
On Leveraging Tests to Infer Nullable Annotations
Jens Dietrich # Ñ

Victoria University of Wellington, New Zealand

David J. Pearce #

ConsenSys, Wellington, New Zealand

Mahin Chandramohan #

Oracle Labs, Brisbane, Australia

Abstract
Issues related to the dereferencing of null pointers are a pervasive and widely studied problem,
and numerous static analyses have been proposed for this purpose. These are typically based on
dataflow analysis, and take advantage of annotations indicating whether a type is nullable or not.
The presence of such annotations can significantly improve the accuracy of null checkers. However,
most code found in the wild is not annotated, and tools must fall back on default assumptions,
leading to both false positives and false negatives. Manually annotating code is a laborious task and
requires deep knowledge of how a program interacts with clients and components.

We propose to infer nullable annotations from an analysis of existing test cases. For this
purpose, we execute instrumented tests and capture nullable API interactions. Those recorded
interactions are then refined (santitised and propagated) in order to improve their precision and
recall. We evaluate our approach on seven projects from the spring ecosystems and two google
projects which have been extensively manually annotated with thousands of @Nullable annotations.
We find that our approach has a high precision, and can find around half of the existing @Nullable
annotations. This suggests that the method proposed is useful to mechanise a significant part of the
very labour-intensive annotation task.
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1 Introduction

Null-pointer related issues are one of the most common sources of program crashes. Much
research has focused on this issue, including: eliminating the problems of null in new language
designs [55, 48, 51, 58]; mitigating the impact of null in existing programs [23, 66, 5, 19];
and, developing alternatives for languages stuck with null [20, 29, 67].

More recently, several industrial-strength static analyses have been developed to operate
at scale, such as infer / nullsafe [1, 19] and nullaway [5]. Such tools employ some form of
dataflow analysis and take advantage of an extended type system that distinguishes in some
way between nullable and nonnull types [23]. Here, a nonnull type is considered a subtype
of a nullable type, and this relationship enables checkers to identify illegal assignments
pointing to potential runtime issues. In Java, the standard annotation mechanism can be
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10:2 On Leveraging Tests to Infer Nullable Annotations

used to define such custom pluggable types [9]. For instance, using an annotation defined
in JSR305 (i.e., the javax.annotation namespace), we can distinguish between the two
types @Nullable String and @Nonnull String, with @Nonnull String being a subtype
of @Nullable String. In a perfect world, developers would annotate all methods and fields,
allowing static checkers to perform analyses with high recall and precision. Not surprisingly,
this hasn’t happened. Annotating code is generally a complex problem [13], and recent
developer discussions reflect this. For instance, for commons-lang the issue LANG-1598
has been open since 14 August 20.1 In a comment on this issue one developer commented
“Agreed this idea, but it is a HUGE work if we want to add NotNull and Nullable to all public
functions in commons-lang.’ ’ A similar comment can be found in a discussion on adding
null-safety annotations to spring boot (“it may well be a lot of work”).2

Null-related annotations form part of a contract between the provider and consumer of
an API. For instance, consider a library that provides some class Foo with a method String
foo(). Adding an annotation may change this to @Nullable String foo(). This alters
the contract with downstream clients which may have assumed the return was not nullable.
Technically this change weakens the postcondition, thus violating Liskov’s Substitution
Principle (LSP) [41].3 This may therefore cause breaking changes, forcing clients to refactor,
for instance, by guarding call sites to protect against null pointer exceptions. Such a change
may imply the downstream client was using the API incorrectly (i.e. by assuming null
could not be returned). As such, one might argue the downstream client is simply at fault
here and this change helps expose this. But, such situations arise commonly and oftentimes
for legitimate reasons: perhaps the downstream client uses the API in such a way that, in
fact, null can never be returned; or, the method in question only returns null in very rare
circumstances which weren’t triggered despite extensive testing by the downstream client.
Regardless, developers must gauge the impact of such decisions carefully when modifying
APIs. This illustrates the complexity of the task, and suggests that it is laborious and
therefore expensive to add nullability-related annotations to projects.

Null checkers deal with missing annotations by using defaults to fill in the blanks. Those
assumptions have a direct impact on recall and precision. The question arises whether
suitable annotations can be inferred by other means.4 Indeed, some simple analyses could
be used here in principle, such as harvesting existing runtime contract checks. Using such
checks is increasingly common as programmers opt to implement defensive APIs in order
to reduce maintenance costs [17]. This includes the use of contract APIs such as guava’s
Preconditions 5, commons-lang3’s Validate 6, spring’s Assert 7 and the standard library
Objects::requireNonNull protocol which all include non-null checks. Such an analysis
could boost the accuracy of static null checkers that integrate with the compiler, as those
contract APIs are defined in libraries that are usually outside the scope of the analysis
performed by static checkers. However, exploiting the call sites of such methods is of limited
benefit as those checks would only establish that a reference must not be null.

1 Open as of 20 October 22, see https://issues.apache.org/jira/browse/LANG-1598
2 https://github.com/spring-projects/spring-boot/issues/10712
3 LSP was formulated for safe subtyping, but can be applied in this context if we consider evolution as

replacement
4 Other here means not using the same technique used by static checkers. One could argue that if a static

dataflow analysis was used to infer annotations, then that should be integrated into the checker in the
first place

5 https://guava.dev/releases/21.0/api/docs/com/google/common/base/Preconditions.html
6 https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/

Validate.html
7 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/

util/Assert.html
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It is much more beneficial for static checkers to annotate code indicating that a reference
may be null (i.e., “is nullable’ ’). The reason is that many static checkers use the non-null-by-
default assumption that was suggested by Chalin and James after studying real-world systems
and finding the vast majority of reference type declarations are not null, making this a
sensible choice to reduce the annotation burden for developers [14]. They also point out that
this is consistent with default choices in some other languages. The checkerframework and
infer nullness checkers are based on this assumption, whilst some other null checkers such as
the one embedded in the Eclipse IDE can be configured as such. Sometime, this is formalised.
For instance, the spring framework makes the use of the non-null-by-default assumption
explicit by defining and using two package annotations 8 @NonNullApi and @NonNullFields
in org.springframework.lang, with the following semantics (@NonNullApi, similar for
@NonNullFields for fields): “A common Spring annotation to declare that parameters and
return values are to be considered as non-nullable by default for a given package”. 9

Using dynamic techniques is a suitable approach to observe nullability, and can be
combined with static analyses to improve accuracy. Such hybrid techniques consisting of a
dynamic pre-analysis feeding into a static analysis have been used very successfully in other
areas of program analysis [7, 31]. A common reason to use those approaches is to boost
recall [65].

In this paper, we explore this idea of inferring nullable annotations from test executions.
This is based on the assumption that tests are a good (although imperfect) representation of
the intended semantics of a program. We then refine those annotations by means of various
static analyses in order to reduce the number of both false positives and false negatives.

Our analysis is sound in the sense that it will not infer or add @NonNull to a method
or field where it may become inconsistent with the runtime behaviour of the program.
It is conservative in the sense that it will never retract @Nullable annotations added by
developers.

