
A Dichotomy for Succinct Representations of
Homomorphisms
Christoph Berkholz #

Technische Universität Ilmenau, Germany

Harry Vinall-Smeeth #

Humboldt-Universität zu Berlin, Germany

Abstract
The task of computing homomorphisms between two finite relational structures A and B is a
well-studied question with numerous applications. Since the set Hom(A, B) of all homomorphisms
may be very large having a method of representing it in a succinct way, especially one which enables
us to perform efficient enumeration and counting, could be extremely useful.

One simple yet powerful way of doing so is to decompose Hom(A, B) using union and Cartesian
product. Such data structures, called d-representations, have been introduced by Olteanu and
Závodný [32] in the context of database theory. Their results also imply that if the treewidth of the
left-hand side structure A is bounded, then a d-representation of polynomial size can be found in
polynomial time. We show that for structures of bounded arity this is optimal: if the treewidth is
unbounded then there are instances where the size of any d-representation is superpolynomial. Along
the way we develop tools for proving lower bounds on the size of d-representations, in particular we
define a notion of reduction suitable for this context and prove an almost tight lower bound on the
size of d-representations of all k-cliques in a graph.

2012 ACM Subject Classification Theory of computation → Data structures and algorithms for
data management; Theory of computation → Complexity theory and logic; Theory of computation
→ Data compression

Keywords and phrases homomorphism problem, CSP, succinct representations, enumeration, lower
bound, treewidth

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.113

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2209.14662

Funding Christoph Berkholz: Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 414325841.
Harry Vinall-Smeeth: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 385256563.

1 Introduction

The task of computing homomorphisms between two finite relational structures has a long
history and numerous applications. Most notably, as pointed out by Feder and Vardi [17],
it is the right abstraction for the constraint satisfaction problem (CSP) – a framework for
search problems that generalised Boolean satisfiability. Moreover, evaluating conjunctive
queries on a relational database is equivalent to computing homomorphisms from the query
structure to the database. While deciding the existence of a homomorphism from a structure
A to a structure B is a classical NP-complete problem, several restrictions of the input
instance have been considered in order to understand the landscape of tractability. One
line of research investigates right-hand-side restrictions, where it is asked for which classes
of structures B the CSP becomes tractable and when it remains hard. This culminated in

EA
T

C
S

© Christoph Berkholz and Harry Vinall-Smeeth;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 113; pp. 113:1–113:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christoph.berkholz@tu-ilmenau.de
https://orcid.org/0000-0002-3554-517X
mailto:harry.vinall-smeeth@informatik.hu-berlin.de
https://orcid.org/0000-0003-2422-9435
https://doi.org/10.4230/LIPIcs.ICALP.2023.113
https://arxiv.org/abs/2209.14662
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

113:2 A Dichotomy for Succinct Representations of Homomorphisms

G H d-representation of Hom(G,H)

x

y

z

a1
a2
a3

b1
b2
b3

d1
d2
d3

c

x 7→ a1 x 7→ a2 x 7→ a3y 7→ b1 y 7→ b2 y 7→ b3 z 7→ d1 z 7→ d2 z 7→ d3z 7→ c y 7→ c

∪ ∪ ∪

× ×

∪

Figure 1 A deterministic d-representation of all homomorphisms from G to H.

the solution [9, 38] of the CSP-dichotomy conjecture [17] that characterises those B where
finding a homomorphism from a given structure A can be done in polynomial time (assuming
P̸=NP).

Another line of research, to which we contribute in this paper, focuses on left-hand-side
restrictions: for which classes of structures A can we efficiently find a homomorphism from
A to a given B? In this scenario, a dichotomy is only known when all relations have bounded
arity, as is the case for graphs, digraphs, or k-uniform hypergraphs. Grohe [20] showed that,
modulo complexity theoretic assumptions, for any class of structures A of bounded arity the
decision problem, “Given a structure A ∈ A and a structure B, is there a homomorphism
from A to B?” is in polynomial time if and only if the homomorphic core of every structure
in A has bounded treewidth. For classes of unbounded arity, polynomial time tractability has
been shown for fractional hypertreewidth [5, 21], but a full characterisation of tractability
has only been obtained in the parameterised setting using submodular width [29]. Besides
deciding the existence of a homomorphism, the complexity of counting all homomorphism
has also been characterised in the right-hand-side regime [8] and for bounded-arity classes of
left-hand-side structures [14]. A third task, that is less well understood, is to enumerate all
homomorphisms; here only partial results on the complexity are known (e. g. [10, 13, 37, 19]).

In this work we consider the task of representing the set Hom(A,B) of all homomorphisms
in a succinct and accessible way. In particular, we want to store all, potentially exponentially
many, homomorphisms, in a data structure of polynomial size that enables us to, e. g.
generate a stream of all homomorphisms. The data structures we are interested in – so-called
d-representations – were first introduced to represent homomorphisms in the context of join
evaluation under the name factorised databases [32]. They are conceptually very simple:
the set of homomorphisms is represented by a circuit, where the “inputs” are mappings
of single vertices and larger sets of mappings are generated by combining local mappings
using Cartesian product × and union ∪. In the circuit previously computed sets of local
homomorphisms are represented by gates and can be used several times, see Figure 1 for
an example. Such a representation is called deterministic if every ∪-gate is guaranteed to
combine disjoint sets. Deterministic representations have the advantage that the number of
homomorphisms can be efficiently counted by adding the sizes of the local homomorphism sets
on every ∪-gate and multiplying them on every ×-gate. Moreover, all homomorphisms can be
efficiently enumerated where the delay between two outputs is only linear in the size of every
produced homomorphism (= size of the universe of A) [2]. It is known that if the treewidth of
the left-hand side structure is bounded, then a deterministic d-representation of polynomial
size can be found in polynomial time [32]. Our main theorem shows that for structures of
bounded arity this is optimal: if the treewidth is unbounded, then there are instances where
the size of any (not necessarily deterministic) representation is superpolynomial.

C. Berkholz and H. Vinall-Smeeth 113:3

▶ Theorem 1. Let r ∈ N, σ a signature of arity ≤ r and A a class of σ-structures. Then
the following are equivalent:
1. There is a w ∈ N such that every structure in A has treewidth at most w.
2. A deterministic d-representation of Hom(A,B) can be computed in polynomial time, for

any A ∈ A and any B.
3. There is a c ∈ N such that for any A ∈ A and any B there exists a (not necessarily

deterministic) d-representation of Hom(A,B) of size O
(

(∥A∥ + ∥B∥)c
)
.

Related work. The research on succinct data structures for homomorphism problems has
emerged from the two different perspectives. When fixing the right-hand-side structure
B, then data structures like multi-valued decision diagrams (MDD) [4], AND/OR multi-
valued decision diagrams (AOMDD) [30], and multi-valued decomposable decision graphs
(MDDG) [25] have been proposed, which arose from representations for Boolean functions that
are studied in knowledge compilation (see, e. g., [15]). The (deterministic) d-representations
studied in this paper can be interpreted as (deterministic) DNNF circuits with zero-suppressed
semantics [2, Lemma 7.4], where a ∪-gate corresponds to a (deterministic) ∨-gate and a
×-gate corresponds to a decomposable ∧-gate.

In the left-hand-side regime, representations have been introduced in the context of
enumerating query results. Most notably, Olteanu and Závodnỳ [32] introduced the notion
of factorised databases that are used to decompose the result relation of a conjunctive query
using Cartesian product and union. Their findings imply the upper bound part of our
dichotomy theorem: if A has bounded treewidth, its tree decomposition defines a so-called
d-tree, which structures the polynomial size d-representation. They have also shown a
limited lower bound for structured representations (“d-representations respecting a d-tree”).
However, this lower bound considers only a small subclass of all possible d-representations.
In a similar vein, in knowledge compilation there exist several restrictions of DNNFs e. g.
requiring ∨-gates to be decision or deterministic [15], or enforcing structuredness [33]. In
this light, the significance of our lower bound comes from the fact that it holds for the
most general notion of representations (d-representations), which correspond to unrestricted
DNNFs.

