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Abstract
We prove that it is ΠP

2-complete to verify whether the diameter of a given permutation group G = ⟨A⟩
is bounded by a unary encoded number k. This solves an open problem from a paper of Even and
Goldreich, where the problem was shown to be NP-hard. Verifying whether the diameter is exactly
k is complete for the class consisting of all intersections of a ΠP

2-language and a ΣP
2-language. A

similar result is shown for the length of a given permutation π, which is the minimal k such that π

can be written as a product of at most k generators from A. Even and Goldreich proved that it is
NP-complete to verify, whether the length of a given π is at most k (with k given in unary encoding).
We show that it is DP-complete to verify whether the length is exactly k. Finally, we deduce from
our result on the diameter that it is ΠP

2-complete to check whether a given finite automaton with
transitions labelled by permutations from Sn produces all permutations from Sn.
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1 Introduction

Algorithmic problems for finite groups, in particular permutation groups, are an active
research at the borderline between mathematics and theoretical computer science. Among
the many applications of permutation group algorithms in computer science, let us just
mention the work on the graph isomorphism problem that culminated with Babai’s quasi-
polynomial time algorithm [2]. For a comprehensive introduction into the area permutation
group algorithms, see Serres’ textbook [23]. In this paper we are concerned with algorithmic
problems related to the diameter of finite permutation groups. We start with a few basic
definitions.

Let G be a finite group. For a subset A ⊆ G we denote with ⟨A⟩ the subgroup of G

generated by the elements from A (i.e., the closure of A under the group multiplication). If
⟨A⟩ = G then A is called a generating set of G. For k ≥ 0 we write A≤k for the set of all
products a1a2 · · · al ∈ G with l ≤ k and a1, . . . , al ∈ A. For an element g ∈ ⟨A⟩ we denote
with |g|A (the A-length of g) the smallest integer k such that g ∈ A≤k. The diameter d(G, A)
of G with respect to the generating A is the smallest number d such that ⟨A⟩ = A≤d. Note
that such a d exists since G is finite. There is a quite extensive literature on upper and
lower bounds on the diameter in various finite groups; see e.g. [3, 4, 5, 6, 7, 8, 9, 13, 17, 19].
Let us mention in this context a famous (and still open) conjecture of Babai and Seress [8]
stating that for every finite non-abelian simple group G and every generating set A, d(G, A)
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is bounded by O((log |G|)c) for some universal constant c. This would imply in particular
that the diameters of An and Sn (with respect to any generating sets) are bounded by a
polynomial in n. The currently best known upper bound is exp(O(log4 n log log n)) [13].

Many problems about mechanical puzzles reduce to questions about the diameter of finite
groups. As an example let us mention Rubik’s cube. For a long time it was open how many
moves in Rubik’s cube are needed to transform an arbitrary initial configuration into the
target configuration. This number is simply the diameter of the so-called Rubik’s cube group.
The precise value of this diameter was open for a long time. In 2013 Rokicki et al. proved
that is 20 [22].

1.1 Computing diameter and length
In the first part of the paper (Sections 3 and 4) we investigate the complexity of certain
decision variants of the following computational problems:

(i) computing the length of a given element from a permutation group and
(ii) computing the diameter of a permutation group.

Let us define the problems that we will investigate more precisely. With Sn we denote the
group of all permutations on [1, n] = {1, . . . , n}. In the following problems, a permutation
π ∈ Sn is given by the list π(1), π(2), . . . , π(n). The size n of the domain (also called the
degree of the permutations) is part of the input. For A ⊆ Sn we write d(A) for d(⟨A⟩, A).
We then define the following computational problems:

▶ Problem (unary length).
Input: a set of permutations A ⊆ Sn, an element π ∈ ⟨A⟩, and a unary encoded number k.1
Question: Is |π|A ≤ k?

▶ Problem (unary diameter).
Input: a set of permutations A ⊆ Sn and a unary encoded number k.
Question: Is d(A) ≤ k?

The problems binary length and binary diameter are defined in the same way, except
that the input number k is given in binary encoding.

Goldreich and Even [11] were the first who obtained results on the complexity of these
problems. They proved that unary length is NP-complete and unary diameter is
NP-hard2 but the exact complexity of unary diameter remained open. A parameterized
variant of unary length (with k as the parameter) is studied under the name permutation
group factorization in [10] and shown to be W[1]-hard and in W[P]. The binary setting
was first studied by Jerrum [15]. He proved that binary length is PSPACE-complete.

We also study exact versions of the above problems:

▶ Problem (unary exact length).
Input: a set of permutations A ⊆ Sn, a permutation π ∈ ⟨A⟩, and a unary encoded number k.
Question: Is |π|A = k?

1 It is well-known that there is a polynomial time algorithm that checks whether π ∈ ⟨A⟩ holds [12].
2 The problem unary length is called mgs for “minimum generator sequence” in [11], whereas unary

diameter is called mbgs for “minimum upper bound on generator sequences”. We believe that unary
length and unary diameter are more suggestive. Another point is that Even and Goldreich do not
specify the encoding of integers in their paper, but from the NP-completeness result for unary length,
it can deduced that they have the unary encoding of integers in mind.
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▶ Problem (unary exact diameter).
Input: a set of permutations A ⊆ Sn and a unary encoded number k.
Question: Is d(A) = k?

Again, there are corresponding problems binary exact length and binary exact dia-
meter, where the input number k is given in binary notation.

The first main result of this paper solves the open problem left in [11]: unary diameter
is ΠP

2 -complete, where ΠP
2 is the second universal level of the polynomial time hierarchy.

This result also holds for the restriction, where all permutations in the set A ⊆ Sn pairwise
commute and have order two (and hence ⟨A⟩ is an abelian group of exponent two). Moreover,
we also show that binary diameter with a set A of pairwise commuting permutations is
ΠP

2 -complete.
The complexity of binary diameter for general permutation groups remains open.

The problem is easily seen to be in PSPACE. The above mentioned result of Jerrum
(PSPACE-completeness of binary length for a binary encoded number k) seems to have
no implications for the complexity of binary diameter. Nevertheless, we conjecture that
binary diameter is PSPACE-complete.