This paper makes the following contributions:
1. a dynamic analysis to capture nullable API interactions representing potential

@Nullable annotations (“nullability issues”) from program executions,
2. a set of static analyses (“sanitisation”) to identify false positives
3. a static analysis (“propagation”) to infer additional nullability issues from existing

issues
4. a method to mechanically add the annotations inferred into projects by manipu-

lating the respective abstract syntax trees (ASTs)
5. an experiment evaluating how the annotations we infer compare to existing @Nullable

annotations of seven projects in the spring framework ecosystem and two additional google
projects, containing some of the most widely used components in the Java ecosystem

6. an open source implementation of the methods and algorithms proposed, available
from https://github.com/jensdietrich/null-annotation-inference

These contributions directly relate to concrete research questions which we study in the
context of evaluation experiments in Section 7.

Our approach meets the expectations of engineers for tools with high precision [6, 59],
and has clear economic benefits – it can partially automate the expensive task of manually
annotating code. At the time of writing, some of the results produced by our tool have
already been adapted into spring and guava.

8 I.e., annotation used in package-info.java
9 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/

lang/NonNullApi.html
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The paper is organised as follows. Starting with the introduction in this section, we
provide a high-level overview of our approach in Section 2. This is followed by a more detailed
discussion of the major steps of our method: the capture of potential nullability issues from
the execution of instrumented tests (Section 3), the removal of likely false positives through
sanitisation (Section 4), and inference of additional issues to address false negatives through
propagation (Section 5). We then briefly discuss a utility to inject the annotations our tool
infers back into programs in Section 6, and present evaluation experiments in Section 7. This
includes the formulation of four research questions in Section 7.3. Finally, we discuss related
work in Section 8, and finish with a brief conclusion in Section 9.

2 Approach

Our approach consists of the following steps and the construction of a respective processing
pipeline:
1. Capture: The execution of an instrumented program and the recording of nullability

issues, i.e. uses of null in method parameters, returns and fields.
2. Refinement: The refinement of nullability issues captured using several light-weight

static analyses.
a. Sanitisation: The identification and removal of nullability issues captured that may

not be suitable to infer @Nullable annotations to be added to the program, therefore
eliminating potential false positives.

b. LSP Propagation: The inference of additional nullability issues to comply with
Liskov’s Substitution Principle [41], therefore addressing potential false negatives.

3. Annotation: the mechanical injection of captured and inferred annotations into projects.

These steps are described in detail in the following sections.

3 Capture

3.1 Driver Selection
A dynamic analysis can be used to observe an executing program, and to record when null
is used in APIs that can then be annotated. The question arises which driver to use to
exercise the program. One option is to use existing tests, assuming they are representative
of the expected and intended program behaviour.

If libraries are analysed there is another option – to use the tests of downstream clients.
This approach has been shown to be promising recently to identify breaking changes in
evolving libraries [46]. The advantage is that clients can be identified mechanically using an
analysis of dependency graphs exposed by package managers and the respective repositories.10

However, this raises the question which clients to use. Using an open world assumption
to include all visible clients (i.e., excluding clients not in public repositories) is practically
impossible given the high number of projects using commodity libraries like the ones we have
in our dataset. There is no established criteria of how to select representative clients.

10 Note that this requires the analysis of incoming dependencies, which is not as straightforward as the
analysis of outgoing dependencies (which can simply use the maven dependency plugin) and requires
some manual analysis, web site scraping or use of third-party repository snapshots such as libraries.io
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In principle, synthesised tests [53, 28] could also be used. However, they expose possible,
but not necessarily intended program behaviour. Using synthesised tests would therefore
likely result in too many @Nullable annotations being inferred. We note that some manually
written tests may have the same issue. We will address this in Section 4.2.

In the approach presented here we opted to use only a project’s own tests for generating
actual annotations.

3.2 Instrumentation
In order to instrument tests, Java agents were implemented to record uses of null in APIs
during the execution of tests. These agents can be deployed by modifying the (Maven or
Gradle) build script of the project under analysis. The agents intercept code executions
using the following six rules which check for occurrence of null references during program
execution, and record those occurrences:
ARG at method entries, parameter values are checked for null
RET at method exits, return values are checked for null
FL1 at constructor (<init>) exits, reflection is used to check non-static fields for null
FL2 at non-static field writes (i.e. the putfield bytecode instruction), the value to be set is

checked for null
SFL1 at class initialiser (<clinit>) exits, reflection is used to check static fields for null
SFL2 at static field writes (i.e. the putstatic bytecode instruction), the value to be set is

checked for null

We have implemented agents implementing those rules using a combination of asm [11]
and bytebuddy [70]. If null is encountered, nullability issues are created and made persistent
(written to disk).

Instrumentation can be restricted to certain (project-specific) packages, a system variable
is used to set a package prefix for this purpose. This is to filter out relevant issues early as
the amount of data collected is significant (see results in Table 2, column 3).

3.3 Capturing Context
A nullability issue is identified by the position of the nullable API element (return type or
argument index), and the coordinates (class name, method name, descriptor) of the respective
method or field. We are also interested to capture and record the execution context for
several reasons:
1. to record sufficient information providing provenance about the execution, sufficient for

an engineer who has to decide whether to add a @Nullable annotation or not
2. related to the previous item, the number of contexts in which a nullable issue has

been observed may itself serve as a quality indicator for the issue – more observed
contexts provide some support for this being an issue (instead of a single tests triggering
“unintended” program behaviour)

3. to distinguish issues detected by running a project’s own tests from issues detected by
running client tests

4. to facilitate the sanitisation of issues, with some sanitisation techniques analysing the
execution context.

In order to achieve this, we record the stack during capture. From the stack, we can then
infer the trigger, i.e. the test method leading to the issue. The following algorithm is used to
remove noise from the captured stack and identify the trigger:

ECOOP 2023
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1. the invocation of java.lang.Thread::getStackTrace triggering the stacktrace capture
is removed from the stacktrace

2. all elements related to the instrumentation are removed
3. elements related to test processing (surefire, junit), reflection and other JDK-internal

functionality are removed based on the package names of the respective classes owning
those methods 11

4. the last element in the stacktrace is set to be the trigger

3.4 Example
Listing 1 shows an issue captured running a test in spring-core and serialized using JSON. The
test (trigger) is ConcurrentReferenceHashMapTests::shouldGetSize, it uses the Map::put
API implemented in ConcurrentReferenceHashMap, which leads to put returning null.

Listing 1 A serialised nullability issue captured in spring-core (for better readability
org.springframework.util is replaced by $s).

1 {
2 " className ":" $s. ConcurrentReferenceHashMap ",
3 " methodName ":" put",
4 " descriptor ":"( Ljava /lang/ Object ; Ljava /lang/ Object ;Z) Ljava /lang/ Object ;",
5 "kind ":" RETURN_VALUE ",
6 " argsIndex ":-1,
7 " stacktrace ":[
8 "$s. ConcurrentReferenceHashMap :: put :282" ,
9 "$s. ConcurrentReferenceHashMap :: put :271" ,

10 "$s. ConcurrentReferenceHashMapTests :: shouldGetSize :331"
11 ]
12 }

3.5 Deduplication
When issues are captured, it is common that several versions of the same issue are being
reported. For instance, there might be two nullability issues reported for the return type
of the same method in the same class, but triggered by different tests, and therefore with
different stack traces. Throughout the paper, only deduplicated (aggregated) issue counts are
reported unless mentioned otherwise. The raw issues might still be of interest as they differ
with respect to their provenance, which might be important for a developer reviewing issues.

3.6 Limitations
Our approach does not support generic types. For instance, consider a method returning
List<String>. In order to establish that the list may contain @Nullable strings the analysis
would need to traverse the object graph of the list object using reflection or some similar
method, in order to check that some elements of the list are (or in general some referenced
objects associated with the type parameters) are nullable. This is generally not scalable.