The proof of our lower bound has some connections to the conditional lower bound for
the counting complexity of homomorphisms [14], which in turn builds upon the construction
of Grohe [20]. The essence of these proofs is to rely on an assumption about the hardness of
the parametrised clique problem and reduce this to all structures of unbounded treewidth.
We take a similar route: in Section 5 we prove an unconditional lower bound for representing
cliques and obtain our main lower bound using a sequence of reductions in Section 6.

The circuit notion for representing the set of homomorphisms between two given structures
(or, equivalently, the result relation of a multiway join query) in a succinct data structure
might be confused with previous work on the (Boolean or arithmetic) circuit complexity for
deciding or counting homomorphisms or subgraphs. In this research branch, a structure B
over a universe of size n is given as input to a circuit CA,n, which decides the existence of or
counts the number of homomorphisms (or subgraph-embeddings) from A to B. Examples
include monotone circuits for finding cliques [1, 36], bounded-depth circuits for finding cliques
and other small subgraphs [35, 26] as well as graph polynomials and monotone arithmetic
circuits [16, 7, 24] for counting homomorphisms. In particular, the recent work of Komarath,
Pandey and Rahul [24] studies monotone arithmetic circuits that have, for each pattern G
and each n, an input indicator variable x{u,v} for each potential edge {u, v} ∈ [n]2 in the
second graph H. For every input (i.e. setting indicator variables according to a graph H

ICALP 2023

113:4 A Dichotomy for Succinct Representations of Homomorphisms

on n vertices), the arithmetic circuit has to compute the number of homomorphisms from
G to H. Interestingly, Komorath et al. prove a tight bound and show that such arithmetic
circuits need size ntw(G)+1. Unfortunately, this and related results from circuit complexity
(such as lower bounds for the clique problem) do not translate to the knowledge compilation
approach. Part of the reason is that we crucially have a different representation for each pair
G, H and having, e. g. an arithmetic circuit computing the constant number |Hom(G,H)| is
trivial. Moreover, due to monotonicity, the worst-case right-hand-side instances H in [24] are
complete graphs, whereas d-representations lack this form of monotonicity: adding edges
to H can make factorisation simpler and in particular occurences of patterns in complete
graphs can be succinctly factorised.

Despite this, some techniques on a more general level (e. g. arguing about the transversal
of a circuit or using random graphs as bad examples) are useful in circuit complexity as well
as for proving lower bounds on representations.

2 Preliminaries

We write N for the set of non-negative integers and define [n] := {1, . . . , n} for any positive
integer n. Given a set S we write 2S to denote the power set of S. Whenever writing a to
denote a k-tuple, we write ai to denote the tuple’s i-th component; i. e., a = (a1, . . . , ak). For
a function f : X → Y and X ′ ⊂ X we write πX′f to denote the projection of f to X ′. Given a
set of functions, each of which has a domain containing X ′, we write πX′F := {πX′f | f ∈ F}.

Graphs, Minors, Structures, Tree Decompositions. Whenever G is a graph or a hypergraph
we write V (G) and E(G) for the set of nodes and the set of edges, respectively, of G. We let
Kk be the complete graph on k vertices, Ck the k-cycle graph, and Gk the k × k-grid graph.
Given a graph G and {u, v} ∈ E(G), we can form a new graph by edge contraction: replacing
u and v be a new vertex w adjacent to all neighbours of u and v. A graph H is a minor of G
if H can be obtained from G by repeatedly deleting vertices, deleting edges and contracting
edges.

A tree decomposition of a graph G is a pair (T, β) where T is a tree and β : V (T) → 2V (G)

associates to every node t ∈ V (T) a bag β(t) such that the following is satisfied: (1) For
every v ∈ V (G) the set {t ∈ V (T) | v ∈ β(t)} is non-empty and forms a connected set in T .
(2) For every {u, v} ∈ E(G) there is some t ∈ V (T) such that {u, v} ⊆ β(t). The width of a
tree decomposition is maxt∈V (T) |β(t)| − 1 and the treewidth of G is the minimum width of
any tree decomposition of G.

A (relational) signature σ is a set of relation symbols R, each of which is equipped with
an arity r = r(R). A (finite, relational) σ-structure A consists of a finite universe A and
relations RA ⊆ Ar for every r-ary relation symbol R ∈ σ. We will write ∥A∥ :=

∑
R∈σ |RA|.

The Gaifman graph of A is the graph with vertex set A and edges {u, v} for any distinct u, v
that occur together in a tuple of a relation in A. The treewidth of a structure is the treewidth
of its Gaifman graph. We say A is connected if its Gaifman graph is connected and we will
henceforth assume, without loss of generality, that all structures in this paper are connected.

Enumeration. An enumeration algorithm for Hom(A,B) proceeds in two stages. In the
preprocessing stage the algorithm does some preprocessing on A and B. In the enumeration
phase the algorithm enumerates, without repetition, all homomorphisms in Hom(A,B),
followed by the end of enumeration message. The delay is the maximum of three times: the
time between the start of the enumeration phase and the first output homomorphism, the

C. Berkholz and H. Vinall-Smeeth 113:5

maximum time between the output of two consecutive homomorphisms and between the last
tuple and the end of enumeration message. The preprocessing time is the time the algorithm
spends in the preprocessing stage, which may be 0. Similarly given a d-representation C for
Hom(A,B), an enumeration algorithm for C has a preprocessing stage, where it can do some
preprocessing on C, and an enumeration phase defined as above.

3 Homomorphisms and the complexity of constraint satisfaction

A homomorphism h : A → B between two σ-structures A and B is a mapping from A to
B that preserves all relations, i. e., for every r-ary R ∈ σ and (a1, . . . , ar) ∈ Ar it holds
that if (a1, . . . , ar) ∈ RA, then (h(a1), . . . , h(ar)) ∈ RB. We let Hom(A,B) be the set of all
homomorphisms from A to B. A (homomorphic) core of a structure A is an inclusion-wise
minimal substructure A′ ⊆ A such that there is a homomorphism from A to A′. It is well
known that all cores of a structure are isomorphic, hence we will also speak of the core of a
structure.

Following common notation we fix a (potentially infinite) signature σ and define for
classes of σ-structures A and B the (promise) decision problem CSP(A, B) to be: “Given
two σ-structures A ∈ A and B ∈ B, is there a homomorphism from A to B?” Similarly, the
counting problem #CSP(A, B) asks: “Given two σ-structures A ∈ A and B ∈ B, what is the
number of homomorphisms from A to B?” A lot of work has been devoted towards classifying
the classes of structures for which the problems are solvable in polynomial time. Normally
either the left-hand-side A or the right-hand-side B is restricted and the other part (B or A)
is the class _ of all structures. A related problem is Enum-CSP(A, B) [10], which is the
following task: “Given two σ-structures A ∈ A and B ∈ B, enumerate all homomorphisms
from A to B”. One way of defining tractability for enumeration algorithms is polynomial
delay enumeration, where the preprocessing time and the delay is polynomial in A and B.

In this paper we focus on “left-hand-side” restrictions, where B is the class of all structures.
Moreover, we assume that the arity of each symbol in σ is bounded by some constant r.
In this setting the complexity of CSP(A, _) and #CSP(A, _) is fairly well understood:
the decision problem is polynomial time tractable iff the core of every structure in A has
bounded treewidth, while the counting problem is tractable if every structure from A itself
has bounded treewidth. This is made precise by the following two theorems.

▶ Theorem 2 ([20]). Let r ∈ N, σ be a signature of arity ≤ r and A a class of σ-structures.
Under the assumption that there is no c ∈ N such that for every k ∈ N there is an algorithm
that finds a k-clique in an n-vertex graph in time O(nc) the following two statements are
equivalent.
1. There is a w ∈ N such that the core of every structure in A has treewidth at most w.
2. CSP(A,_) is solvable in polynomial time.

