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Abstract
In the matroid partitioning problem, we are given k matroids M1 = (V, I1), . . . , Mk = (V, Ik)
defined over a common ground set V of n elements, and we need to find a partitionable set S ⊆ V

of largest possible cardinality, denoted by p. Here, a set S ⊆ V is called partitionable if there exists
a partition (S1, . . . , Sk) of S with Si ∈ Ii for i = 1, . . . , k. In 1986, Cunningham [7] presented a
matroid partition algorithm that uses O(np3/2 + kn) independence oracle queries, which was the
previously known best algorithm. This query complexity is O(n5/2) when k ≤ n.

Our main result is to present a matroid partition algorithm that uses Õ(k1/3np+kn) independence
oracle queries, which is Õ(n7/3) when k ≤ n. This improves upon previous Cunningham’s algorithm.
To obtain this, we present a new approach edge recycling augmentation, which can be attained
through new ideas: an efficient utilization of the binary search technique by Nguy˜̂en [25] and
Chakrabarty-Lee-Sidford-Singla-Wong [5] and a careful analysis of the number of independence
oracle queries. Our analysis differs significantly from the one for matroid intersection algorithms,
because of the parameter k. We also present a matroid partition algorithm that uses Õ((n + k)√p)
rank oracle queries.
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1 Introduction

The matroid partitioning problem1 is one of the most fundamental problem in combinatorial
optimization. The problem is sometimes introduced as an important matroid problem along
with the matroid intersection problem; see [28, Section 41–42] and [21, Section 13.5–6]. In the
problem, we are given k matroids M1 = (V, I1), . . . ,Mk = (V, Ik) defined over a common
ground set V of n elements, and the objective is to find a partitionable set S ⊆ V of largest
possible cardinality, denoted by p. Here, we call a set S ⊆ V partitionable if there exists
a partition (S1, . . . , Sk) of S with Si ∈ Ii for i = 1, . . . , k. This problem has a number of
applications such as matroid base packing, packing and covering of trees and forests, Shannon
switching game. There are much more applications; see [28, Section 42].

1 The matroid partitioning problem is sometimes called simply matroid partition. Matroid partition is
also called matroid union or matroid sum.
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104:2 Faster Matroid Partition Algorithms

To design an algorithm for arbitrary matroids, it is common to consider an oracle model:
an algorithm accesses a matroid through an oracle. The most standard and well-studied
oracle is an independence oracle, which takes as input a set S ⊆ V and outputs whether
S ∈ I or not. Some recent studies for fast matroid intersection algorithms also consider
a more powerful oracle called rank oracle, which takes as input a set S ⊆ V and outputs
the size of the maximum cardinality independent subset of S. In the design of efficient
algorithms, the goal is to minimize the number of such oracle accesses in a matroid partition
algorithm. We consider both independence oracle model and rank oracle model, and present
the best query algorithms for both oracle models.

The matroid partitioning problem is closely related to the matroid intersection prob-
lem. Actually, the matroid partitioning problem and the matroid intersection problem are
polynomially equivalent; see [9, 11].

In the matroid intersection problem, we are given two matroidsM′ = (V, I ′),M′′ = (V, I ′′)
defined over a common ground set V of n elements, and the objective is to find a common
independent set S ∈ I ′ ∩ I ′′ of largest possible cardinality, denoted by r.

Starting the work of Edmonds [8, 10,11] in the 1960s, algorithms with polynomial query
complexity for the matroid intersection problem have been studied [1–5,7,22,23]. Nguy˜̂en [25]
and Chakrabarty-Lee-Sidford-Singla-Wong [5] independently presented a new excellent binary
search technique that can find edges in the exchange graph and presented a first combinatorial
algorithm that uses Õ(nr) independence oracle queries2. Chakrabarty et al. [5] also presented
a (1 − ϵ) approximation matroid intersection algorithm that uses Õ(n1.5/ϵ1.5) independ-
ence oracle queries. Blikstad-van den Brand-Mukhopadhyay-Nanongkai [4] developed a
fast algorithm to solve a graph reachability problem, and broke the Õ(n2)-independence-
oracle-query bound by combining this with previous exact and approximation algorithms.
Blikstad [2] improved the independence query complexity of the approximation matroid
intersection algorithm. This leads to a randomized matroid intersection algorithm that uses
Õ(nr3/4) independence oracle queries, which is currently the best algorithm for the matroid
intersection problem for the full range of r. This also leads to a deterministic matroid
intersection algorithm that uses Õ(nr5/6) independence oracle queries, which is currently
the best deterministic algorithm for the matroid intersection problem for the full range of r.

We can solve the matroid partitioning problem by using the reduction to the matroid
intersection problem. A well-known reduction reduces the matroid partition to the matroid
intersection whose ground set size is kn. Here, one of the input matroids of this matroid
intersection is the direct sum of the k matroids. This leads to a matroid partition algorithm
using too many independence oracle queries. Even if we use the currently best algorithm for
matroid intersection, the naive reduction leads to a matroid partition algorithm that uses
Õ(k2np3/4) independence oracle queries. Since the matroid partition problem itself is an
important problem with several applications, it is meaningful to focus on the query-complexity
of the matroid partitioning problem.

A direct algorithm for the matroid partitioning problem was first given by Edmonds in
1968 [8]. Algorithms with polynomial query complexity for the matroid partitioning problem
have been studied in the literature [3, 7, 12–14,20,27].

Cunningham [7] designed a matroid partition algorithm that uses O(np3/2 + kn) inde-
pendence oracle queries. Cunningham uses a blocking flow approach, which is similar to
Hopcroft-Karp’s bipartite matching algorithm or Dinic’s maximum flow algorithm. The
independence query complexity of Cunningham’s algorithm is O(n5/2) when k ≤ n. Note

2 The Õ notation omits factors polynomial in log n.
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that p ≤ n obviously holds. This was the best algorithm for the matroid partitioning problem
for nearly four decades. We study faster matroid partition algorithms by using techniques
that were recently developed for fast matroid intersection algorithms.

Our first result is the following theorem, which is obtained by combining Cunningham’s
technique and the binary search technique by Nguy˜̂en [25] and Chakrabarty et al. [5].

▶ Theorem 1 (Details in Theorem 14). There is an algorithm that uses Õ(kn
√

p) independence
oracle queries and solves the matroid partitioning problem.