Secondly, there are dynamic programming techniques that may bypass the instrumentation.
This is in particular the case if reflective field access is used, either directly using reflection,
or via deserialisation. This is a known problem, however, reflective field access is rare in
practice [65].

11 More specifically, we consider methods in packages starting with the following prefixes as noise:
java.lang.reflect., org.apache.maven.surefire, org.junit., junit., jdk.internal.
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4 Sanitisation

4.1 Scope Sanitisation
When exercising code using instrumented tests, potential issues are captured and recorded for
all classes including classes defined in dependencies, system and project classes. By setting
project-specific namespace (package) prefixes, the analysis can be restricted to project-defined
classes only as discussed in Section 3.2. However, this still does not distinguish between
classes used at runtime (in Maven and Gradle, this is referred to as the main scope), and
classes only to be used during testing (the test scope). Engineers may not see the need to
annotate test code, and a static null checker would usually be configured to ignore test code
as its purpose if to predict runtime behaviour such as potential null dereferences resulting in
runtime exception.

The analysis to filter out classes not defined in main scope is straightforward: scopes
are encoded in the project directory structure if build systems like Maven and Gradle are
used. Those build systems and the associated project structures are the defacto-standards
used in Java projects [2]. For instance, spring uses Gradle, and the compiled classes in main
scope can be found in build/classes/java/main. The main scope sanitiser simply removes
issues in classes not found in this folder.

4.2 Negative Test Sanitisation
The code in Listing 2 from the spring-core project is an example of a defensive API practice
in org.springframework.util.Assert. A runtime exception is used to signal a violated
pre-condition, a null parameter in this case. The exception (IllegalArgumentException)
is thrown in the Assert::notNull utility method. While a null pointer exception is also a
runtime exception, throwing an IllegalArgumentException here is more meaningful as this
is (expected to be) thrown by the application, not by the JVM, and clearly communicates
to clients that this is a problem caused by how an API is used, as opposed to an exception
caused by a bug within the library.

Listing 2 A defensive API in spring-core, org.springframework.util.Assert::isInstanceOf.
1 public static void isInstanceOf (Class <?> type , @Nullable Object obj , String message ) {
2 notNull (type , "Type to check against must not be null");
3 ..
4 }

This contract is then tested in org.springframework.util.AssertTests::isInstance-
OfWithNullType, shown in Listing 3.

Listing 3 Testing a defensive API in spring-core with JUnit5.
1 @Test void isInstanceOfWithNullType () {
2 assertThatIllegalArgumentException (). isThrownBy (
3 () -> Assert . isInstanceOf (null , "foo", " enigma ")
4 ). withMessageContaining (..);
5 }

We refer to such tests as negative tests – i.e. tests that exercise abnormal and unintended
but possible behaviour, and use an exception or error as the test oracle for this purpose.
Features often used to implement such tests are the assertThrows method in JUnit5, and
the expected attribute of the @Test annotation in JUnit4.

Including such tests (as drivers) is likely to result in false positives – nulls are passed to
the test to trigger defense mechanisms, such as runtime checks. We therefore excluded issues
triggered by such tests. This is done by a lightweight ASM-based static analysis that checks
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for the annotations and call sites indicating the presence of an exception oracle and produces
a list of negative tests, and a second analysis that cross-references the context information
captured while recording issues against this list, and removes issues triggered by negative
tests.

The analysis checks for the above-mentioned negative test patterns in JUnit4 and JUnit5,
and a similar pattern in the popular assertj library. We also check for call sites for the
JUnit4 and JUnit5 fail methods in try blocks, usually indicating that tests pass if they
enter the corresponding catch block. Finally, the analysis looks for call sites of methods
in com.google.common.testing.NullPointerTester. This is a utility that uses reflection
to call methods with null for parameters not marked as nullable, expecting a NPE or an
UnsupportedOperationException being thrown. This may be considered as over-fitting as
guava is also part of our data set used for evaluation. However, like JUnit, guava is a widely
used utility library, which warrants supporting this features in a generic tool.

4.3 Shaded Dependency Sanitisation
Shading is a common practice where library classes and often entire package or even libraries
are inlined, i.e. copied into the project and relocated into new name spaces. A common use
case is to avoid classpath conflicts when multiple versions of the same class are (expected to
be) present in a project [69].

For instance, the return type of org.springframework.asm.ClassVisitor::-
visitMethod is not annotated as nullable. The problem here is that spring-
core also defines several subclasses of this class overriding the method (including
SimpleAnnotationMetadataReadingVisitor, package name omitted for brevity), which
mark the return type as nullable. Reading this as pluggable types with the non-null by
default assumption, with @Nullable MethodVisitor being a subtype of MethodVisitor,
this violates Liskov’s substitution principle [41] as the postcondition of a non-null return value
is weakened in the overriding method. The reason that engineers wont add the annotation is
that this class originates from a shaded dependency.12 This is usually not done manually,
but automated using build plugins such as Maven’s shade plugin 13. The respective section
of the Gradle build script for spring-core is shown in Listing 4.

Listing 4 Shading spec in spring-corespring-core.gradle.
1 task cglibRepackJar (type: ShadowJar ) {
2 archiveBaseName .set(’spring -cglib -repack ’)
3 archiveVersion .set( cglibVersion )
4 configurations = [ project . configurations . cglib ]
5 relocate ’net.sf.cglib ’, ’org. springframework .cglib ’
6 relocate ’org. objectweb .asm ’, ’org. springframework .asm ’
7 }

This makes adding @Nullable annotations for those classes unattractive – any developer
effort to add them is wasted as the source code is replaced during each build, and modern
projects are rebuilt often, sometimes multiple times a day. A possible solution would be to
add annotations during code generation at build time, but to the best of our knowledge,
there are no suitable tools or meta programming techniques readily available to engineers
that could be used for this purpose.

Another option would be to add the annotation to the respective method provided by
the shaded library, however, engineers are usually not in a position to make such a change.

A sanitiser to take this into account takes a list of packages corresponding to shaded
classes as input, and removes issues detected within those classes.

12 See https://github.com/spring-projects/spring-framework/pull/28852 for discussion
13 https://maven.apache.org/plugins/maven-shade-plugin/

https://github.com/spring-projects/spring-framework/pull/28852
https://maven.apache.org/plugins/maven-shade-plugin/
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4.4 Deprecation Sanitisation
The final sanitiser removes issues collected from deprecated (i.e., annotated with @java.lang.-
Deprecated) fields, methods or classes. The rationale is that given the significant cost of
annotating code, engineers might be reluctant to add annotations to code scheduled for
removal, and will consider the inference of such annotations less useful. Such a sanitiser can
be implemented with a straightforward byte code analysis as @Deprecated annotations are
retained in byte code. We used asm for this purpose in our implementation.

5 Propagation

Annotating an API with @Nullable annotations changes the expectations and guarantees
of the API contract with clients. In terms of Liskov’s Substitution principle (LSP), adding
@Nullable to a method (i.e., to the type it returns) weakens its postconditions if we consider
@NonNull to be the baseline. To preserve LSP, a non-null return type must not be made
nullable in a overriding method.

