:
def simplify (e: Expr[s]): Expr [(s - Xor) + {Not , And , Or}]

which captures that simplify will return an expression that may contain the Not, Or, And
variants plus the Cst and Var variants, if the input contains them. We might have hoped the
return type would simply be Expr[(s - Xor)], but the type system cannot exclude the Not, Or,
And variants because they are introduced by elimination of Xor. Fortunately, the signature
of simplify is strong enough to capture the two important properties we care about:

The Var variant can only occur in the output if it occurs in the input.
The Xor variant is eliminated, i.e. cannot occur in the output.

Consequently, if the input is a closed formula (i.e. lacks the Var variant) then after
simplification it will still be closed and we can evaluate it.

With the updated simplify, we can write a function:
let run = simplify >> eval

which is inferred to have the type Expr[s− Var] → Bool where the closedness requirement is
propagated “backwards” through the (forward) function composition operator >>.
▶ Example 6 (Substitution). We can also write a substitution function that replaces each
variable in a Boolean formula with a value from an environment:

def subst(m: Map[Int32 , Bool], e: Expr[s]): Expr [(s - Var) + Cst] =
choose * e {

case Var(x) => Cst(Map. getWithDefault (x, false , m))
case Cst(b) => Cst(b)
case Not(x) => Not(subst(m, x))
case Or(x, y) => Or(subst(m, x), subst(m, y))
case And(x, y) => And(subst(m, x), subst(m, y))
case Xor(x, y) => Xor(subst(m, x), subst(m, y))

}
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We define the subst function to operate on all Boolean expressions. The return type of subst
is the same as the input type (sans Var), but may potentially contain the Cst variant. The
reason is that the type system is not sufficiently expressive to capture that the Cst variant
can only occur if either the Var or the Cst variants are present in the input. This “loss of
precision” only affects the Cst variant. For example, we still know that if the input cannot
contain the Xor variant then neither can the output.

▶ Example 7 (Function Composition). Imagine that we have a fast evaluator, but it only
supports the Cst, Not, And, and Or variants. We can capture this with the signature:

def fasteval (e: Expr[s & {Cst , Not , And , Or }]): Bool = ...

We can compose the simplify, subst, and fasteval functions as follows:
let fastrun = m -> simplify >> subst(m) >> fasteval

The (inferred) type of fastrun is:

fastrun : ∀s.Map[Int32, Bool] → Expr[s] → Bool

i.e., given an environment and a Boolean expression it computes a primitive Bool.
What is essential is that the function types of simplify, subst, and fasteval compose in

a way that preserves the information that simplify eliminates the Xor variant and subst
eliminates the Var variant, hence the final call to fasteval is valid. Looking at the types:

simplify : ∀s1.Expr[s1] → Expr[s1 - Xor + {Not, And, Or}]
subst(m) : ∀s2.Expr[s2] → Expr[(s2 - Var) + Cst]

fasteval : ∀s3.Expr[s3 & {Cst, Not, And, Or}] → Bool

We see that when we apply the output of simplify as the input to subst(m), we get the type:

Expr[(((s1 - Xor + {Not, And, Or})) - Var) + Cst]

This type is compatible with the input type of fasteval because the set equation:

(((s1 - Xor + {Not, And, Or})) - Var) + Cst = s3 & {Cst, Not, And, Or}

has a solution. Specifically, it has the most-general unifier:

{s3 7→ s1 + {Cst, Not, And, Or}}

where s1 and s2 are implicitly mapped to themselves. This solution can be found by
Boolean unification. Thus, in summary, we are able to infer that fastrun has the type
∀s.Map[Int32, Bool] → Expr[s] → Bool which means that it works for any Boolean formula.

As we shall discuss in Section 5, the power of our system is this ability to track the
introduction and elimination of variants through function composition. Notably, several other
existing systems lack this property, including row-based extensible variants. The key issue
is that a row polymorphic system is unable to precisely relate the input type of a (partial)
pattern-match to its output type. Thus we lose track of the fact that simplify eliminates the
Xor variant and hence we cannot call fasteval. We call this phenomenon the “co-domain”
problem for extensible variants since these type systems lack the ability to relate the domain
of a (partial) pattern-match (i.e. its input type) to its co-domain (i.e. its output type).

ECOOP 2023



17:8 Restrictable Variants

In our experience and based on the case studies (Section 6), we find it important to stress
how important this property is for reusability. In a compiler, we want to write the subst
function once and for the entire abstract syntax tree. However, if the subst function loses
information about what variants can be returned in its output, then its utility is hampered,
as most compiler phases only operate on a subset of the entire abstract syntax tree.

2.1 Summary
We conclude with a summary of the properties of the proposed system:

(Property I) Restrictable variants are sum types indexed by a type-level set formula that
over-approximates the “active” set of labels of the sum. Programmers can use restrictable
variants to write one data type definition that is reusable in many different contexts.
(Property II) The choose construct enables programmers to write non-exhaustive
pattern-matches on restrictable variants handling only the relevant cases. The choose*

construct enables a form of refinement typing where the result type of a non-exhaustive
pattern-match is related to its input type.
(Property III) Functions on restrictable variants compose under introduction and
elimination of labels; i.e., a sequence of introductions and eliminations does not lose
information at the type level.
(Property IV) The type system ensures that the non-exhaustive choose or choose*

constructs cannot get stuck at runtime. The type system extends Hindley-Milner and
supports complete type inference.
(Property V) Restrictable variants are a natural generalization of algebraic data types
and are simple to implement.

3 Restrictable Variants

We now present λres
var: a minimal lambda calculus with restrictable variants. We present its

syntax and semantics, then its type system, and finally its meta theoretic properties. The
λres

var calculus and its type system are mostly standard; the novelties are the choose and choose*

constructs and the use of set formulas in the type system.

3.1 Syntax and Semantics
We begin with a discussion of the syntax and semantics of the λres

var calculus.