The independence query complexity of the algorithm given in Theorem 1 improves upon
the one of Cunningham’s algorithm [7] when k is small. However, when k = Θ(n), the
independence query complexity of the algorithm given in Theorem 1 is Õ(n5/2), and this
query complexity is not strictly less than the one in Cunningham’s algorithm.

The setting where k > n is unnatural since there must exist a matroid whose independent
set is not involved in the optimal partition. Thus, in this paper, we mainly focus on the
case where k ≤ n. Under this assumption, we sometimes bound the number of queries by a
function on a single variable n, where we recall that p ≤ n. This makes it easy to compare
the query complexity of different algorithms.

Our second result is to obtain an algorithm that uses o(kn
√

p) independence oracle queries
when k is large. It uses o(n5/2) independence oracle queries when k ≤ n.

▶ Theorem 2 (Details in Theorem 18). There is an algorithm that uses Õ(k1/3np + kn)
independence oracle queries and solves the matroid partitioning problem.

This is the main contribution of this paper. The independence query complexity of the
algorithm given in Theorem 2 improves the one of the algorithm given in Theorem 1 when
k = ω(p3/4). The independence query complexity of the algorithm given in Theorem 2 is
Õ(n7/3) when k ≤ n. This improves the algorithm by Cunningham [7] and our algorithm
given in Theorem 1. It should be emphasized here that this is the first improvement since 1986.
We note that this algorithm requires O(k2/3np) time complexity other than independence
oracle queries.

We also consider the query complexity in the rank oracle model. Note that the rank
oracle is at least as powerful as the independence oracle.

▶ Theorem 3 (Details in the full version of this paper). There is an algorithm that uses
Õ((n + k)√p) rank oracle queries and solves the matroid partitioning problem.

The rank query complexity of the algorithm given in Theorem 3 is Õ(n3/2) when k ≤ n.

1.1 Technical Overview
Cunningham’s matroid partition algorithm. The auxiliary graph called exchange graph
plays an important role in almost all combinatorial algorithms for matroid intersection. In
matroid intersection algorithms, we begin with an empty set and repeatedly increase the size
of the independent set by augmenting along shortest paths in the exchange graph. In the
same way, Knuth [20] and Greene-Magnanti [14] give matroid partition algorithms by using
the auxiliary graph with O(np) edges, which we call compressed exchange graph.

To improve the running time, Cunningham [7] developed blocking flow approach for
matroid partition and intersection, which is akin to bipartite matching algorithm by Hopcroft-
Karp [17]. The blocking flow approach is applied in each phase of the algorithm. In Hopcroft-
Karp’s bipartite matching algorithm, we find a maximal set of vertex-disjoint shortest paths
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104:4 Faster Matroid Partition Algorithms

and augment along these paths simultaneously. In contrast to this, in a matroid partition
algorithm, the augmentations can not be done in parallel, since one augmentation can change
the compressed exchange graph. Cunningham showed that we can find multiple augmenting
paths of the same length and run all the augmentations in one phase. In Cunningham’s
matroid partition algorithm, one phase uses only O(np) independence oracle queries (each
edge is queried only once in one phase).

Cunningham showed that the number of different lengths of shortest augmenting paths
during the algorithm is O(√p) and then the number of phases is O(√p). Therefore, Cun-
ningham’s matroid partition algorithm uses O(np3/2 + kn) independence oracle queries in
total (enumerating all edges entering sink vertices uses O(kn) independence oracle queries).
We note that this query complexity is O(n5/2) when k ≤ n.

Combining blocking flow approach and binary search subroutine. To develop the matroid
partition algorithm, given in Theorem 1, that uses Õ(kn

√
p) independence oracle queries,

we combine the blocking flow approach proposed by Cunningham [7] and the binary search
procedure proposed by Nguy˜̂en [25] and Chakrabarty et al. [5]. By using the binary search
procedure, we obtain an algorithm that uses Õ(kn) independence oracle queries and performs
a breadth first search in the compressed exchange graph. We also obtain an algorithm that
uses Õ(kn) independence oracle queries and runs all the augmentations in a single phase.
Since Cunningham showed that the number of phases is O(√p), we can easily obtain a matroid
partition algorithm that uses Õ(kn

√
p) independence oracle queries. Our algorithm does not

contain technical novelty in a sense that this algorithm is obtained by simply combining
Cunningham’s technique and the binary search technique by Nguy˜̂en and Chakrabarty et al.
Nevertheless, this result is important in a sense that we improve the independence query
complexity of a matroid partition algorithm.

Edge Recycling augmentation. In a breadth first search, we need to check, for all vertices
v and all indices i ∈ [k], whether there exists an edge from a vertex v to a vertex u ∈ Si in
the compressed exchange graph. Then, independence query complexity of a breadth first
search of the compressed exchange graph seems to be Ω(kn), even if we use the binary search
procedure. It is not clear whether we can develop a matroid partition algorithm that runs a
breadth first search o(√p) times, and so, algorithms by the blocking flow approach are now
stuck at Ω(kn

√
p) independence oracle queries. In the setting where k = Θ(n) and p = Θ(n),

algorithms by the blocking flow approach are stuck at Ω(n5/2) independence oracle queries
even if we use the excellent binary search procedure.

In order to break this O(n5/2)-independence-oracle-query bound, we introduce a new
approach edge recycling augmentation and develop a matroid partition algorithm whose
independence query complexity is sublinear in k. Then we present a matroid partition
algorithm that uses Õ(n7/3) independence oracle queries when k ≤ n.

Our new approach edge recycling augmentation is applied in each phase of the algorithm
in the same way as the blocking flow approach. In one phase of edge recycling augmentation,
we first compute the edge set E∗ in the compressed exchange graph, which uses O(np)
independence oracle queries. Then we simply repeat to run a breadth first search and find
a shortest path in the compressed exchange graph. This breadth first search is performed
by using the information of E∗. The precomputation of E∗ may seem too expensive since
we have the excellent binary search tool to find edges in the compressed exchange graph.
However, we can recycle some edges in E∗ during the repetition of breadth first searches,
which plays an important role in an analysis of our new approach. Note that, edge recycling
augmentation runs a breadth first search before every augmentation, while the blocking flow
approach runs a breadth first search only once in the beginning of each phase.
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Our crucial observation is that all edges entering a vertex in Si are not changed unless Si

was updated by the augmentation. Then, even after some augmentations, we can use E∗

to find edges entering a vertex u ∈ Si such that Si was not updated by the augmentation.
This observation is peculiar to the matroid partition. In a breadth first search of the edge
recycling augmentation approach, we use the binary search procedure only to find edges
entering u ∈ Si such that Si was updated by the augmentation. In one phase, we repeat to
run a breadth first search so that the total number of the binary search procedure calls is
O(np).