For nullable arguments, the direction changes: while overriding a method making argu-
ments nullable complies to LSP as expectations (for callers) are weakened, nullable arguments
must not be made non-null in overridden methods. If we assume @NonNull to be the default,
this implies that @Nullable should also be applied to the arguments of the overriding method.
However, the standard Java language semantics only supports covariant return types (e.g.,
methods can be overridden using a more specific return type), while for argument types
invariance is used. Different null checkers and other languages use a variety of approaches
here [13] and it is not completely clear what the canonical approach should be. Therefore,
in our proof-of-concept implementation, LSP propagation can be customised to propagate
nullability for arguments, or not, with propagation being the default strategy.

Listing 5 illustrates our approach. Assume we have annotated B::foo using observations
from instrumented test runs. Then we also have to add @Nullable to the return type of the
overridden method A::foo, and (if argument propagation is enabled) to the sole argument
of the overriding method C::foo.

Listing 5 Propagation of @Nullable to Sub- and Supertypes.
1 public class A {
2 public @Nullable Object foo ( Object arg) ;
3 }
4 public class B extends A {
5 public @Nullable Object foo ( @Nullable Object arg) ;
6 }
7 public class C extends B {
8 public Object foo ( @Nullable Object arg) ;
9 }

LSP propagation is implemented using a lightweight ASM-based analysis that extracts
overrides relationships from compiled classes, and cross-references with with captured issues,
creating new issues. For provenance, references to the original parent issues leading to
inferred issues are captured as well and stored alongside the (JSON-serialised) inferred issues
as a parent attribute.

5.1 Limitations
There is a limitation to hierarchy-based propagation – subtype relationships may extend
across libraries, and we may infer nullable annotations for classes that are not in the scope
of the analysis, and cannot be refactored. While project owners know super types (and can
use methods like opening issues or creating pull requests for projects we don’t control), they
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are not in control of subtypes in an open world, and rely that downstream projects would
eventually pick up those annotations through notifications from some static analyses tools
checking for those issues.

5.2 Sanitisation vs Propagation Fixpoint
Sanitisation and propagation have opposite effects. Preferably, an algorithm used to refine
the initially collected nullability issues would reach a unique fix point where the future
application of sanitisation and propagation would not change the set of refined nullability
issues. However, such a fixpoint does not exist. Consider for instance a scenario where a
shaded class has a method that is overridden and has a nullable return type in the overriding
method. Then LSP propagation suggests to also add this to the return of the overridden
method in the super class (to avoid weakening the post conditions), while sanitisation
suggests not to refactor the shaded class. This is the issue we have observed in spring-core
and discussed in Section 4.3.

6 Annotation Injection

We implemented a tool to inject the inferred annotations into projects, using the following
steps:
1. compilation units are parsed into ASTs using the javaparser API [62]
2. for each nullable issue, the respective method arguments, returns or fields are annotated

by adding nodes representing the @Nullable annotation to the respective AST
3. after the AST for a compilation unit is processed, it is written out as a Java source code

file
4. if necessary, the respective import for the nullable annotation type used is added to the

pom.xml project file

The tool has been evaluated using standard JUnit unit tests, and by round-tripping
(removing and then reinserting existing annotations) the spring projects studied.

There are different annotation libraries available defining nullable annotations, and static
checkers often support multiple such annotations. For this reason, the annotator tool supports
pluggable annotations. This abstraction is implemented as a NullableAnnotationProvider
service, implementations provide the nullable type and package names, and the coordinates
of an Maven artifact providing the respective annotation. The default implementation is
based on JSR305. Alternative providers can be deployed using the standard Java service
loader mechanism.

7 Evaluation

Our evaluation is based on a study of some of the popular real-word projects which have
been manually null-annotated by project members. We compare those existing annotations
with the annotations captured and inferred by our method, and check those two sets for
consistency. This is done by measuring precision and recall. Informally, those measures
represent the ratio of inferred annotations to existing annotations, and the percentage of
existing annotations our method is able to infer. More precisely, given a set of existing
nullable annotations Existing and a set of annotations inferred using our method Inferred,
we define the following metrics:
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TP := Existing ∩ Inferred
FP := Inferred \ Existing
FN := Existing \ Inferred
precision := |TP |/(|TP | + |FP |)
recall := |TP |/(|TP | + |FN |)

Those are standard definitions, however, they need to be used with caution here. The
concepts suggest that the existing annotations are the ground truth. This hinges on two
assumptions:
1. The existing annotations are complete.
2. The project test cases provide enough coverage to exercise all possible nullable behaviour.

The first assumption means that all exiting nullable annotations our method fails to infer
are in fact false positives. This might not be true as the annotations may not be complete,
and we explore this issue further in Section 7.8. Therefore, the precision reported needs to
be understood as the lower precision bound (lpb) in the sense of false positive detection. The
second assumption means that all existing issues our tool cannot detect are false negatives.
While this is correct in some sense, it does not necessarily indicate a weakness of our method
as such, rather than an issue of the quality of input data, i.e. the quality of tests.

Existing annotations are extracted by using a simple byte code analysis (noting that
common nullable annotation use runtime retention), we are looking for @Nullable annotations
in any package to account for the multiple annotation providers. We also support two
semantically closely related annotations defined in widely used utility libraries or tools,
guava’s @ParametricNullness and findbug’s @CheckForNull.

7.1 Dataset
The data set we use in our study consists of seven projects (modules) from the spring
framework ecosystem, plus two additional google projects. Those projects were located by
searching the Maven repository for projects using libraries providing @Nullable annotations,
and the selecting projects that actually use a significant number of those annotations. The
reason that we chose this method was that we wanted to use existing annotations as (an
approximation of) the ground truth to evaluate the inferred annotations. We were particularly
looking for projects backed by large engineering teams and well-resourced organisations,
assuming that this would result in high-quality annotations.

Spring is the dominating framework for enterprise computing in Java [68], it is supported
by a large developer community, is almost 20 years old and keeps on maintaining and
innovating its code base. What makes those projects particularly suitable for evaluation
is the fact that they have been manually annotated with @Nullable annotations. Spring
defines its own annotation for this purpose in spring-core 14. The amount of annotations
found in those projects is extensive, see Section 7.4 for details. Spring uses gradle as build
system.

Spring is organised in modules, projects with their own build scripts producing independent
deployable binaries. We selected seven projects with different characteristics in particular
with respect to how APIs are provided or consumed: core, beans and context are foundational
projects for the spring framework overall, with few dependencies. orm and oxm are middleware

14 Defined in in org.springframework.lang
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Table 1 project summary, reporting the number of Java, Kotlin and Groovy source code files for
both main and test scope, and branch coverage.

main test
program version java kotlin groovy java kotlin groovy coverage
s.-beans 5.3.22 301 2 1 126 4 0 60%
s.-context 5.3.22 640 5 0 483 7 2 63%
s.-core 5.3.22 499 1 0 214 14 0 66%
s.-orm 5.3.22 72 0 0 32 0 0 39%
s.-oxm 5.3.22 31 0 0 19 0 0 58%
s.-web 5.3.22 653 1 0 268 5 0 18%
s.-webmvc 5.3.22 368 3 0 225 5 0 39%
guava 31.1 619 0 0 502 0 0 70%
error-prone 2.18.0 745 0 0 1,222 0 0 73%

components for applications to interact with XML data and relational databases, and integrate
with existing frameworks for this purpose like hibernate, jpa and jaxb. Finally, web is a utility
library for web programming (including an HTTP client), and webmvc is a comprehensive
application framework based on the model-view-controller design pattern [30].

