
Frameworks for Nonclairvoyant Network Design
with Deadlines or Delay
Noam Touitou1 #

Amazon, Tel Aviv, Israel

Abstract
Clairvoyant network design with deadlines or delay has been studied extensively, culminating in an
𝑂 (log 𝑛)-competitive general framework, where 𝑛 is the number of possible request types (Azar and
Touitou, FOCS 2020). In the nonclairvoyant setting, the problem becomes much harder, as Ω(

√
𝑛)

lower bounds are known for certain problems (Azar et al., STOC 2017). However, no frameworks
are known for the nonclairvoyant setting, and previous work focuses only on specific problems, e.g.,
multilevel aggregation (Le et al., SODA 2023).

In this paper, we present the first nonclairvoyant frameworks for network design with deadlines
or delay. These frameworks are nearly optimal: their competitive ratio is 𝑂 (

√
𝑛), which matches

known lower bounds up to logarithmic factors.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms; Theory of computation → Online algorithms

Keywords and phrases Online, Deadlines, Delay, Network Design, Nonclairvoyant

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.105

Category Track A: Algorithms, Complexity and Games

1 Introduction

In network design problems with deadlines, online connectivity requests arrive over time,
such that every request must be served by its associated deadline. A solution serves pending
requests by transmitting sets of items at various times, thus incurring some cost; the online
algorithm constructs the solution by deciding, irrevocably, whether to make a transmission
at any given time (and which items to transmit). A concrete example is Steiner tree with
deadlines, in which a weighted graph with a designated root node is given offline, and each
connectivity request names a terminal node to be connected to the root. Each transmission
consists of a set of edges, and serves each pending request if its terminal is connected to
the root by the transmitted edges; the cost of the transmission is the total cost of edges. In
network design with delay, in lieu of a deadline, every request accumulates delay cost while
pending, thus motivating quicker service by the algorithm.

A parameter that influences the difficulty of such problems is called clairvoyance. In
the clairvoyant model, upon the arrival of a request, the algorithm learns its deadline
(in the deadline case) or future delay accumulation (in the delay case). However, in the
nonclairvoyant deadline model, the algorithm only learns the deadline of a request upon
its expiration (and must then immediately serve the request if pending). Similarly, in the
nonclairvoyant delay model, the algorithm is only aware of delay accumulated until the
current time.

Various network design problems with deadlines or delay were studied in the clairvoyant
setting. This includes problems such as multilevel aggregation [6, 11, 3, 5, 27], facility
location [3, 7], TCP Acknowledgement [17, 24, 12] and joint replenishment [13, 10, 8, 16].

1 This work does not relate to the author’s position at Amazon.

EA
T

C
S

© Noam Touitou;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 105; pp. 105:1–105:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noamtwx@gmail.com
https://orcid.org/0000-0002-5720-4114
https://doi.org/10.4230/LIPIcs.ICALP.2023.105
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

105:2 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

For general, clairvoyant network design with deadlines or delay, algorithmic frameworks were
presented in [4]. These frameworks yield logarithmic competitiveness with respect to multiple
parameters: the number of requests, which we denote 𝑚; the number of request types (e.g.,
number of possible terminals for Steiner tree), which we denote 𝑛; and the number of items
in the item set2.

The nonclairvoyant setting, however, is less thoroughly studied. Some specific problems of
the network design with deadlines/delay class gracefully handle nonclairvoyance; for example,
for nonclairvoyant set cover with delay, logarithmic competitiveness is known [1]. Other
problems, such as joint replenishment, multilevel aggregation, and facility location with
deadlines, have Ω(

√
𝑛) and Ω(

√
𝑚) lower bounds on competitiveness in the nonclairvoyant

setting, even for randomized algorithms [26]3. (Note that an earlier, deterministic lower
bound along the same lines appears in [2] for the service with delay problem.) Recently, Le
et al. [26] presented matching and nearly-matching upper bounds for nonclairvoyant joint
replenishment and multilevel aggregation with delay, respectively. However, unlike in the
clairvoyant case, a general algorithmic framework for nonclairvoyant network design with
deadlines or delay is still not known.

1.1 Our Results

We present the first frameworks for general network design problems with deadlines or delay
in the nonclairvoyant setting. Specifically, with 𝑛 the number of possible request types and
𝑚 the number of requests, we present:
1. A deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive framework for network design

with deadlines.
2. A deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive framework for network design

with delay.

The competitiveness of our frameworks is nearly optimal, as implied by the lower bounds
of Ω(

√
𝑛) and Ω(

√
𝑚) on competitiveness for some network design problems, e.g., multilevel

aggregation [26].
While our frameworks provide nearly-optimal upper bounds for nonclairvoyant network

design, some components require specific properties to be implemented in polynomial time.
In Section 5, we show how to implement the frameworks in polynomial time for a class of
network design problems; specifically, those problems that admit Lagrangian prize-collecting
algorithms. In particular, we obtain the following results:
1. A poly-time, deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive algorithm for Steiner

tree with deadlines/delay. Note that for Steiner tree, 𝑛 equals the number of nodes in the
graph.

2. A poly-time, deterministic, 𝑂
(√︁

𝑚 log𝑚
)
-competitive algorithm for facility location with

deadlines/delay4.

2 Note that the bound with respect to the number of request types is implicit in [4].
3 The lower bound in [26] is stated in terms of joint replenishment; however, joint replenishment can be

seen as a special case of multilevel aggregation and facility location, and thus the lower bound applies
to those problems as well.

4 A fine point regarding facility location is that the number of request types 𝑛 does not yield a meaningful
bound, and thus we only state the bound with respect to the number of requests 𝑚. This is discussed
in more detail in Section 5.

N. Touitou 105:3

3. A poly-time, deterministic, 𝑂
(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive algorithm for multi-

cut with deadlines/delay on a tree. Note that for multicut, 𝑛 equals the number of node
pairs in the graph (i.e., quadratic in the number of nodes).

For nonclairvoyant facility location with deadlines/delay, our algorithm is the first algorithm.
This is also the case for nonclairvoyant multicut with deadlines or delay. For nonclairvoyant
Steiner tree, there existed no explicit previous algorithm; however, randomly embedding into
an HST [18] then using the multilevel aggregation algorithm of [26] would yield a randomized
𝑂 (
√
𝑛 log 𝑛)-competitive algorithm, with no guarantee in 𝑚. Our algorithm for Steiner tree

improves the power of the logarithm, is deterministic, and has a guarantee in 𝑚.

1.2 Other Related Work
A related problem to network design with deadlines/delay is online service, in which one is
given a server (or multiple servers) on a metric space, which must then be moved to locations
specified in incoming online requests. In fact, Steiner tree (and multilevel aggregation) with
delay can be seen as a special case of this problem, in which the input forces the server
to rest at the root node of the given graph (or tree) through an infinite stream of urgent
requests at the root. Service with delay was first introduced by Azar et al. [2], and has since
seen additional work [9, 3, 20, 25, 21].

The problem of set cover with delay was introduced in [14]; in this problem, the algorithm
must transmit sets containing requested elements. While set cover is not usually considered
a network design problem, set cover with delay falls within the network design with delay
category, and thus the framework of [4] yields a logarithmic-competitive clairvoyant algorithm.
As mentioned earlier, this problem also admits a logarithmic-competitive nonclairvoyant
algorithm, as presented in [1] (and later derandomized in [26]). The best lower bound for
this problem, given in [28], is nearly tight given the upper bound for network design implied
by the framework in [4].

2 Preliminaries

We now introduce definitions and notation related to network design with deadlines/delay;
to make these concrete, we also apply these definitions to the special case of Steiner tree
with deadlines/delay.

Offline network design. In offline network design, one is given a set of items E with
associated costs 𝑐, and a set of requests 𝐻. (In Steiner tree, an input graph is given with a
designated root node; the items are the edges of the input graph, and every request demands
connecting some terminal to the root.) A request can be served by any chosen subset of
items, and we assume that serving requests is upwards-closed: that is, if request ℎ ∈ 𝐻 is
served by a subset of items 𝐸 ⊆ E, then it is also served by any superset of 𝐸. (In Steiner
tree, a set of edges satisfies a request if it contains a path connecting the request’s terminal to
the root; note that satisfaction is indeed upwards-closed.) A solution to the offline problem
is a subset of items 𝐸 ⊆ E which serves all requests in 𝐻; the cost of the solution is the total
cost of items in 𝐸 .

Online network design with deadlines. In online network design with deadlines, one is also
given a set of items E with costs. Now, however, the requests 𝑄 arrive over time; we denote
by 𝑚 := |𝑄 | the number of requests in the online input. Each request 𝑞 ∈ 𝑄 has a type, and we

ICALP 2023

105:4 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

denote the set of all possible request types by H , and define 𝑛 := |H |; in fact, every request
type in the online problem corresponds to a possible request in the offline problem. We denote
by 𝑟𝑞 the release time of request 𝑞, and each request 𝑞 also has a deadline time 𝑑𝑞 by which
it must be served. At any point in time, the algorithm may transmit any subset of items
𝐸 ⊆ E; such a transmission is also called a service, and incurs a cost of 𝑐(𝐸) :=

∑
𝑒∈𝐸 𝑐(𝑒) for

the algorithm. Transmitting 𝐸 serves all pending requests whose request type is served by 𝐸

in the offline problem. The goal of the algorithm is to serve every request by its deadline,
while minimizing the total cost of services, i.e.,

∑
service 𝑆

∑
𝑒∈𝐸 (𝑆) 𝑐(𝑒) (where 𝐸 (𝑆) is the set

of items transmitted in 𝑆).
For concreteness, consider Steiner tree with deadlines, in which requests for connecting

terminals to the root are served by transmitting subsets of edges. As transmissions are
momentary, it is meaningful for multiple requests (with different release/deadline times) to
request connecting the same terminal 𝑣; such requests would belong to the same request type,
as they would be satisfied by exactly the same subsets of items (i.e., those that contain a
path from 𝑣 to the root). In particular, note that for Steiner tree the number of request
types 𝑛 is equal to the number of nodes in the graph.