We combine the blocking flow approach algorithm and the edge recycling augmentation
approach algorithm. By a careful analysis of independence query complexity, we obtain a
matroid partition algorithm that uses Õ(k1/3np + kn) independence oracle queries.

Note that this edge recycling augmentation approach differs significantly from existing
fast matroid intersection algorithms. The key technical contribution of this paper is to
introduce this new approach.

1.2 Related Work
Blikstad-Mukhopadhyay-Nanongkai-Tu [3] introduced a new oracle model called dynamic
oracle and developed a matroid partitioning algorithm that uses Õ((n + r

√
r) · poly(k))

dynamic rank queries, where r = maxi maxSi∈Ii
|Si|. Blikstad et al. also obtained an

algorithm to solve the k-fold matroid union problem in Õ(n
√

r) time and dynamic rank
queries, which is the special case of the matroid partitioning problem where all matroids
M1, . . . ,Mk are identical. Quanrud [27] developed an algorithm that solves the k-fold
matroid union problem and uses Õ(n3/2) independence oracle queries for the full range of
r and k. Quanrud also considered the k-fold matroid union problem in the more general
settings where the elements have integral and real-valued capacities.

For certain special matroids, faster matroid partition algorithms are known. For linear
matroids, Cunningham [7] presented an O(n3 log n)-time algorithm that solves the matroid
partitioning problem on O(n) matrices that have n columns and at most n rows. For
graphic matroids, the k-forest problem is a special case of the matroid partitioning prob-
lem. In the problem, we are given an undirected graph and a positive integer k, and the
objective is to find a maximum-size union of k forests. Gabow-Westermann [13] presented
an O(min{k3/2√nm(m + n log n), k1/2m

√
m + n log n, kn2 log k, m2

k log k})-time algorithm
to solve the k-forest problem, where n and m denote the number of vertices and edges,
respectively. Blikstad et al. [3] and Quanrud [27] independently obtained an Õ(m + (kn)3/2)
time algorithm to solve the k-forest problem.

Kawase-Kimura-Makino-Hanna [19] studied matroid partitioning problems for various
objective functions.

For the weighted matroid intersection, Huang-Kakimura-Kamiyama [18] developed a tech-
nique that transforms any unweighted matroid intersection algorithm into an algorithm that
solves the weighted case with an O(W ) factor. Huang et al. also presented a (1− ϵ) approx-
imation weighted matroid intersection algorithm that uses Õ(nr3/2/ϵ) independence oracle
queries. Chekuri-Quanrud [6] improved the independence query complexity and presented a
(1− ϵ) approximation weighted matroid intersection algorithm that uses O(nr/ϵ2) independ-
ence oracle queries, which can be improved by applying more recent faster approximation
unweighted matroid intersection algorithm by Chakrabarty et al. [5] and Blikstad [2]. Tu [29]
gave a weighted matroid intersection algorithm that uses Õ(nr3/4 log W ) rank oracle queries,
which also uses the binary search procedure proposed by Nguy˜̂en [25] and Chakrabarty et
al. [5].
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104:6 Faster Matroid Partition Algorithms

For matroids of rank n/2, Harvey [15] showed a lower bound of (log2 3)n − o(n) inde-
pendence oracle queries for matroid intersection. Blikstad-Mukhopadhyay-Nanongkai-Tu [3]
showed super-linear Ω(n log n) query lower bounds for matroid intersection and partitioning
problem in their dynamic-rank-oracle and the independence oracle models.

1.3 Paper Organization
In Section 2, we introduce the notation and the known results for matroid partition and
intersection. Next, in Section 3, we present our matroid partition algorithm using blocking
flow approach. Then, in Section 4, we present our new approach edge recycling augmentation
and our faster matroid partition algorithm for large k. Finally, in Section 5 we conclude by
mentioning several open problems relevant to our work.

2 Preliminaries

2.1 Matroids
Notation. For a positive integer a, we denote [a] = {1, . . . , a}. For a finite set X, let #X

and |X| denote the cardinality of X, which is also called the size of X. We will often write
A+x := A∪{x} and A−x := A\{x}. We will also write A+B := A∪B and A−B := A\B,
when no confusion can arise.

Matroid. A pair M = (V, I) for a finite set V and non-empty I ⊆ 2V is called a matroid if
the following property is satisfied.

(Downward closure) if S ∈ I and S′ ⊆ S, then S′ ∈ I.
(Augmentation property) if S, S′ ∈ I and |S′| < |S|, then there exists x ∈ S \ S′ such

that S′ + x ∈ I.
A set S ⊆ V is called independent if S ∈ I and dependent otherwise.

Rank. For a matroidM = (V, I), we define the rank ofM as rank(M) = max{|S| | S ∈ I}.
In addition, for any S ⊆ V , we define the rank of S as rankM(S) = max{|T | | T ⊆ S, T ∈ I}.

Matroid Intersection. Given two matroids M′ = (V, I ′), M′′ = (V, I ′′), we define their
intersection by (V, I ′ ∩ I ′′). The matroid intersection problem asks us to find the largest
common independent set, whose cardinality we denote by r. Note that the intersection of
matroids is not a matroid in general and the problem to find a maximum common independent
set of more than two matroids is NP-hard.

Matroid Partition (Matroid Union). Given k matroids M1 = (V, I1), . . . ,Mk = (V, Ik),
S ⊆ V is called partitionable if there exists a partition (S1, . . . , Sk) of S such that Si ∈ Ii for
i ∈ [k]. The matroid partitioning problem asks us to find the largest partitionable set, whose
cardinality we denote by p. Let Ĩ be the family of partitionable subset of V . Then, (V, Ĩ) is
called the union or sum of k matroids M1 . . . ,Mk. Note that Nash-Williams Theorem [24]
states that the union (V, Ĩ) of the k matroids is also a matroid.