We then proceed to show that unary exact diameter is complete for the complexity
class DP2, which is the class of all intersections of a ΠP

2 -language and a ΣP
2 -language. Hardness

for DP2 already holds for the restriction of unary exact diameter to abelian permutation
groups of exponent two. To get DP2-hardness, we use the fact that our ΠP

2 -hardness proof
of unary diameter already holds for inputs A ⊆ Sn and k ∈ N with the promise that the
diameter of ⟨A⟩ is either k or k + 1. Using similar techniques we can also show that unary
exact length is DP-complete, where DP is the class of all intersections of an NP-language
and a coNP-language.

1.2 Equality and universality for finite automata over permutation
groups

In the second part of the paper (Section 5), we consider problems related to finite automata
over permutation groups. The setting is as follows: Consider a nondeterministic finite
automaton (NFA) A over a finite alphabet Σ of input letters and a mapping h : Σ → Sn to a
symmetric group. The mapping h extends to a morphism h : Σ∗ → Sn from the free monoid
Σ∗ to the group Sn (we use the same letter h for this extension). We may then ask whether
a given permutation π belongs to h(L(A)). This is the rational subset membership problem
for permutation groups, where the input consists of the NFA A, the mapping h : Σ → Sn (n
is also part of the input) and the permutation π. It is shown in [16, 18] that the rational
subset membership problem for permutation groups is NP-complete.3

To simplify notation, we omit the mapping h : Σ∗ → Sn in the following, and replace in
the NFA A every transition label a ∈ Σ by the corresponding permutation h(a) ∈ Sn. Thus,
we consider NFAs, where the transitions are labelled with elements of a symmetric group
Sn. The set L(A) accepted by A is then directly interpreted as a subset of Sn. Clearly,
every subset of Sn is of the form L(A) for an NFA A over Sn, but in general the number of

3 In [18] stronger results are shown: (i) NP-hardness already holds for membership in sets π∗σ∗τ∗, where
π, σ, τ are input permutations, and (ii) membership in NP holds for black-box groups and a restricted
class of context-free languages (where terminal symbols are again replaced by permutations). The
general membership problem for context-free sets of permutations is PSPACE-complete [18].

ICALP 2023
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transitions of A must be exponential in n (this follows from a simple counting argument).
Note that for a finite set A ⊆ Sn it is straightforward to come up with an automaton A over
Sn with a single state and |A| many transitions such that L(A) = ⟨A⟩.

In Section 5, we consider the rational equality problem for permutation groups, rational
equality for short:

▶ Problem (rational equality).
Input: two NFAs A and B over Sn (n is as usual part of the input).
Question: Does L(A) = L(B) hold?

As before, we also consider the abelian variant of this problem, where all permutations
labelling the transitions of A and B pairwise commute. Moreover, we consider the following
restriction of rational equality.

▶ Problem (rational universality).
Input: an NFA A over Sn.
Question: Does L(A) = Sn hold?

Note that for rational universality, the restriction where the permutations appearing in
A pairwise commute is not interesting, since Sn is not abelian for n ≥ 3.

We show that rational equality and rational universality are both ΠP
2 -complete

and that ΠP
2 -hardness for rational equality already holds for the abelian case. For the

lower bounds we use reductions from unary diameter.
Let us finally remark that our upper bound proofs do not use any specific properties of

permutation groups. In particular, all upper bounds shown in this paper also hold for the
black-box-group setting, where elements of a black-box group G are encoded by bit strings
and there are oracles for (i) multiplying two elements of G, (ii) inverting an element of G,
and (iii) checking whether two bit strings represent the same element of G (see [23] for more
details on black-box groups).

2 Preliminaries

2.1 Background from complexity theory
We assume that the reader has some basic background from complexity theory, see e.g. [1]
for more information. The levels ΣP

k and ΠP
k of the polynomial time hierarchy [24] are defined

as follows:
ΣP

0 = ΠP
0 = P

ΣP
k+1 is the set of all languages L such that there exists a language K ∈ ΠP

k and a
polynomial p with L = {x | ∃y ∈ {0, 1}p(|x|) : x#y ∈ K} (here # is a separator symbol).
ΠP

k+1 is the set of all languages L such that there exists a language K ∈ ΣP
k and a

polynomial p with L = {x | ∀y ∈ {0, 1}p(|x|) : x#y ∈ K}.
In particular, we have ΣP

1 = NP and ΠP
1 = coNP. We will make use of the computational

problem ∀∃sat, where the input is a ∀∃-formula

Ψ = ∀x1 · · · ∀xn∃y1 · · · ∃ymF (x1, . . . , xn, y1, . . . , ym), (1)

where F is a boolean formula in conjunctive normal form built from the boolean variables
x1, . . . , xn, y1, . . . , ym. The question is whether Ψ holds. This problem is ΠP

2 -complete [24].
The complexity class DPk is defined as

DPk = {L1 ∩ L2 | L1 ∈ ΣP
k and L2 ∈ ΠP

k}.
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The class DP1 = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ coNP} is usually denoted by DP. It was
defined in [21]. The only mentioning of the classes DPk for k ≥ 2 we are aware of is the stack
exchange post [20].

2.2 Some notations for permutation groups
Recall that a permutation group is a subgroup of the symmetric group Sn for some n, where
Sn is the group of all permutations on [1, n] = {1, . . . , n}. We will use standard notations for
permutation groups; see e.g., [23]. Permutations will be often written by their decomposition
into disjoint cycles, called the disjoint cycle decomposition. A cycle of length two is a
transposition. A product of permutations will be evaluated from left to right. For a ∈ [1, n]
and π ∈ Sn we will also write aπ for π(a). This fits nicely to the left-to-right evaluation order:
aπτ = (aπ)τ . For a permutation π we denote by ord(π) the order of π, i.e., the smallest k ≥ 1
such that πk is the identity permutation.

Most of the hardness results in Sections 3 and 4 will be shown for the group Zn
2 (the

n-fold direct product of the group Z2) for an n ≥ 0. Clearly, this is an abelian group of
exponent two (i.e., every element has order two). The group Zn

2 is isomorphic to the subgroup
of S2n generated by all transpositions (2i − 1, 2i) for i ∈ [1, n]. For a finite set V of size n,
we will identify Zn

2 with the group ZV
2 of all mappings f : V → Z2 with the group operation

to be pointwise addition modulo 2. We write this abelian group additively. For a function
f : V → Z2 = {0, 1} we define its support as supp(f) = {v ∈ V | f(v) = 1}. For a subset
U ⊆ V we denote by [U ] ∈ ZV

2 the unique group element with supp([U ]) = U .