Syntax

The syntax of the λres
var calculus (cf. Figure 1a) includes the standard lambda calculus constructs:

variables, constants, lambda abstractions, and function applications. The let-expression
allows polymorphic generalization, as is standard in Hindley-Milner. We include the if-then-
else expression to illustrate how the type system merges information. We require that every
λres

var program comes with a map Σ : Enum → Label → Scheme of declared variants.
The raison d’être is the choose e {η} and choose⋆ e {η} expressions. In both expressions,

e is the match expression and η is a sequence of match cases. A match case is of the form
case E .ℓ(x) ⇒ e where E is the enum that the label ℓ belongs to, x is the match variable, and
e is the match expression body. As shown, we prefix all labels with the enum they come from;
i.e., we write “Color.Red” and not just “Red”. Recall that both choose expressions are needed,
since choose allows expression bodies to have an arbitrary type, whereas choose* requires that
the expression bodies have the same type as the match expression (modulo the type-level
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v ∈ Val = () | true | false
| λx. e

| E .ℓ(v)
e ∈ Exp = x | v | e e | E .ℓ(e)

| let x = e in e

| if e then e else e

| choose e {η}
| choose⋆ e {η}
| open e

η ∈ Case = case E .ℓ(x) ⇒ e

E ∈ Enum = a set of enums
ℓ ∈ Tag = a set of tags

x, y ∈ Var = a set of variables

(a) Syntax of λres
var.

φ ∈ Formula = ∅ | {E .ℓ} | β | φ∁ | φ ∪ φ | φ ∩ φ

τ ∈ Type = α | Unit | Bool | τ → τ | E [φ]

σ ∈ Scheme = τ | ∀α. σ | ∀β. σ

α ∈ TypeVar = a set of type variables
β ∈ BoolVar = a set of Boolean variables

(b) Types and Type Schemes of λres
var.

Figure 1 Syntax and Types of λres
var.

(λx. e) v ⇝ e[x 7→ v] (E-App)
let x = v in e⇝ e[x 7→ v] (E-Let)

if true then e1 else e2 ⇝ e1 (E-Ite-T)
if false then e1 else e2 ⇝ e2 (E-Ite-F)

open E .ℓ(v)⇝ E .ℓ(v) (E-Open)

ηi = case E .ℓ(x) ⇒ e

choose E .ℓ(v) {η}⇝ e[x 7→ v]
(E-Choose)

ηi = case E .ℓ(x) ⇒ e

choose⋆ E .ℓ(v) {η}⇝ open e[x 7→ v]
(E-Choose-⋆)

e1 ⇝ e′
1

e1 e2 ⇝ e′
1 e2

(C-App)
e⇝ e′

v e⇝ v e
(C-App2)

e1 ⇝ e′
1

let x = e1 in e2 ⇝ let x = e′
1 in e2

(C-Let)

e1 ⇝ e′
1

if e1 then e2 else e3 ⇝ if e′
1 then e2 else e3

(C-Ite)

e⇝ e′

open e⇝ open e′ (C-Open)

e⇝ e′

choose e {η}⇝ choose e′ {η}
(C-Choose)

e⇝ e′

choose⋆ e {η}⇝ choose⋆ e′ {η}
(C-Choose-⋆)

Figure 2 Evaluation Rules of λres
var.

indices). We construct a variant value with the E .ℓ(e) expression, e.g. “Color.Red()” where ()
is the unit value. The choose e {η} and choose⋆ e {η} expressions are akin to pattern-matches,
except there are no wildcards, tuple patterns, or nested patterns. Importantly, the choose

and choose* expressions do not have to be exhaustive.
The open e expression is not part of the surface syntax, and is present only during

evaluation. Semantically, open e is equivalent to e. Its purpose is explained in Section 3.2.

Semantics

The semantics of λres
var is a call-by-value operational semantics for the lambda calculus. Figure 2

shows the evaluation rules of λres
var which are standard except for (E-Open),(E-Choose), and

(E-Choose-⋆). We write e[x 7→ v] for the capture avoiding substitution of x 7→ v into e. The
congruence rules, prefixed with C, enforce a left-to-right evaluation order. The (E-Open)
rule reduces a tagged value E .ℓ(v) to itself. The (E-Choose) evaluation rule captures that
if we evaluate a tagged value E .ℓ(v) for some value v then we look for a case case E .ℓ(x) ⇒ e

in the pattern-match. If found, we evaluate the case body, i.e. we step to e[x 7→ v]. The
(E-Choose-⋆) is very similar, but it instead steps to open e[x 7→ v].

ECOOP 2023



17:10 Restrictable Variants

How λres
var Programs “Get Stuck”

We briefly illustrate how λres
var programs may get stuck during evaluation. The obvious reason

is when true or false is applied as a function, or when a lambda expression is used as a
condition in an if-then-else. The more interesting case is when a choose or choose* expression
is applied to a variant for which there is no case:
choose Green {

case Red => true
case Blue => false

}

The type system will reject such programs.

3.2 Type System
We now describe the type system of λres

var: its types, type rules, and meta-theory.

Mono Types and Poly Types (Type Schemes)

The types of λres
var are separated into mono types (τ) and type schemes (σ). The mono types

include type variables α, the base types Unit and Bool, function types τ → τ , and variant
types E [φ] which consist of an enum symbol E indexed by a type-level Boolean set formula φ.
The language of formulas, for a given variant type E , consists of the empty set ∅, a singleton
set with one label {E .ℓ}, Boolean variables β, the complement of a formula φ∁, the union
of two formulas φ ∪ φ, and the intersection of two formulas φ ∩ φ. We write A−B for set
difference which is equivalent to A ∩B∁. We also write A <: B as an alias for the constraint
A−B = ∅ (i.e. A <: B ⇔ A ∩B∁ = ∅). Note that the complement of a set is well-defined,
since a variant type is declared to have a fixed finite set of labels (which forms the universe).

In principle, to ensure that it always clear what the universe of labels is, we should always
index each set formula with its associated variant type E symbol, e.g. we should write φE .
However, we typically omit the enum name when it is clear from the context.

We write ftv(φ) for the variables in φ. A valuation ν for a formula φ is an assignment of
concrete sets of labels to all of the variables in ftv(φ). In this way, we can view a set formula
as a function from concrete sets to a concrete set. Two set formulas φ1 and φ2 are equivalent
(written φ1 ≡B φ2) if they describe the same function. That is, if ∀ν. ν(φ1) = ν(φ2) where ν
must be a valuation of both φ1 and φ2.

Type schemes σ extend types by quantification over type variables α and Boolean variables
β. That is, a type scheme is of the form ∀γ. τ , where γ is a vector of type variables and
Boolean variables. Figure 1b shows the types and type schemes of λres

var.
We define type equivalence as the smallest relation ≡B

3 such that:
τ ≡B τ .
If τ1 ≡B τ

′
1 and τ2 ≡B τ

′
2 then τ1 → τ2 ≡B τ

′
1 → τ ′

2.
If φ ≡B φ

′, then E [φ] ≡B E [φ′].
For example, we have that Color[{Red}∁] ≡B Color[{Green,Blue}]. Two types, with set
formulas in them, do not have to share the same variables (or even share the same number of
variables) to be equivalent. For example: Color[{Green}] ≡B Color[(β ∩ {Green}) ∪ {Green}].