Oracles. Throughout this paper, we assume that we can only access a matroid M = (V, I)
through an oracle. Given a subset S ⊆ V , an independence oracle outputs whether S ∈ I or
not. Given a subset S ⊆ V , a rank oracle outputs rankM(S). Since one query of the rank
oracle can determine whether a given subset is independent, the rank oracle is more powerful
than the independence oracle.
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Binary Search Technique. Chakrabarty-Lee-Sidford-Singla-Wong [5] showed that the follow-
ing procedure can be implemented efficiently by using binary search in the independence oracle
model. (This was developed independently by Nguy˜̂en [25].) Given a matroid M = (V, I),
an independent set S ∈ I, an element v ∈ V \ S, and B ⊆ S, the objective is to find an
element u ∈ S that is exchangeable with v (that is, S + v − u ∈ I) or conclude there is no
such an element. We skip the proof in this paper; see [5, Section 3] for a proof.

▶ Lemma 4 (Edge Search via Binary search, Chakrabarty et al. [5], Nguy˜̂en [25]). There exists
an algorithm FindOutEdge which, given a matroidM = (V, I), an independent set S ∈ I, an
element v ∈ V \ S, and B ⊆ S, finds an element u ∈ B such that S + v − u ∈ I or otherwise
determine that no such element exists, and uses O(log |B|) independence queries.

2.2 Techniques for Matroid Intersection
Here we provide known results about the matroid intersection.

▶ Definition 5 (Exchange Graph). Consider a common independent set S ∈ I ′ ∩ I ′′. The
exchange graph is defined as a directed graph G(S) = (V ∪ {s, t}, E), with s, t /∈ V and
E = E′ ∪ E′′ ∪ Es ∪ Et, where

E′ ={(u, v) | u ∈ S, v ∈ V \ S, S − u + v ∈ I ′},
E′′ ={(v, u) | u ∈ S, v ∈ V \ S, S − u + v ∈ I ′′},
Es ={(s, v) | v ∈ V \ S, S + v ∈ I ′}, and
Et ={(v, t) | v ∈ V \ S, S + v ∈ I ′′}.

▶ Lemma 6 (Shortest Augmenting Path). Let s, v1, v2, . . . , vl−1, t be a shortest (s, t)-path
in the exchange graph G(S) relative to a common independent set S ∈ I ′ ∩ I ′′. Then
S′ = S + v1 − v2 + · · · − vl−2 + vl−1 ∈ I ′ ∩ I ′′.

In a matroid intersection algorithm, we begin with an empty set S. Then we repeat to
find an augmenting path in the exchange graph G(S) and to update the current set S. If
there is no (s, t)-path in the exchange graph G(S), then S is a common independent set of
maximum size. If there is an (s, t)-path in the exchange graph G(S), then we pick a shortest
path and obtain a common independent set S′ ∈ I ′ ∩ I ′′ of |S|+ 1 elements.

Cunningham’s matroid intersection algorithm [7] and recent faster matroid intersection
algorithms [2, 4, 5, 25] rely on the following lemma.

▶ Lemma 7 (Cunningham [7]). For any two matroids M′ = (V, I ′) and M′′ = (V, I ′′), if
the length of the shortest augmenting path in exchange graph G(S) relative to a common
independent set S ∈ I ′ ∩ I ′′ is at least d, then |S| ≥ (1− O(1)

d ) · r, where r is the size of a
largest common independent set.

Cunningham’s [7] matroid intersection algorithm by the blocking flow approach relies on
the following monotonicity lemma.

▶ Lemma 8 (Monotonicity Lemma, [5, 7, 16, 26]). For any two matroids M′ = (V, I ′) and
M′′ = (V, I ′′), suppose we obtain a common independent set S′ ∈ I ′ ∩ I ′′ by augmenting
S ∈ I ′ ∩ I ′′ along a shortest augmenting path in G(S). Note that |S′| > |S|. Let d denote
the distance in G(S) and d′ denote the distance in G(S′). Then for all v ∈ V ,

(i) If d(s, v) < d(s, t), then d′(s, v) ≥ d(s, v). If d(v, t) < d(s, t), then d′(v, t) ≥ d(v, t).
(ii) If d(s, v) ≥ d(s, t), then d′(s, v) ≥ d(s, t). If d(v, t) ≥ d(s, t), then d′(v, t) ≥ d(s, t).
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2.3 Compressed Exchange Graph for Matroid Partition
The matroid partitioning problem can be solved by a matroid intersection algorithm. Let
V̂ = V × [k], and define

Î ′ ={Î ⊆ V̂ | ∀v ∈ V, #{i ∈ [k] | (v, i) ∈ Î} ≤ 1},

Î ′′ ={Î ⊆ V̂ | ∀i ∈ [k], {v ∈ V | (v, i) ∈ Î} ∈ Ii}.

Then, M̂′ = (V̂ , Î ′) is a partition matroid. Since M̂′′ = (V̂ , Î ′′) is the direct sum of
matroids (V, Ii) for all i ∈ [k], it is also a matroid. Then, the family of partitionable subsets
of V can be represented as

{S ⊆ V | ∃π : S → [k], {(v, π(v)) | v ∈ S} ∈ Î ′ ∩ Î ′′}.

Therefore, we can solve the matroid partitioning problem by computing a common
independent set of maximum size in I ′ and I ′′. However, we might use too many independence
oracle queries when solving the matroid partitioning problem by using this reduction to
the matroid intersection problem. This is due to the following reasons. When solving the
matroid intersection problem that was reduced by the matroid partitioning problem, the size
of the ground set of that matroid intersection problem is O(kn), and then the number of
edges in the exchange graph is O(knp), which depends heavily on k. Furthermore, since we
consider the total query complexity of the independence oracle of each matroid Mi = (V, Ii)
for all i ∈ [k], the query complexity of the independence query of the matroid M̂′′ = (V̂ , Î ′′)
also depends heavily on k.

Then, to improve the running time, Knuth [20] and Greene-Magnanti [14] give a matroid
partition algorithm that uses the following auxiliary graph with O(np) edges, which we call
compressed exchange graph.