Online network design with delay. In the (more general) model with delay, each request 𝑞

has a nondecreasing, continuous delay function 𝑑𝑞, such that for every 𝑡 ≥ 𝑟𝑞 the amount
𝑑𝑞 (𝑡) is the total delay cost incurred by 𝑞 until time 𝑡 (if it is still pending at that time).
The goal of the algorithm in this case is to minimize the total cost of services plus the total
delay cost. That is, denoting by 𝐶𝑞 the time in which request 𝑞 is served in the algorithm,
the goal is to minimize

∑
service 𝑆

∑
𝑒∈𝐸 (𝑆) 𝑐(𝑒) +

∑
𝑞∈𝑄 𝑑𝑞 (𝐶𝑞). For ease of notation, for every

set of requests 𝑄′ and time 𝑡, we define 𝐷 (𝑄′, 𝑡) :=
∑

𝑞∈𝑄′ 𝑑𝑞 (𝑡).

Additional notation. For a request 𝑞 in online network design with deadlines/delay, we
define ℎ𝑞 to be the type of request 𝑞. For a set of requests 𝑄′, we define 𝐻 (𝑄′) ⊆ H to be{
ℎ𝑞 |𝑞 ∈ 𝑄′

}
. For a set of request types 𝐻, we use ND(𝐻) to denote the minimum cost of

serving these request types; slightly abusing notation, for a set of requests 𝑄′, we define
ND(𝑄′) := ND(𝐻 (𝑄′)).

For a set of request types 𝐻, we define ℓ(𝐻) := ⌈log ND({𝐻})⌉. When considering a single
request type, we sometimes write ℓ(ℎ) instead of ℓ({ℎ}). Finally, for request 𝑞 and set of
requests 𝑄′, we define ℓ(𝑞) := ℓ

(
ℎ𝑞

)
and ℓ(𝑄′) := ℓ(𝐻 (𝑄′)).

3 Framework for Network Design with Deadlines

In this section, we present a framework for nonclairvoyant network design with deadlines.
Analyzing this framework, we obtain the following theorem.

▶ Theorem 1. There exists a deterministic, 𝑂 (min
{√︁

𝑛 log 𝑛,
√︁
𝑚 log𝑚

}
)-competitive al-

gorithm for network design with deadlines.

Algorithm’s description. The algorithm assigns levels to each request according to the
logarithm of the cost of serving that request. Upon the deadline of a pending request 𝑞, the
algorithm starts a service 𝜆 that serves the request, thus incurring a cost of at most 2ℓ (𝑞) ;
the level of the service, denoted ℓ𝜆, is defined to be the level of the triggering request 𝑞. If a
service is large, it also serves additional requests; it does so by identifying a set of pending
request types which can be served, subject to some specific budget for every request type.

N. Touitou 105:5

Otherwise, a service is small, and does not serve additional requests. Whether a service is
large or small is determined by the triggering request 𝑞, i.e., the request upon whose deadline
the service is started; specifically, the service triggered by the deadline of 𝑞 will be large if
and only if the variable 𝑏𝑞 is True at that time.

Specifically, suppose a large service 𝜆 takes place. The service will identify the eligible
requests, i.e., the pending requests whose level is at most ℓ𝜆. Denoting by 𝐻 the set of request
types of those eligible requests, the service will give a budget of Θ̃(2ℓ𝜆/

√︁
|𝐻 |) to each request

type, and will attempt to find a subset of requests that can be served without exceeding the
budget for those request types. Thus, the cost of such a large service is at most Θ̃(2ℓ𝜆 ·

√︁
|𝐻 |).

The variable 𝑏𝑞, which controls whether 𝑞 will trigger a large service, is initially True
for every request 𝑞. However, if a large service of level at least ℓ(𝑞) takes place while 𝑞 is
pending, the variable is set to False. Thus, a request that “experienced” a large service
for which it was eligible will never trigger a large service upon its deadline. The formal
description of the algorithm is given in Algorithm 1.

Algorithm 1 Nonclairvoyant framework for network design with deadlines.

1 Event Function UponRequest(𝑞)
2 𝑏𝑞 ← True.
3 Event Function UponDeadline(𝑞)
4 start a new service 𝜆, and set ℓ𝜆 = ℓ(𝑞).
5 define 𝐸𝜆 to be the set of pending requests of level at most ℓ𝜆, and define 𝐻 ← 𝐻 (𝐸𝜆).
6 transmit ND(

{
ℎ𝑞

}
), serving all requests of type ℎ𝑞 .

7 if 𝑏𝑞 then
8 let 𝑥𝜆 ← 2ℓ𝜆 ·

√︃
log(1+|𝐻 |)
|𝐻 | .

9 let 𝐻′ ⊆ 𝐻 be a maximal subset such that ND(𝐻′) ≤ 𝑥𝜆 · |𝐻′ |.
10 transmit ND(𝐻′), serving all requests of types in 𝐻′.

// set 𝑏𝑞′ for eligible requests 𝑞′ which are still pending.
11 let 𝑄𝜆 be the subset of requests served by 𝜆.
12 foreach 𝑞′ ∈ 𝐸𝜆 \𝑄𝜆 do
13 set 𝑏𝑞′ ← False.

3.1 Analysis
We now focus on proving Theorem 1.

▶ Definition 2. We define the following terms:
1. We denote by Λ,Λ∗ the set of services in the algorithm and in the optimal solution,

respectively.
2. For a service 𝜆 ∈ Λ, we define 𝑄𝜆 to be the set of requests served by (the transmissions

of) 𝜆. For an optimal service 𝜆∗ ∈ Λ∗, we define 𝑄𝜆∗ in a similar way.
3. For a service 𝜆 ∈ Λ, we define ℓ𝜆, 𝐸𝜆, 𝑥𝜆 to be the values of the variables of those names

in UponDeadline.
4. We define 𝐻𝜆 = 𝐻 (𝐸𝜆). As a shorthand, we define 𝑦𝜆 = |𝐻𝜆 |.
5. We define the triggering request of 𝜆, denoted 𝑞★

𝜆
, to be the request upon whose deadline

𝜆 was initiated.
6. We define 𝑐(𝜆) to be the total transmission cost incurred in service 𝜆.

ICALP 2023

105:6 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

7. We say that an algorithm service 𝜆 ∈ Λ is charged to an optimal service 𝜆∗ if 𝑞★
𝜆
∈ 𝑄𝜆∗ .

For every 𝜆∗ ∈ Λ∗, we define Λ𝜆∗ ⊆ Λ to be the set of services charged to 𝜆∗.
8. We call a service 𝜆 a large service if upon the start of 𝜆 we have 𝑏𝑞★

𝜆
= True. Otherwise,

𝜆 is a small service.
9. For every service 𝜆 in the algorithm or in the optimal solution, denote by 𝑡𝜆 the time in

which the service takes place.

We define 𝑘 to be the maximum size of 𝐻 (𝐸𝜆) over all services 𝜆. In particular, note that
𝑘 ≤ min{𝑛, 𝑚}, which allows us to prove our competitiveness bounds with respect to 𝑘. Fix
henceforth any optimal service 𝜆∗ ∈ Λ∗.

▶ Proposition 3. For every 𝜆 ∈ Λ𝜆∗ , it holds that 𝑡𝜆 ≥ 𝑡𝜆∗ .

Proof. Note that 𝜆 is triggered by the deadline of request 𝑞★
𝜆
. From the definition of Λ𝜆∗ , we

have that 𝑞★
𝜆
∈ 𝑄𝜆∗ ; thus, 𝑡𝜆∗ ≤ 𝑑𝑞★

𝜆
= 𝑡𝜆. ◀

We partition Λ𝜆∗ , into three parts, the costs of which we bound individually:

Λ1
𝜆∗ : The large services in Λ𝜆∗ .

Λ2
𝜆∗ : The small services 𝜆 such that 𝑏𝑞★

𝜆
was first set to False at time smaller than 𝑡𝜆∗ .

Λ3
𝜆∗ : The small services 𝜆 such that 𝑏𝑞★

𝜆
was first set to False at time at least 𝑡𝜆∗ .

▶ Proposition 4. For every level ℓ, there exists at most one level-ℓ service in Λ1
𝜆∗ .

Proof. Assume otherwise that there exist 𝜆1, 𝜆2 ∈ Λ𝜆∗ which are both large, and assume
without loss of generality that 𝑡𝜆2 > 𝑡𝜆1 . From the previous claim, we have that 𝑡𝜆1 ≥ 𝑡𝜆∗ ,
and thus 𝑞★

𝜆2
is pending at 𝑡𝜆1 . Moreover, as ℓ

(
𝑞★
𝜆2

)
= ℓ𝜆1 = ℓ, we have that 𝑞★

𝜆2
∈ 𝐸𝜆1 .