We also include two additional non-spring programs to demonstrate the generality of the
method proposed, and avoid over-fitting for spring. Those are guava and error-prone, both by
google. Guava is a very popular utility library, whereas error-prone is a code analysis utility,
similar to findbugs. Those two projects use Maven as build system, and have a modular
structure, with some modules only containing tests, test tools or annotations. We analysed
nullability for the errorprone/core and guava/guava modules, respectively.

Table 1 provides an overview of the data set used together with some metrics, broken
down by scope as discussed in Section 4.1. While those projects predominately contain Java
classes, they also contain a smaller amount of Kotlin and Groovy code. Most of this are
tests, and as the capture is based on bytecode instrumentation, those tests are still being
used as drivers for the dynamic analysis. The table also contains some coverage data.15 This
provides some indication that the projects detected are well tested, and provide reasonable
drivers for a dynamic analysis. The coverage data compares favourably to the coverage
observed for typical Java programs [18].

7.2 Capture
For the dynamic analysis, we used the agents described in Section 3. With those agents
deployed in the build scripts, ground truth extraction is a matter of running the projects
builds using the test targets. The agents collect large amounts of data. For instance, the raw
uncompressed size of the nullability issue file collected is 19.96 GB for spring-context, 4.11
GB for guava and 3.57 GB for error-prone (see also Table 2). To avoid memory leaks caused
by instrumentation, agents dump data frequently, and after test execution using a shutdown
hook.

Not unexpectedly, the presence of the agents significantly prolongs the build times – to
around one hour for spring and 16 hours for guava 16. Profiling reveals that stack capture
and IO are performance bottlenecks.

15 Branch coverage is reported, calculated using the jacoco coverage tool integrated into the IntelliJ IDEA
2022.2 (Ultimate Edition) IDE, and reporting the values aggregated by IntelliJ for the respective
packages

16 Builds were run on a MacBook Pro (16-inch, 2021) with Apple M1 Pro, and OpenJDK 11.0.11
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We argue that this is acceptable as this is an one-off effort, i.e. this is not designed to be
integrated into standard builds.

7.3 Research Questions
We break down the evaluation into a number of research questions. RQ1 compares the
possible nullable annotations collected from instrumented test runs with existing annotations.
RQ2 and RQ3 assess the utility of the refinements (sanitisation and propagation) performed
on the nullability issues collected to improve recall and precision. Finally, in RQ4 we assess
the interaction between sanitisation and propagation.
RQ1 How does nullability observed during test execution compare to existing @Nullable

annotations?
RQ2 Can sanitisation techniques improve the precision of @Nullable annotation inference?
RQ3 Can propagation improve the recall of @Nullable annotation inference?
RQ4 Does the repeated application of sanitisation and propagation reach a fixpoint?

Results will be reported in Tables for each RQ, and we will summarise the distribution
of recall and lower precision bound values across our dataset at the end of Section 7.7 in
Figures 1 (for lpb) and 2 (for recall).

7.4 How does nullability observed during test execution compare to
existing @Nullable annotations ? [RQ1]

The data to answer this RQ are presented in Table 2. Column 2 (ex) contains the number of
@Nullable annotations found in the respective program (existing @Nullable annotations
are extracted and also represented as extracted issues to facilitate comparison), column 3
(obs) shows the number of @Nullable issues observed during the execution of instrumented
tests, corresponding to inferred @Nullable annotations. The number of observed issues
is surprisingly large, but often, multiple nullability issues are reported for the same field,
method parameter or method return. To take this into account, we also report the aggregated
issues resulting from deduplication as discussed in Section 3.5 in column 4 (agg), and the
aggregation ratio (agg/obs) in column 5. This demonstrates that deduplication is very
effective. I.e., nullability reported for a given field, method return or parameter is usually
supported by different tests, resulting in different contexts. We see this as a strength of
our methods as each context provides independent support for the nullability that is being
detected. Finally, we report recall and lower precision bound (r,lpb) in column 6. Both are
around 50% with two notable exceptions – the significantly lower recall for spring-core, and
the significantly lower precision for spring-context and error-prone.

These results suggests that inferring nullability issues dynamically by only observing tests
is not sufficient, and further refinement of those results by means of additional analyses is
needed.

7.5 Can sanitisation techniques improve the precision of @Nullable
annotation inference ? [RQ2]

The various sanitisation techniques discussed in Section 4 address potential false positives.
To evaluate their impact, we applied the sanitisers to the observed nullability issues for each
program in the data set, and report the number of aggregated inferred nullability issues after
santitisation. We also report the results of applying all sanitisers. The absolute numbers are
reported in Table 3, the recall / precision metrics are reported in Table 4.
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Table 2 RQ1 – existing (ex) vs observed (obs) issues, also reported are the aggregation of observed
issues (agg), aggregation ratios (agg/obs) and recall / lower precision bound (r,lpb).

program ex obs agg agg/obs r,lpb
s.-beans 1,290 321,851 1,320 0.0041 0.54,0.52
s.-context 1,435 6,872,413 5,945 0.0009 0.49,0.12
s.-core 1,510 175,725 1,171 0.0067 0.52,0.67
s.-orm 377 3,443 279 0.0810 0.47,0.63
s.-oxm 84 501 64 0.1277 0.54,0.70
s.-web 2,025 127,882 1,656 0.0129 0.45,0.55
s.-webmvc 1,437 192,800 2,392 0.0124 0.69,0.41
guava 3,993 2,708,816 4,923 0.0018 0.48,0.39
error-prone 507 1,095,752 1,736 0.0016 0.39,0.11

Table 3 RQ2a – observed issues after applying sanitisers (base – no sanitisation applied, D –
deprecation, M – main scope, N – negative tests, S – shading).

program base san(D) san(M) san(N) san(S) san(all)
s.-beans 1,320 1,298 763 1,247 1,320 687
s.-context 5,945 5,922 788 5,662 5,682 718
s.-core 1,171 1,140 999 1,024 1,124 780
s.-orm 279 279 192 270 279 184
s.-oxm 64 64 49 64 64 49
s.-web 1,656 1,606 1,076 1,544 1,656 941
s.-webmvc 2,392 2,374 1,076 2,327 2,392 1,048
guava 4,923 4,813 4,008 3,384 4,923 2,464
error-prone 1,736 1,736 1,337 1,736 1,736 1,337

Table 4 RQ2b – recall and lower precision bound (r,lpb) w.r.t. existing annotations after applying
sanitisers (D – deprecation, M – main scope, N – negative tests, S – shading).

program r,lpb(D) r,lpb(M) r,lpb(N) r,lpb(S) r,lpb(all)
s.-beans 0.52,0.52 0.54,0.91 0.52,0.53 0.54,0.52 0.50,0.95
s.-context 0.48,0.12 0.49,0.90 0.48,0.12 0.49,0.12 0.47,0.94
s.-core 0.50,0.67 0.52,0.78 0.49,0.72 0.52,0.70 0.47,0.92
s.-orm 0.47,0.63 0.47,0.92 0.45,0.63 0.47,0.63 0.45,0.93
s.-oxm 0.54,0.70 0.54,0.92 0.54,0.70 0.54,0.70 0.54,0.92
s.-web 0.43,0.54 0.45,0.85 0.44,0.57 0.45,0.55 0.42,0.90
s.-webmvc 0.68,0.41 0.69,0.92 0.68,0.42 0.69,0.41 0.67,0.92
guava 0.48,0.40 0.48,0.48 0.48,0.56 0.48,0.39 0.48,0.77
error-prone 0.39,0.11 0.39,0.15 0.39,0.11 0.39,0.11 0.39,0.15

The results suggest that most sanitisers have only a minor impact on precision and,
sometimes, those improvements come at the price of slight drops in recall. However, one
sanitiser stands out: by focusing on classes in the main scope, the precision can be improved
dramatically. This suggests that our instrumented tests pick up a lot of nullability in test
classes or other test-scoped classes supporting tests.