3 Complexity of diameter for permutation groups

We come to the first main result of the paper: unary diameter is ΠP
2 -hard. In the following

theorem, the additional statement that the diameter d(A) is either k or k + 1 will be needed
later when we consider unary exact diameter.

▶ Theorem 3.1. There is a logspace reduction ϕ from ∀∃sat to unary diameter such that
for every ∀∃-formula Ψ with ϕ(Ψ) = (A, k) we have: A ⊆ Zn

2 for some n, ⟨A⟩ = Zn
2 and

d(A) ∈ {k, k + 1}.

Proof. Let us fix a ∀∃-formula Ψ as in (1). We can write F as F =
∧

c∈C c, where C is
a set of clauses (disjunctions of variables and negated variables). We start with several
transformations that ensure some additional properties for Ψ.

Step 1. In order to bound the diameter of the group from above by k + 1 we replace Ψ by
the formula

∀x1 · · · ∀xn∃y1 · · · ∃ym∃y∗ G(x1, . . . , xn, y1, . . . , ym, y∗),

where y∗ is a new variable and

G = ¬y∗ ∧
∧

c∈C

(y∗ ∨ c).

By this it is ensured that for every truth assignment of the universally quantified variables
x1, . . . , xn, there is a truth assignment of the existentially quantified variables y1, . . . , ym, y∗

such that exactly one clause in G is unsatisfied (simply set y∗ to the true value 1).

ICALP 2023
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Step 2. Next, it is necessary to ensure that every variable appears in at most d clauses
for a fixed constant d. This can be ensured similarly to [25] for 3sat: for every variable
z ∈ {x1, . . . , xn, y1, . . . , ym, y∗} that appears in l ≥ 4 clauses in G we introduce new variables
z1, . . . , zl and replace the i-th occurrence of z by zi. Then we add the clauses

(¬z1 ∨ z2), (¬z2 ∨ z3), . . . , (¬zl−1 ∨ zl), (¬zl ∨ z1) (2)

which enforce that z1, . . . , zl must get the same truth value. If z ∈ {x1, . . . , xn} then we
universally quantify z1 and existentially quantify z2, . . . , zl. If z ∈ {y1, . . . , ym, y∗} then all
new variables zi get existentially quantified. In the resulting formula, every variable occurs
in at most 3 clauses.

Step 3. Finally, for our later arguments, it is necessary to add for every universally quantified
variable x the trivial clause

cx = (x ∨ ¬x).

Of course, this trivial clause does not change the truth value of the formula. Now every
variable occurs in at most 4 clauses. We still have the property that every truth assignment for
the universally quantified variables can be extended by a truth assignment for the existentially
quantified variables such that exactly one clause becomes unsatisfied. To see this, consider
an arbitrary truth assignment for the universally quantified variables. The clauses cx that
we added in Step 3 are always satisfied. We now assign the truth value 1 to all variables
y∗

i that replaced in Step 2 the variable y∗ from Step 1. This ensures that all clauses that
were derived from clauses y∗ ∨ c with c ∈ C in Step 2 are satisfied. All remaining clauses
of the form (2) (with z ̸= y∗) can be easily satisfied. If z1 is universally quantified (so its
truth value is already fixed) then all z2, . . . , zl are existentially quantified and we assign to
these variables the truth value of z1. Otherwise z1, . . . , zl are all existentially quantified and
we can assign the truth value 1 to all of them (the truth value 0 would also work). At this
point, only the single clause derived from ¬y∗ in Step 2 is not satisfied. Finally, note that
each of the three steps preserves the truth value of the ∀∃-formula.

This concludes the preprocessing of the ∀∃-formula Ψ. To simplify notation, we denote
the resulting formula again with

Ψ = ∀x1 · · · ∀xn∃y1 · · · ∃ymF (x1, . . . , xn, y1, . . . , ym). (3)

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. For a variable z ∈ X ∪ Y we denote with z̃ one
of the literals z or ¬z. Moreover we denote by C the set of clauses of F . A clause is viewed
as a set of literals. For a literal z̃ let C(z̃) be the set of all clauses containing z̃. Note that
every set C(z̃) has size at most 4. Let

V = X ∪ Y ∪ C

(we assume that X, Y, C are pairwise disjoint). We will work in the group ZV
2 introduced in

Section 2.2 and use the notation introduced there.
The logspace reduction ϕ from ∀∃sat to unary diameter is defined by ϕ(Ψ) = (A, k)

with k = n + m and

A =
⋃

x∈X

Ax ∪
⋃

y∈Y

Ay,

where for all universally quantified variables x ∈ X,

Ax = {[{x} ∪ U ] | U ⊆ C(x)} ∪ {[U ] | U ⊆ C(¬x), U ̸= ∅}
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and for all existentially quantified variables y ∈ Y ,

Ay = {[U ] | U ⊆ {y} ∪ C(y), U ̸= ∅} ∪ {[U ] | U ⊆ {y} ∪ C(¬y), U ̸= ∅}.

Since every set C(z̃) has size at most 4, we can construct the instance (A, k) in logspace.

▷ Claim 3.2. ⟨A⟩ = ZV
2 .

Proof of Claim 3.2. It suffices to show that every [{v}] for v ∈ V belongs to ⟨A⟩. From the
definition of A we immediately get [{x}] ∈ Ax for all x ∈ X and [{y}] ∈ Ay for all y ∈ Y .
Consider now a clause c ∈ C and fix a literal z̃ ∈ c. We have c ∈ C(z̃). If z ∈ Y then
[{c}] ∈ Az. If z ∈ X and z̃ = ¬z, then again [{c}] ∈ Az. Finally, if z ∈ X and z̃ = z then
[{z}], [{z, c}] ∈ Az. Hence, [{c}] = [{z}] + [{z, c}] ∈ ⟨A⟩. ◁

▷ Claim 3.3. Let fX : X → {0, 1} and f : V → {0, 1} be elements of ZV
2 with

f(x) = fX(x)

for all x ∈ X and

f(v) = 1

for all v ∈ Y ∪ C. If f ∈ A≤n+m, then there is a function fY : Y → {0, 1} such that fX + fY

is a satisfying truth assignment for F .