But Line 13 of 𝜆1 sets 𝑏𝑞★
𝜆2

to be False, and this value is maintained until 𝜆2. This is in
contradiction to 𝜆2 being a large service. ◀

▶ Proposition 5. For every ℓ, we have
∑

𝜆∈Λ1
𝜆∗ |ℓ𝜆=ℓ

𝑐(𝜆) = 𝑂 (
√︁
𝑘 log 𝑘) · 2ℓ .

Proof. From Proposition 4, it holds that Λ1
𝜆∗ contains at most one (large) service of level

ℓ, and thus the left-hand side of the equation contains at most one summand. The cost of
a large service 𝜆 of level ℓ consists of two costs: the first cost is the cost of transmitting
ND(ℎ𝑞★

𝜆
), which is at most 2ℓ , using the fact that ℓ

(
𝑞★
𝜆

)
= ℓ; the second cost is the cost of

the transmission in Line 10, which is at most

𝑦𝜆 · 𝑥𝜆 ≤ 2ℓ ·
√︁
𝑦𝜆 log(1 + 𝑦𝜆) = 𝑂 (

√︁
𝑘 log 𝑘) · 2ℓ ◀

▶ Proposition 6. For every ℓ, we have∑︁
𝜆∈Λ2

𝜆∗ |ℓ𝜆=ℓ
𝑐(𝜆) = 𝑂 (

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗).

Proof. Fix any ℓ. We define Λ′ :=
{
𝜆 ∈ Λ2

𝜆∗ |ℓ𝜆 = ℓ
}

and, as a shorthand, define 𝑧 := |Λ′ |.
We define 𝑅 to be the set of triggering requests of services in Λ′. First, we claim that the
request types of triggering requests of services in Λ′ are distinct, i.e., that |𝐻 (𝑅) | = |Λ′ | = 𝑧.
To prove this claim, assume for contradiction that there exist two services in 𝜆1, 𝜆2 ∈ Λ′

with triggering requests of the same type, and further assume without loss of generality
that 𝑡𝜆1 < 𝑡𝜆2 . Since 𝑞★

𝜆2
∈ 𝑄𝜆∗ , it must be pending at 𝑡𝜆∗ ; moreover, Proposition 3 implies

that 𝑡𝜆∗ ≤ 𝑡𝜆1 , and thus 𝑞★
𝜆2

is pending at 𝑡𝜆1 . But then 𝜆1 would serve 𝑞★
𝜆2

in Line 6, in
contradiction to 𝑞★

𝜆2
triggering 𝜆2. Thus, the proof of the claim is complete.

N. Touitou 105:7

Now, consider the first large service 𝜆 ∈ Λ after which for every triggering request 𝑞 of
a service in Λ′ we have 𝑏𝑞 = False; it must be that ℓ𝜆 ≥ ℓ. From the definition of Λ′, it
holds that 𝑡𝜆 < 𝑡𝜆∗ ; combining this with Proposition 3, we have that 𝑡𝜆 < 𝑡𝜆′ for every 𝜆′ ∈ Λ′.
In particular, all triggering requests of services from Λ′ must be pending at 𝑡𝜆, and since
they are of level ℓ, these requests are also in 𝐸𝜆. However, they all remain pending after 𝜆,
which means that ND(𝐻 (𝑅)) ≥ 𝑥𝜆 · |𝐻 (𝑅) |. (Otherwise, we would get a contradiction to the
maximality of the set 𝐻′ defined in Line 9, as ND(𝐻 (𝑅)) could be added to the solution
without exceeding budget.) We thus have

𝑐(𝜆∗) ≥ ND(𝐻 (𝑅)) ≥ 𝑥𝜆 · |𝐻 (𝑅) | ≥ 2ℓ ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧 (1)

where the third inequality uses the fact that 𝑦𝜆 ≤ 𝑘. Meanwhile, the total cost of services in
Λ′ is at most 𝑧 · 2ℓ . Combining with Equation (1) completes the proof. ◀

▶ Proposition 7. For every ℓ, we have
∑

𝜆∈Λ3
𝜆∗ |ℓ𝜆=ℓ

𝑐(𝜆) = 𝑂 (
√︁
𝑘/log 𝑘) · 𝑐(𝜆∗).

Proof. For ease of notation, define Λ′ :=
{
𝜆 ∈ Λ3

𝜆∗ |ℓ𝜆 = ℓ
}
. We also define 𝑅 to be the set of

triggering requests for requests in Λ′. We define 𝑧 := |Λ′ |; using an identical argument to
that in the proof of Proposition 6, it holds that |𝐻 (𝑅) | = 𝑧. Let 𝜆 be the first large service of
level at least ℓ such that 𝑡𝜆 ≥ 𝑡𝜆∗ . Note that the following hold:
1. 𝑡𝜆 < 𝑡𝜆′ for every 𝜆′ ∈ Λ′ (stems from the definition of Λ′).
2. 𝑅 are all pending at 𝑡𝜆 and eligible for 𝜆 (as 𝑡𝜆 ≥ 𝑡𝜆∗).
3. 𝜆 changes 𝑏𝑞 from True to False for every 𝑞 ∈ 𝑅.
Since 𝑅 were all eligible for 𝜆 but were not served, it must be the case that ND(𝐻 (𝑅)) ≥
𝑥𝜆 · 𝑧 ≥ 2ℓ ·

√︁
𝑧 log(1 + 𝑧); since 𝜆∗ serves 𝑅, it thus holds that 𝑐(𝜆∗) ≥ 2ℓ ·

√︁
𝑧 log(1 + 𝑧). We

therefore have
∑

𝜆∈Λ3
𝜆∗ |ℓ𝜆=ℓ

𝑐(𝜆) ≤ 2ℓ · 𝑧 ≤
√︁
𝑧/log(1 + 𝑧) · 𝑐(𝜆∗). We now note that all requests

in 𝑅 were pending during 𝜆; thus, 𝑧 ≤ 𝑘, which completes the proof. ◀

Proof of Theorem 1. We first observe that ALG =
∑

𝜆∈Λ 𝑐(𝜆) = ∑
𝜆∗∈Λ∗

∑
𝜆∈Λ𝜆∗ 𝑐(𝜆). We

claim that for every 𝜆∗ ∈ Λ∗, we have
∑

𝜆∈Λ𝜆∗ 𝑐(𝜆) ≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗); since OPT =∑

𝜆∗∈Λ∗ 𝑐(𝜆∗), proving this claim completes the proof of the theorem.
To prove the claim, fix any optimal service 𝜆∗ ∈ Λ∗, and define ℓ := ⌈log 𝑐(𝜆∗)⌉. Note

that for every service 𝜆 ∈ Λ𝜆∗ we have ℓ𝜆 ≤ ℓ; this is since 𝑞★
𝜆

is served by 𝜆∗, which implies
ND(𝑞★

𝜆
) ≤ 𝑐(𝜆∗). We partition Λ𝜆∗ into Λ1

𝜆∗ ,Λ
2
𝜆∗ ,Λ

3
𝜆∗ as before, and bound each set separately.

First, we bound the cost of Λ1
𝜆∗ as follows.∑︁

𝜆∈Λ1
𝜆∗

𝑐(𝜆) =
∑︁
ℓ′≤ℓ

∑︁
𝜆∈Λ1

𝜆∗ |ℓ𝜆=ℓ
′

𝑐(𝜆) ≤
∑︁
ℓ′≤ℓ

𝑂 (
√︁
𝑘 log 𝑘) · 2ℓ′ (2)

≤ 𝑂 (
√︁
𝑘 log 𝑘) · 2ℓ ≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

where the first inequality uses Proposition 5, and the second inequality bounds a geometric
series.

Defining 𝛾 := ⌈log 𝑘⌉, we bound the cost of Λ2
𝜆∗ .∑︁

𝜆∈Λ2
𝜆∗

𝑐(𝜆) =
∑︁

𝜆∈Λ2
𝜆∗ |ℓ𝜆≤ℓ−𝛾

𝑐(𝜆) +
∑︁

𝜆∈Λ2
𝜆∗ |ℓ−𝛾<ℓ𝜆≤ℓ

𝑐(𝜆) ≤
∑︁

ℓ′≤ℓ−𝛾
𝑘 · 2ℓ′ +

∑︁
𝜆∈Λ2

𝜆∗ |ℓ−𝛾<ℓ𝜆≤ℓ
𝑐(𝜆) (3)

≤
∑︁

ℓ′≤ℓ−𝛾
𝑘 · 2ℓ′ + 𝛾 · 𝑂 (

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗) ≤ 2 · 2ℓ + 𝛾 · 𝑂 (

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗)

≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

ICALP 2023

105:8 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

Here, the first inequality is due to the fact that the total cost of level-ℓ′ small services in
Λ𝜆∗ cannot exceed 𝑘 · 2ℓ′ . (As seen in the proof of Proposition 6, the requests of level ℓ′
triggering small services are of distinct request types, and are all eligible in a single service 𝜆;
thus, their number is at most 𝑘.) The second inequality is through using Proposition 6, the
third inequality is through the definition of 𝛾 and through summing a geometric sequence,
and the fourth inequality notes that through the definition of ℓ we have 𝑐(𝜆∗) ≥ 2ℓ−1.