▶ Definition 9 (Compressed Exchange Graph [7, 14, 20]). Consider a partition (S1, . . . , Sk) of
S ⊆ V such that Si ∈ Ii for all i ∈ [k]. The compressed exchange graph is defined as a directed
graph G(S1, . . . , Sk) = (V ∪ {s, t1, . . . , tk}, E), with s, t1, . . . , tk /∈ V and E = E′ ∪ Es ∪ Et,
where

E′ ={(v, u) | ∃i ∈ [k], u ∈ Si, Si + v /∈ Ii, Si + v − u ∈ Ii},
Es ={(s, v) | v ∈ V \ S}, and

Et =
k⋃

i=1
{(v, ti) | v ∈ V \ Si, Si + v ∈ Ii}.

We set T = {t1, . . . , tk}.

In the matroid partition algorithm, we begin with an empty set S and initialize Si = ∅ for
all i ∈ [k]. If there is no vertex in T which is reachable from s in the compressed exchange
graph G(S1, . . . , Sk), then S is a partitionable set of maximum size. If there is a path from s

to T in the compressed exchange graph, then we pick a shortest path s, v1, . . . , vl−1, tj . Then
we can obtain a partitionable set S′ = S + v1 and a partition (S′

1, . . . , S′
k) of S′ such that

S′
i ∈ Ii for all i ∈ [k]. The validity of the algorithm follows from the following two lemmas,

which we use throughout this paper. Cunningham [7] showed these lemmas by using the
equivalence of the compressed exchange graph for the matroid partition and the exchange
graph for the reduced matroid intersection; see [28, Theorem 42.4] for a direct proof that
does not use the reduction to the matroid intersection.
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▶ Lemma 10. Given a partition (S1, . . . , Sk) of S such that Si ∈ Ii for all i ∈ [k], there
exists a partitionable set S′ whose size is at least |S|+ 1 if and only if there is a vertex tj ∈ T

that is reachable from s in the compressed exchange graph G(S1, . . . , Sk).

▶ Lemma 11 (Shortest Augmenting Path). Let s, v1, v2, . . . , vl−1, tj be a shortest (s, T )-path
in the compressed exchange graph G(S1, . . . , Sk). Then S′ = S + v1 is a partitionable set.

We can construct a partition (S′
1, . . . , S′

k) of S′ from a partition (S1, . . . , Sk) of S and an
augmenting path in the compressed exchange graph by using the following procedure Update
(Algorithm 1).

Algorithm 1 Update.

Input: a partition (S1, . . . , Sk) of S (⊆ V ) such that Si ∈ Ii for all i ∈ [k]. an
augmenting path s, v1, . . . , vl−1, tj .

Output: a partition (S′
1, . . . , S′

k) of S′ (⊆ V ) such that S′
i ∈ Ii for all i ∈ [k] and

S′ = S + v1.
1 For all i ∈ [k], set S′

i ← Si

2 For all v ∈ S, denote by π(v) the index such that v ∈ Sπ(v)
3 for i ∈ [l − 2] do
4 S′

π(vi+1) ← S′
π(vi+1) + vi − vi+1

5 S′
j ← S′

j + vl−1

6 return a partition (S′
1, . . . , S′

k) of S′

Cunningham [7] observes that the equivalence between the exchange graph for the matroid
intersection of two matroids M̂′ = (V̂ , Î ′) and M̂′′ = (V̂ , Î ′′) and the compressed exchange
graph for the matroid partition of k matroids (V, I1), . . . , (V, Ik) to prove the Lemmas 12
and 13 and to develop an efficient algorithm for matroid partition that employs the blocking
flow approach. For a fixed partition (S1, . . . , Sk) of S and an element v ∈ S, let π(v) be
the index such that v ∈ Sπ(v). We also denote by Ŝ the set {(v, π(v)) ∈ V̂ | v ∈ S}.
A path s, v1, v2, . . . , vl−1, tj in the compressed exchange graph for the matroid partition
corresponds to a path s, (v1, π(v2)), (v2, π(v2)), (v2, π(v3)), . . . , (vl−1, π(vl−1)), (vl−1, j), t in
the exchange graph for the matroid intersection. Then, for all elements v ∈ S, we have
dG(S1,...,Sk)(s, v) = 1 + 1

2 dG(Ŝ)(s, (v, π(v))) and dG(S1,...,Sk)(v, T ) = 1
2 dG(Ŝ)((v, π(v)), t). We

also have dG(S1,...,Sk)(s, T ) = 1 + 1
2 dG(Ŝ)(s, t).

Cunningham [7] uses the following two lemmas to develop an efficient matroid partition
algorithm by using blocking flow approach. These lemmas can be shown from the corres-
pondence between the exchange graph and the compressed exchange graph. We also use
these two lemmas in our fast matroid partition algorithms.

▶ Lemma 12 (Cunningham [7]). Given a partition (S1, . . . , Sk) of S such that Si ∈ Ii for
all i ∈ [k]. If the length of a shortest augmenting path in the compressed exchange graph
G(S1, . . . , Sk) is at least d, then |S| ≥ (1− O(1)

d ) ·p, where p is the size of largest partitionable
set.

▶ Lemma 13 (Monotonicity Lemma [5,7, 16, 26]). Suppose we obtain a partition (S′
1, . . . , S′

k)
of S′ by augmenting a partition (S1, . . . , Sk) of S along a shortest augmenting path in
G(S1, . . . , Sk). Note that |S′| > |S|. let d denote the distance in G(S1, . . . , Sk) and d′ denote
the distance in G(S′

1, . . . , S′
k). Then for all v ∈ V ,

(i) If d(s, v) < d(s, T ), then d′(s, v) ≥ d(s, v). If d(v, T ) < d(s, T ), then d′(v, T ) ≥ d(v, T ).
(ii) If d(s, v) ≥ d(s, T ), then d′(s, v) ≥ d(s, T ). If d(v, T ) ≥ d(s, T ), then d′(v, T ) ≥ d(s, T ).
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As we will see later, we use the binary search technique given in Lemma 4 to find edges
in the compressed exchange graph under the independence oracle model. Note that the
procedure FindOutEdge(Mi, Si, v, B) gives us an efficient way to find edges from the vertex
v to a vertex u ∈ B(⊆ Si) in the compressed exchange graph.