Proof of Claim 3.3. Suppose that f ∈ A≤n+m and hence

f = f1 + · · · + fs (4)

for an s ≤ n + m with fi ∈ A. Then the right-hand side of (4) must contain for every x ∈ X

a generator from Ax since f(cx) = 1 (recall that we added the clause cx = {x, ¬x} since x

is universally quantified) and only generators from Ax set the cx-value to 1. Moreover, the
right-hand side of (4) must contain for every y ∈ Y a generator from Ay since f(y) = 1.
Thus, the right-hand side of (4) must contain at least |X| + |Y | = n + m generators. We get
s = n + m and obtain

f =
∑
x∈X

gx +
∑
y∈Y

gy (5)

with gx ∈ Ax and gy ∈ Ay. For z ∈ X ∪ Y let Cz = supp(gz) ∩ C be the set of clauses that
appear in gz in the sum (5). For all y ∈ Y we must have gy = [{y} ∪ Cy] since f(y) = 1.

We define the function fY : Y → {0, 1} by

fY (y) =
{

1 if Cy ⊆ C(y),
0 otherwise.

Note that if fY (y) = 0 then we must have Cy ⊆ C(¬y).
We claim that fX + fY satisfies F . Consider a clause c ∈ C. Since f(c) = 1 there must

exist z ∈ X ∪ Y such that c ∈ Cz. If z = y ∈ Y , then one of the following two cases holds:
fY (y) = 1, gy = [{y} ∪ Cy], and c ∈ Cy ⊆ C(y), i.e., y ∈ c,
fY (y) = 0, gy = [{y} ∪ Cy], and c ∈ Cy ⊆ C(¬y), i.e., ¬y ∈ c.

ICALP 2023
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In both cases fY set a literal from c (either y or ¬y) to 1. Now, assume that z = x ∈ X.
Then one of the following two cases holds:

f(x) = fX(x) = 1, gx = [{x} ∪ Cx] and c ∈ Cx ⊆ C(x), i.e., x ∈ c,
f(x) = fX(x) = 0, gx = [Cx] and c ∈ Cx ⊆ C(¬x), i.e., ¬x ∈ c.

Again, in both cases fX sets a literal from c (either x or ¬x) to 1. ◁

Our proof of Claim 3.3 also shows that d(A) ≤ k implies d(A) = k: if d(A) ≤ k then for any
of the functions f from Claim 3.3 we have |f |A = k.

From Claims 3.2 and 3.3 it follows that if ⟨A⟩ = A≤n+m then for every fX : X → {0, 1}
there must exist fY : Y → {0, 1} such that fX + fY satisfies F . Hence, the formula Ψ from
(3) holds.

Now suppose that Ψ holds. Let f ∈ ZV
2 . We want to show f ∈ A≤n+m. First observe

that there are unique functions fX : X → {0, 1} and g : Y ∪C → {0, 1} such that f = fX + g.
Since Ψ holds, there is a partial truth assignment fY : Y → {0, 1} such that fX + fY satisfies
F . We define for every variable z ∈ X ∪ Y the set U(z) ⊆ V as follows:

if z = x ∈ X and fX(x) = 1 then U(x) = {x} ∪ C(x),
if z = x ∈ X and fX(x) = 0 then U(x) = C(¬x),
if z = y ∈ Y and fY (y) = 1 then U(y) = {y} ∪ C(y),
if z = y ∈ Y and fY (y) = 0 then U(y) = {y} ∪ C(¬y).

Note that [U(z)] ∈ Az for every variable z ∈ X ∪ Y , except for the case that z = x ∈ X,
fX(x) = 0 and C(¬x) = ∅ (then, U(z) = ∅). Define

U =
⋃

z∈X∪Y

U(z).

Since all clauses evaluate to 1 under fX + fY , we have C ∪ Y ⊆ U . Moreover, x ∈ U if and
only if x ∈ supp(f) for all x ∈ X. We therefore have

supp(f) ⊆ U.

We can choose pairwise disjoint (possibly empty) subsets U ′(z) ⊆ U(z) such that

U =
⋃

z∈X∪Y

U ′(z)

is a partition of U . It follows that

supp(f) =
⋃

z∈X∪Y

(U ′(z) ∩ supp(f))

is a partition of supp(f). Let Z ⊆ X∪Y be the set of all z ∈ X∪Y such that U ′(z)∩supp(f) ̸=
∅. Then we have

f =
∑
z∈Z

[U ′(z) ∩ supp(f)]

and |Z| ≤ n + m. It remains to show that [U ′(z) ∩ supp(f)] is a generator from Az. This is
clear if z = y ∈ Y or (z = x ∈ X and U(x) = C(¬x)). In those case, for every non-empty
subset U ′ ⊆ U(z), [U ′] belongs to Az. Finally, if z = x ∈ X and U(x) = {x} ∪ C(x) then
also x ∈ U ′(x) must hold because x ∈ U(x) ⊆ U =

⋃
z∈X∪Y U ′(z) and x /∈ U ′(z) for z ̸= x.

Moreover, U(x) = {x} ∪ C(x) implies f(x) = fX(x) = 1, i.e., x ∈ supp(f). Therefore,
[U ′(x) ∩ supp(f)] is of the form [{x} ∪ C ′] for some C ′ ⊆ C(x), which belongs to Ax. We
obtain f ∈ A≤n+m, which shows that ϕ is indeed a logspace reduction from ∀∃sat to unary
diameter.
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▷ Claim 3.4. d(A) ≤ k + 1.

Proof of Claim 3.4. Our preprocessing ensured that every partial truth assignment of the
universally quantified variables can be extended by a truth assignment for the existentially
quantified variables such that exactly one clause c ∈ C is unsatisfied. Let f ∈ ZV

2 . Then
there are functions fX : X → {0, 1} and g : Y ∪ C → {0, 1} such that f = fX + g. Moreover,
there is a partial truth assignment fY : Y → {0, 1} such that fX + fY satisfies all clauses
from C \ {c}. As above we define for every variable z ∈ X ∪ Y the set U(z) ⊆ V as follows:

if z = x ∈ X and fX(x) = 1 then U(x) = {x} ∪ C(x),
if z = x ∈ X and fX(x) = 0 then U(x) = C(¬x),
if z = y ∈ Y and fY (y) = 1 then U(y) = {y} ∪ C(y),
if z = y ∈ Y and fY (y) = 0 then U(y) = {y} ∪ C(¬y).