Replacing Proposition 6 with Proposition 7, an identical argument to the one used for
bounding Λ2

𝜆∗ can be used for bounding Λ3
𝜆∗ , yielding the following:∑︁

𝜆∈Λ3
𝜆∗

𝑐(𝜆) = 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗) (4)

Combining Equations (2) to (4) yields
∑

𝜆∈Λ𝜆∗ 𝑐(𝜆) ≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗), completing the

proof. ◀

4 Framework for Network Design with Delay

In this section, we present a framework for nonclairvoyant network design with delay. Using
this framework, we prove the following theorem.

▶ Theorem 8. There exists a deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive al-

gorithm for network design with delay.

4.1 The Algorithm

We now describe the framework for nonclairvoyant network design with delay. For every
time 𝑡 and set of requests 𝑄′ which are pending at 𝑡, we say that 𝑄′ are critical at 𝑡 if
𝐷 (𝑄′, 𝑡) ≥ ND(𝑄′).

Framework’s description. The framework for delay contains many analogues to the deadline
framework of Section 3. In the deadline case, a service was triggered upon the deadline of
a pending request; in the delay case, the framework initiates a service whenever a set of
pending requests becomes “critical”, which is when its accumulated delay justifies its service.
In the deadline case, whether a service triggered by request 𝑞 was large is determined by the
associated variable 𝑏𝑞. In the delay case, we also maintain the variable 𝑏𝑞 for every pending
request 𝑞.

However, the delay case introduces an additional complication: the triggering set contains
multiple requests, and thus multiple values for the variables 𝑏𝑞. Where services for deadlines
were either “large” or “small”, in the delay case this distinction is no longer binary: services
identify a budget for expansive service which depends on the large requests in the triggering
set.

The service considers the requests 𝑞 in its triggering set with 𝑏𝑞 = True, and finds the
largest subset of those requests whose delay is at least a constant fraction of its service cost.
This subset is considered “mature” enough to justify expansive service, and its service cost
is used as a budget for serving pending requests. Thus, where in deadlines the level of the
service was simply the level of the triggering requests, for delay the level depends on the cost
of the “mature” subset of large requests.

N. Touitou 105:9

Algorithm 2 Nonclairvoyant framework for network design with delay.

1 Event Function UponRequest(𝑞)
2 𝑏𝑞 ← True.
3 Event Function UponCritical(𝑅) // called when the delay of some set 𝑅 exceeds ND(𝑅)
4 Start a new service 𝜆; denote the current time by 𝑡.
5 Define 𝑅⊤ ←

{
𝑞 ∈ 𝑅

��𝑏𝑞 = True
}
.

6 Let 𝑅★ ⊆ 𝑅⊤ be a maximal subset such that 𝐷
(
𝑅★, 𝑡

)
≥ ND(𝐻 (𝑅★))

2 .
7 Define ℓ𝜆 ← ℓ

(
𝑅★

)
.

8 Define 𝐸 to be the set of pending requests of level at most ℓ𝜆, and define 𝐻 ← 𝐻 (𝐸).
9 Transmit ND(𝐻 (𝑅)), serving all requests of types 𝐻 (𝑅).

10 Let 𝑥𝜆 ← 2ℓ𝜆 ·
√︃

log(1+|𝐻 |)
|𝐻 | .

11 Let 𝐻′ ⊆ 𝐻 be a maximal subset such that ND(𝐻′) ≤ |𝐻′ | · 𝑥𝜆.
12 Transmit ND(𝐻′), serving all requests of types in 𝐻′.

// set 𝑏𝑞′ for eligible requests 𝑞′ which are still pending.
13 let 𝑄𝜆 be the subset of pending requests served by 𝜆.
14 foreach 𝑞′ ∈ 𝐸 \𝑄𝜆 do
15 set 𝑏𝑞′ ← False.

4.2 Analysis
Fix any optimal service 𝜆∗ ∈ Λ∗.

▶ Definition 9. For a service 𝜆 ∈ Λ, define 𝑅𝜆, 𝑅
⊤
𝜆
, 𝑅★

𝜆
, 𝐸𝜆 to be the values of the variables

𝑅, 𝑅⊤, 𝑅★, 𝐸 in the call to UponCritical which started 𝜆. Moreover, we define 𝑅⊥
𝜆

:= 𝑅𝜆\𝑅⊤𝜆 ;
these are the requests 𝑞 ∈ 𝑅𝜆 such that 𝑏𝑞 = False at 𝑡𝜆. In addition, define ℓ𝜆, 𝑄𝜆 as they
are defined in the call to UponCritical.

For a service 𝜆 ∈ Λ and an optimal service 𝜆∗ ∈ Λ∗, for ease of notation, when referring to
a set of jobs related to 𝜆 we add 𝜆∗ to the subscript to intersect this set with 𝑄𝜆∗ . For example,
we define 𝑅𝜆,𝜆∗ := 𝑅𝜆 ∩𝑄𝜆∗ , 𝑅⊤

𝜆,𝜆∗ := 𝑅⊤
𝜆
∩𝑄𝜆∗ , 𝑅⊥

𝜆,𝜆∗ := 𝑅⊥
𝜆
∩𝑄𝜆∗ and 𝑅★

𝜆,𝜆∗ := 𝑅★
𝜆
∩𝑄𝜆∗ . We

also define ℓ𝜆,𝜆∗ := ℓ

(
𝑅★
𝜆,𝜆∗

)
.

We define the cost of a service 𝜆, denoted by 𝑐(𝜆), to be the total transmission cost in 𝜆,
plus the total delay cost of requests served in 𝜆. We define 𝑐(𝜆∗) identically for an optimal
service 𝜆∗ ∈ Λ∗.

▶ Proposition 10. For a service 𝜆, it holds that

𝑐(𝜆) ≤ 𝑂 (1) ·
∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+𝑂 (

√︁
𝑘 log 𝑘) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
Proof. Since a service is triggered whenever a set of requests becomes critical, the algorithm
maintains that for every set 𝑄′ of pending requests at any time 𝑡 we have 𝐷 (𝑄′, 𝑡) ≤ ND(𝑄′).
In particular, this holds for the set of requests served by 𝜆 with respect to the service time 𝑡𝜆.
Thus, the delay cost of the service can be charged to the transmission costs of the service;
we hence focus on bounding the transmission costs of 𝜆.

The service 𝜆 performs two transmissions, one at Line 9 and one at Line 12. The first
transmission costs ND(𝑅𝜆); since 𝑅𝜆 is critical at 𝑡𝜆, it holds that

ND(𝑅𝜆) = 𝐷 (𝑅𝜆, 𝑡𝜆) = 𝐷
(
𝑅⊥𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅⊤𝜆 \𝑅★

𝜆 , 𝑡𝜆
)
+ 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
.

ICALP 2023

105:10 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

First, let us bound the delay of requests in 𝑅⊤
𝜆
\𝑅★

𝜆
. From the choice of 𝑅★

𝜆
, it must be the

case that 𝐷
(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
<

ND(𝑅⊤
𝜆
\𝑅★

𝜆
)

2 ; assuming otherwise, we would have the following:

𝐷
(
𝑅⊤𝜆 , 𝑡𝜆

)
= 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅⊤𝜆 \𝑅★

𝜆 , 𝑡𝜆
)
≥

ND(𝑅★
𝜆
)

2 +
ND(𝑅⊤

𝜆
\𝑅★

𝜆
)

2 ≥
ND(𝑅⊤

𝜆
)

2 ,

in contradiction to the maximality in the definition of 𝑅★
𝜆
; thus, 𝐷

(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
<

ND(𝑅⊤
𝜆
\𝑅★

𝜆
)

2 ≤
ND(𝑅𝜆)

2 . However, we know that 𝐷 (𝑅𝜆, 𝑡𝜆) = ND(𝑅𝜆), and therefore conclude that

ND(𝑅𝜆) ≤ 2
(
𝐷

(
𝑅⊥𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

))
We have thus bounded the cost of the first transmission.

To bound the cost of the second transmission in 𝜆, let 𝐻 be the set of pending request
types in 𝐸𝜆. We know that the cost of the second transmission is at most 𝑥𝜆 · |𝐻 | =
2ℓ𝜆 ·

√︁
|𝐻 | log(1 + |𝐻 |). Additionally, note that 2ℓ𝜆 ≤ 2 · ND(𝑅★

𝜆
) ≤ 4 · 𝐷

(
𝑅★
𝜆
, 𝑡𝜆

)
, where the

second inequality is due to the definition of 𝑅★
𝜆
. Overall, the cost of the second transmission

is at most 4 · 𝐷
(
𝑅★
𝜆
, 𝑡𝜆

)
·
√︁
𝑘 log(1 + 𝑘).

To summarize, we proved that

𝑐(𝜆) ≤ 𝑂 (1) · 𝐷
(
𝑅⊥𝜆 , 𝑡𝜆

)
+𝑂 (

√︁
𝑘 log 𝑘) · 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
= 𝑂 (1) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+𝑂 (

√︁
𝑘 log 𝑘) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
. ◀

For every 𝜆 ∈ Λ, 𝜆∗ ∈ Λ∗ we define the joint cost of 𝜆 and 𝜆∗ as the following.

𝑐(𝜆, 𝜆∗) := 𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+

√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
.

Through Proposition 10, we have

ALG ≤ 𝑂 (1) ·
∑︁
𝜆∈Λ

∑︁
𝜆∗∈Λ∗

𝑐(𝜆, 𝜆∗). (5)

We henceforth focus on bounding joint costs.