We define substitutions S : (TypeVar ∪ BoolVar → Type) as assignment of type variables
to types and Boolean variables to Boolean formulas. We say the type τ is an instance of
type scheme σ, written σ ⊑ τ , if σ = ∀γ.τ ′ and there exists a type substitution S such

3 We overload the ≡B symbol to stand for both Boolean equivalence and type equivalence.
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that dom(S) = γ and S(τ ′) = τ . Moreover, we define a context Γ as a map of bindings
x : σ, and ftv(σ) to be the type variables that occur free in σ, and ftv(Γ) as the union of
all free type variables in its range. We also define the generalization of a type gen(Γ, τ) as
∀α1, · · · ,∀αn.∀β1, · · · ,∀βn.τ where {α1, · · · , αn, β1, · · · , βn} = ftv(τ) \ ftv(Γ).

Variant Declarations

As stated earlier, we require every restrictable variant to be declared. Specifically, we assume
that there is a set of enum symbols Enum and map Σ : Enum → Label → Scheme4 which
assigns a type scheme to every constructor (label) of the type. We require that the type
schemes are of one of the two following forms5:
1. Σ(E .ℓ) = ∀β. τ → E [β] ftv(τ) = ∅
2. Σ(E .ℓ) = ∀β. E [β] → E [β]
These requirements ensure that:

A constructor is applied to a simple type (e.g. Σ(Color.Red) = ∀β.Unit → Color[β]), or
A constructor is applied to the same variant type, but with the same type-level index
(e.g. Σ(Expr.Not) = ∀β.Expr[β] → Expr[β]).
The type scheme of a constructor is always polymorphic function type over β whose result
type is of the form E [β].

And that the following lemma holds:

▶ Lemma 8 (Label-instantiation). If two instantiations of the same label type scheme
share the same result type then they must share the same argument type.

Σ(E .ℓ) ⊑ τ1 → E [φ] ∧ Σ(E .ℓ) ⊑ τ2 → E [φ] =⇒ τ1 = τ2

Intuitively, the result type of an instantiated label type scheme uniquely determines its
argument type. The idea is that if we know that Not(e) : Expr[{Cst,Not}] then know that
the type of e is also Expr[{Cst,Not}]. In other words, the type-level index of a restrictable
variant also applies to its constituents. This fact is used to show preservation.

Type Rules

Figure 3 shows the declarative type rules of λres
var. A declarative typing judgment is of the

form Γ ⊢ e : τ . As is standard, the context Γ : Var ↪→ Scheme is a partial function from
variables to type schemes. Most of the type rules are standard.

The (T-Eq) rule states that if an expression e can be typed as τ1, that type can be
replaced by any equivalent type τ2 ≡B τ1. The (T-Var) rule is the standard Hindley-Milner
instantiation rule. It states that if the assumption x : σ is in the context, then we can
instantiate σ to a specific type τ , and conclude x : τ . The (T-Let) rule is the standard
Hindley-Milner generalization rule. The rule states that if we can type e1 as τ1 under the
environment Γ then we may generalize the type τ1 to a type scheme σ, and type e2 under an
extended environment with x : σ.

The (T-Tag) rule states that we can type a tag expression E .ℓ(e) with the type E [φ∪{E .ℓ}]
where the type-level formula φ is obtained by instantiating the type scheme associated with
the label E .ℓ to τ → E [φ ∪ {E .ℓ}]. The reason that the label is not part of the scheme is
that we do not want to assume the occurrence of the label when the scheme is used in
(T-Choose) and (T-Choose-⋆).

4 In the implementation the Σ map is simply constructed from the enum declarations in the program.
5 The calculus does not have tuples, but the extension to tuples and polymorphic enums is straightforward.

They are supported in the implementation.
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Γ ⊢ e : τ

Γ ⊢ e : τ1 τ1 ≡B τ2

Γ ⊢ e : τ2
(T-Eq)

Γ ⊢ () : Unit
(T-Unit)

Γ ⊢ true : Bool
(T-True)

Γ ⊢ false : Bool
(T-False)

(x, σ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ
(T-Var)

Γ ⊢ e : τ Σ(E .ℓ) ⊑ τ → E [φ ∪ {E .ℓ}]
Γ ⊢ E .ℓ(e) : E [φ ∪ {E .ℓ}]

(T-Tag)

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ
(T-Ite)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2
(T-Abs)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(T-App)

Γ ⊢ e1 : τ1 Γ, x : gen(Γ, τ1) ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2
(T-Let)

Γ ⊢ e : E [φ]
Γ ⊢ open e : E [φ ∪ φ′]

(T-Open)

ηi = case E .ℓi(xi) ⇒ ei Γ, xi : τi ⊢ ei : τout
Γ ⊢ e : E [φin]

φin <:
⋃

i
{E .ℓi} Σ(E .ℓi) ⊑ τi → E [φin]

Γ ⊢ choose e {η} : τout
(T-Choose)

ηi = case E .ℓi(xi) ⇒ ei Γ, xi : τi ⊢ ei : E [φout
i ]

Γ ⊢ e : E [φin] Σ(E .ℓi) ⊑ τi → E [φin] φin <:
⋃

i
{E .ℓi}(

φin ∩
(⋃

i

(
φout

i ∩ {E .ℓi}
)))

∪
⋃

i

(
φout

i − {E .ℓi}
)

<: φout

Γ ⊢ choose⋆ e {η} : E [φout]
(T-Choose-⋆)

gen(Γ, τ) = ∀α.τ where α = ftv(τ) \ ftv(Γ)

Figure 3 Type Rules for λres
var.

The (T-Open) rule allows tagged values to be typed with additional labels. Essentially, the
(T-Open) rule enables a form of weakening, which is necessary for the proof of preservation,
without having to introduce general sub-typing into the system, since that would break type
inference (recall that the surface language does not have open e expressions).

The (T-Choose) rule states that a choose expression of the form choose e {η}, where
ηi = case E .ℓi(xi) ⇒ ei, can be typed as τout, if the scrutinee e has the type E [φin], each tag’s
type scheme can be instantiated to τ in

i → E [φin], φin is less than the union of the handled
tags E .ℓi, if each result ei has the type τout under an environment where xi has type τi. This
rule expresses the standard match typing conditions, but allows non-exhaustive matches as
long as the type of e ensures that the value of e will be handled. In this rule we see why the
scheme of labels do not include their tag. If it was included, then φin would have to include
the label of the case.