▶ Theorem 3 ([14]). Let r ∈ N, σ be a signature of arity ≤ r and A a class of σ-structures.
Under the assumption that there is no c ∈ N such that for every k ∈ N there is an algorithm
that counts the number of k-cliques in an n-vertex graph in time O(nc) the following two
statements are equivalent.
1. There is a w ∈ N such that every structure in A has treewidth at most w.
2. #CSP(A,_) is solvable in polynomial time.

To understand the difference between these characterisations, consider the class A of
all structures Ak that are complete graphs on k vertices with an additional vertex with a
self-loop. The homomorphic core of such structures is just the self-loop and finding one

ICALP 2023

113:6 A Dichotomy for Succinct Representations of Homomorphisms

homomorphism from Ak to B is equivalent to finding a self-loop in B. However, counting
homomorphisms from Ak to B is as hard as counting k-cliques: if B is a simple graph G with
one additional vertex with a self-loop, then the number of homomorphisms from Ak to B is
the number of k-cliques in G plus one.

The complexity of the corresponding enumeration problem Enum-CSP(A, _) is still
open. It has been shown that polynomial delay enumeration is possible if A has bounded
treewidth [10]. On the other hand, polynomial delay enumeration implies solvability of the
decision problem in polynomial time (because either the first solution or an end-of-enumeration
message has to appear after polynomial time). Hence it follows from Theorem 2, under the
same complexity assumption, that there is no polynomial delay enumeration algorithm if the
cores of the structures in A have unbounded treewidth. For further discussion on this topic
we refer the reader to [10].

Our main result (Theorem 1) can be viewed as an unconditional dichotomy for enu-
meration and counting in a restricted class of algorithms: when the algorithm relies on
local decompositions into union and product, then the tractable instances are exactly those
that have bounded treewidth. Interestingly, this matches the conditional dichotomy for the
counting case (Theorem 3).

4 Factorised Representations

In this section we formally introduce the factorisation formats for CSPs. These formats agree
with the factorised representations of relations introduced by Olteanu and Závodný [32] in
the context of evaluating conjunctive queries on relational databases. While we stick to the
naming conventions introduced there we provide a slightly different circuit-based definition
that is very much inspired by [2] and the notion of set circuits introduced in [3].

A factorisation circuit C for two sets A and B is an acyclic directed graph with node
labels and a unique sink. Each node without incoming edges is called an input gate and
labelled by {a 7→ b} for some a ∈ A and b ∈ B. Every other node is labelled by either ∪ or
× and called a ∪-gate or ×-gate, respectively. For each gate g in the circuit we inductively
define its domain dom(g) ⊆ A by dom(g) = {a} if g is an input gate with label {a 7→ b} and
dom(g) =

⋃r
i=1 dom(gi) if g is a non-input gate with child gates g1, . . . , gr.

A factorisation circuit is well-defined if for every gate g with child gates g1, . . . , gr it holds
that dom(g) = dom(g1) = · · · = dom(gr) if g is a ∪-gate and dom(gi) ∩ dom(gj) = ∅ for all
i ̸= j if g is a ×-gate. For every gate g in a well-defined factorisation circuit we let Sg be a
set of mappings h : dom(g) → B defined by

Sg :=

{

{a 7→ b}
}

if g is an input labelled by {a 7→ b}
Sg1 ∪ · · · ∪ Sgr

if g is a ∪-gate with children g1, . . . , gr,{
h1 ∪ · · · ∪ hr | hi ∈ Sgi , i ∈ [r]

}
if g is a ×-gate with children g1, . . . , gr.

(1)

We define SC := Ss for the sink s of C. For each gate g we let Cg be the sub-circuit with
sink g. By ∥C∥ we denote the size of a factorisation circuit C, which is defined to be the
number of gates plus the number of wires. The number of gates in C is denoted by |C|.

Before defining factorised representations for CSP-instances, we introduce two special
types of circuits. A factorisation circuit is treelike if the underlying graph is a tree, i. e.,
every non-sink gate has exactly one parent. Moreover, a well-defined factorisation circuit is
deterministic if for every ∪-gate g the set Sg is a disjoint union of its child sets Sg1 , . . . , Sgr

.
Note that while treelikeness is a syntactic property of the circuit structure, being deterministic
is a semantic property that depends on the valuations of the gates. Now we are ready to
state a circuit-based definition of the factorised representations defined in [32].

C. Berkholz and H. Vinall-Smeeth 113:7

▶ Definition 4. Let A and B be two σ-structures.
1. A (deterministic) d-representation for A and B is a well-defined (deterministic) factor-

isation circuit over V (A) and V (B) where SC = Hom(A,B).
2. A (deterministic) f-representation is a (deterministic) d-representation with the additional

restriction that the circuit is treelike.

For brevity we will sometimes refer to d/f-representations as d/f-reps. Note that a d-rep
can be more succinct than a f-rep and we will mostly deal with d-reps in this paper. However,
in the proofs it will sometimes be convenient to expand out the circuit in order to make it
treelike. More formally, the transversal Trans(C) of a d-rep C is the f-rep obtained from C

as follows: using a top-down transversal starting at the output gate, we replace each gate g
with parents p1, . . . , pd by d copies g1, . . . , gd such that the in-edges of each gi are exactly
the children of g and gi has exactly one out-edge going to pi. This procedure produces a
treelike circuit that is well-defined/deterministic if C was well-defined/deterministic. Finally
it can easily be verified that STrans(C) = SC .

We will often want to construct new factorised circuits from old ones. The following
lemma introduces two constructions that will be particularly useful, the proof of correctness
can be found in the full version of this paper.

▶ Lemma 5. Let A,B be σ-structures and C be a d-rep of Hom(A,B). Let X = {x1, . . . , xℓ} ⊆
A, Y1, . . . , Yℓ ⊆ B, ℓ ≥ 1. Then one can construct the following factorised circuits in time
O(∥C∥).
1. C ′, such that SC′ = πX Hom(A,B) and ∥C ′∥ ≤ ∥C∥.
2. C ′′, such that SC′′ = {h ∈ Hom(A,B) | h(xi) ∈ Yi, i ∈ [ℓ]} and ∥C ′′∥ ≤ ∥C∥.

A special f-rep is the flat representation: a depth-2 circuit with a single ∪-gate at the
top followed by a layer of ×-gates. Note that for any pair A, B, of σ-structures the flat
representation has size 1+|Hom(A,B)|·(2|A|+2). Intuitively, this representation corresponds
to listing all homomorphisms and provides a trivial upper bound on representation size.

Deterministic d-representations have two desirable properties: they allow us to compute
|Hom(A,B)| in time O(∥C∥) and to enumerate all homomorphisms with O(|A|) delay after
O(∥C∥) preprocessing. Efficient counting is possible by computing bottom-up the number |Sg|
for each gate using multiplication on every ×-gate and summation on every (deterministic)
∪-gate. If, additionally, C is normal – i. e., no parent of a ∪-gate is a ∪-gate and the
in-degree of every ∪- and ×-gate is at least 2 – Olteanu and Závodný [32, Theorem 4.11] show
enumeration with O(|A|) delay and no preprocessing is possible by sequentially enumerating
the sets Sgi of every child of a (deterministic) ∪-gate and by a nested loop to generate all
combinations of child elements at ×-gates. The case where C is not normal is shown in [2,
Theorem 7.5] and is more involved. Note that the delay is optimal in the sense that every
homomorphism that is enumerated is of size O(|A|).

In the other direction this means that constructing a deterministic d-rep is at least as
hard as counting the number of homomorphisms. Our main theorem implies that, modulo
the same assumptions as Theorem 3, the opposite is also true: for a class A of structures of
bounded arity there is a polynomial time algorithm that constructs a d-representation of
polynomial size for two given structures A ∈ A and B if and only if, there is a polynomial-time
algorithm that counts the number of homomorphisms between A ∈ A and B.