▶ Proposition 11. For every optimal service 𝜆∗ ∈ Λ∗, it holds that∑︁
𝜆∈Λ |𝑡𝜆≤𝑡𝜆∗

𝑐(𝜆, 𝜆∗) ≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗).

Proof. For every service 𝜆 ∈ Λ such that 𝑡𝜆 ≤ 𝑡𝜆∗ , it holds that

𝑐(𝜆, 𝜆∗) ≤
√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅𝜆,𝜆∗ , 𝑡𝜆

)
≤

√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅𝜆,𝜆∗ , 𝑡𝜆∗

)
Note that every request in 𝑄𝜆∗ is critical in at most one service in the algorithm, as critical
requests in a service are always served by that service. Thus, summing over different services,
we get the following:∑︁

𝜆∈Λ |𝑡𝜆≤𝑡𝜆∗
𝑐(𝜆, 𝜆∗) ≤

√︁
𝑘 log(1 + 𝑘) ·

∑︁
𝜆∈Λ |𝑡𝜆≤𝑡𝜆∗

𝐷
(
𝑅𝜆,𝜆∗ , 𝑡𝜆∗

)
≤

√︁
𝑘 log(1 + 𝑘) · 𝐷 (𝑄𝜆∗ , 𝑡𝜆∗) ≤

√︁
𝑘 log(1 + 𝑘) · 𝑐(𝜆∗) ◀

We thus bounded the joint cost of services prior to 𝜆∗. It remains to bound the joint cost
of services at time at least 𝑡𝜆∗ .

N. Touitou 105:11

▶ Proposition 12. For every optimal service 𝜆∗, it holds that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (1) · 𝑐(𝜆∗).

Proof. Let Λ′ ⊆ Λ be the subset of services that occurred after 𝑡𝜆∗ . First, we claim that for
every integer ℓ, there exists at most one service in Λ′ with ℓ𝜆,𝜆∗ = ℓ. To prove the claim,
assume for contradiction that there are two services 𝜆1, 𝜆2 ∈ Λ′ such that ℓ𝜆1 ,𝜆∗ = ℓ𝜆2 ,𝜆∗ = ℓ,
and assume without loss of generality that 𝑡𝜆2 > 𝑡𝜆1 > 𝑡𝜆∗ . As 𝑡𝜆1 > 𝑡𝜆∗ , it must be that all
requests in 𝑅★

𝜆2 ,𝜆∗
were pending before and after 𝑡𝜆1 . Moreover, every request 𝑞 ∈ 𝑅★

𝜆2 ,𝜆∗
must

have ℓ(𝑞) ≤ ℓ, as ℓ = ℓ

(
𝑅★
𝜆2 ,𝜆∗

)
≥ ℓ(𝑞). However, ℓ𝜆1 ≥ ℓ𝜆1 ,𝜆∗ = ℓ, and thus 𝑅★

𝜆2 ,𝜆∗
⊆ 𝐸𝜆1 . But,

Line 15 in 𝜆1 sets 𝑏𝑞 = False for every 𝑞 ∈ 𝑅★
𝜆2 ,𝜆∗

, in contradiction to having 𝑏𝑞 = True at
𝑡𝜆2 . We conclude that 𝑅★

𝜆2 ,𝜆∗
= ∅; however, this implies that ℓ𝜆2 ,𝜆∗ = −∞, in contradiction to

ℓ𝜆2 ,𝜆∗ = ℓ.
Using this claim, for every level ℓ, there exists at most one service 𝜆 ∈ Λ′ such that

ℓ𝜆,𝜆∗ = ℓ. For such 𝜆, it holds that 𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ ND(𝑅★

𝜆,𝜆∗) ≤ 2ℓ (note that delay cannot
exceed service cost since critical sets trigger a service). Also note that max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ ℓ(𝑄𝜆∗).
Summing over the possible levels, we get that∑︁

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗
𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 2 · 2max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ 2 · 2ℓ (𝑄𝜆∗) ≤ 4 · 𝑐(𝜆∗). ◀

At this point, the only missing ingredient for the main theorem is the following lemma.

▶ Lemma 13. For every optimal service 𝜆∗ ∈ Λ, it holds that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

The proof of Lemma 13 appears in Appendix A; assuming Lemma 13 holds, we proceed
to prove Theorem 8.

Proof of Theorem 8. Equation (5) implies that it is enough to bound the sum of joint costs.
Fix any optimal service 𝜆∗; we have∑︁

𝜆∈Λ
𝑐(𝜆, 𝜆∗) =

∑︁
𝜆∈Λ |𝑡𝜆<𝑡𝜆∗

𝑐(𝜆, 𝜆∗) +
∑︁

𝜆∈Λ |𝑡𝜆≥𝑡𝜆∗
𝑐(𝜆, 𝜆∗)

≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗) +

∑︁
𝜆∈Λ |𝑡𝜆≥𝑡𝜆∗

(
𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+

√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

))
≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

where the first inequality uses Proposition 11 and the second inequality uses Proposition 12
and Lemma 13. ◀

5 Polynomial Time through Lagrangian Prize Collecting

While the algorithms in this paper yield proper competitiveness bounds, it is not clear how
to implement some of their components in polynomial time. In this section, we focus on a
subset of network design problems that admit a Lagrangian prize-collecting approximation
algorithms, and describe a polynomial-time implementation of the framework. For conciseness,
we focus on the delay framework of Section 4; the result for deadlines is a special case of the
result for delay.

Considering the framework in Algorithm 2 of Section 4, we note the following components
which might take super-polynomial time:

ICALP 2023

105:12 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

1. The framework for the delay model waits until the delay cost of a subset of pending
requests exceeds the cost of serving their request types.

2. The framework solves the offline network design problem optimally, i.e., makes calls to
ND (e.g., in Lines 7 and 12).

3. The framework finds a subset of requests whose delay exceeds a constant fraction of their
service cost (Line 6).

4. The framework includes a component which, given a penalty 𝑥 and a set of request types
𝐻′, finds a maximal subset 𝐻′ ⊆ 𝐻 such that ND(𝐻′) ≥ |𝐻′ | · 𝑥 (Line 11).

The prize-collecting problem. In the offline network design problems we considered thus
far, a valid solution must serve all given requests. However, we now consider a more general
model of these problems, which is the prize-collecting model. In the (offline) prize-collecting
model, in addition to the given connectivity requests 𝐻, we are also given a penalty function
𝜋 : 𝐻 → R+; a valid solution in this model can now serve only a subset of the input requests,
and pay the penalty for the remaining requests. The total cost of the solution is thus the total
service cost plus the total penalty cost; for prize-collecting input (𝐻, 𝜋), we use PCND(𝐻, 𝜋)
to refer to the minimum total cost of a feasible solution to the input. Approximation
algorithms are known for many such prize-collecting network design problems; given an
approximation algorithm �PCND, we again use �PCND(𝐻, 𝜋) to refer to the total cost of�PCND on the input (𝐻, 𝜋). We also use the subscripts b and p to refer to the service and
penalty costs of an algorithm, respectively (e.g., �PCNDb (𝐻, 𝜋)).

To give a polynomial-time implementation to the framework, we require an approximation
algorithm for the prize-collecting version of the offline network design problem. In fact, we
need a slightly stronger notion of approximation, in which the algorithm’s penalty cost is
more closely bound to the optimal solution than the service cost; we now define this notion,
called Lagrangian approximation.

▶ Definition 14. We say that an algorithm for the prize-collecting problem is a Lagrangian
𝛾-approximation if for every prize-collecting input (𝐻, 𝜋) it holds that�PCNDb (𝐻, 𝜋) + 𝛾 · �PCNDp (𝐻, 𝜋) ≤ 𝛾 · PCND(𝐻, 𝜋).

In this section, we present an algorithm which proves the following theorem.

▶ Theorem 15. For an online network design problem with deadlines/delay, whose offline
network design prize-collecting problem admits a Lagrangian 𝛾 approximation, there exists a
poly-time algorithm which achieves the competitiveness of Theorem 8 up to a factor polynomial
in 𝛾. Specifically, it achieves a competitive ratio of 𝑂 (𝛾3 ·min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

}
).

5.1 Applications
To demonstrate the use of Theorem 15, we apply it to some network design problems for
which Lagrangian prize-collecting approximation algorithms are known.

Steiner tree. Goemans and Williamson [19] gave a Lagrangian 2-approximation for the
prize-collecting Steiner tree problem. Thus, we obtain the following corollary of Theorem 15.

▶ Corollary 16. There exists an 𝑂 (min
{√︁
|𝑉 | log |𝑉 |,

√︁
𝑚 log𝑚

}
)-competitive nonclairvoyant

algorithm for Steiner tree with deadlines/delay on a graph with vertex set 𝑉 which runs in
polynomial time.

N. Touitou 105:13

Facility location. First, we explain the way facility location conforms to the network design
setting. The set of items consists of two types: an opening item for each location, of the
cost of opening a facility at that location; and a connection item for each (location, request)
pair, of the cost of connecting the request to a facility at the given location. To satisfy a
request, there must exist a location for which both the opening item, and the connection
item to the request, have been bought; note that the upwards-closed property of network
design problems holds. Also note that each request requires a separate connection item;
thus, no two requests belong to the same type, and thus 𝑛 ≥ 𝑚. Hence, we do not state
competitiveness in terms of 𝑛 for this problem.