The (T-Choose-⋆) is similar to the (T-Choose) rule but with two major differences:
First, the type of each result ei must be of the form E [φout

i ], and second, a side-condition
is posed relating the input and output. The side-condition requires the output φout to be
greater than a union of two set formulas: The first formula represents the set of labels
maintained in φin; i.e. the labels in the type of the cases that matches the label of the case
and also exists in φin. The second formula represents the set of labels introduced by each
case; i.e. the labels in the type of the cases that does not match the label of the case.
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We explain the additional side-condition in the (T-Choose-⋆) rule with an example.
Assume that we have the program below on the left and we assign the case expressions the
types on the right:
choose * c {

case Red => Red
case Green => Blue
case Blue => Green

}

φout
1 = Red

φout
2 = Blue

φout
3 = Green

If we instantiate the additional side-constraint (T-Choose-⋆), we get:

(φin ∩ (R ∩ R) ∪ (G ∩ B) ∪ (B ∩ G)) ∪ (R − R) ∪ (G − B) ∪ (B − G) <: φout (1)

where we have highlighted the two parts of the outer union. This simplifies to:

(φin ∩ R) ∪ (G ∪ B) <: φout (2)

That is, the result may contain Blue and Green, but whether it contains Red is dependent on
whether the input contains Red.

If, instead of φout
2 = {Blue} , we had assumed φout

2 = {Blue} ∪ β then we get:

(φin ∩ (Red ∪ (Green ∩ β))) ∪ (Green ∪ Blue) ∪ (β − Green) <: φout (3)

This is sensible because if we later learn that β = Yellow (i.e. the second case could return
Blue or Yellow) then the above type reduces to:

(φin ∩ Red) ∪ (Green ∪ Blue ∪ Yellow) <: φout (4)

3.3 Uninhabited Types
The type system of λres

var admits programs that have uninhabited types. For example:

def f(c) = // c must have type Color[s]
choose c { case Red => ... }; // where s <: {Red}
choose c { case Green => ... } // where s <: {Green}

Here, the two pattern-matches give rise to the constraints s <: {Red} and s <: {Green}.
Thus, the type of the formal parameter c is Color[{}] which is uninhabited. However, this is
not a problem; it simply means we cannot call f .

3.4 Meta Theory
The meta theory for the type system is fairly straightforward. We want to ensure that
programs which use choose and choose* cannot get stuck. In other words, we want to prove
the standard progress and preservation theorems.

We begin with the canonical forms lemma extended with typing inversion. The lemma
shows that the index of a tagged value over-approximates its label:

▶ Lemma 9 (Canonical-Tag). If a value is typed with an enum type then the value must
be a label of that enum and the enum index includes the label of the value.

If ⊢ v : E [φ] then for some ℓ, v′, τ1, and φ′ it holds that:
1. v = E .ℓ(v′)
2. ⊢ v′ : τ1
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3. φ ≡B φ
′ ∪ {E .ℓ}

4. Σ(E .ℓ) ⊑ τ1 → E [φ′ ∪ {E .ℓ}]

Another key lemma shows that the open e expression enables a form of subtyping (which
is used to prove preservation of choose*):

▶ Lemma 10 (Open-Tag). If a value can be typed as an enum with some index then it can
also be typed with a super set of that index.

If ⊢ E .ℓ(v) : E [φ] then ⊢ E .ℓ(v) : E [φ ∪ φ′].

▶ Theorem 11 (Progress). For any closed, well-typed expression then either it is a value
or it can evaluate to another expression.

If ⊢ e : τ then e ∈ Val or e⇝ e′.

▶ Theorem 12 (Preservation). If a closed well-typed expression can take a step then the
new expression can also be typed with the original type.

If ⊢ e : τ and e⇝ e′, then ⊢ e′ : τ .

The proofs are available in the extended version of the paper.

3.5 Type Inference
We can support type inference for λres

var with a suitable extension of Algorithm W [8, 28] with
Boolean unification on set formulas [27]. We can use the type rules from the declarative
type system of Figure 3 to systematically obtain a collection of type inference rules. The
declarative system uses a typing judgment of the form Γ ⊢ e : τ , the type inference system
extends this to Γ ⊢ e : τ ;S where S is a substitution. Here the type environment Γ and the
expression e can be seen as the input to the type inference algorithm and τ and S as the
output. We omit the actual inference rules, but they mostly concern a lot of administration
around the careful use of substitutions and the composition of substitutions. As is standard,
equalities in the declarative system become unification queries in the inference system.

We solve unification queries on types in the standard way, but when we reach two Boolean
set formulas we use Boolean unification to solve the queries. Specifically, we rely on the
Successive Variable Elimination (SVE) algorithm [27]. The most interesting aspect is how we
translate set formula constraints, in the declarative type rules, into unification queries. This
however – by design – turns out to be straightforward. Given the (T-Choose) type rule:

ηi = case E .ℓi(xi) ⇒ ei Γ ⊢ e : E [φin] φin <:
⋃

i
{E .ℓi}

Γ, xi : τi ⊢ ei : τout Σ(E .ℓi) ⊑ τi → E [φin]
Γ ⊢ choose e {η} : τout

(T-Choose)

The interesting part is to translate what is shown in the gray box. Recall that this is
the part of the constraint which ensures that the input is upper-bounded by the labels that
occur in the pattern-match. We translate this constraint to the Boolean unification query:

φin
⋂ (⋃

i

{E .ℓi}

)∁

?= ∅

whose most-general unifier will capture exactly the above property. Similarly, we can translate
the additional side-condition in (T-Choose-⋆) as a unification problem on set formulas.
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At the time of writing, the type inference machinery works (c.f. Section 4), but sometimes
the substitutions computed by SVE can be very large. Large substitutions lead to large
formulas which leads to slow inference. Fortunately, we have good reason to believe that
the situation can be improved. We know from the case studies (c.f. Section 6) that most
functions have small types (i.e. small formulas). Hence the challenge is to compute them.
We think that this should be possible with a more sophisticated implementation of SVE that
exploits Boolean technology, such as BDDs or ZDDs [1, 29].

3.6 Subtyping
The type system does not have explicit support for subtyping, but instead, like row-based
systems, relies on parametric polymorphism [16, 37]. For example, the if-then-else expression:

if (true) then Red else Blue

is typable because we can assign the types:

Γ ⊢ Red : Color[{Red,Blue} ∪ s] and Γ ⊢ Blue : Color[{Blue,Red} ∪ s]

for some type variable s. We could probably extend the type system with subtyping, but
then we would likely lose principal type inference.