Note that c = {¬y} for an existentially quantified variable y ∈ Y (see Step 1 in our
preprocessing). Hence, we have c ∈ C(¬y) and [{c}] ∈ Ay is a generator. We define
U(c) = {c} and

U =
⋃

z∈X∪Y ∪{c}

U(z).

The rest of the argument is the same as above: Since all clauses except for c evaluate to 1
under f = fX + fY , we have C ∪ Y ⊆ U . Moreover, x ∈ U if and only if x ∈ supp(f) for all
x ∈ X. We therefore have

supp(f) ⊆ U.

Then there are pairwise disjoint subsets U ′(z) ⊆ U(z) such that

U =
⋃

z∈X∪Y ∪{c}

U ′(z) and supp(f) =
⋃

z∈X∪Y ∪{c}

(U ′(z) ∩ supp(f))

are partitions of U and supp(f), respectively. Let Z ⊆ X ∪ Y ∪ {c} be the set of all
z ∈ X ∪ Y ∪ {c} such that U ′(z) ∩ supp(f) ̸= ∅. Then we have

f =
∑
z∈Z

[U ′(z) ∩ supp(f)]

and |Z| ≤ n + m + 1. As above it can easily be shown that [U ′(z) ∩ supp(f)] is a generator.
Hence f ∈ A≤n+m+1. ◁

It now follows that d(A) is either k or k + 1: if d(A) ≤ k then d(A) = k (see the remark after
the proof of Claim 3.3), and if d(A) > k then d(A) = k + 1 by Claim 3.4. ◀

▶ Corollary 3.5. The following problems are all ΠP
2 -complete:

(i) unary diameter (without a restriction on the permutation group ⟨A⟩),
(ii) unary diameter restricted to abelian permutation groups ⟨A⟩ of exponent two,
(iii) binary diameter restricted to abelian permutation groups ⟨A⟩.

Proof. In all cases the lower bound follows from Theorem 3.1. It remains to show the upper
bound in cases (i) and (iii). For (i), this is straightforward: Let G = ⟨A⟩ where A ⊆ Sn is a
set of permutations and take a unary encoded k > 0. First of all we universally guess an
element π ∈ G. More precisely, we guess an arbitrary permutation π ∈ Sn and then check in
polynomial time (using [12]) whether π ∈ ⟨A⟩. If this does not hold, we immediately accept,
otherwise we proceed with existentially guessing a sequence a1a2 · · · al with ai ∈ A and l ≤ k.
We accept if and only if a1a2 · · · al = π.
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The upper bound in case (iii) can be shown in a similar way. We follow the procedure for
unary diameter up to the point where we guess a sequence a1a2 · · · al with ai ∈ A and
l ≤ k. Since k is given in binary encoding this is not feasible. Instead, we guess for each
a ∈ A a binary encoded number ka ≥ 0 whose bit length is bounded by the bit length of k.
We accept if and only if the following two conditions hold:∑

a∈A ka ≤ k,∏
a∈A aka = π.

Both conditions can be checked in polynomial time. For the second point note that aka can
be computed in time O(n log ka) by iterated squaring. ◀

▶ Theorem 3.6. unary exact diameter is DP2-complete for general permutation groups
as well as abelian permutation groups of exponent two.

Proof. Let A ⊆ Sn be a set of permutations and let k be a unary encoded number. Then
we have d(A) = k if and only if d(A) ≤ k and d(A) > k − 1. This is the intersection of a
ΠP

2 -property and a ΣP
2 -property. Hence, unary exact diameter belongs to DP2.

Now let L = L1 ∩L2 be a language from DP2 with L1 ∈ ΣP
2 and L2 ∈ ΠP

2 . By Theorem 3.1
we can compute from x two pairs (A1, k1) and (A2, k2) (with Ai ⊆ Sni

and ki a unary encoded
natural number) such that

x ∈ L1 if and only if d(A1) = k1 + 1 if and only if d(A1) ̸= k1, and
x ∈ L2 if and only if d(A2) = k2 if and only if d(A2) ̸= k2 + 1.

Hence, x ∈ L if and only if d(A1) = k1 + 1 and d(A2) = k2.
Consider the subgroup of Sn2 × Sn2 ≤ S2n2 generated by

B := (A2 × {1}) ∪ ({1} × A2).

Here, 1 denotes the identity permutation. Since we have either d(A2) = k2 or d(A2) = k2 + 1
we obtain either d(B) = 2k2 or d(B) = 2k2 + 2.

Finally, consider the subgroup of Sn1 × Sn2 × Sn2 ≤ Sn1+2n2 generated by

A := (A1 × {(1, 1)}) ∪ ({1} × B).

There are four cases for the diameter of the group generated by A:

d(A) =


k1 + 2k2 if d(A1) = k1 and d(A2) = k2

k1 + 2k2 + 1 if d(A1) = k1 + 1 and d(A2) = k2

k1 + 2k2 + 2 if d(A1) = k1 and d(A2) = k2 + 1
k1 + 2k2 + 3 if d(A1) = k1 + 1 and d(A2) = k2 + 1.

Thus, we have x ∈ L if and only if d(A) = k1 + 2k2 + 1, which shows the DP2-hardness of
unary exact diameter. ◀

4 Complexity of computing the length in permutation groups

Recall that Even and Goldreich [11] proved that unary length is NP-complete. We present
below an alternative proof for the NP-hardness, where the reduction has additional properties
(similar to Theorem 3.1) that will be needed in order to settle the complexity of unary
exact length. Our techniques are similar to those from Section 3.

▶ Theorem 4.1. There is a logspace reduction ϕ from sat to unary length such that for
every CNF formula F with ϕ(Ψ) = (A, π, k) we have: A ⊆ Zn

2 for some n, π ∈ ⟨A⟩ = Zn
2

and |π|A ∈ {k, k + 1}.
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Proof. Let F =
∧

c∈C c be a conjunction of clauses c ∈ C with boolean variables from
the set X. We preprocess F as in the proof of Theorem 3.1. First, we replace F by
F ′ = ¬y∗ ∧

∧
c∈C(y∗ ∨ c), where y∗ /∈ X is a new variable ensuring that there is a truth

assignment such that exactly one clause in F ′ is unsatisfied. Moreover, F is satisfiable if and
only if F ′ is satisfiable.