Charikar et al. [15] gave a Lagrangian 3-approximation for the prize-collecting facility
location problem. This implies the following corollary of Theorem 15 for facility location.

▶ Corollary 17. There exists an 𝑂 (min
{√︁

𝑚 log𝑚
}
)-competitive algorithm for facility location

with deadlines/delay which runs in polynomial time.

Multicut on a tree. Hou et al. [23] gave a Lagrangian 2-approximation for prize-collecting
multicut where the underlying graph is a tree. Note that for multicut on a tree, it holds that
𝑛 is the number of vertex pairs in the tree, i.e., quadratic in the number of vertices. Thus,
we obtain the following corollary of Theorem 15 for multicut on a tree.

▶ Corollary 18. There exists an 𝑂 (min
{
|𝑉 |

√︁
log |𝑉 |,

√︁
𝑚 log𝑚

}
)-competitive algorithm for

multicut with deadlines/delay on a tree with vertices 𝑉 which runs in polynomial time.

5.2 The Algorithm
Consider a problem which admits a Lagrangian 𝛾-approximation, which we denote by �PCND.
As a shorthand, we use ÑD to refer to the offline 𝛾-approximation obtained from using�PCND with the penalties set to ∞.

The procedure PCSOLVE. The algorithm uses �PCND in the procedure PCSolve (Al-
gorithm 3), which receives a set of request types 𝐻 and penalties 𝜋 to those requests, and
outputs a subset of request types 𝐻′ ⊆ 𝐻 and a solution 𝑆 to 𝐻′. We prove the following
properties of PCSolve:
1. It holds that the cost of solution 𝑆 to 𝐻′ is at most 𝛾𝜋(𝐻′).
2. For every subset 𝐻′′ ⊆ 𝐻\𝐻′, it holds that ND(𝐻′′) ≥ 𝜋(𝐻′′).

These two properties make PCSolve a useful primitive, which is used several times in
the algorithm.

Algorithm’s Description The algorithm is given in Algorithm 4. The algorithm periodically
runs the procedure PCSolve on the set of pending requests, where the penalty of every
request type is the total current delay of pending requests of that type. Whenever PCSolve
returns a non-empty set of request types 𝐻′ to serve, the procedure starts the service, and the
set of pending requests of types 𝐻′ is called critical. This triggers a call to UponCritical.

Inside UponCritical, as in Algorithm 2, the algorithm chooses the subset of critical
requests whose variable 𝑏𝑞 is True, and looks for a maximal subset of them whose service
cost is at most some factor from their delay cost. However, this factor is now linear in the
approximation factor 𝛾 rather than a constant. To find this request set 𝑅★, the algorithm
makes a call to PCSolve.

ICALP 2023

105:14 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

Now, the service makes its transmissions. First, it transmits the approximate solution
previously calculated for the critical requests, thus serving them. Then, it uses PCSolve to
find some subset of the request types of eligible requests to serve in the second transmission;
it does so by providing a uniform penalty function to PCSolve. The proof of Theorem 15
using Algorithm 4 appears in Appendix B.

Algorithm 3 Prize-collecting procedure.

1 Function PCSolve (𝐻, 𝜋)
2 Set 𝐻 ← 𝐻.
3 Set 𝑆 ← ∅.
4 while True do
5 Run PCND(𝐻, 𝜋) to obtain a solution 𝑆′ which serves some subset 𝐻′ ⊆ 𝐻 of request

types.
6 if 𝐻′ = ∅ then break
7 Set 𝑆 ← 𝑆 ∪ 𝑆′, 𝐻 ← 𝐻 \ 𝐻′

8 return (𝑆, 𝐻 \ 𝐻)

Algorithm 4 Polynomial Time Framework for Nonclairvoyant Network Design with Delay.

1 Event Function UponRequest(𝑞)
2 𝑏𝑞 ← True.
3 Function TestCritical() // called continuously
4 Let 𝑡 be the current time, and let 𝑄′ be the set of currently-pending requests.
5 Define 𝜋 which maps from request type ℎ ∈ 𝐻 (𝑄′) to

∑
𝑞∈𝑄′ |ℎ𝑞=ℎ 𝑑𝑞 (𝑡).

6 Call PCSolve(𝑄′, 𝜋), and obtain the output (𝐻′, 𝑆).
7 if 𝐻′ ≠ ∅ then define 𝑅 ←

{
𝑞 ∈ 𝑄′ |ℎ𝑞 ∈ 𝐻′

}
.

8 call UponCritical(𝑅, 𝑆).
9 Event Function UponCritical(𝑅, 𝑆)

10 Start a new service 𝜆; denote the current time by 𝑡.
11 Define 𝑅⊤ ←

{
𝑞 ∈ 𝑅

��𝑏𝑞 = True
}
.

12 Let 𝜋1 map from request type ℎ to 2𝛾 ·∑𝑞∈𝑅★ |ℎ𝑞=ℎ 𝑑𝑞 (𝑡).
13 Call PCSolve(𝐻 (𝑅⊤), 𝜋1), let 𝐻★ ⊆ 𝐻 (𝑅⊤) be the request types served by the output,

and let 𝑆1 be the returned solution for 𝐻′.
14 Define 𝑅★←

{
𝑞 ∈ 𝑅⊤

��ℎ𝑞 ∈ 𝐻★
}

15 Define ℓ̂𝜆 ←
⌈
log(𝑐

(
𝑆1

)
)
⌉
.

16 Define 𝐸 to be the set of pending requests 𝑞 such that ℓ̌(𝑞) ≤ ℓ̂𝜆, and define 𝐻 ← 𝐻 (𝐸).
17 Transmit 𝑆, serving all requests of types 𝐻 (𝑅).

18 Let 𝑥𝜆 ← 2ℓ̂𝜆 ·
√︃

log(1+|𝐻 |)
|𝐻 | .

19 Let 𝜋2 map from ℎ ∈ 𝐻 to 𝑥𝜆.
20 Call PCSolve(𝐻, 𝜋2); let 𝐻′ ⊆ 𝐻 and solution 𝑆2 be the output.
21 Transmit 𝑆2, serving all requests of types in 𝐻′.

// Set 𝑏𝑞′ for eligible requests 𝑞′ which are still pending.
22 Let 𝑄𝜆 be the subset of pending requests served by 𝜆.
23 foreach 𝑞′ ∈ 𝐸 \𝑄𝜆 do
24 set 𝑏𝑞′ ← False.

N. Touitou 105:15

6 Conclusions and Future Directions

In this paper, we presented frameworks for obtaining 𝑂 (min
{√

𝑛,
√
𝑚

}
)-competitive algorithms

for network design with deadlines or delay. For some problems, in particular facility location
and multilevel aggregation, lower bounds of Ω(

√
𝑘) and Ω(

√
𝑚) exist, making these frameworks

optimal up to a logarithmic factor. We then discussed running time, and presented a class of
problems (namely those that admit Lagrangian prize-collecting approximations) for which
these frameworks can be implemented in polynomial time.

An interesting direction for future work would be to implement this framework in
polynomial time for additional problems. This could require a different direction from
the one in this paper, as not all network design problems seem amenable to Lagrangian
prize-collecting approximations. In particular, for Steiner forest, a Lagrangian prize-collecting
approximation implies an approximation of similar ratio for 𝑘-Steiner forest; however, no
subpolynomial approximation for 𝑘-Steiner forest is known (see e.g. [22]).

Additionally, we made little attempt to optimize the dependence of the poly-time frame-
work’s competitive ratio on the approximation ratio 𝛾 of the Lagrangian approximation
algorithm. This is since 𝛾 is constant for the problems we consider in this paper. However,
improving this dependence could be useful for problems which are harder to approximate;
we conjecture that a linear dependence is possible.

References
1 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay –

clairvoyance is not required. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.8.

2 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 551–563, 2017. doi:10.1145/3055399.
3055475.

3 Yossi Azar and Noam Touitou. General framework for metric optimization problems with
delay or with deadlines. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 60–71, 2019.
doi:10.1109/FOCS.2019.00013.

4 Yossi Azar and Noam Touitou. Beyond tree embeddings – A deterministic framework for
network design with deadlines or delay. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1368–1379.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00129.

5 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. New results on multi-
level aggregation. Theor. Comput. Sci., 861:133–143, 2021. doi:10.1016/j.tcs.2021.02.016.

6 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Veselý. Online algorithms for
multi-level aggregation. In 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.ESA.2016.12.

7 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, and Jan Marcinkowski. Online facility
location with linear delay. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual
Conference), volume 245 of LIPIcs, pages 45:1–45:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.45.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ESA.2020.8
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1016/j.tcs.2021.02.016
https://doi.org/10.4230/LIPIcs.ESA.2016.12
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.45

105:16 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

8 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 42–54, 2014. doi:10.1137/1.9781611973402.4.

9 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line.
In Structural Information and Communication Complexity – 25th International Colloquium,
SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages
237–248, 2018. doi:10.1007/978-3-030-01325-7_22.

10 Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605,
2012. doi:10.1007/s00453-011-9567-5.

11 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1235–1244, 2017. doi:10.1137/1.9781611974782.80.

12 Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for max-
imizing ad-auctions revenue. In Algorithms – ESA 2007, 15th Annual European Sym-
posium, Eilat, Israel, October 8-10, 2007, Proceedings, pages 253–264, 2007. doi:10.1007/
978-3-540-75520-3_24.