After applying all santisation techniques, we observe a very high lower precision bound of
0.9 or better for all spring programs, with some minor drops in recall. The lower precision
bound for guava is still fairly high, but surprisingly low for error-prone, to be discussed
below. Balancing precision and recall is a common issue when designing program analyses,
but we believe that the focus should be on precision as developers have little tolerance for
false alerts. For instance, it has been reported that “Google developers have a strong bias to
ignore static analysis, and any false positives or poor reporting give them a justification for
inaction.” [59].
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Table 5 Annotated vs annotatable program elements, in the last column the number of annotatable
elements of type java.lang.Void is reported.

program annotated annotatable annotation ratio Void usage
s.-beans 1,290 5,230 0.25 0
s.-context 1,435 8,849 0.16 0
s.-core 1,510 10,628 0.14 0
s.-orm 377 1,676 0.22 0
s.-oxm 84 467 0.18 0
s.-web 2,025 13,658 0.15 6
s.-webmvc 1,437 8,317 0.17 1
guava 3,964 25,472 0.16 2
error-prone 507 22,669 0.02 958

To investigate the low lower precision bound we observed for error-prone further, we
conducted an additional experiment where we calculated the annotation ratio. For this
purpose, we counted the existing @Nullable annotations, and the number of program
elements that can be annotated, i.e. fields, method parameters and return types for non-
synthetic methods and fields whose type is not a primitive type. The results are displayed in
Table 5. This show that the annotation ratio for error-prone is by on order of a magnitude
lower than for the other programs. Therefore, many of the potential false positives are
likely to be true positives, and the existing annotations are not suitable to act as a ground
truth here. To investigate the matter further, we looked for patterns amongst the potential
false positives detected. One pattern stands out – the frequent use of java.lang.Void as
method parameter and return type. The respective numbers are shown in Table 5, column
5. The use of Void in error-prone is unusually high. Void has an interesting semantics –
this class cannot be instantiated, i.e. it must be null, and is therefore always nullable by
definition. However, in error-prone, the respective method returns and parameters are not
annotated as @Nullable. Interestingly, this is in violation of one of error-prone’s own rule
VoidMissingNullable (‘The type Void is not annotated @Nullable‘”) 17. I.e., error-prone is
not dog-fooding [32] here. Error-prone has recently opened an issue to address this 18. We
also note that the nullaway checker treats Void as nullable 19, and the checkerframework
declares @Nullable as default for Void using a meta annotation 20.

We rerun the recall and precision calculation against a ground truth that interprets Void
as nullable, and for error-prone as expected the result change significantly to a recall of 0.72
and a lower precision bound of 0.79.

After performing sanitisation, we also investigated the context depth, i.e. the size of the
stack traces recorded. Without sanitisation this data would be distorted by issues discovered
in testing scope, leading to very low context depth. For each aggregated issue equivalence
class modulo the deduplication relationship (see Section 3.5), we computed the lowest context
depth for all issues in the respective equivalence class, and then counted aggregated issues
by this depth. The results are reported in Table 6.

17 https://errorprone.info/bugpattern/VoidMissingNullable
18 https://github.com/google/error-prone/issues/3792
19 https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/

NullAway.java, commit
https://github.com/uber/NullAway/commit/1548c69a27e9e3dd1cb185d04b2e870f3b11a771

20 https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.
html
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Table 6 Observed and sanitised issues by context depths.

program all 2 3 4 5 6 7 8 9 10 >10
s.-beans 687 167 109 64 58 46 35 24 22 39 123
s.-context 718 197 122 76 58 52 25 26 22 11 129
s.-core 780 266 165 105 63 37 32 23 21 10 58
s.-orm 184 23 28 20 18 14 24 2 3 3 49
s.-oxm 49 35 4 1 7 0 0 0 0 0 2
s.-web 941 305 258 149 77 52 10 8 2 9 71
s.-webmvc 1,048 329 195 212 117 50 32 12 9 10 82
guava 2,464 972 606 399 163 122 37 20 13 11 121
error-prone 1,337 8 23 56 4 26 4 8 6 2 1,200

Table 7 RQ3a – effect of propagation, aggregated issue counts and recall / lower precision bound
for santitised issues (s), santitised and then propagated issues (sp) and santitised, propagated and
re-sanitised issues (sps).

program s sp r,sps r,lpb(s) r,lpb(sp) r,lpb(sps)
s.-beans 687 693 693 0.50,0.95 0.51,0.95 0.51,0.95
s.-context 718 736 736 0.47,0.94 0.48,0.94 0.48,0.94
s.-core 780 791 788 0.47,0.92 0.48,0.91 0.48,0.92
s.-orm 184 184 184 0.45,0.93 0.45,0.93 0.45,0.93
s.-oxm 49 49 49 0.54,0.92 0.54,0.92 0.54,0.92
s.-web 941 949 949 0.42,0.90 0.42,0.90 0.42,0.90
s.-webmvc 1,048 1,059 1,059 0.67,0.92 0.68,0.92 0.68,0.92
guava 2,464 2,503 2,503 0.48,0.77 0.49,0.77 0.49,0.77
error-prone 1,337 1,361 1,361 0.39,0.15 0.43,0.16 0.43,0.16

The results suggest that there are some issues revealed by trivial tests (e.g., tests directly
invoking functions with null parameters). However, a significant number of issues is revealed
by more complex behaviour with deep calling contexts. We consider this to be a strengths of
the analysis being presented. Note that the context depths are not inflated by boiler-plate
code as the stack traces are cleaned during capture (see Section 3.3).

7.6 Can propagation improve the recall of @Nullable annotation
inference ? [RQ3]

Next, we applied propagation to the sanitised nullability issues (using all sanitisers). This
can discover additional nullability issues not observable during testing, and therefore improve
recall. The results are reported in Table 7. Those results suggests that propagation does not
significantly change the quality of the analysis. We observe minor improvements in recall for
only four programs in our dataset.

As already discussed in Section 7.5, the results for error-prone are heavily impacted by
the fact that Void is not annotated as nullable. If we consider it as implicitly annotated as
nullable, and extend the ground truth used to compare the inferred annotations accordingly,
the results change to a recall of 0.73 and a lower precision bound of 0.79. We therefore
observe a small increase of the recall for error-prone as the result of propagation.
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Table 8 RQ3b – number of propagated issues and recall / lower precision bound of propagated
issues by type (F – field, P – method parameters, R – method return types).

program prop(F) prop(P) prop(R) r,lpb(F) r,lpb(P) r,lpb(R)
s.-beans 205 279 209 0.81,1.00 0.41,0.90 0.47,0.97
s.-context 308 220 208 0.80,0.98 0.34,0.91 0.41,0.90
s.-core 125 422 241 0.80,1.00 0.43,0.86 0.46,0.97
s.-orm 111 38 35 0.90,1.00 0.21,0.76 0.26,0.89
s.-oxm 35 12 2 0.70,1.00 0.45,0.83 0.00,0.00
s.-web 308 438 203 0.72,0.94 0.36,0.87 0.33,0.91
s.-webmvc 373 319 367 0.95,1.00 0.52,0.87 0.63,0.88
guava 353 1,474 676 0.88,0.98 0.42,0.68 0.48,0.87
error-prone 77 700 584 0.80,0.10 0.47,0.11 0.40,0.23

7.7 Does the repeated application of sanitisation and propagation reach
a fixpoint ? [RQ4]

Propagation can introduce new annotations which would otherwise be sanitised, and the
process generally does not converge against a fix point. An example was already discussed
in Section 5.2. However, it is still a relevant question to study and quantify whether we
come close to a fix point, and whether it is common for programs not to reach such a fix
point. Therefore, we investigated whether this is a significant observable effect by applying
sanitisation to the propagated inferred annotations. This had almost no effect, with only
a very few issues in spring-core being re-sanitised, the respective data is reported in the
columns labelled sps (sanitised-propagated-sanitised) in Table 7.