Then we apply the construction of [25] that we also used in the proof of Theorem 3.1 in
order to ensure that every variable occurs in at most three clauses. We replace the occurrences
of every variable z ∈ X ∪ {y∗} that occurs in l ≥ 4 clauses (negated or unnegated) by new
variables z1, . . . , zl and add the clauses zl ∨ ¬z1 and zi ∨ ¬zi+1 for i ∈ [1, l − 1]. Let F ′′ be
the resulting CNF formula. It still has the property that there is a truth assignment such
that exactly one clause in F ′′ is unsatisfied. One can take the truth assignment that sets all
variables of F ′′ to 1. Moreover, F is satisfiable if and only if F ′′ is satisfiable.

From this consideration, it follows that we can assume that our input CNF formula F

has the following two properties:
Every variable occurs in at most three clauses.
There is a truth assignment for F such that exactly one clause of F is not satisfied.

Let X be the variables that occur in F and let C be the set of clauses in F . Moreover, let
V = X ∪ C. With L = X ∪ {¬x | x ∈ X} we denote the set of all literals.

We reuse several notations that we have introduced in the proof of Theorem 3.1. For a
literal x̃ ∈ L we denote with C(x̃) ⊆ C the set of all clauses containing x̃. Note that we have
|C(x)| + |C(¬x)| ≤ 3. For the reduction we work with the group ZV

2 and use the notations
from Section 2.2. Now we define the set A of generators by

A =
⋃

c∈C

Ac ∪
⋃

x̃∈L

Ax̃,

where for x ∈ X and c ∈ C we take

Ax = {[{x} ∪ U ] | U ⊆ C(x)},

A¬x = {[{x} ∪ U ] | U ⊆ C(¬x)},

Ac = {[{c}]}.

Note that ⟨A⟩ = ZV
2 .

We define π = [V ] and k = |X|. This defines our logspace reduction ϕ : F 7→ (A, π, k).
To compute ϕ in logspace, it is important that all sets C(x̃) have constant size.

Now we show that |π|A ≤ k if and only if F is satisfiable. Suppose |π|A ≤ k. Since
X ⊆ supp(π), we need a generator from every Ax ∪ A¬x (x ∈ X) to produce π. This implies
|π|A = k and we can write

π =
∑
x∈X

πx

with πx ∈ Ax ∪ A¬x. Let πx = [{x} ∪ Ux] with Ux ⊆ C. We define a truth assignment by

σ(x) =
{

1 if πx ∈ Ax,

0 if πx ∈ A¬x \ Ax.

for all x ∈ X. From C ⊆ supp(π) it follows that for every clause c ∈ C there must exist a
variable x ∈ X such that c ∈ Ux. If πx ∈ Ax (i.e., σ(x) = 1) then c ∈ Ux ⊆ C(x), i.e., x

appears in the clause c. Hence, π satisfies c. Similarly, if πx ∈ A¬x (i.e., σ(x) = 0) then ¬x

appears in the clause c. Therefore, σ satisfies F .
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Now suppose that F is satisfiable and let σ be a satisfying truth assignment. Hence,
every clause is satisfied. Let X0 = {x ∈ X | σ(x) = 0} and X1 = {x ∈ X | σ(x) = 1}. Then
we have

supp(π) = V = X ∪ C =
⋃

x∈X0

{x} ∪ C(¬x) ∪
⋃

x∈X1

{x} ∪ C(x).

Then we can choose for every x ∈ X0 a subset Ux ⊆ C(¬x) and for every x ∈ X1 a subset
Ux ⊆ C(x) such that

supp(π) =
⋃

x∈X

{x} ∪ Ux

is a partition of supp(π). Hence, we have

π =
∑
x∈X

[{x} ∪ Ux].

Since [{x} ∪ Ux] ∈ Ax ∪ A¬x, we finally obtain |π|A = k. This show that ϕ is indeed a
logspace reduction from sat to unary length.

We have already noted that |π|A ≤ k implies |π|A = k. The converse implication is
trivially true. Therefore, we have |π|A ≤ k if and only if |π|A = k. It remains to show that
|π|A ∈ {k, k + 1}. For this it suffices to show |π|A ≤ k + 1.

We know that there is a truth assignment σ such that exactly one clause c ∈ C is
unsatisfied. As above we can choose generators πx ∈ Ax ∪ A¬x for all x ∈ X such that

supp(π) \ {c} =
⋃

x∈X

supp(πx)

is a partition of supp(π) \ {x}. From this we obtain

π = [{c}] +
∑
x∈X

πx

and hence |π|A ≤ k + 1, which concludes the proof. ◀

▶ Theorem 4.2. unary exact length is DP-complete for general permutation groups as
well as abelian permutation groups of exponent two.

Proof. Let A be a set of generators of a permutation group, k a unary encoded integer, and
π ∈ ⟨A⟩ a permutation. Then we have |π|A = k if and only if |π|A ≤ k and |π|A > k −1. This
is the conjunction of an NP-property and a coNP-property. Thus unary exact length is
the intersection of a language in NP with a language in coNP and therefore belongs to DP.

We show DP-hardness of unary exact length by a reduction from sat-unsat. The
input for the latter problem is a pair (F, G) of two CNF formulas and the question is whether
F is satisfiable and G is unsatisfiable. This problem is known to DP-complete, see [21].

Let (F, G) be an input for sat-unsat. By Theorem 4.1 we can compute from (F, G) in
logspace two triples (A1, π1, k1) and (A2, π2, k2) (with Ai ⊆ Sni , πi ∈ ⟨Ai⟩ and ki a unary
encoded natural number) such that

F is satisfiable if and only if |π1|A1 = k1 if and only if |π1|A1 ̸= k1 + 1 and
G is unsatisfiable if and only if |π2|A2 ̸= k2 if and only if |π2|A2 = k2 + 1.

Hence, (F, G) is a positive instance of sat-unsat if and only if |π1|A1 = k1 and |π2|A2 = k2+1.
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Consider the subgroup of Sn2 × Sn2 ≤ S2n2 with the generating set

B := (A2 × {1}) ∪ ({1} × A2).

Since we have |π2|A2 ∈ {k2, k2 + 1} we obtain |(π2, π2)|B ∈ {2k2, 2k2 + 2}.
Finally, consider the group ⟨A1⟩ × ⟨A2⟩ × ⟨A2⟩ ≤ Sn1+2n2 with the generating set

A := (A1 × {(1, 1)}) ∪ ({1} × B).