13 Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 952–961, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347186.

14 Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set aggreg-
ation problem. In LATIN 2018: Theoretical Informatics – 13th Latin American Sym-
posium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 245–259, 2018.
doi:10.1007/978-3-319-77404-6_19.

15 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 642–651.
ACM/SIAM, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365555.

16 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 40:1–40:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.40.

17 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment
delay: Theory and practice (extended abstract). In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 389–398,
1998. doi:10.1145/276698.276792.

18 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi:10.1016/j.
jcss.2004.04.011.

19 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. In Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’92, pages 307–316, Philadelphia, PA, USA, 1992. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=139404.139468.

20 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/978-3-030-01325-7_22
https://doi.org/10.1007/s00453-011-9567-5
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
http://dl.acm.org/citation.cfm?id=1347082.1347186
https://doi.org/10.1007/978-3-319-77404-6_19
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.4230/LIPIcs.ICALP.2022.40
https://doi.org/10.1145/276698.276792
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1016/j.jcss.2004.04.011
http://dl.acm.org/citation.cfm?id=139404.139468
https://doi.org/10.1145/3357713.3384277

N. Touitou 105:17

21 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server
and an extension to time-windows. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 504–515. IEEE,
2021. doi:10.1109/FOCS52979.2021.00057.

22 Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree
problem via a new approach of primal-dual schema. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages 631–640, Philadelphia, PA,
USA, 2006. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=1109557.1109626.

23 Xin Hou, Wen Liu, and Bo Hou. An approximation algorithm for the k-prize-collecting multicut
on a tree problem. Theor. Comput. Sci., 844:26–33, 2020. doi:10.1016/j.tcs.2020.07.014.

24 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgment and other
stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.

25 Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem
with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020,
December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages
61:1–61:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.61.

26 Ngoc Mai Le, William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-level
aggregation and set cover with delay. In To appear in Symposium on Discrete Algorithms
(SODA) 2023, 2023.

27 Jeremy McMahan. A d-competitive algorithm for the multilevel aggregation problem with
deadlines. CoRR, abs/2108.04422, 2021. arXiv:2108.04422.

28 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs,
pages 53:1–53:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.ISAAC.2021.53.

A Proof of Lemma 13

Henceforth, fix any optimal service 𝜆∗ ∈ Λ∗. For ease of notation, define 𝑅⊥ :=
⋃

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗ 𝑅
⊥
𝜆,𝜆∗ .

Also define ℓ∗ := 𝑐(𝜆∗). Note that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

∑︁
ℎ∈𝐻 (𝑅⊥

𝜆,𝜆∗)
ND(ℎ)

We claim that no request type appears twice in the summation on the right-hand side of
the above equation. That is, we claim that

∑
ℎ∈𝐻 (𝑅⊥) ND(ℎ) = ∑

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗
∑

ℎ∈𝐻 (𝑅⊥
𝜆,𝜆∗)

ND(ℎ).
Indeed, note that there cannot be two services 𝜆1, 𝜆2 ∈ Λ such that 𝑡𝜆∗ ≤ 𝑡𝜆1 < 𝑡𝜆2 and
requests 𝑞1 ∈ 𝑅⊥

𝜆1 ,𝜆∗
, 𝑞2 ∈ 𝑅⊥

𝜆2 ,𝜆∗
such that ℎ𝑞1 = ℎ𝑞2 : otherwise, 𝜆1 would serve 𝑞2. We

conclude that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
ℎ∈𝐻 (𝑅⊥)

ND(ℎ) (6)

and it is thus enough to bound
∑

ℎ∈𝐻 (𝑅⊥) ND(ℎ). Note that every request 𝑞 ∈ 𝑅⊥ has had 𝑏𝑞

set to False at some point in the algorithm. Define 𝑅⊥1 ⊆ 𝑅⊥ to be the subset of requests 𝑞

such that 𝑏𝑞 was first set to False prior to 𝑡𝜆∗ , and define 𝑅⊥2 := 𝑅⊥\𝑅⊥1 . For every ℓ, further
define 𝑅⊥1,ℓ :=

{
𝑞 ∈ 𝑅⊥1

��ℓ(𝑞) = ℓ
}
; define 𝑅⊥2,ℓ analogously.

ICALP 2023

https://doi.org/10.1109/FOCS52979.2021.00057
http://dl.acm.org/citation.cfm?id=1109557.1109626
http://dl.acm.org/citation.cfm?id=1109557.1109626
https://doi.org/10.1016/j.tcs.2020.07.014
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://arxiv.org/abs/2108.04422
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53

105:18 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

▶ Proposition 19. For every optimal service 𝜆∗, and for every ℓ, it holds that∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) ≤ 𝑂

(√︁
𝑘/log 𝑘

)
· 𝑐(𝜆∗).

Proof. Observe the first service 𝜆 ∈ Λ after which 𝑏𝑞 = False for every 𝑞 ∈ 𝑅⊥1,ℓ . From the
definition of 𝑅⊥1,ℓ , we know that 𝑡𝜆 < 𝑡𝜆∗ ; as 𝑅⊥1,ℓ are all served after 𝑡𝜆∗ , they are all pending
both before and after 𝑡𝜆. As 𝜆 set 𝑏𝑞 ← False for some 𝑞 ∈ 𝑅⊥1,ℓ , we have ℓ𝜆 ≥ ℓ. This
implies 𝑅⊥1,ℓ ⊆ 𝐸𝜆. Define 𝑧 :=

���𝐻 (𝑅⊥1,ℓ)���; since no request from 𝑅⊥1,ℓ was served in 𝜆, we have

𝑐(𝜆∗) ≥ ND(𝑅⊥1,ℓ) ≥ 𝑥𝜆 · 𝑧 ≥ 2ℓ𝜆 ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧 ≥ 2ℓ ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧

Noting that
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤ 𝑧 · 2ℓ , this yields
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤
√︃

𝑘
log(1+𝑘) · 𝑐(𝜆

∗). ◀

▶ Proposition 20. For every optimal service 𝜆∗, and for every ℓ, it holds that∑︁
ℎ∈𝐻 (𝑅⊥2,ℓ)

ND(ℎ) ≤ 𝑂

(√︄
𝑘

log 𝑘

)
· 𝑐(𝜆∗).

Proof. The proof is similar to that of Proposition 19. Consider the first service 𝜆 ∈ Λ such
that 𝑡𝜆 ≥ 𝑡𝜆∗ and ℓ𝜆 ≥ ℓ. It must be the case that all requests in 𝑅⊥2,ℓ are pending before and
after 𝜆, and moreover, 𝜆 sets 𝑏𝑞 ← False for every request in 𝑅⊥2,ℓ . Define 𝑧 :=

���𝐻 (𝑅⊥2,ℓ)���;
since no request from 𝑅⊥2,ℓ was served in 𝜆, we have

𝑐(𝜆∗) ≥ ND(𝑅⊥2,ℓ) ≥ 𝑥𝜆 · 𝑧 ≥ 2ℓ𝜆 ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧 ≥ 2ℓ ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧

Noting that
∑

ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ) ≤ 𝑧 · 2ℓ , the above yields
∑

ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ) ≤
√︃

𝑘
log(1+𝑘) · 𝑐(𝜆

∗),
which completes the proof. ◀

Proof of Lemma 13. Define 𝛾 := ⌈log 𝑘⌉. The following holds:∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
ℎ∈𝐻 (𝑅⊥)

ND(ℎ) ≤
∞∑︁

ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)

=

ℓ∗−𝛾∑︁
ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
+

ℓ∗∑︁
ℓ=ℓ∗−𝛾+1

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
(7)

where the first inequality uses Equation (6), the second inequality partitions 𝑅⊥ into
{
𝑅⊥1,ℓ

}
ℓ

and
{
𝑅⊥2,ℓ

}
ℓ
, and the equality makes use of the fact that 𝑅⊥ does not contain requests 𝑞 such

that ℓ(𝑞) > ℓ∗ (since 𝑅⊥ ⊆ 𝑄𝜆∗). From the proof of Proposition 19, we know that for every ℓ

the requests 𝑅⊥1,ℓ were all pending during a single service. Thus, we have
���𝐻 (𝑅⊥1,ℓ)��� ≤ 𝑘, and

therefore
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤ 2ℓ · 𝑘. Similarly, using the proof of Proposition 20, we have���𝐻 (𝑅⊥2,ℓ)��� ≤ 𝑘 and thus
∑

ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ) ≤ 2ℓ · 𝑘. We can therefore conclude that

ℓ∗−𝛾∑︁
ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
≤ 4 · 2ℓ∗−𝛾 · 𝑘 ≤ 4 · 2ℓ∗ ≤ 8 · 𝑐(𝜆∗). (8)

N. Touitou 105:19

Moreover, using Propositions 19 and 20,

ℓ∗∑︁
ℓ=ℓ∗−𝛾+1

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ)+
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
≤ 𝛾 ·𝑂

(√︄
𝑘

log 𝑘

)
·𝑐(𝜆∗) = 𝑂 (

√︁
𝑘 log 𝑘) ·𝑐(𝜆∗). (9)

Combining Equations (7) to (9) yields
∑

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗ 𝐷
(
𝑅⊥
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗). ◀

B Analysis of Lagrangian Approximation Framework

We focus on proving Theorem 15, following the same lines as the proof of Theorem 8.
Following the notation of Section 4, we use the subscript 𝜆 to refer to the values of variables
in the UponCritical call that started service 𝜆. For example, this includes 𝑆1

𝜆
, 𝑆2

𝜆
.