3.7 A Few Practical Aspects
We conclude with a discussion of a few practical issues.

When should a programmer use choose or choose*? A programmer should use choose

when he or she wants to partially pattern-match on a subset of labels, but the result can
be of any type. On the other hand, a programmer should reach for choose* when he or
she wants to partially pattern-match on a restrictable variant and the result is the same
restrictable variant. In this case, choose* is preferable because it is structure-preserving;
relating the “input” labels to the “output” labels.
Would it be possible to have one “universal” type that holds all possible variants? Yes, in
the limit one could define a single gigantic restrictable variant with all possible labels
and then use that type everywhere in the program. In practice, this would probably be
cumbersome and confusing. For example, it would seem pointless to merge the Color and
Expr restrictable variants, even though one could conceptually do so.

4 Implementation

We have implemented the λres
var calculus as an extension of the Flix programming language.

Flix is a functional, imperative, and logic programming language that supports algebraic
data types, pattern matching, higher-order functions, parametric polymorphism, type classes,
higher-kinded types, first-class Datalog constraints, channel and process-based concurrency,
and has a polymorphic type and effect system [23, 21, 22, 24]. The Flix compiler project,
including the standard library and tests, is approximately 230,000 lines of code.

Adding restrictable variants required approximately 2,000 lines of code. Most of the code
was straightforward; the most complex components were the implementation of the type
inference rules and Boolean unification on set formulas.

Flix, with our extension, is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix/
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5 Expressiveness and Comparison to Other Systems

In this section, we compare the expressiveness of restrictable variants to other nominal and/or
structural type systems. We focus on type systems that support complete type inference.
We remind the reader that in Section 2 we used restrictable variants to express:

def simplify (e: Expr[s]): Expr [(s - Xor) + {Not , And , Or}]
def subst(m: Map[Int32 , Bool], e: Expr[s]): Expr [(s - Var) + Cst]
def fasteval (e: Expr[s & {Cst , Not , And , Or }]): Bool

which allowed us to use function composition to define:
let fastrun = m -> simplify >> subst(m) >> fasteval

We now discuss our ability to express this in other systems with extensible variants.

5.1 Row Polymorphism à la Wand, Gaster and Jones, and Leijen
Row polymorphism is a classic solution to extensible records and variants [37]. A row
polymorphic type system supports three primitive operations [11, 16] on variants which are
injection, embedding, and decomposition:

⟨ℓ = _⟩ : ∀α, r. α → ⟨ℓ : α | r⟩ (injection)
⟨ℓ | _⟩ : ∀α, r. ⟨r⟩ → ⟨ℓ : α | r⟩ (embedding)

(ℓ ∈ _ ? _ : _) : ∀α, β, r. ⟨l : α | r⟩ → (α → β) → (⟨r⟩ → β) → β (decomposition)

The last operation is allows us to implement pattern matching. What is important is that
each use of the ternary-like conditional (ℓ ∈ _ ? _ : _) peels off a variant. Note that if we
fail to match on ℓ then we refine the type to ⟨r⟩ which we continue with in the else branch.

Leijen gives the example [16]:

showEvent e =
(key in e) ? (c -> showChar (c)) :

(e’ -> (mouse in e’) ? (p -> showPoint (p)) : error ())

Here the idea is that showEvent pattern-matches on an extensible variant of the type:

⟨key : KeyEvent | mouse : MouseEvent⟩

using the decomposition operator. Note that the program type-checks because both functions
showChar and showPoint (and error) return a value of the same type, i.e. Unit.

In any case, the return type of the entire “pattern-match” is β, which means that the
returned values must have the same type (modulo row-equivalence). Looking over our three
functions, we see that6:

We can express the eval and fasteval functions which are given the types:

eval : ⟨Cst : · | Not : · | Or : · | And : · | Xor : ·⟩ → Bool
fasteval : ⟨Cst : · | Not : · | Or : · | And : ·⟩ → Bool

6 For simplicity, we ignore the fact that the data type is recursive. We just focus on the labels themselves.
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Here the rows are closed and the two functions accept any Boolean formula as long as it only
has one of the listed variants. In particular, we cannot accidentally call eval or fasteval with
an open Boolean formula that has the Var label.

We can also express the simplify and subst functions which are given the types:

simplify : ⟨Var : · | Cst : · | Not : · | Or : · | And : · | Xor : ·⟩ →
⟨Var : · | Cst : · | Not : · | Or : · | And⟩

subst : Map[Int32, Bool] → ⟨Var : · | Cst : · | Not : · | Or : · | And : · | Xor : ·⟩ →
⟨Cst : · | Not : · | Or : · | And | Xor : ·⟩

Each function accepts a Boolean expression as input, with any labels, and returns a Boolean
formula without the Xor and Var labels, respectively. However, their row types cannot
capture how the input is related to the output. Hence, unlike with restrictable variants, when
we compose the two functions we lose information about the output. In particular, the
information that simplify has eliminated the Xor variant is lost. Hence we cannot call fasteval.

One might wonder if we could give the simplify function the type:

simplify : ⟨Xor : · | r⟩ → ⟨r⟩

since that seems to capture what we want. However, this type judgment would be unsound
since we could instantiate r to ⟨Cst : Int32⟩ and clearly the implementation of simplify is
not exhaustive for that label. Moreover, if we fail to mention e.g. Var then we could also
instantiate r to ⟨Var : Banana⟩ which is also not sound. Thus the only sound solution must
mention all the variants that simplify is prepared to accept. Thus we lose the relationship
between the input and output.

A challenge with extensible records and variants based on rows is the question of whether
extensions adds a new field (or variant) or overrides an existing field (or variant). The
literature has proposal several solutions to this problem:

Extensible Records and Variants with Qualified Types

Gaster and Jones present a type system for extensible records and variants extended with
qualified types [11, 13]. The idea is that rows capture the structure of the record (or variant)
while predicates are used to ensure that rows are not extended with labels that are already
present. Thus the Gaster and Jones system ensures that a record (or variant) cannot be
extended with a label it already has. For example, record extension is given the type:

(l := _ | _) : (r \ l) ⇒ α → Rec r → Rec {l : α | r}

where the predicate (r \ l) in the qualified type captures that r must not contain the label l.