For the length |(π1, π2, π2)|A we obtain

|(π1, π2, π2)|A =


k1 + 2k2 if |π1|A1 = k1 and |π2|A2 = k2

k1 + 2k2 + 1 if |π1|A1 = k1 + 1 and |π2|A2 = k2

k1 + 2k2 + 2 if |π1|A1 = k1 and |π2|A2 = k2 + 1
k1 + 2k2 + 3 if |π1|A1 = k1 + 1 and |π2|A2 = k2 + 1.

Hence, (F, G) is a positive instance of sat-unsat if and only if |(π1, π2, π2)|A = k1 + 2k2 + 2,
which concludes the proof. ◀

Since binary length is PSPACE-complete [15], one might expect that also binary exact
length is PSPACE-complete. The following result confirms this.

▶ Theorem 4.3. binary exact length is PSPACE-complete.

Proof of Theorem 4.3. Since PSPACE is closed under complement, and |π|A = k if and only
if π ∈ A≤k and π /∈ A≤k−1, it follows that also binary exact length belongs to PSPACE.

For the lower bound let A ⊆ Sn be a set of permutations on [1, n], π ∈ ⟨A⟩ and k be a
binary encoded number. We construct from A, π, k in logspace a new instance B, τ, k such
that π ∈ A≤k if and only if |τ |B = k holds. This proves that binary exact length is
PSPACE-complete.

Clearly, Sn ≤ Sm for n ≤ m. In the following, we will identify a permutation π ∈ Sn

with a permutation from Sm by defining aπ = a for a ∈ [n + 1, m].
Let d be the number of bits of k. Then log2(k) < d ≤ log2(k)+1. Let p1 = 2, p2 = 3, . . . , pd

be the first d primes. Note that since d is polynomially bounded in the input length, the
primes pi are so too and therefore can be stored in logarithmic space. Let m =

∑d
i=1 pi and

let α1, . . . , αd be permutations with pairwise disjoint support on [n + 1, n + m] such that αi

is a cycle of length pi. Moreover let r1, . . . , rd ∈ [0, pi − 1] such that

k ≡ ri mod pi.

These numbers can be computed in logspace; see e.g. [14]. Moreover let α = α1 · · · αd,
β = αr1

1 · · · αrd

d and τ = πβ. We have

ord(α) =
d∏

i=1
pi ≥ 2d > 2log2(k) = k.

Finally, we define the set of permutations

B = {γα | γ ∈ A} ∪ {α} ⊆ Sn+m.

Since β = αk, i.e., τ = παk and ord(α) > k, we obtain π ∈ A≤k if and only if |τ |B = k,
which concludes the reduction. ◀
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5 Complexity of equality and universality for NFAs over permutation
groups

In this section we determine the complexity of rational equality and rational univer-
sality (defined in Section 1.2).

▶ Theorem 5.1. The following problems are ΠP
2 -complete for permutation groups:

(i) rational equality
(ii) rational equality restricted to the case where all permutations in the two input

NFAs A and B pairwise commute and have order two.
(iii) rational universality

Proof. For the upper bounds, we only have to consider rational equality. Membership
of rational equality in ΠP

2 follows from the fact that the rational subset membership
problem for permutation groups (see Section 1.2) is in NP. More precisely, the following
formula expresses the equality L(A0) = L(A1) for two NFAs A0 and A1 over Sn:

∀i ∈ {0, 1}∀π ∈ Sn : π ̸∈ L(Ai) ∨ π ∈ L(A1−i).

Since the rational subset membership problem for permutation groups is in NP, the above
formula is equivalent to a statement of the form

∀i ∈ {0, 1}∀π ∈ Sn∀u∃v : u is not a witness for π ∈ L(Ai) ∨ v is a witness for π ∈ L(A1−i).

Here u and v are bit strings of size polynomial in the input length.
The lower bound in (ii) is a direct consequence of Corollary 3.5, since for a finite set

A ⊆ Sn and a unary encoded number k both ⟨A⟩ and A≤k can be defined by logspace
computable NFAs.

It remains to show ΠP
2 -hardness of rational universality. For this we give a reduction

from unary diameter to rational universality. Before we come to the actual reduction,
let us explain an auxiliary construction. Fix an n ≥ 1 and consider the symmetric group S2n

on the domain Ω = [1, 2n]. We define the following sets of transpositions:

Ti = {(a, b) | a, b ∈ Ω \ {i}, a ̸= b} ⊆ S2n for all i ∈ Ω, (6)
Z = {(2i − 1, 2i) | 1 ≤ i ≤ n} ⊆ S2n. (7)

Note that ⟨Z⟩ ∼= Zn
2 and ⟨Ti⟩ is the set of permutations that fix i.

For every 1 ≤ i < j ≤ 2n with (i, j) /∈ Z we can construct in space O(log n) three
automata Ai,j , Bi,j , Ci,j over S2n such that the following hold:

L(Ai,j) =
⋃

ℓ∈Ω\{i,j}

(i, j)(j, ℓ)⟨Ti ∩ Tj⟩ (8)

L(Bi,j) =
⋃

ℓ∈Ω\{i,j}

(j, i)(i, ℓ)⟨Ti ∩ Tj⟩ (9)

L(Ci,j) = (i, j)⟨Ti ∩ Tj⟩ (10)

▷ Claim 5.2. We have

⟨Z⟩ ∩
⋃

1≤i<j≤2n
(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)) = ∅.

Proof of Claim 5.2. Suppose there is a τ ∈ ⟨Z⟩ such that τ ∈ L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j) for
some 1 ≤ i < j ≤ 2n with (i, j) /∈ Z. For every a ∈ [1, n] we have either (2a − 1)τ = 2a − 1
and (2a)τ = 2a or (2a − 1)τ = 2a and (2a)τ = 2a − 1.
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Case 1. τ ∈ L(Ai,j). Then we can write τ = (i, j)(j, ℓ)π with ℓ ∈ Ω\{i, j} and π ∈ ⟨Ti ∩Tj⟩.
Then we obtain

jτ = j(i,j)(j,ℓ)π = i(j,ℓ)π = iπ = i.

We can exclude the case j = jτ = i, since i < j. Hence, we have jτ ∈ {j + 1, j − 1}. If j is
odd we obtain j + 1 = jτ = i, which is a contradiction since i < j. If j is even we obtain
j − 1 = jτ = i, and hence (i, j) ∈ Z, which is also a contradiction.