Upper bounds on representation size. We have already argued that there is always a
flat representation of size O(|A| · |Hom(A,B)|). Thus, as a corollary of [5] we get an upper
bound of O(|A| · ∥B∥ρ∗(A)), where ρ∗(A) is the fractional edge cover number of A. Note
that, however, the fractional edge cover number for structures of bounded arity is quite large.
More precisely, if all relations in A have arity at most r, then ρ∗(A) ≥ 1

r |A|.

ICALP 2023

113:8 A Dichotomy for Succinct Representations of Homomorphisms

Luckily in many cases we can do better: the results by Olteanu and Závodný in [32] imply
that given a tree-decomposition of A of width w − 1 we can construct a d-rep of Hom(A,B)
of size O(∥A∥2∥B∥w) in time O(poly(∥A∥)∥B∥w log(∥B∥)). Moreover the d-reps produced
are normal and deterministic, meaning they allow us to perform efficient enumeration and
counting. Therefore if A is a class of bounded treewidth this gives us one method for solving
#CSP(A,_) in polynomial time. In fact, the same holds true if w is the more general
fractional hypertreewidth, although for the case of bounded arity structures the two measure
differ only by a constant. We discuss the unbounded arity case in the conclusion and, in
more detail, in the full version of this paper.

5 A near-optimal bound for cliques

The goal of this section is to prove the following two theorems:

▶ Theorem 6. For any k ∈ N there exist arbitrary large graphs G with m edges such that
any f-rep of Hom(Kk,G) has size Ω(mk/2/ logk(m)).

▶ Theorem 7. For any k ∈ N there exist arbitrary large graphs G with m edges such that
any d-rep of Hom(Kk,G) has size Ω(mk/2/ log3k−1(m)).

These bounds are almost tight since the number of k-cliques in a graph with m edges is
bounded by mk/2. Moreover Theorem 7 is a crucial ingredient for proving our main theorem
in Section 6. We will first prove Theorem 6 and then show how this implies the bound for
d-reps.

The main idea is to exploit a correspondence between the structure of a (simple) graph G
and f-reps of Hom(Kk,G). To illustrate this consider the case k = 2, where V (K2) = {x1, x2}
and each h ∈ Hom(K2,G) corresponds to an edge of G. Let C be a f-rep of Hom(K2,G), with
×-gates g1, . . . , gα. Each gi has two children g1

i , g2
i with dom(g1

i) = x1 and dom(g2
i) = x2.

Since no ×-gates can occur in Cg1
i

or Cg2
i
, S1

gi
= {{x1 7→ a} | a ∈ Ai} and Sg2

i
= {{x2 7→ b} |

b ∈ Bi} for some disjoint Ai, Bi ⊆ V (G). Therefore Ai ×Bi is a complete bipartite subgraph
of G. Since the ancestors of each ×-gate can only be ∪-gates, each f-rep of Hom(K2,G)
corresponds to a set of complete bipartite subgraphs that cover every edge of G. Finding
such sets and investigating their properties has been studied in various contexts, for example
see [12, 18, 22, 31].

Moreover, the number of input gates appearing in C is
∑α

i=1 |Ai| + |Bi| and so finding
a f-rep of Hom(K2,G) of minimum size corresponds to minimising the sum of the sizes of
the partitions in our complete bipartite covering of G, call this the cost of the covering.
Proving Theorem 6 for the case k = 2, corresponds to finding graphs where every covering
of the edges by complete bipartite subgraphs has high cost. This is a problem investigated
by Chung et al. in [12], where one key idea is that if a graph contains no large complete
bipartite subgraphs and a large number of edges then the cost of any cover must be high.
We deploy this idea in our more general context. This motivates the following lemma, which
follows from a simple probabilistic argument.

▶ Lemma 8. For every k ∈ N there exists some ck ∈ R+ such that for every sufficiently
large integer n there is a graph G with n vertices, such that
1. G has m ≥ 1

8n
2 edges,

2. G contains no complete bipartite subgraph Ka,a for a ≥ 3 log(n), and
3. the number of k-cliques in G is at least ckn

k.

Proof. We first prove the following claim.

C. Berkholz and H. Vinall-Smeeth 113:9

▷ Claim 9. Let Gn be a random graph on n vertices with edge probability 1
2 . Let ϵ > 0.

Then for any a = a(n) ≥ (2 + ϵ) log(n),

Pa := P(Gn has Ka,a as a subgraph) → 0 as n → ∞.

Proof of Claim. By the union bound and the bound on a we get

Pa ≤
(
n

a

)2
2−a2

≤ n2a2−a2
= 22a log(n)−a2

≤ 2−(ϵ2+2ϵ) log2 n. ◁

Now let Gn be as above, s = s(k) :=
(

k
2
)

+ 1 and p be the probability that such a graph has
at least

(
n
k

)
2−s k-cliques. The expected number of k-cliques in Gn is

(
n
k

)
2−(k

2). Therefore,(
n

k

)
2−(k

2) ≤
(
n

k

)
2−s(1 − p) +

(
n

k

)
p

and so p ≥ 1/(2s − 1). Moreover, by the Chernoff bound, (1) from the statement of the
Lemma fails only with exponentially small probability. By Claim 9 there must exist a G
satisfying (1), (2), and (3) for sufficiently large n. ◀

Equipped with Lemma 8 we are already in a position to prove Theorem 6.

Proof of Theorem 6. Let G be an n-vertex graph provided by Lemma 8 and suppose that
C is a f-rep for Kk and G. If maxx∈dom(g) |{a | h(x) = a, h ∈ Sg}| ≤ 3 log(n) for a gate g
we say that g is small. Otherwise we say g is big. Note that a ×-gate cannot have two big
children g1 and g2 because otherwise there would be x1 ∈ dom(g1) and x2 ∈ dom(g2) such
that

{a | h(x1) = a, h ∈ Sg1} × {a | h(x2) = a, h ∈ Sg2}

forms a complete bipartite subgraph with partitions bigger than 3 logn in G, contradicting
(2) from Lemma 8.

If g is small, then Cg represents |Sg| ≤ 3|dom(g)| log|dom(g)|(n) homomorphisms. We claim
that for any gate g of C, |Sg| ≤ |Cg| · 3|dom(g)| log|dom(g)|(n). Clearly this holds for input
gates. We can therefore induct bottom up on C. Suppose our claim holds for all children
g1, . . . , gr of some gate g. If g is a ×-gate then we know at most one of the gi is big, say g1.
Define b :=

∑r
i=2 |dom(gi)|. Then,

|Sg| =
r∏

i=1
|Sgi | ≤ |Cg1 | · 3|dom(g1)| log|dom(g1)|(n) · 3b logb(n) ≤ |Cg| · 3|dom(g)| log|dom(g)|(n),

The ∪-gate case follows immediately from the induction hypothesis because the circuit is
treelike so if g has children g1, . . . , gr then |Cg| = 1 +

∑r
i=1 |Cgi |.

From the claim we infer in particular that |Hom(Kk,G)| = |Ss| ≤ |C| · 3k logk(n) for the
sink s of C. By (3) from Lemma 8 it follows that |C| ≥ ckn

k/(3k logk(n)) which, combined
with (1) from Lemma 8, implies the claimed result. ◀

We now transfer this bound to d-reps, by showing that, for the same graphs used above,
any d-rep cannot be much smaller than the smallest f-rep.

Proof of Theorem 7. Let G be an n-vertex graph provided by Lemma 8 as above and C

a d-rep of Hom(Kk,G) with sink s. If a gate has out-degree of more than one we call it a
definition. As in the proof of Theorem 6, if maxx∈dom(g) |{a | h(x) = a, h ∈ Sg}| ≤ 3 log(n)
for a gate g we say that g is small. Otherwise we say g is big.