Extensible Records with Scoped Labels

Leijen proposes a different approach that embraces the idea of duplicate labels in records
and variants [16]. In Leijen’s type system, extensible records are allowed to have multiple
fields with the same name (and of different type). This means that fields are scoped.

For example, we can have a record r with the type:

r : {y : Bool | x : Int32 | y : Int32}
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This means that r has two fields named y; one of type Bool and the other of type Int32.
We can access the former, the outermost, with the expression r.y. To access the latter, the
innermost, we must first remove the outermost y field. Thus we have to write (r − y).y. The
advantage of Leijen’s over Gaster and Jones’s is that it has principal types without the need
for qualified types. The disadvantage is its somewhat unnatural semantics.

What does this mean for a variant to be scoped? It roughly means that when we pattern-
match (i.e. decompose) on an extensible variant we always see the outermost label. To find
an inner label, we must decompose once, and then decompose again. In pseudo-code:

match v /* has type: { Label: Int32 | Label: String | ... } */ {
case Label(n) => n + 123
case rest => match rest /* has type: { Label: String | ... } */ {

case Label(s) => String . toUpperCase (s)
}

}

where we peel off one layer of v to expose the inner Label of type String. As Leijen writes,
this is a “curious” feature and it is not so clear whether it is useful in practice.

Abstracting Extensible Data Types à la Morris et al.

Morris and McKinna presents a type system that unifies the previous type systems into
one framework based on qualified types and row theories [30]. The framework can be
instantiated to model the systems of Gaster and Jones and Leijen among others. Importantly,
the framework also supports instantiations with row concatenation.

The framework can also support a form of extensible variants with the key constructs:

λ x . ℓ ▷ x : τ → Σ(ℓ ▷ τ) (Construction)
λ x . x/ℓ : Σ(ℓ ▷ τ) → τ (Extraction)

λ x . inj x : ∀ z1 z2 . z1 ⋖ z2 ⇒ Σz1 → Σz2 (Injection)
λ x y . x ▽ y : ∀ z1 z2 z3 τ . z1 ⊚ z2 ∼ z3 ⇒

(Σz1 → τ) → (Σz2 → τ) → (Σz3 → τ) (Match)

The key idea is the use of qualified types with two predicates: the containment predicate
z1 ⋖ z2 and the combination predicate z1 ⊚ z2 ∼ z3. Using these qualified type predicates,
we can define the operations:

(Construction) constructs a singleton variant with the label ℓ and type τ .
(Extraction) destructs a singleton variant and extracts the value of the variant.
(Injection) extends a variant with additional labels. The operation uses the containment
predicate z1 ⋖ z2. Its meaning is dependent on the specific row theory. For example,
using a theory that disallows duplicates, it means that the labels of z1 must be a subset
of the labels of z2 (with compatible types).
(Match) is a combinator that composes two functions which operate on parts of a variant
into a single function that works on the row concatenation of their input types. The
operation uses the combination predicate z1⊚ z2 ∼ z3. Its meaning is again dependent on
the specific row theory. For example, using a theory that disallows duplicates, it means
that z1 and z2 must be disjoint sets of labels and z3 must be their union. Note that the
return type τ of the two functions must be same, hence the match construct does not
relate its input type to its output type.
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We illustrate this loss of precision with the following example:

λ x .

((
λ y . inj (A ▷ y/A)

)
▽
(
λ z . inj (B ▷ z/B)

))(
inj x

)
:

∀z1, z2, τ1, τ2 . z1 ⋖ (A ▷ τ1, B ▷ τ2), (A ▷ τ1, B ▷ τ2) ⋖ z2 ⇒ Σz1 → Σz2

Informally, the function is simple the identity function on a variant with two labels A
and B, i.e. it maps A to A and B to B. Assume – without loss of generality – that we work
on a row theory based on Gaster and Jones which does not allow duplicate labels in variants.

The function receives a variant x, which is allowed to be a subset of the variant Σ(A ▷
τ1, B ▷ τ2). It is first injected to be typable with the complete variant, then it is matched on
in two different functions that either assume that the variant was A or B via their respective
extraction (y/A or z/B). Lastly, the variant is constructed again in singleton variants and
injected into the full variant type.

The intention of the function is clearly shown in the type; the input must be a subset
of a variant with A and B and the output must be a superset of a variant with A and
B. While this type is correct, it is unfortunately not as a precise as we would have hoped.
In particular, since the function is actually the identity we would have liked the type:
∀z. z ⋖ (A ▷ τ1, B ▷ τ2) ⇒ Σz → Σz.

The type systems of Gaster and Jones, Leijen, and Morris and McKinna do not solve the
fundamental “co-domain problem” for extensible variants. Rather they expose difficulties
with row-based variants which require additional machinery or unnatural semantics to fix.
Restrictable variants do not suffer from such issues because they rely on set formulas.

5.2 Occurrence Typing à la Castagna
Castagna et al. present an expressive set-theoretic type system with a type-case expression [7].
The type system supports union, intersection, and negation types. In their system, the Color
type can be represented as the union type of three singleton types:

Red ∨ Green ∨ Blue

and we can match on these using the type-case expression:

e1 ∈ τ ? e2 : e3

where control flow enters the e2 branch if e1 reduces to a value v : τ , or e3 if it does not; i.e.
v : ¬τ . The type-case expression is their powerful alternative to the if-then-else/match/choose
expression, allowing an association between each possible type of the input and the respective
type of the output. For example, in their system, the isWarm function can be expressed as:

λx. x ∈ Red ? True : (x ∈ Blue ? False : undefined)

which has the type:

(Red → True) ∧ (¬Blue → False)

Note that, in the last case, where x /∈ Red and x /∈ Blue the untypable expression undefined
is used to indicate an unreachable case. The precision of the typing – essentially encoding
the entire pattern-match at the type level – is very expressive and solves the “co-domain
problem” we have outlined. However, the types can become very complex and unwieldy,
and there is limited support recursive types and recursive functions [7]. For example, the
subst(m) function would be given the large intersection type:
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(Var(Int32) ∨ Cst(Bool) → Cst(Bool)) ∧ (Not(Expr) → Not(ClosedExpr)) ∧ (Or(Expr, Expr) →
Or(ClosedExpr, ClosedExpr)) ∧ (And(Expr, Expr) → And(ClosedExpr, ClosedExpr)) ∧ (Xor(Expr, Expr) →
Xor(ClosedExpr, ClosedExpr))

where we also have to define the Expr and ClosedExpr data types as two large union types.
While the goal of λres

var is to capture the introduction and elimination of variants, the
occurrence typing system goes far beyond this, capturing a large amount of additional
information as it maps variant to variant; the cost of the additional information is borne in
the complexity of the types. Furthermore, it is not clear that the occurrence typing system
is capable of inferring the type of recursive functions, meaning that in order to capture the
same elimination and introduction properties, the programmer would have to provide the
large type annotations themselves.