▶ Proposition 21 (Properties of PCSolve). Suppose PCSolve is called on request types 𝐻

and penalties 𝜋, and outputs 𝐻′ and solution 𝑆. It holds that:
1. The cost of solution 𝑆 to 𝐻′ is at most 𝛾𝜋(𝐻′).
2. For every subset 𝐻′′ ⊆ 𝐻\𝐻′, it holds that ND(𝐻′′) ≥ 𝜋(𝐻′′).

Proof. Let 𝑏 be the number of iterations of the main loop in PCSolve. We use subscript
𝑖 to refer to the value of a variable in the 𝑖’th iteration of the loop; note that 𝑐(𝑆) ≤∑

𝑖∈[𝑏] 𝑐(𝑆𝑖). For every iteration 𝑖, through the Lagrangian approximation guarantee, it
holds that 𝑐(𝑆𝑖) + 𝛾 · 𝜋(𝐻𝑖\𝐻′𝑖) ≤ 𝛾 · 𝜋(𝐻𝑖), implying 𝑐(𝑆𝑖) ≤ 𝛾 · 𝜋(𝐻′

𝑖
); thus, we have

𝑐(𝑆) ≤ ∑
𝑖 𝜋(𝐻′𝑖) = 𝛾𝜋(𝐻′), proving the first claim.

To prove the second claim, observe that in the final iteration no request types from 𝐻𝑏

were served. Through the Lagrangian guarantee, 𝛾𝜋(𝐻𝑏) ≤ 𝛾 · (ND(𝐻′′) + 𝜋(𝐻𝑏\𝐻′′)) for
every subset 𝐻′′ ⊆ 𝐻𝑏, which implies that ND(𝐻′′) ≥ 𝜋(𝐻′′). Observing that 𝐻𝑏 = 𝐻\𝐻′
completes the proof of the second claim. ◀

▶ Proposition 22 (Analogue of Proposition 10). For a service 𝜆, it holds that

𝑐(𝜆) ≤ 𝑂 (𝛾) ·
∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+𝑂 (𝛾3√︁𝑘 log 𝑘) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
Proof. According to Proposition 21, the cost of the first transmission of solution 𝑆𝜆 (Line 17)
is at most 𝛾 · 𝐷 (𝑅𝜆, 𝑡𝜆). However, Proposition 21 also implies that 2𝛾𝐷

(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
≤

ND(𝑅⊤
𝜆
\𝑅★

𝜆
); together with the fact that 𝑆𝜆 serves 𝑅⊤

𝜆
\𝑅★

𝜆
implies that 𝛾𝐷

(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
≤

𝑐(𝑆𝜆)/2. Combining, we have the following:

𝑐(𝑆𝜆) ≤ 𝛾𝐷 (𝑅𝜆, 𝑡𝜆) = 𝛾(𝐷
(
𝑅⊥𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
) + 𝑐(𝑆𝜆)/2

Simplifying, 𝑐(𝑆𝜆) ≤ 2𝛾(𝐷
(
𝑅⊥
𝜆
, 𝑡𝜆

)
+ 𝐷

(
𝑅★
𝜆
, 𝑡𝜆

)
), yielding the bound for the first transmission.

For the second transmission, note that 2ℓ̂𝜆 ≤ 2 · 𝑐
(
𝑆1
𝜆

)
≤ 4𝛾2𝐷 (𝑅★, 𝑡𝜆), where the second

inequality uses Proposition 21 for PCSolve. Applying Proposition 21 again for Line 20, we
obtain the following bound for the cost of the solution 𝑆2

𝜆
used for the second transmission:

𝑐

(
𝑆2
𝜆

)
≤ 𝛾 · |𝐻𝜆 | · 𝑥𝜆 = 𝛾 · |𝐻𝜆 | · 2ℓ̂𝜆 ·

√︁
log(1 + |𝐻𝜆 |)/|𝐻𝜆 | ≤ 𝛾

√︁
𝑘 log(1 + 𝑘) · 2ℓ̂𝜆

≤ 4𝛾3 ·
√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅★, 𝑡𝜆

)
Combining this with the previous bound for the first transmission completes the proof. ◀

ICALP 2023

105:20 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

We henceforth define joint costs 𝑐(𝜆, 𝜆∗) as in Section 4. Note that Proposition 10 holds
for Algorithm 4 without modification.

▶ Proposition 23 (Analogue of Proposition 12). For every optimal service 𝜆∗, it holds that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (1) · 𝑐(𝜆∗).

Proof. Let Λ′ ⊆ Λ be the subset of services that occurred after 𝑡𝜆∗ . First, we claim that for
every integer ℓ, there exists at most one service in Λ′ with ℓ𝜆,𝜆∗ = ℓ. To prove the claim,
assume for contradiction that there are two services 𝜆1, 𝜆2 ∈ Λ′ such that ℓ𝜆1 ,𝜆∗ = ℓ𝜆2 ,𝜆∗ = ℓ,
and assume without loss of generality that 𝑡𝜆2 > 𝑡𝜆1 > 𝑡𝜆∗ . As 𝑡𝜆1 > 𝑡𝜆∗ , it must be that all
requests in 𝑅★

𝜆2 ,𝜆∗
were pending before and after 𝑡𝜆1 .

Moreover, every request 𝑞 ∈ 𝑅★
𝜆2 ,𝜆∗

must have ℓ̌(𝑞) ≤ ℓ(𝑞) ≤ ℓ

(
𝑅★
𝜆2 ,𝜆∗

)
= ℓ. However,

ℓ̂𝜆1 ≥ ℓ𝜆1 ,𝜆∗ = ℓ, and thus 𝑅★
𝜆2 ,𝜆∗

⊆ 𝐸𝜆1 . But, Line 15 in 𝜆1 sets 𝑏𝑞 = False for every
𝑞 ∈ 𝑅★

𝜆2 ,𝜆∗
, in contradiction to having 𝑏𝑞 = True at 𝑡𝜆2 . We conclude that 𝑅★

𝜆2 ,𝜆∗
= ∅;

however, this implies that ℓ𝜆2 ,𝜆∗ = −∞, in contradiction to ℓ𝜆2 ,𝜆∗ = ℓ.
Using this claim, for every level ℓ, there exists at most one service 𝜆 ∈ Λ′ such that ℓ𝜆,𝜆∗ = ℓ.

For such 𝜆, it holds that 𝐷
(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ ND(𝑅★

𝜆,𝜆∗) ≤ 2ℓ . Also note that max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ ℓ(𝑄𝜆∗).
Summing over the possible levels, we get that∑︁

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗
𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 2 · 2max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ 2 · 2ℓ (𝑄𝜆∗) ≤ 4 · 𝑐(𝜆∗). ◀

▶ Lemma 24 (Analogue of Lemma 13). For every optimal service 𝜆∗ ∈ Λ, it holds that∑
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗ 𝐷

(
𝑅⊥
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (log 𝛾 ·

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗).

Proof sketch. The proof follows the same main lines as that of Lemma 13. First, define
𝑅⊥, 𝑅⊥1 , 𝑅

⊥
2 as in the proof of Lemma 13. Now, define 𝑅⊥1,ℓ =

{
𝑞 ∈ 𝑅⊥1 |ℓ̂𝑞 = ℓ

}
; define 𝑅⊥2,ℓ

analogously. Note that the ℓ̂𝑞 is used for these definitions, rather than ℓ𝑞.
We can prove analogues to Proposition 19 and Proposition 20, using identical proofs.

Specifically, for every optimal service 𝜆∗, for every ℓ and for every 𝑏 ∈ {1, 2}, it holds that∑︁
ℎ∈𝐻 (𝑅⊥

𝑏,ℓ
)
ND(ℎ) ≤ 𝑂

(√︁
𝑘/log 𝑘

)
· 𝑐(𝜆∗) (10)

Now, following the proof of Lemma 13, define 𝛿 := ⌈log 𝑘⌉ + ⌈log 𝛾⌉.∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
ℎ∈𝐻 (𝑅⊥)

ND(ℎ) ≤
∞∑︁

ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)

=

ℓ∗−𝛿∑︁
ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
+

ℓ∗∑︁
ℓ=ℓ∗−𝛿+1

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
(11)

Using a similar argument to that in Lemma 13, we note that
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤ 𝑘 · 𝛾 · 2ℓ ;
a similar bound applies to

∑
ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ). Combining with the definition of 𝛿, the first

term in the RHS of Equation (11) can be bounded by 𝑂 (1) · 𝑐(𝜆∗). Using Equation (10), the
second term can be bounded by 𝑂 (𝛿) · 𝑐(𝜆∗), which is 𝑂 ((log 𝑘 + log 𝛾) ·

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗); this

is at most 𝑂 (log 𝛾 ·
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗). This completes the proof. ◀

Proof of Theorem 15. Results from combining Propositions 22 and 23 and Lemma 24. ◀

	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 Preliminaries
	3 Framework for Network Design with Deadlines
	3.1 Analysis

	4 Framework for Network Design with Delay
	4.1 The Algorithm
	4.2 Analysis

	5 Polynomial Time through Lagrangian Prize Collecting
	5.1 Applications
	5.2 The Algorithm

	6 Conclusions and Future Directions
	A Proof of Lemma 13
	B Analysis of Lagrangian Approximation Framework