ICALP 2023

113:10 A Dichotomy for Succinct Representations of Homomorphisms

Our strategy is to convert C into an equivalent f-rep that is not much bigger than C. For
ease of analysis and exposition we will do this by first eliminating all small definitions and
then all big definitions. First if s is small replace the whole circuit with its equivalent flat
representation. Otherwise, we mark all small gates g that have a big parent and compute
the equivalent flat representation Fg of Cg. Since every unmarked small gate is a descendant
of some marked gate, we can now safely delete all unmarked small gates. Afterwards we
consider every wire between a marked gate g and one of its big parents p and replace it by
a copy of Fg as input to p. We obtain an equivalent circuit Ĉ where every small gate has
only one parent. The size (number of gates plus number of wires) increases only by a factor
determined by the maximum size of a flat representation:

▷ Claim 10. ∥Ĉ∥ ≤ ∥C∥ · (2k + 3)3k logk(n).

When we try and eliminate big definitions one challenge is that if g is big, then ∥Ĉg∥
can be large and so making lots of copies of it could blow up the size of our circuit. To
overcome this we introduce the notion of an active parent. We then show that non-active
parents are effectively redundant and that there can’t be too many active ones, which allows
us to construct an equivalent treelike circuit of the appropriate size.

So let g be a definition with parents p1, . . . , pα, α > 1, and suppose there is a unique
path from pi to the sink s for every i. Then for every gate v on the unique path from g to s
which passes through pi, we inductively define a set of (partial) homomorphisms Av

i = Av
i (g)

as follows, where v̂ refers to the child of v also lying on this path.
Ag

i := Sg,
if v is a ∪-gate Av

i := Av̂
i ,

otherwise v is a ×-gate with children u1, . . . , ur−1, v̂ and Av
i :=

{h1 ∪ . . . ∪ hr | hi ∈ Sui
, i ∈ [r − 1], hr ∈ Av̂

i

}
.

Write Ai := As
i , intuitively this is the set of homomorphisms that the wire from g to pi

contributes to. We say that a parent pi of g is active if Ai ⊈ ∪j ̸=iAj . Now using a top-down
traversal starting at the output gate of Ĉ, we replace each gate with active parents p1, . . . , pβ ,
by β copies g1, . . . , gβ such that the children of each gi are exactly the children of g and gi

has exactly one out-edge going to pi. At each stage we also clean-up the circuit by iteratively
deleting all gates which have no incoming wires, as well as all the wires originating from such
gates. We can think of this process as constructing a slimmed down version of the traversal,
where at each stage we only keep wires going to active parents. Call the resulting circuit C ′.

We first note that this process is well-defined, as there is a unique path from the sink to
itself and since whenever we visit a gate we have already visited all of its parents. Moreover,
by construction this results in a treelike circuit. In the next claim we bound the size of C ′

and show it is indeed an equivalent circuit. The idea is that firstly a gate cannot have too
many active parents, as otherwise we would get a large biclique in G which is ruled out by
Lemma 8, and secondly that since only active parents contribute new homomorphisms we
really do get an equivalent circuit, see the full version of this paper for details.

▷ Claim 11. C ′ is a f-rep of Hom(Kk,G) and ∥C ′∥ ≤ 3k logk−1(n)∥Ĉ∥.

Pulling everything together we get that

∥C∥ ≥
(Claim 10)

∥Ĉ∥
(2k + 3)3k logk(n)

≥
(Claim 11)

∥C ′∥
(2k + 3)32k log2k−1(n)

= Ω
(

mk/2

log3k−1(m)

)
,

where the final equality follows by Theorem 6 since C ′ is a f-rep of Hom(Kk,G). ◀

C. Berkholz and H. Vinall-Smeeth 113:11

6 The representation dichotomy for structures of bounded arity

In this section we lift the lower bound for cliques to all classes of graphs with unbounded
treewidth. We first introduce a notion of reductions between representations and show that
having lower bounds for all graphs of unbounded treewidth immediately implies our main
dichotomy theorem for bounded-arity structures.

Afterwards, we introduce minor and almost-minor reductions and use them to obtain a
lower bound for representing homomorphisms from large grids and from graphs having large
grids as a minor. The superpolynomial representation lower bound for all graph classes with
unbounded treewidth then follows from the excluded grid theorem.

6.1 Reductions between representations
In order to define reductions between representations we fix some notation. For two structures
A and B we let D(A,B) be the set of all d-representations of Hom(A,B) and d(A,B) =
minC∈D(A,B) ∥C∥ be the size of the smallest such representation.

For a class C of structures the function dA,C : N → N expresses the required size of a
d-representation of homomorphisms between A and C ∈ C in terms of the size m of C, i. e.,
dA,C(m) = max{C∈C : ∥C∥≤m} d(A, C). We write dA as an abbreviation for dA,C when C is
the class of all structures. Translated to this notation, [32] showed that dA = O(mtw(A)+1),
whereas Theorem 7 states the lower bound dKk

= Ω(mk/2/ log3k−1(m)). We also write, for
a signature σ, Cσ to denote the class of all σ-structures.

The main goal of this section is to prove, for some increasing function f , a lower bound
of the form dA = Ω(mf(tw(A))/ ar(A)) for every structure A, which immediately implies our
main theorem. To achieve this we use reductions with our k-clique lower bound as a starting
point. Suppose we already have a lower bound on dA,C for a class C of arbitrarily large hard
instances (implying a lower bound on dA), then we can use the following reduction from A
to B via C to obtain a lower bound on dB.

▶ Definition 12. Let A be a σ-structure and let C be a class of σ-structures. Let B be a
σ′-structure and c : R+ → R+ be a strictly increasing function. Then a c-reduction from A to
B via C is a pair (ϕ, (ψC)C∈C), where ϕ : C → Cσ′ and ψC : D(B, ϕ(C)) → D(A, C) such that:
1. for every n ∈ N there is a C ∈ C such that ∥ϕ(C)∥ ≥ n,
2. ∥ϕ(C)∥ ≤ c(∥C∥) for all C ∈ C, and
3. ∥ψC(C)∥ ≤ ∥C∥ for every structure C ∈ C and circuit C ∈ D(B, ϕ(C)).
If c(m) = αm for some α ∈ R+, we say we have a linear reduction.

▶ Lemma 13. Suppose there is a c-reduction (ϕ, (ψC)C∈C) from A to B via C, let D = {ϕ(C) |
C ∈ C} be the image of ϕ. Then dB,D = Ω(dA,C ◦⌊c−1⌋).

Proof. Fix m ∈ N, where m ≥ min{C∈C} ∥C∥. Let C ∈ C with ∥C∥ ≤ m. Then ψC witnesses
that d(A, C) ≤ d(B, ϕ(C)). Also ∥ϕ(C)∥ ≤ c(m), since c is an increasing function. So
dB,D(c(m)) = max{C : ∥ϕ(C)∥≤c(m)} d(B, ϕ(C)) ≥ max{C : ∥C∥≤m} d(A, C) = dA,C(m). Since C

and D contain arbitrarily large structures, the asymptotic bound from the lemma follows. ◀

We start illustrating the power of these reductions by making two simplifications. First, we
reduce the general problem of representing homomorphisms to representing homomorphisms
that respect a partition. Second, we further reduce to graph homomorphisms that respect a
partition. All proofs from this subsection can be found in the full version of the paper.

ICALP 2023

113:12 A Dichotomy for Succinct Representations of Homomorphisms

For the first reduction we need the notion of the individualisation of a σ-structure A,
which is obtained from A by giving every element of the universe a distinct color. More
precisely, we extend the vocabulary σ with unary relations (= colours) σA = {Pa : a ∈ A}
and let Aid be the σ ∪ σA-expansion of A by adding PAid

a = {a}.

▶ Lemma 14. Let A be a σ-structure and let C be the class of all σ ∪ σA-structures where
{P C

a | a ∈ A} is a partition of the universe. Then dA = Ω(dAid,C).