5.3 Relational Nullable Types à la Madsen et al.
Madsen and van de Pol present a relational nullable type system [25]. The type system
captures the nullability (i.e. whether an expression may evaluate to null) of an expression in
relation to the nullability of other related expressions. For example, using their type system,
one can express a function:

let f = (host , port) -> match (host , port) {
case (Absent , Absent ) => ...
case ( Present (h), Present (p)) => ...

}

which captures that either both host and port are Absent (i.e., “null”) or both host and port
are Present (i.e., non-“null”). For example, the following two calls type-check:

f(Absent , Absent ) // OK
f( Present ("www. google .com"), Present (80)) // OK

whereas the next two calls are rejected by the type system:

f(Absent , Present (80)) // NOT OK
f( Present ("www. google .com"), Absent ) // NOT OK

The relational nullable type system associates every expression with a proper type π and a
pair of Boolean formulas (φ,ψ) that over-approximate whether the expression may evaluate
to Absent (i.e., null) and may evaluate to Present (i.e., non-null) [25]. The two Boolean
formulas form a small lattice where: String ? (F,F) is an uninhabited type (i.e., a type that
is neither null nor non-null), and e.g. String ? (F, ψ) is the type of non-null Strings.

Relational nullable types and restrictable variants share some similarities:
The restrictable variants type system use one type-level set formula to over-approximate
the set of variants of an expression, whereas the relational nullable type system uses two
type-level Boolean formulas to over-approximate the nullability and non-nullability of an
expression.
Both systems extend Hindley-Milner with Boolean unification; their system on Boolean
formulas and our system on set formulas.
We find that the relational nullable types tend to be significantly more complex than
restrictable variant types. For example, the function from above is given the type:

∀t1, t2, t3, b1, b2, b3, b4. (t1, b1 ∧ ¬b3 ∧ ¬b4, b3) → (t2, b2 ∧ ¬b3 ∧ ¬b4, b4) → t3



M. Madsen, J. L. Starup, and M. Lutze 17:21

5.4 Summary
We believe that restrictable variants offer a new simple and practical sweet-spot in the
design space of “extensible” data types. In terms of expressive power, for the programming
patterns we have shown, we identify restrictable variants as laying between row-based type
systems and full-blown occurrence typing. Importantly, restrictable variants precisely capture
the introduction and elimination of variants which leads to better compositionality than
row-based variants.

6 Case Studies

We now report on three small case studies that use restrictable variants. The first is the
running example of Boolean formulas. The second is a new data structure that combines
the Option, List, and NonEmptyList data types. The third is a theoretical study of how
restrictable variants can be combined with extensible records to model abstract syntax trees.

6.1 Case Study: Boolean Expressions
We have seen how we can use restrictable variants to represent Boolean formulas. The key
idea is that we can use the same data type represent both simple formulas (made from the
Not, And, Or connectives) and more complex formulas (e.g. using the Xor connective). We
can also represent both open and closed formulas (i.e. formulas with or without Vars).

6.2 Case Study: Option, List, and NonEmptyList
The Flix standard library supports the three central functional data types: Options, Lists,
and Nels (non-empty lists). The Option module offers 75 functions and spans 587 lines of
code, the List module offers 136 functions and spans 1,398 lines of code, and finally the Nel
module offers 104 functions and spans 703 lines of code. While this “batteries included”
approach is great for programmers, the downside is that the implementations of Option,
List, and Nel duplicate a lot of functionality. Given that Option, List, and Nel are really just
sequences of different lengths (0 − 1 for Option, 0 − n for List, and 1 − n Nel), one might
wonder if they could not be unified into one data type. As it turns out, they can!

We can define one data type for sequences of integers7:

enum Seq[s] {
case Nil
case One(Int32)
case Cons(Int32 , Seq[s])

}

We can then define Option, List, and Nel as type aliases:

type alias Option = Seq [{Nil , One }]
type alias List = Seq [{Nil , Cons }]
type alias Nel = Seq [{One , Cons }]

7 Flix naturally supports polymorphic data types, but for simplicity we focus on integer-valued sequences.
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A slightly more general type would be e.g., type alias Option[s] = Seq[s & {Nil, One}].
What’s important is that we can define common operations on Seq once and reuse them for
different types of sequences.

For example, we can write a forall function:

def forall (f: Int32 -> Bool , s: Seq[s]): Bool = choose s { ... }

And we can also can write a map function:

def map(f: Int32 -> Int32 , s: Seq[s]): Seq[s] = choose * s { ... }

Importantly, the map function preserves information about what variants can occur in the
output based on the input. Thus, if we map over an Option, we know that the result is an
Option and if we map over a Nel, we know the result is a Nel.

We can also write functions that only work for non-empty lists. For example:

def head(s: Seq[s - Nil ]): Int32 = choose s { ... }
def last(s: Seq[s - Nil ]): Int32 = choose s { ... }

More interestingly, we can express a function that appends an element to a sequence:

def append (elm: Int32 , s: Seq[s]): Seq [{One , Cons }] = choose * s {
case Nil => One(w)
case One(x) => Cons(x, One(elm ))
case Cons(x, xs) => Cons(x, append (elm , xs))

}

The return type of append, which is equivalent to Nel, captures that the result lacks the Nil
variant, hence is non-empty. We can use append to write a reverse function:

def reverse (s: Seq[s]): Seq [(s & {Nil }) + {One , Cons }] = choose * s {
case Nil => Nil
case One(x) => One(x)
case Cons(x, xs) => append (x, reverse (xs))

}

The type of the reverse function is not as precise as we would like. In particular, if we reverse
an Option type, we lose the information that the sequence has 0 − 1 elements. However, the
type is sufficiently precise to capture that if we reverse a non-empty list then the result is
also non-empty.