Case 2. τ ∈ L(Bi,j). Then we can write τ = (j, i)(i, ℓ)π with ℓ ∈ Ω\{i, j} and π ∈ ⟨Ti ∩Tj⟩.
In this case we obtain

iτ = i(j,i)(i,ℓ)π = j(i,ℓ)π = jπ = j.

We can exclude the case i = iτ = j, since i < j. Hence, we have iτ ∈ {i + 1, i − 1}. If i is
odd we obtain i + 1 = iτ = j and hence (i, j) ∈ Z, which is a contradiction. If i is even we
obtain i − 1 = iτ = j, which contradicts i < j.

Case 3. τ ∈ L(Ci,j). Then we can write τ = (i, j)π with π ∈ ⟨Ti ∩ Tj⟩ and get

iτ = i(i,j)π = jπ = j.

We obtain a contradiction in the same way as in Case 2. ◁

▷ Claim 5.3. We have⋃
1≤i<j≤2n

(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)) = S2n \ ⟨Z⟩. (11)

Proof of Claim 5.3. By Claim 5.2 it suffices to show

S2n \ ⟨Z⟩ ⊆
⋃

1≤i<j≤2n
(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)). (12)

Let τ ∈ S2n \ ⟨Z⟩. We have to show that τ belongs to the union on the right-hand side of
(12). Let τ = γ1 · · · γm be the disjoint cycle decomposition of τ . Since τ /∈ ⟨Z⟩ we can assume
that w.l.o.g. γ1 /∈ ⟨Z⟩. Let α = γ1 and let β = γ2 · · · γm. Then we can write τ = αβ = βα in
which α = (id, . . . , i2, i1) is a cycle of length d ≥ 2. Note that iq ̸= ip for all q ̸= p.

Case 1. d = 2. W.l.o.g. we can assume i1 < i2. Then (i1, i2) /∈ Z and by this the NFA
Ci1,i2 is defined. We have (i1, i2)π ∈ L(Ci1,i2) for all π ∈ ⟨Ti1 ∩ Ti2⟩. Since β fixes i1 and i2,
we have β ∈ ⟨Ti1 ∩ Ti2⟩ and hence τ = (i1, i2)β ∈ L(Ci1,i2).

Case 2. d ≥ 3 and (i1, i2) /∈ Z. Then, Ai1,i2 is defined if i1 < i2 and Bi2,i1 is defined if
i2 < i1. We have

α = (id, . . . , i1) = (i1, i2)(i2, i3)(i3, i4) · · · (id−1, id).

Let γ = (i3, i4) · · · (id−1, id)β. We get τ = αβ = (i1, i2)(i2, i3)γ. Moreover, γ ∈ ⟨Ti1 ∩ Ti2⟩,
since β fixes i1 and i2 and iq ̸= ip for q ̸= p. If i1 < i2 we have (i1, i2)(i2, ℓ)π ∈ L(Ai1,i2) for
all ℓ ∈ Ω \ {i1, i2} and π ∈ ⟨Ti1 ∩ Ti2⟩. Hence we obtain τ = (i1, i2)(i2, i3)γ ∈ L(Ai1,i2). If
i2 < i1 we have (i1, i2)(i2, ℓ)π ∈ L(Bi2,i1) for all ℓ ∈ Ω \ {i1, i2} and π ∈ ⟨Ti1 ∩ Ti2⟩. Thus
we analogously obtain τ = (i1, i2)(i2, i3)γ ∈ L(Bi2,i1).
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Case 3. d ≥ 3 and (i1, i2) ∈ Z. We then have (i2, i3) /∈ Z (otherwise, we would get i3 = i1)
and Ai2,i3 is defined if i2 < i3 and Bi3,i2 is defined if i3 < i2. We have

α = (id, . . . , i1) = (i1, id, id−1 . . . , i2) = (i2, i3)(i3, i4)(i4, i5) · · · (id−1, id)(id, i1).

Let γ = (i4, i5) · · · (id−1, id)(id, i1)β. Then we obtain τ = αβ = (i2, i3)(i3, i4)γ (if d = 3 we
have γ = β and i4 = i1). Analogously to Case 2, we obtain (i2, i3)(i3, i4)γ ∈ L(Ai2,i3) if
i2 < i3 and (i2, i3)(i3, i4)γ ∈ L(Bi3,i2) if i3 < i2. ◁

Now we come to the reduction from unary diameter to rational universality. The
proof of Theorem 3.1 shows that we can start with an input instance (A, k) of unary
diameter, where A ⊆ Zn

2 for some n ∈ N and k ∈ N is given in unary encoding. We can
therefore assume that ⟨A⟩ = ⟨Z⟩ for the above Z from (7). From A and k we can easily
construct in logspace an NFA A such that

L(A) = A≤k ∪
⋃

1≤i<j≤2n
(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)) = A≤k ∪ (S2n \ ⟨A⟩),

where the second equality follows from Claim 5.3. It is also important that k is given in
unary encoding, which allows to construct in logspace an NFA for A≤k. We have L(A) = S2n

if and only if d(A) ≤ k which concludes the reduction. ◀

Note that in the above proof we write the complement S2n \ ⟨A⟩ = S2n \ ⟨Z⟩ as a union of a
polynomial number of cosets (see (8)–(10) and (11)). One might ask why we do not write
S2n \ ⟨A⟩ simply as union of cosets of ⟨A⟩. The problem is that the latter would require
|S2n|/|⟨A⟩| = (2n!)/2n − 1 cosets, which is not polynomial in n.

6 Open problems

The main open problem that remains is the complexity of binary diameter. We conjecture
that this problem is PSPACE-complete. Recall that we proved binary diameter to be
ΠP

2 -complete for abelian permutation groups. We conjecture that this result can be extended
to nilpotent permutation groups (and maybe even solvable permutation groups).

We conjecture that unary diameter is ΠP
2 -complete for input instances (A, k), where A

generates the full symmetric group Sn. The ΠP
2 -completeness of rational universality

would directly follow from this. Moreover, we mentioned in the introduction the conjecture
according to which the diameter of Sn (with respect to any generating set) is bounded by a
polynomial in n. This conjecture would imply that binary diameter belongs to ΠP

2 for
input instances (A, k), where A generates the full symmetric group Sn.
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