3 Blocking Flow Algorithm

In this section, we provide our matroid partition algorithms in the independence oracle
model, which is obtained by simply combining the blocking flow approach proposed by
Cunningham [7] and the binary search search procedure proposed by Nguy˜̂en [25] and
Chakrabarty-Lee-Sidford-Singla-Wong [5]. In the full version of this paper, we also present a
fast matroid partition algorithm using blocking flow approach in the rank oracle model.

3.1 Blocking Flow Algorithm using Independence Oracle
In this subsection we present our matroid partition algorithm using the blocking flow approach
in the independence oracle model. We show the following theorem, which implies Theorem 1.

▶ Theorem 14. There is an algorithm that uses O(kn
√

p log p) independence oracle queries
and solves the matroid partitioning problem.

This result improves upon the previously known matroid partition algorithm by Cunning-
ham [7] when k = o(p).

For the proof, we first provide the procedure GetDistanceIndependence (Algorithm 2)
that efficiently finds distances from s to every vertex in the compressed exchange graph.
This algorithm simply runs a breadth first search by using the procedure FindOutEdge.

Algorithm 2 GetDistanceIndependence.

Input: a partition (S1, . . . , Sk) of S (⊆ V ) such that Si ∈ Ii for all i ∈ [k]
Output: d ∈ RV ∪{s}∪T such that for v ∈ V ∪ {s} ∪ T , dv is the distance from s to v

in G(S1, . . . , Sk)
1 ds ← 0
2 For all v ∈ V \ S let dv ← 1
3 For all v ∈ S let dv ←∞
4 For all i ∈ [k] let dti

←∞
5 Q← {v ∈ V \ S} // Q : queue
6 For all i ∈ [k] let Bi ← Si

7 while Q ̸= ∅ do
8 Let v be the element added to Q earliest
9 Q← Q− v

10 for i ∈ [k] with dti =∞ do
11 if v /∈ Si and Si + v ∈ Ii then
12 dti ← dv + 1
13 for i ∈ [k] with v /∈ Si do
14 while u = FindOutEdge(Mi, Si, v, Bi) satisfies u ̸= ∅ do
15 Q← Q + u

16 du ← dv + 1
17 Bi ← Bi − u

18 return d
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▶ Lemma 15 (Breadth First Search using Independence Oracle). Given a partition (S1, . . . , Sk)
of S (⊆ V ) such that Si ∈ Ii for all i ∈ [k], the procedure GetDistanceIndependence (Al-
gorithm 2) outputs d ∈ RV ∪{s}∪T such that, for v ∈ V ∪{s}∪T , dv is the distance from s to v

in the compressed exchange graph G(S1, . . . , Sk). The procedure GetDistanceIndependence
uses O(kn log p) independence oracle queries.

Proof. The procedure GetDistanceIndependence simply performs a breadth first
search in the compressed exchange graph G(S1, . . . , Sk). Thus, the procedure
GetDistanceIndependence correctly computes distances from s in G(S1, . . . , Sk). Note
that each vertex v ∈ V is added to Q at most once and each vertex v ∈ S is removed from
Bπ(v) at most once. Thus, the number of independence oracle queries used in Line 11 is
O(kn). The number of FindOutEdge calls that do not output ∅ is O(p), and the number of
FindOutEdge calls that output ∅ is O(kn). Hence, by Lemma 4, the number of independence
oracle queries used in Line 14 is O(kn log p), which completes the proof. ◀

Next we provide our augmentation subroutine for our faster matroid partition algorithm.
We implement Cunningham’s [7] blocking flow approach for matroid partition by using the
binary search procedure proposed by Nguy˜̂en [25] and Chakrabarty et al. [5]. This algorithm
is similar to Chakrabarty et al.’s matroid intersection algorithm in the rank oracle model [5].
The implementation is described as BlockFlowIndependence in the full version of this paper.

In the procedure BlockFlowIndependence, given a partition (S1, . . . , Sk) of S, we first
compute the distances from s to every vertex in the compressed exchange graph G(S1, . . . , Sk)
using GetDistanceIndependence (Algorithm 2). By using these distances, we divide V into
sets L1, L2, . . . , where each Li has all vertices v such that the distance from s to v is i in the
compressed exchange graph G(S1, . . . , Sk). Then we search a path s, a1, a2, . . . , adT −1, adT

in the compressed exchange graph G(S1, . . . , Sk), where ai ∈ Li for all i ∈ [dT − 1]. If we
found such a path, we augment a partition (S1, . . . , Sk) of S and remove ai from Li for all
i ∈ [dT − 1]. Then we search a new path again until no (s, T )-path of length dT can be found.
During the search for such a path, if the procedure concludes that some vertex in Li is not on
such a path, then it removes the vertex from Li. Note that we write dT = min(dt1 , . . . , dtk

).

▶ Lemma 16 (Blocking Flow using Independence Oracle). Given a partition (S1, . . . , Sk) of
S (⊆ V ) such that Si ∈ Ii for all i ∈ [k], the procedure BlockFlowIndependence outputs
a partition (S′

1, . . . , S′
k) of S′ (⊆ V ) such that S′

i ∈ Ii for all i ∈ [k] and |S′| > |S| and
dG(S′

1,...,S′
k

)(s, T ) ≥ dG(S1,...,Sk)(s, T ) + 1, or a partition (S1, . . . , Sk) of S if no such S′ exists.
The procedure BlockFlowIndependence uses O(kn log p) independence oracle queries.

We provide a proof of Lemma 16 in the full version of this paper.
Now we provide a proof of Theorem 14 by using Lemma 12. In our matroid partition

algorithm, we simply apply BlockFlowIndependence repeatedly until no (s, T )-path can be
found.

Proof of Theorem 14. In our algorithm, we start with S = ∅ and initialize Si = ∅ for
all i ∈ [k]. Then we apply BlockFlowIndependence repeatedly to augment the current
partition (S1, . . . , Sk) of S until no (s, T )-path can be found in the compressed exchange
graph G(S1, . . . , Sk).

Since each execution of BlockFlowIndependence strictly increases dG(S1,...,Sk)(s, T ), we
have dG(S1,...,Sk)(s, T ) = Ω(√p) after O(√p) executions of BlockFlowIndependence. Lemma
12 implies that, if dG(S1,...,Sk)(s, T ) = Ω(√p), then |S| ≥ p−O(√p). Then the total number
of BlockFlowIndependence executions is O(√p) + O(√p) = O(√p) in the entire matroid
partition algorithm. Lemma 16 implies that one execution of BlockFlowIndependence uses
O(kn log p) independence oracle queries, which completes the proof. ◀
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In the same way as Chakrabarty et al.’s matroid intersection algorithm in the rank oracle
model [5], we easily obtain the following theorem.