Since propagation is the last step of our inference pipeline (capture-sanitise-propagate),
we also report a breakdown of nullability issues by program element annotated, as shown in
Table 8. What stands out is that for fields both recall and precision of inferring nullability is
better than average.

Figures 1 and 2 show the distribution of lpb and recall values across the dataset after
each step discussed.

7.8 False False Positives
Despite the generally high precision our approach achieves, it is not perfect. The question
arises whether this is caused by false positives. This relates to the fact that our baseline – the
existing @Nullable annotations, only (under-)approximates the ground truth. In particular,
it is unclear whether it is complete. If it was not, some of the false positives our analysis
produces would actually be true positives. Sometimes additional analyses can reveal patterns
where developers missed annotations that should have been added by some heuristics, an
example is the Void analysis for error-prone discussed in Section 7.5. If no such pattern can
be identified, there is another way to find out – add additional annotations inferred by our
tool to the respective project(s) via pull requests.

The number of annotations to be added is still relatively large, and given the importance
spring has in the developer ecosystem, it can be expected that project owners are generally
reluctant to accept pull requests from newcomers. Pull requests have also experienced some
amount of inflation recently (partially caused by bots creating pull requests), and therefore
processing is delayed.21

21 There were 164 open pull requests on 20 October 2022, https://github.com/spring-projects/
spring-framework/pulls?q=is%3Aopen
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Figure 1 Lower precision bound distribution across the dataset after each step: capture, applying
the various sanitisers (san-*), propagation, propagation followed by re-sanitisation (sps), and special
handling of Void in errorprone.

We have submitted two pull requests with different outcomes: PR1 22 has resulted in
a @Nullable annotation inferred being added 23. PR2 24 was rejected, but the developers
refined the test the inference is based on 25 .

While PR1 and PR2 have resulted in different outcomes, they both have revealed issues in
spring, and after rerunning the analysis after the action taking by developers in response to
the PRs, precision would increase in both cases. Adding an inferred annotation clearly shows
that some false positives are actually true positive. Refining the tests has a similar effect –
the semantics of tests is sometimes at odds with what is considered intended behaviour, and
our tools exposes this. After the test is fixed, the false positive disappears as the tool can no
longer infer it.

Our tools has also led to the re-annotation of some classes in guava 26.

22 https://github.com/spring-projects/spring-framework/pull/29150
23 https://github.com/spring-projects/spring-framework/commit/

35d379f9d3882a02f0368f928b2cecb975404334
24 https://github.com/spring-projects/spring-framework/pull/29242
25 https://github.com/spring-projects/spring-framework/commit/

c14cbd07f449d845269c99faa29241e7e2d0dfc1
26 https://github.com/google/guava/commit/2b98d3c1e96b750dc997c29f283084aeb72fb3cf,

https://github.com/google/guava/pull/6490

https://github.com/spring-projects/spring-framework/pull/29150
https://github.com/spring-projects/spring-framework/commit/35d379f9d3882a02f0368f928b2cecb975404334
https://github.com/spring-projects/spring-framework/commit/35d379f9d3882a02f0368f928b2cecb975404334
https://github.com/spring-projects/spring-framework/pull/29242
https://github.com/spring-projects/spring-framework/commit/c14cbd07f449d845269c99faa29241e7e2d0dfc1
https://github.com/spring-projects/spring-framework/commit/c14cbd07f449d845269c99faa29241e7e2d0dfc1
https://github.com/google/guava/commit/2b98d3c1e96b750dc997c29f283084aeb72fb3cf
https://github.com/google/guava/pull/6490
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Figure 2 Recall distribution across the dataset after each step: capture, applying the various
sanitisers (san-*), propagation, propagation followed by re-sanitisation (sps), and special handling of
Void in errorprone.

7.9 Comparison with Purely Static Inference
Houdini [25] infers annotations using the Esc/Java checker. The platform has been deprecated
and replaced by other tools, and there is no implementation available. Houdini still uses
“pseudo-annotation“ using special markup. This approach is also highly unscalable. The
authors report that “the running time on the 36,000-line Cobalt program was 62 hours”. For
comparison, the version of spring-core used in the evaluation experiments alone contains over
146,000 lines of Java code, and checkers rarely scale linearly. For comparison, our analysis
generally scales. The bottleneck of our method is the capture, and while this is expensive it
generally scales as discussed in Section 7.2.

We contacted the authors of several tools [21, 35, 34] and succeeded in using jasaddj-
nonnullinference [21] to analyse some programs, and compare results.27 The tool has been
maintained until 2015, and based on advice by the authors, we selected some older programs
buildable with Java 1.7. The builds had to be heavily customised in order to deal with broken
dependencies, details are described in the artefact. The comparison is not straightforward as
jasaddj infers @Nonnull annotations, whereas our method infers @Nullable.

The results are shown in Table 9. The annotatable column shows the total number of
fields, method return and parameters with nullable types. The @Nonnull column show the
number of annotations inferred by jasaddj, and the @Nullable columns shows the number
of annotations our approach infers. We also report the intersection between both sets in
the last column. Both approaches annotate less than half of all annotatable elements. It

27 https://bitbucket.org/jastadd/jastaddj-nonnullinference
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Table 9 Comparing our approach with JastAddJ NonNull inference.

program annotatable @Nonnull @Nullable Intersection
commons-lang-3.0 4,647 1,480 1,041 633
commons-cli-3.1 2,724 1,179 65 17
commons-io-2.5 2,241 1,012 326 184
commons-math-3.0 9,404 3,208 270 50

is not clear how to interpret the set complement for both tools. If we interpret everything
not @Nonnull annotated by jasaddj as @Nullable, then jasaddj has a low precision. The
intersection column suggests that there are a significant number of cases where the tools
produce inconsistent results. Given the low number of false positive we observe with our
tool, it is likely that jasaddj produces false positives here.

However, this is not really surprising given that tools like jasaddj have been designed to
analyse program (as opposed to libraries), where all method calls and field access is known.
Our method however is designed for an open world where API interactions from unknown
clients have to be considered, and test cases act as proxies for those clients.

8 Related Work

Much work exists on the problem of eliminating null dereferences, of which the vast majority
focuses on static checking. Nevertheless, a number of empirical studies exist which are
relevant here. The early work of Chalin et al. empirically studied the ratio of parameter,
return and field declarations which are intended to be non-null, concluding 2/3 are [13, 14].
Another early work was that of Li et al. who sampled hundreds of real-world bugs from two
large open source projects [40]. They found (amongst other things) null dereferences are the
most prevalent of memory-related bugs.