In summary, in our experience, most aggregation functions such as head, forall, and count
can be implemented on the Seq data type. We can also implement structure preserving
functions such as map. Where it gets more difficult is with transformations such as append,
reverse, and flatMap which do not always have the types we would want. In such cases, we
can sometimes implement 2 − 3 functions (corresponding to one for Option, List, and Nel)
and thus still have the desired functionality.
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6.3 Case Study: Restrictable Variants, Extensible Records

While we have presented restrictable variants as a better alternative to extensible variants,
we have found that it is natural to combine restrictable variants with extensible records. For
example, returning to the compiler use case, one can imagine an abstract syntax tree that is
transformed and decorated with additional information through several compiler phases. We
can use restrictable variants to capture the active labels and extensible records to capture
the extra information. For example, we can define an abstract syntax tree:

enum Expr[s][r: RecordRow ] {
case Cst ({ value = Bool | r}),
case Num ({ value = Int32 | r}),
case Var ({ ident = String | r}),
case Add ({e1 = Expr[s, r], e2 = Expr[s, r] | r}),
case Ite ({e1 = Expr[s, r], e2 = Expr[s, r], e3 = Expr[s, r] | r})
// ...

}

Here the the Expr data type has two type-level indices: The s index controls the variant part
whereas the r index controls the record part. Assume that we also have a data type:

enum Type { case TBool , case TInt }

then we can use row extension to capture that type inference decorates the AST:

def infer(e: Expr[s][r]): Expr[s, (tpe = Type | r)] = ...

At the same time, we can also capture that code generation only works for closure-converted,
lambda-lifted, and well-typed ASTs:

def codeGen (e: Expr[s - Lam ][( tpe = Type | r)]): ByteCode = ...

This example illustrates that restrictable variants and extensible records complement each
other well. We use the variant index to constrain what cases we are prepared to deal with
and we use the record index to constrain what additional information we need.

6.4 Pretty Printing Types with Lower– and Upper Bounds

Programmers might find it difficult to read a type signature like:

def reverse (s: Seq[s]): Seq [(s & {Nil }) + {One , Cons }]

For this reason, we have experimented with showing lower- and upper-bounds of type-level set
formulas. For example, the set formula: Seq[(s & {Nil}) + {One, Cons}] has the lower-bound:
{One , Cons} and the upper-bound: {Nil, One , Cons}. This means a choose or choose* must
handle the One and Cons variants and may optionally handle the Nil variant.

7 Related Work

We have already discussed how the expressiveness of restrictable variants compares to several
other existing systems. In this section, we aim to provide high-level overview of related work.
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Row-based Extensible Records and Variants

Wand originally introduced the concept of row variables for an object-oriented setting [37].
A key challenge in the literature on row-based systems has been how to deal with duplicate
labels. A challenge that remains to this day [30]. Gaster and Jones present a type system
for extensible records and variants that use qualified types [13] to ensure that rows do not
contain duplicate labels [11]. Leijen instead propose a type system that permits duplicate
labels and gives a semantics to such “scoped” records and variants [16]. Another major
challenge has been the question of row concatenation [30]. In this direction, Harper and
Pierce presents a record calculus and type system that permits record concatenation [12], but
lacks type inference. Morris and McKinna presents a unified framework for row-polymorphic
type systems based on row theories [30].

Row-based type systems have been used successfully in many applications other than
extensible records and variants. For example, type systems based on rows have been used to
track exceptions [31], to track effects in algebraic effect systems [17, 18], to model database
queries [19], and to type first-class Datalog program values [22].

We refer to Gaster and Jones for a detailed introduction to row polymorphism [11].

Occurrence Typing, GADTs, Constructor Subtyping, and Relational Nullability

Castagna et al. present an occurrence-based type system [7] which uses set-theoretic types to
infer precise function signatures. Applied to variants and pattern-matching, the system can
track exactly how a function maps labels among each other. The system is purely structural
and based on semantic subtyping, whereas our system includes nominal typing.

Generalized algebraic data types (GADTs) extend algebraic data types with additional
expressive power by allowing the type scheme of a constructor to restrict its return type [15, 35].
The canonical example is the ability to write an algebraic data type for arithmetic and
Boolean expressions Expr[α] and an evaluation function eval : Expr[α] → α where α is a
type-level index that determines whether the expression evaluates to a Bool or Int. A
significant body of work has focused on how to recover type inference in the presence of
GADTs [14, 32]. We think it would be interesting future work to explore possible connections
between restrictable variants and GADTs.

Constructor subtyping is an alternative to extensible and restrictable variants where
one inductive type τ1 is considered a subtype of another inductive type τ2 if τ2 has more
constructors than τ1 [3, 26]. In relation to restrictable variants, the idea would be to have
multiple data types that share similar constructors and then use subtyping to allow functions
to operate on multiple of these types.

Madsen and van de Pol propose a type system with support for relational nullable
types [25]. While a nullable type system tracks whether an expression may evaluate to
null based on its type, relational nullable type systems track whether an expression may
evaluate to null based on its type and the type of other related expressions. As discussed,
the Madsen and van de Pol system has some similarities to ours: both systems allow partial
(non-exhaustive) pattern-matching and both systems are based on Hindley-Milner extended
with Boolean unification. However, their system is purely structural and focuses on nullability,
whereas our system combines nominal and structural typing.
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Refinement Kinds

Luís and Toninho propose refinement typing at the kind level to enable metaprogramming
with records [6]. We believe their system could be adapted to variants and pattern matching:
The dependent types in their system precisely track the associations between the input and
output types of functions. Refinement kinds, however, do not support type inference.

Boolean Unification

Boole studied Boolean unification in the single-variable case and presented a simplified
version of the successive variable elimination algorithm [4]. Later, Löwenheim presented
another Boolean unification algorithm [20]. Today, an accessible introduction to Boolean
unification is provided by Martin and Nipkow [27]. Additional background information is
provided by Baader [2], Boudet et al. [5], Robinson and Voronkov [34].

Boolean unification was first used in a type system by de Vries et al. who used it model
uniqueness [9]. Later, Madsen and van de Pol presented a polymorphic type and effect
system which used Boolean unification for inference [24].

8 Conclusion

We have presented restrictable variants as a simple and practical alternative to extensible
variants. A restrictable variant is a sum type indexed by a type-level set formula of its
active labels. We have also introduced the choose and choose* pattern-matching constructs
which enable non-exhaustive patterns matches on restrictable variants. Notably, the choose*

construct allow us to precisely track the introduction and elimination of variants through
function composition.

We have presented a type system for a minimal calculus with restrictable variants. The
type system, which based on Hindley-Milner extended with type-level set formulas, ensures
that non-exhaustive pattern-matches cannot get stuck. The system supports complete
inference via a suitable extension of Algorithm W with Boolean unification on set formulas.

We have implemented restrictable variants as an extension of the Flix programming
language and used the implementation for a few case studies. The extension is ready for use,
freely available, and open-source.
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