▶ Theorem 17. For any ϵ > 0, there is an algorithm that uses O(knϵ−1 log p) independence
oracle queries and finds a (1− ϵ) approximation of the largest partitionable set of k matroids.

Proof. Similar to the proof of Theorem 14, we start with S = ∅ and initialize Si = ∅ for
all i ∈ [k] and apply BlockFlowIndependence repeatedly to augment the current partition
(S1, . . . , Sk) of S. The only difference is that we apply BlockFlowIndependence only ϵ−1

times, which uses O(knϵ−1 log p) independence oracle queries.
Each execution of BlockFlowIndependence strictly increases dG(S1,...,Sk)(s, T ). Thus,

after ϵ−1 executions of BlockFlowIndependence, we have dG(S1,...,Sk)(s, T ) = Ω(ϵ−1).
Lemma 12 implies that, if dG(S1,...,Sk)(s, T ) = Ω(ϵ−1), then |S| ≥ p−O(pϵ), which completes
the proof. ◀

4 Faster Algorithm for Large k

In this section, we present an algorithm that uses o(kn
√

p) independence oracle queries when
k is large. In subsection 3.1, we have presented the algorithm (Algorithm 2), which runs a
breadth first search in the compressed exchange graph and uses O(kn log p) independence
oracle queries. In the evaluation of the independence query complexity of the matroid
partition algorithm by the blocking flow approach given in section 3, a key observation is
that the number of different lengths of shortest augmenting paths during the algorithm is
O(√p). For now, it is not clear whether we can obtain a matroid partition algorithm that
runs a breadth first search o(√p) times. Then the blocking flow approaches are now stuck
at Ω(kn

√
p) independence oracle queries. To overcome this barrier and improve upon the

algorithm that uses O(kn
√

p log p) independence oracle queries given in Theorem 14, we
introduce a new approach called edge recycling augmentation, which can perform breadth first
searches with fewer total independence oracle queries. Our new approach can be attained
through new ideas: an efficient utilization of the binary search procedure FindOutEdge and
a careful analysis of the number of independence oracle queries by using Lemma 12. By
combining an algorithm by the blocking flow approach and an algorithm by the edge recycling
augmentation approach, we obtain the following theorem, which implies Theorem 2.

▶ Theorem 18. There is an algorithm that uses O(k1/3np log p + kn) independence oracle
queries and solves the matroid partitioning problem. When k ≤ n, the number of queries is
Õ(n7/3).

This theorem implies that we obtain a matroid partition algorithm that uses o(kn
√

p)
independence oracle queries when k = ω(p3/4). We note that this algorithm requires
O(k2/3np) time complexity other than independence oracle queries.

In Section 4.1, we present our new approach edge recycling augmentation, and in Sec-
tion 4.2, we present our faster matroid partition algorithm for large k and give a proof of
Theorem 18.

4.1 Edge Recycling Augmentation
In order to select appropriate parameters for our algorithm, we have to determine the value of
p. However, the size p of a largest partitionable set is unknown before running the algorithm.
Instead of using the exact value of p, we use a 1

2 -approximation p̄ for p (that is p̄ ≤ p ≤ 2p̄),
which can be computed using O(kn) independence oracle queries. It is well known that a



T. Terao 104:13

1
2 -approximate solution for the matroid intersection problem can be found by the following
simple greedy algorithm; see [21, Proposition 13.26]. We begin with an empty set. For
each element in the ground set, we check whether adding it to the set would result in a
common independent set. If it does, we add it to the set. Finally, we obtain a maximal
common independent set. We convert this algorithm into the following 1

2 -approximation
algorithm (Algorithm 3) for the matroid partitioning problem by utilizing the reduction from
matroid partition to the intersection of two matroids M̂′ = (V̂ , Î ′) and M̂′′ = (V̂ , Î ′′) given
in subsection 2.3.

Algorithm 3 1
2 -ApproximationMatroidPartition.

1 For all i ∈ [k] let Si ← ∅
2 for i← 1 to k do
3 for v ∈ V \

(⋃i−1
j=1 Sj

)
do

4 if Si + v ∈ Ii then
5 Si ← Si + v

6 return p̄ = |
⋃k

i=1 Si|

Now we present our new approach Edge Recycling Augmentation. Our new approach
edge recycling augmentation is applied in each phase of the algorithm. One phase of edge
recycling augmentation is described as EdgeRecyclingAugmentation (Algorithm 5).

In EdgeRecyclingAugmentation, we first compute the edges E∗(⊆ V × S) in the com-
pressed exchange graph G(S1, . . . , Sk), which uses O(np) independence oracle queries. Note
that the compressed exchange graph may be changed by augmentations, that is, augment-
ations may add or delete several edges in the compressed exchange graph, and so, taking
one augmenting path may destroy the set E∗ of the edges. However, we notice that we
can recycle some part of the edge set E∗ after the augmentations, which is peculiar to the
matroid partition.

In EdgeRecyclingAugmentation, we simply repeat to run a breadth first search and
then to augment the partitionable set. Unlike GetDistanceIndependence (Algorithm 2) in
Section 3.1, our BFS recycles the precomputed edge set E∗. In one phase, we keep a set
J of all indices i such that Si was updated by the augmentations. Our crucial observation
is that no edges, in the compressed exchange graph, entering a vertex in Si are changed
by the augmentations unless augmenting paths contain a vertex in Si ∪ {ti}. In contrast
to GetDistanceIndependence that uses the binary search procedure FindOutEdge for all
indices i ∈ [k], our new BFS procedure uses FindOutEdge only for indices i ∈ J . We can use
E∗ to search edges entering a vertex in Si with i /∈ J . Then, the BFS based on the ideas
described above can be implemented as EdgeRecyclingBFS (Algorithm 4).