Kimura et al. argued that “it is generally felt that a method returning null is costly to
maintain” [37]. Their study of several open source projects examined whether statements
returning null or checks against null were modified more frequently than others and they
observed a difference for the former (but not the latter). Furthermore, they found occurrences
of developers replacing statements returning null with alternatives (e.g. Null Objects [29]
or exceptions) suggesting a desire to move away from using null like this. Osman et al. also
investigated null checks across a large number of open source programs [52]. They found the
most common reason developers insert null checks is for method returns and, furthermore,
that this is most often to signal errors. The follow-up work of Leuenberger et al. investigated
the nullability of method returns in Apache Lucene (a widely-used search library) [39]. For
each method call site (either internally within Lucene or externally across clients), they
identified whether the method return was checked against null before being dereferenced (i.e.
as this indicates whether the caller expected it could return null or not). They confirmed
that most methods are expected to return non-null values. However, they also found that
external clients were more likely to check a method against null, suggesting clients employ
defensive behaviour (e.g. when documentation is missing, etc).

8.1 Migration
Dietrich et al. harvested lightweight contracts, such as @NonNull and @Nullable annotations,
from real-world code bases [17]. Unfortunately, they found such annotations are rarely used
in practice and that, instead, throwing IllegalArgumentExceptions and (to a lesser extent)
use of Java assert remain predominant. This suggests a key problem faced by all tools for
checking non-null annotations (such as those above) is that of annotating existing code bases.
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Brotherston et al. aimed to simplify migration of existing code bases to use non-null
annotations [10]. Their goal is to enable incremental migration of existing code bases to use
non-null annotations. Here, developers begin by annotating the most important parts of
their system and then slowly widen the net until, eventually, everything is covered. Their
approach follows gradual typing [61] and divides programs into the checked and unchecked
portions, such that null dereferences cannot occur in the former. To achieve this, runtime
checks are added to unchecked code to prevent exceptions occurring within checked code (i.e.
by forcing exceptions at the boundary between them). Such an approach is complementary
to our work, and the two could be used together. For example, one might start by inferring
annotations using our technique and, subsequently, shift to a gradual typing approach to
manage parts where inferred annotations were insufficiently strong, or otherwise require
manual intervention. Estep et al. further apply ideas of gradual typing to static analysis,
using null-pointer analysis as an example [22]. They argue gradual null-pointer analysis hits a
“sweet spot” by mixing static and dynamic analysis as needed. A key question they consider is
“why it is better to fail at runtime when passing a null value as a non-null annotated argument,
instead of just relying on the upcoming null-pointer exception”. In essence, they provide
two answers: (1) for languages such as C, null dereferences lead to undefined behaviour
and, hence, catching them in a controlled fashion is critical; (2) for others, such as Java,
it is generally better practice to catch errors as early as possible. Neito et al. also take
inspiration from gradual typing by considering blame across language interop boundaries [50].
In particular, when null-safe languages (e.g. Scala or Kotlin) interact with unsafe languages
(e.g. Java), problems can arise.

Houdini statically infers a range of annotations (including non-null) for Java programs [25].
The tool works by generating a large number of candidate annotations and using an existing
(modular) checker to eliminate spurious ones. Ekman et al. also developed a tool for inferring
non-null annotations which could identify roughly 70% of dereferences as safe [21]. Hubert
et al. formalised an inference tool for non-null annotations based on pointer analysis [35, 34],
whilst Spoto developed a similar system arguing it is faster and more precise in practice [63].
XYLEM employs a backwards analysis to find null dereferences [49]. Whilst it doesn’t
(strictly speaking) infer annotations, it could be modified to do so. Bouaziz et al. also
propose a backwards analysis to infer necessary field conditions on objects (e.g. that a field
is non-null) [8]. This approach is demand driven in the sense that fields are marked non-null
only if this is necessary to prohibit a null dereference being reported elsewhere.

Finally, inference tools have been developed for pluggable type systems [26, 27, 15, 16].
However, such tools typically cannot account for null checks in conditionals making them
relatively imprecise in this context.

8.2 Static Checking
Many tools for statically checking non-null annotations have been proposed. Typically, they
differ from traditional type checkers by operating flow-sensitively to account for conditional
null checks. They also assume non-null annotations have already been added to programs.
NullAway provides a nice example here, since it was developed by Uber for static non-null
checking at scale [5]. The key requirement was that it could run on all builds, rather than just
at code review time (as for a previous tool they used). Their tool is flow-sensitive, but often
takes an “optimistic” view (i.e. is unsound). Their reasoning is that sound (i.e. pessimistic)
tools produce too many false positives. NullAway does not soundly handle initialisation
(see below); likewise, for external (unannotated) code it assumes all interactions are safe.
Despite this, they found no cases where unsoundness lead to actual bugs across a 30-day
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period of usage on a real-world code base. Indeed, this corroborates the earlier findings of
Ayewah and Pugh who argued many null dereferences reported by tools do not actually
materialise as bugs in practice [4]. As another example, Eradicate is part of Facebook Infer
[1, 19, 12] and, in many ways, is similar to NullAway.

A number of other tools have been developed which can be used for static @NonNull
checking, such as FindBugs [33], ESC/Java [24], JastAdd [21], JACK [45] and more [56, 44].
Almost all of these employ flow-sensitive analysis, and many are unsound in various ways
(e.g. support for initialisation). Indeed, the initialisation problem has proved so challenging
that a large number of works are devoted almost exclusively to its solution [23, 36, 57, 66,
64, 60, 42, 43, 38]. Roughly speaking, the issue is that fields of reference type are assigned
a default value of null and, thus, every @NonNull field initially holds null (and this is
observable [66]). In our approach we check nullability at the end of object construction. This
method is unsound only if super constructors allow access to fields defined in subclasses. We
think that this is a rare programming pattern, and note that our approach while aiming for
high recall, does not guarantee soundness anyway as it is based on a dynamic analysis.

Finally, so-called “pluggable type systems” [9] allow optional type systems to be layered
on existing languages, thus allowing them to evolve independently [26, 27, 15, 3, 16, 47].
The checkers framework provides a prominent example which heavily influenced JSR308
(included in Java 8) [54]. A key advantage of this tool over others is the ability to support
for flow-sensitive type systems (a.k.a. flow typing [55]). Indeed, without this feature checking
non-null types is largely impractical [3].

9 Conclusion

We have presented a hybrid analysis pipeline that can be used to capture and refine nullability
issues and mechanically inject inferred @Nullable annotations into Java programs. Our
experiments on some of the most widely used Java commodity libraries demonstrates that
this approach is suitable for real-world programs, and that the inferred annotations are
consistent with annotations manually added by engineers. In particular, our approach has
high precision, and there is evidence from pull requests we have initiated that this precision
is potentially higher as our analysis is able to discover missing annotations in the already
nullable-annotated programs we have used for evaluation.

Mechanising this process addresses a major issues in real-world projects: the lack of
null annotations. Such annotations are part of the program semantics, and generally
the annotation process requires deep understanding by project owners and contributers.
However, the workload of adding such annotations is significant, and the lack of annotations
compromises the utility of static checkers. We have argued that the semantics of which
types are nullable and not is already at least partially encoded in existing test cases, and our
pipeline exploits this idea of leveraging tests.

The tool has been open sourced and is available from https://github.com/
jensdietrich/null-annotation-inference.
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