We call structures and (vertex-coloured) graphs individualised if every vertex has a
distinct colour. In the next lemma we reduce from individualised structures to individualised
graphs. Recall the definition of the Gaifman graph GA from the preliminaries.

▶ Lemma 15. Let A be an individualised structure and Gid
A the individualisation of its

Gaifman graph. Let C be the class of all structures C where {P C
a | a ∈ A} is a partition of

its universe and H be the class of all vertex-coloured graphs H where {PH
a | a ∈ A} is a

partition of its vertex set. Then dA,C(m) = Ω
(

(dGid
A,H(m))2/ ar(A))

.

Taking both lemmas into account, we can now focus on individualised graphs G on the
left-hand side and on graphs H with the corresponding colouring {PH

a | a ∈ V (G)} that
partitions its vertex set on the right-hand side. We call such graphs V (G)-partitioned graphs.
However we would also like to deploy our lower bound from Section 5; the next lemma allows
to transfer this lower bound to individualised structures.

▶ Lemma 16. Let G be a graph and C be the class of all V (G)-partitioned graphs. Then
dGid,C = Ω(dG).

6.2 Minor reductions
In this subsection we show that we can reduce G′ to G if G is a minor of G′. We start by
illustrating how to handle edge contractions via an example.

▶ Example 17 (Reduction from 4-cycle to 3-cycle). Consider the 3-cycle K3 on vertices
x1, x2, x3, which is a minor of the 4-cycle C4 on vertices x1, x2, x3, x4 by contracting one
edge {x4, x1}. We show that we can lift the lower bound for Kid

3 (Theorem 7 + Lemma 16)
to Cid

4 (and hence C4 by Lemma 14) by a simple linear reduction from Kid
3 to Cid

4 via the
class of all {x1, x2, x3}-partitioned graphs. Let H be a {x1, x2, x3}-partitioned graph. We
define the {x1, x2, x3, x4}-partitioned graph H′ = ϕ(H) by PH′

x := PH
x for x ∈ {x1, x2, x3},

PH′

x4
:= {v̂ | v ∈ PH

x1
} and E(H′) ={

{v, v̂} | v ∈ PH
x1

}
∪

{
{v, w} | v ∈ PH

x1
, w ∈ PH

x2
, {v, w} ∈ E(H)

}
∪

{
{v, w} | v ∈ PH

x2
, w ∈ PH

x3
, {v, w} ∈ E(H)

}
∪

{
{v, ŵ} | v ∈ PH

x3
, w ∈ PH

x1
, {v, w} ∈ E(H)

}
.

Note that the size of H′ is linear in the size of H. The construction ensures that any
mapping h′ : {x1, . . . , x4} → V (H′) is a homomorphism from Cid

4 to H′ if, and only if,
h′(x4) = ĥ′(x1) and h(xi) := h′(xi), for i ∈ [3], is a homomorphism from Kid

3 to H.
Therefore, Hom(Kid

3 ,H) = π{x1,x2,x3} Hom(Cid
4 ,H′) and a representation C ′ of Hom(Kid

3 ,H)
can be obtained from a representation C of Hom(Cid

4 ,H′) by Lemma 5 which, moreover,
guarantees that ∥C ′∥ ≤ ∥C∥. Therefore we do have a linear reduction from Cid

4 to Kid
3 .

It follows that dC4(m) = Ω(dCid
4 ,C(m)) = Ω(dKid

3 ,H(m)) = Ω(dK3(m)) = Ω(m3/2/ log7(m)),

C. Berkholz and H. Vinall-Smeeth 113:13

where C is the class of V (Cid
4)-partitioned graphs and H is the class of V (Kid

3)-partitioned
graphs. The first equality follows by Lemma 14, the second by Lemma 13, the third by
Lemma 16 and the last by Theorem 7.

So to handle edge contractions we take the partitioned hard right-hand side instance
and “re-introduce” the edge {x, y} contracted to x by copying Px to Py and adding a perfect
matching between the two partitions Px and Py. Handling edge deletions is even simpler:
suppose that {x, y} is deleted from G′ to G and we want to reduce G′ to G. Then we take
a partitioned hard instance for G and just introduce the complete bipartite graph between
the partitions Px and Py; this may square the size of the graph. Since the sets of (partition-
respecting) homomorphisms are the same for both instances, we do not even have to modify
the representations in the reduction. The next lemma summarises these findings. Its proof is
omitted as it is subsumed by Lemma 22.

▶ Lemma 18. Let GX ,GY be graphs with vertex sets X and Y respectively such that GX is
a minor of GY . Let H be the class of all V (GX)-partitioned graphs and H′ the class of all
V (GY)-partitioned graphs. Then there is a c-reduction (ϕ, (ψH)H∈H) from Gid

Y to Gid
X via H

with ϕ(H) ⊆ H′ and c(m) = O(m2).

This yields together with Lemmas 13, 14 and 16 along with Theorem 7 the following
corollary.

▶ Corollary 19. If G has Kk as a minor, then dG = Ω(mk/4/ log(3k−1)/2(m)).

6.3 Relaxation of the minor condition
Every graph having Kk as a minor has treewidth at least k − 1, so Corollary 19 provides the
desired lower bound of Theorem 1 for certain large-treewidth graphs. However, there are
graphs of large treewidth that do not have a large clique as a minor. Instead, the excluded
grid theorem [34] and its more efficient version [11] tells us that graphs of large treewidth
always have a large k × k-grid as a minor.

▶ Theorem 20 ([11]). There is a polynomial function w : N → N such that for every k the
(k × k)-grid is a minor of every graph of treewidth at least w(k).

Thus, in order to prove Theorem 1 it suffices to combine Lemma 18 with a lower bound for
grid graphs. We cannot reduce immediately to our k-clique lower bound, as the grid does not
have a Kk minor for k ≥ 5. However, the complete graph Kk is “almost a minor” of G2k−2
for the following notion of almost minor that is good enough to prove a variant of Lemma 18.

▶ Definition 21. For two graphs GX , GY with vertex sets X = V (GX) and Y = V (GY) we
say that a map M : Y → 2X is almost minor if the following conditions hold:
1. for every y ∈ Y , |M(y)| ∈ {1, 2};
2. for every x ∈ X there is a y ∈ Y s.t. M(y) = {x} and for every x, x′ adjacent in GX

there exists y, y′ adjacent in GY such that M(y) = {x} and M(y′) = {x′};
3. for each x ∈ X, {y : x ∈ M(y)} is connected in GY and
4. if M(y) = {x, x′} with x ≠ x′ and y′ is adjacent to y in GY , then M(y′) = {x} or

M(y′) = {x′}.
If such a map exists we say GX is an almost minor of GY .

For the special case when |M(y)| = 1 for all y, M is a minor map and GX is a minor
of GY . The motivation for this definition is that whilst grids are planar, large cliques are
not and so we introduce “junctions”, i.e. nodes y such that M(y) = {x1, x2} which allows

ICALP 2023

113:14 A Dichotomy for Succinct Representations of Homomorphisms

{v | xi ∈ M(v)}, i ∈ {1, 2} to intersect in a controlled way, see Figure 2. We should also
observe here that this notion is related to Marx’s notion of an embedding [27].1 Now we can
state our reduction lemma for almost minors, which extends Lemma 18.

▶ Lemma 22. Let GX , GY be the graphs with vertex sets X and Y , respectively, such that
GX is an almost minor of GY . Let H be the class of all X-partitioned graphs and H′ be the
class of all Y -partitioned graphs, then there is a c-reduction (ϕ, (ψH)H∈H) from Gid

Y to Gid
X

via H with ϕ(H) ⊆ H′ and c = O(m2).

Proof. We start by defining the Y -partitioned graph H∗ = ϕ(H) for an arbitrary X-
partitioned graph H. To define the partitions, we consider two cases: if M(y) = {x}, we let
PH∗

y := {vy
a | a ∈ PH

x } and if M(y) = {x, x′}, then PH∗

y := {vy
{a,b} | a ∈ PH

x , b ∈ PH
x′ }. For

every edge {y, y′} ∈ E(GY) we define the edge set E{y,y′} between the partitions PH∗

y and
PH∗

y′ by the following exhaustive cases:
1. if M(y) = M(y′) = {x}: E{y,y′} :=

{
{vy

a, v
y′

a } | a ∈ PH
x

}
2. if M(y) = {x}, M(y′) = {x′}, and {x, x′} ∈ E(GX):

E{y,y′} :=
{

{vy
a, v

y′

b } | a ∈ PH
x , b ∈ PH

x′ , {a, b} ∈ E(H)
}

3. if M(y) = {x}, M(y′) = {x′}, x ̸= x′, and {x, x′} /∈ E(GX):
E{y,y′} :=

{
{vy

a, v
y′

b } | a ∈ PH
x , b ∈ PH

x′

}
4. if M(y) = {x} and M(y′) = {x, x′}: E{y,y′} :=

{
{vy

a, v
y′

{a,b}} | a ∈ PH
x , b ∈ PH

x′

}
Finally, we set E(H∗) :=

⋃
e∈E(GY) Ee and note that ∥H∗∥ = O(∥H∥2). For every homo-

morphism h from Gid
X to H we define the mapping h∗ : Y → V (H∗) by

h∗(y) :=
{
vy

h(x), if M(y) = {x}
vy

{h(x),h(x′)}, if M(y) = {x, x′}

The next claim provides the key property of our construction: h∗ is a homomorphism from
Gid

Y to H∗ and every homomorphism from Gid
Y to H∗ has this form, see the full version of

this paper for a proof.

▷ Claim 23. Hom(Gid
Y ,H∗) = {h∗ : h ∈ Hom(Gid

X ,H)}

We finish the lemma by defining the mapping ψH that transforms any d-representation for
Hom(Gid

X ,H) into a d-representation for Hom(Gid
Y ,H∗). For each x ∈ X we fix one yx ∈ Y

such that M(yx) = {x} (those vertices exist by the definition of an almost minor map). Then
we apply Lemma 5 and obtain a d-representation of π{yx : x∈X} Hom(Gid

Y ,H∗). After renaming
every yx to x and every vy

a to a in the input labels of this circuit, we get a d-representation
of Hom(Gid

X ,H). ◀

With the following lemma we have everything in hand to proof our main theorem.

▶ Lemma 24. For every k, Kk is an almost minor of G2k−2.

1 In particular the definition of a depth-2 embedding can be obtained from our definition of an almost
minor by the following modifications. First remove clause (4). Second replace (2) with the following
condition: for every x ∈ X there is a y ∈ Y s.t. x ∈ M(y) and for every x, x′ adjacent in GX there
exists either y, y′ adjacent in GY such that x ∈ M(y) and x′ ∈ M(y′) or there exists y such that
{x, x′} ⊆ M(y). If we also remove clause (1) we get the general definition of an embedding.

C. Berkholz and H. Vinall-Smeeth 113:15

1

2

1

3

1

4

1

1, 2

1

1, 3

1

1, 4

1

2

2

3

2

4

1

1

2

2, 3

2

2, 4

1

1

1

3

3

4

1

1

1

1

3

3, 4

Figure 2 Construction from Lemma 24 for the case k = 4. The node in the ith row and jth
column is labelled by the {a | ua ∈ M(vi,j)}.

Proof of Lemma 24. Set

X :=V (Kk) = {ui | i ∈ [k]},
Y :=V (G2k−2) = {vi,j | i, j ∈ [2k − 2]},

where vi,j is the vertex in the ith row and jth column of the grid. Define M : Y → 2X as
follows:
1. if j − 1 > i, M(vi,j) = {u1},
2. otherwise if i ≥ j − 1 then:

a. if i and j are both odd, M(vi,j) = {u(j+1)/2},
b. if i is odd and is j even, M(vi,j) = {uj/2},
c. if i is even and j is odd, M(vi,j) = {u(i+2)/2},
d. if i and j are both even, M(vi,j) = {u(i+2)/2, uj/2}.

See Figure 2 for the case k = 4. It is easy to see that this map is almost minor, see the full
version of this paper for a proof. ◀

Proof of Theorem 1. Let A have unbounded treewidth. Then for every k there exists
Bk ∈ A of treewidth at least w(k). Then the Gaifman graph of Bk, GBk

also has treewidth
at least w(k). By Theorem 20, GBk

has Gk as a minor. Since by Lemma 24, K(k+2/2) is an
almost minor of Gk we have:

dBk
(m) =

(Lemma 14)
Ω

(
dBid

k
,C(m)

)
=

(Lemma 15)
Ω

(
(dGid

Bk
,H(m))2/ ar(Bk)

)
=

(Lemma 18)
Ω

(
(dGid

k
,H′(m))1/ ar(Bk)

)
=

(Lemma 22)
Ω

(
(dKid

(k+2)/2,D(m))1/2 ar(Bk)
)

ICALP 2023

113:16 A Dichotomy for Succinct Representations of Homomorphisms

=
(Lemma 16)

Ω
(

((dK(k+2)/2(m))1/2 ar(Bk)
)

=
(Theorem 7)

Ω
(
m(k+2)/4r/ log(3k+2)/2r(m)

)

Where C is the class of σ ∪ σBk
structures C such that {P C

a | a ∈ Bk} is a partition of
the universe, H the class of V (Gid

Bk
)-partitioned graphs, H′ the class of V (Gid

k)-partitioned
graphs and D the class of V (Kid

(k+2)/2)-partitioned graphs. From the above we can conclude
that (3) implies (1) in the statement of the theorem. Moreover, as discussed in Section 4, (1)
implies (2) follows from [32] and (2) implies (3) trivially. ◀

7 Conclusion

Our main result characterises those bounded-arity classes of structures A where the set
of homomorphisms from A ∈ A to B can be succinctly represented. More precisely, the
known upper bound of O(∥A∥2∥B∥tw(A)+1) is matched by a corresponding lower bound of
Ω(∥B∥tw(A)ε), where tw(A) is the tree-width of A and ε > 0 is a constant depending on the
excluded grid theorem and the arity of the signature. A future task would be to further close
the gap between upper and lower bounds.

Another open question is to understand the representation complexity for all classes
of structures A (of unbounded arity). As mentioned in Section 4, a polynomial O(∥A∥2 ·
∥B∥fhtw(A)) upper bound was shown where fhtw(A) is the fractional hypertreewidth of A [32]
and one might wonder whether this is tight. At least this is not the case in a parametrised
setting, where a f(∥A∥)∥B∥w sized representation for some (not necessarily polynomial-
time) computable f , is considered tractable. It is known that for structures A of bounded
submodular width the homomorphism problem can be decomposed into a (not necessarily
disjoint) union of f(∥A∥) instances of bounded fractional hypertreewidth [29, 6], leading to
a d-representation of size f(∥A∥)∥B∥subw(A) where subw(A) denotes the submodular width
of A, see Appendix A in the full version of this paper for details. Note that submodular
width can be strictly smaller than fractional hypertreewidth [28]. For a more concrete
example in this direction, the fractional hypertreewidth of C4 is 2, but one can show that
Hom(C4,H) has deterministic d-representations of size O(∥H∥3/2) – almost matching the
O(∥H∥3/2/ log7(∥H∥)) lower bound in Example 17. Note that while submodular width
characterises the FPT-fragment of deciding the existence of homomorphisms on structures
of unbounded arity [29], a tight characterisation for the parameterised counting problem is,
despite some recent progress [23], still missing. In particular, it is not clear whether bounded
submodular width implies tractable counting. We may face similar difficulties when studying
the complexity of deterministic d-representations that allow efficient counting.

In the course of proving our main result we have developed tools and techniques for
proving lower bounds on the size of d-representations, in particular using our k-clique lower
bound as a starting point, defining an appropriate notion of reduction and showing that one
can always get such a reduction if the “almost minor” relation holds. Whilst the proof of the
clique lower bound in Section 5 exploits the specific nature of d-representations, we observe
that much of the content of Section 6 can easily be used for other forms of representations.
Since we now have understood the limitations of unrestricted d-representations, it would be
good to know whether there are even more succinct representation formats that still allow
efficient enumeration.

C. Berkholz and H. Vinall-Smeeth 113:17

References

1 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.
Comb., 7(1):1–22, 1987. doi:10.1007/BF02579196.

2 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach
to efficient enumeration. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 111:1–111:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.
111.

3 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on
trees with tractable combined complexity and efficient updates. In Dan Suciu, Sebastian
Skritek, and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands,
June 30 – July 5, 2019, pages 89–103. ACM, 2019. doi:10.1145/3294052.3319702.

4 Jérôme Amilhastre, Hélène Fargier, Alexandre Niveau, and Cédric Pralet. Compiling CSPs:
A Complexity Map of (Non-Deterministic) Multivalued Decision Diagrams. International
Journal on Artificial Intelligence Tools, 23(4), 2014. doi:10.1142/S021821301460015X.

5 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. SIAM Journal on Computing, 42(4):1737–1767, 2013. doi:10.1137/110859440.

6 Christoph Berkholz and Nicole Schweikardt. Constant delay enumeration with FPT-
preprocessing for conjunctive queries of bounded submodular width. arXiv preprint, 2020.
arXiv:2003.01075.

7 Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah. Graph pattern polynomials.
In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference on Found-
ations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December
11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 18:1–18:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.18.

8 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM,
60(5):34:1–34:41, 2013. doi:10.1145/2528400.

9 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 319–330,
2017. doi:10.1109/FOCS.2017.37.

10 Andrei A. Bulatov, Victor Dalmau, Martin Grohe, and Daniel Marx. Enumerating Homo-
morphisms. In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium
on Theoretical Aspects of Computer Science, volume 3 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 231–242, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2009.1838.

11 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. J. ACM,
63(5):40:1–40:65, 2016. doi:10.1145/2820609.

12 FRK Chung, P Erdős, and Joel Spencer. On the decomposition of graphs into complete
bipartite subgraphs. In Studies in pure mathematics, pages 95–101. Springer, 1983.

13 Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of generalized
satisfiability problems. RAIRO Theor. Informatics Appl., 31(6):499–511, 1997. doi:
10.1051/ita/1997310604991.

14 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.08.008.

15 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/jair.989.

16 Christian Engels. Dichotomy theorems for homomorphism polynomials of graph classes. J.
Graph Algorithms Appl., 20(1):3–22, 2016. doi:10.7155/jgaa.00382.

ICALP 2023

https://doi.org/10.1007/BF02579196
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1142/S021821301460015X
https://doi.org/10.1137/110859440
https://arxiv.org/abs/2003.01075
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.18
https://doi.org/10.1145/2528400
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.4230/LIPIcs.STACS.2009.1838
https://doi.org/10.1145/2820609
https://doi.org/10.1051/ita/1997310604991
https://doi.org/10.1051/ita/1997310604991
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1613/jair.989
https://doi.org/10.7155/jgaa.00382

113:18 A Dichotomy for Succinct Representations of Homomorphisms

17 Tomás Feder and Moshe Y Vardi. Monotone monadic snp and constraint satisfaction. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 612–622,
1993.

18 Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. Theoretical Computer Science, 410(21-23):2045–2053,
2009.

19 Gianluigi Greco and Francesco Scarcello. Structural tractability of enumerating CSP solutions.
Constraints An Int. J., 18(1):38–74, 2013. doi:10.1007/s10601-012-9129-8.

20 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), March 2007. doi:10.1145/1206035.1206036.

21 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transac-
tions on Algorithms (TALG), 11(1):1–20, 2014.

22 Stasys Jukna and Alexander S Kulikov. On covering graphs by complete bipartite subgraphs.
Discrete Mathematics, 309(10):3399–3403, 2009.

23 Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q. Ngo, Xuanlong Nguyen,
Dan Olteanu, and Maximilian Schleich. Functional aggregate queries with additive inequalities.
ACM Trans. Database Syst., 45(4), December 2020. doi:10.1145/3426865.

24 Balagopal Komarath, Anurag Pandey, and Chengot Sankaramenon Rahul. Monotone arithmetic
complexity of graph homomorphism polynomials. In Mikolaj Bojanczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
83:1–83:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ICALP.2022.83.

25 Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas. Compiling
Constraint Networks into Multivalued Decomposable Decision Graphs. In Proceedings of the
24th International Conference on Artificial Intelligence, IJCAI’15, pages 332–338, Buenos
Aires, Argentina, 2015. AAAI Press. URL: http://dl.acm.org/citation.cfm?id=2832249.
2832295.

26 Yuan Li, Alexander A. Razborov, and Benjamin Rossman. On the ac0 complexity of subgraph
isomorphism. SIAM J. Comput., 46(3):936–971, 2017. doi:10.1137/14099721X.

27 Dániel Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 169–179. IEEE, 2007.

28 Dániel Marx. Tractable structures for constraint satisfaction with truth tables. Theory of
Computing Systems, 48(3):444–464, 2011.

29 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM (JACM), 60(6):1–51, 2013.

30 Robert Mateescu and Rina Dechter. Compiling Constraint Networks into AND/OR Multi-
valued Decision Diagrams (AOMDDs). In Principles and Practice of Constraint Programming
– CP 2006, Lecture Notes in Computer Science, pages 329–343. Springer, Berlin, Heidelberg,
September 2006. doi:10.1007/11889205_25.

31 Dhruv Mubayi and György Turán. Finding bipartite subgraphs efficiently. arXiv preprint,
2009. arXiv:0905.2527.

32 Dan Olteanu and Jakub Závodný. Size bounds for factorised representations of query results.
ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015.

33 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence (AAAI 2008), pages 517–522. AAAI Press, 2008.
URL: http://www.aaai.org/Library/AAAI/2008/aaai08-082.php.

34 Neil Robertson and P.D Seymour. Graph minors. v. excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

https://doi.org/10.1007/s10601-012-9129-8
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/3426865
https://doi.org/10.4230/LIPIcs.ICALP.2022.83
https://doi.org/10.4230/LIPIcs.ICALP.2022.83
http://dl.acm.org/citation.cfm?id=2832249.2832295
http://dl.acm.org/citation.cfm?id=2832249.2832295
https://doi.org/10.1137/14099721X
https://doi.org/10.1007/11889205_25
https://arxiv.org/abs/0905.2527
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
https://doi.org/10.1016/0095-8956(86)90030-4

C. Berkholz and H. Vinall-Smeeth 113:19

35 Benjamin Rossman. On the constant-depth complexity of k-clique. In Cynthia Dwork, editor,
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 721–730. ACM, 2008. doi:10.1145/1374376.
1374480.

36 Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM J.
Comput., 43(1):256–279, 2014. doi:10.1137/110839059.

37 Henning Schnoor and Ilka Schnoor. Enumerating all solutions for constraint satisfaction
problems. In Wolfgang Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Sym-
posium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007,
Proceedings, volume 4393 of Lecture Notes in Computer Science, pages 694–705. Springer,
2007. doi:10.1007/978-3-540-70918-3_59.

38 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM (JACM),
67(5):1–78, 2020.

ICALP 2023

https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1137/110839059
https://doi.org/10.1007/978-3-540-70918-3_59

	1 Introduction
	2 Preliminaries
	3 Homomorphisms and the complexity of constraint satisfaction
	4 Factorised Representations
	5 A near-optimal bound for cliques
	6 The representation dichotomy for structures of bounded arity
	6.1 Reductions between representations
	6.2 Minor reductions
	6.3 Relaxation of the minor condition

	7 Conclusion