We also provide a new significant analysis of the number of independence oracle quer-
ies in entire our matroid partition algorithm. In EdgeRecyclingAugmentation, we re-
peat to run the breadth first search EdgeRecyclingBFS so that the total calls of the bin-
ary search procedure is O(np). Then, the number of independence oracle queries used
by EdgeRecyclingBFS in one call of EdgeRecyclingAugmentation is almost equal to the
one used by the precomputation of E∗. Hence, one call of EdgeRecyclingAugmentation
uses Õ(np) independence oracle queries. The number of calls of EdgeRecyclingBFS in
EdgeRecyclingAugmentation depends on how many edges can not be recycled. Thus, to
determine the number of calls of EdgeRecyclingBFS, we use the value sum in the imple-
mentation of EdgeRecyclingAugmentation (Algorithm 5). In the entire matroid partition
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algorithm, we apply EdgeRecyclingAugmentation repeatedly. Then, we can obtain a
matroid partition algorithm that uses Õ(np3/2 + kn) independence oracle queries. Fur-
thermore, by combining this with the blocking flow approach, the number of total calls of
EdgeRecyclingAugmentation in the entire matroid partition algorithm can be O(k1/3). This
leads to obtain a matroid partition algorithm that uses Õ(k1/3np + kn) independence oracle
queries. This analysis differs significantly from that of existing faster matroid intersection
algorithms.

For i ∈ [k], let Fi(⊆ V ) denote the set of vertices adjacent to ti ∈ T . We first compute
the set Fi for all i ∈ [k] using O(kn) independence oracle queries. Note that, after one
augmentation, they can be updated using only O(n) independence oracle queries.

In the following two lemmas, we show the correctness and the independence query
complexity of the procedure EdgeRecyclingAugmentation (Algorithm 5).

▶ Lemma 19. Given a partition (S1, . . . , Sk) of S(⊆ V ) such that Si ∈ Ii for all i ∈ [k], the
procedure EdgeRecyclingAugmentation (Algorithm 5) outputs a partition (S′

1, . . . , S′
k) of

S′(⊆ V ) such that S′
i ∈ Ii for all i ∈ [k] and |S′| ≥ |S|.

Proof. To prove the correctness of EdgeRecyclingAugmentation, we prove the following
invariants at the beginning of any iteration of the while loop.

(i) For all i ∈ [k]\J and all (v, u) ∈ V ×Si, we have (v, u) ∈ E∗ if and only if Si +v−u ∈ Ii

and Si + v /∈ Ii.
(ii) For all i ∈ [k] and all v ∈ V , we have v ∈ Fi if and only if Si + v ∈ Ii and v /∈ Si.
(iii) For all i ∈ [k], we have Si ∈ Ii.

The invariant is true before the execution of EdgeRecyclingAugmentation. Now, assume
that the invariants (i)–(iii) hold true at the beginning of an iteration of the while loop. Let
a partition (Sold

1 , . . . , Sold
k ) of Sold be the partition before the execution of Line 13 and a

partition (Snew
1 , . . . , Snew

k ) of Snew be the partition after the execution of Line 13. For all
i ∈ [k] \ J , we have Sold

i = Snew
i . Then, invariant (i) remains true. For all i ∈ [k] \ {j},

we have |Sold
i | = |Snew

i |. Hence, for all i ∈ [k] \ {j} and all v /∈ Sold
i ∪ Snew

i , we have
Snew

i + v ∈ Ii if and only if Sold
i + v ∈ Ii; see [28, Corollary 39.13a] for a proof. Furthermore,

for all i ∈ [k] \ {j}, we have Sold
i + v /∈ Ii for all v ∈ Snew

i \ Sold
i and Snew

i + v /∈ Ii for
all v ∈ Sold

i \ Snew
i ; see [7, Section 5]. Then, invariant (ii) remains true. The procedure

EdgeRecyclingBFS simply finds a BFS-tree rooted at s by a breadth first search. Thus, if
the invariants (i)–(iii) are true, then the procedure EdgeRecyclingBFS correctly computes
BFS-tree rooted at s. Then, the path P that EdgeRecyclingBFS outputs in Line 5 is a
shortest augmenting path. Hence, by Lemma 11, invariant (iii) remains true. ◀

▶ Lemma 20. The procedure EdgeRecyclingAugmentation (Algorithm 5) uses O(np log p)
independence oracle queries.

Proof of Lemma 20. The number of independence oracle queries used in Line 3 is O(np).
Furthermore, the number of independence oracle queries used in Line 14 is O(np), because
the number of iterations of the while loop is bounded by p.

Now we show that the number of FindOutEdge calls in the entire procedure
EdgeRecyclingAugmentation is O(np).

In the procedure EdgeRecyclingBFS((S1, . . . , Sk), E∗, J,
⋃k

i=1 Fi), each vertex v ∈ V is
added to Q at most once and each vertex v ∈ S is removed from Bπ(v) at most once,
where π(v) is the index such that v ∈ Sπ(v). This means that the number of FindOutEdge
calls that do not output ∅ is bounded by p, and the number of FindOutEdge calls that
output ∅ is bounded by n · |J |. Then, the number of FindOutEdge calls in the procedure
EdgeRecyclingBFS is O(p + n · |J |).
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Algorithm 4 EdgeRecyclingBFS.

Input: a partition (S1, . . . , Sk) of S (⊆ V ) such that Si ∈ Ii for all i ∈ [k], a set
E ⊆ V × S, a set J ⊆ [k], a set F = {v ∈ V | ∃i ∈ [k], v /∈ Si, Si + v ∈ Ii}.

Output: An augmenting (s, T )-path in G(S1, . . . , Sk) if one exists.
1 Q← {v ∈ V \ S} // Q : queue
2 Bi ← Si for all i ∈ [k]
3 while Q ̸= ∅ do
4 Let v be the element added to Q earliest
5 Q← Q− v

6 if v ∈ F then
7 return the shortest augmenting path in the BFS-tree.
8 for i ∈ J do
9 while u = FindOutEdge(Mi, Si, v, Bi) satisfies u ̸= ∅ do

10 Q← Q + u

11 Bi ← Bi − u

12 for i ∈ [k] \ J do
13 for u ∈ Bi such that (v, u) ∈ E do
14 Q← Q + u

15 Bi ← Bi − u

16 return NO PATH EXISTS

Algorithm 5 EdgeRecyclingAugmentation.

Input: a partition (S1, . . . , Sk) of S (⊆ V ) such that Si ∈ Ii for all i ∈ [k], sets
Fi = {v ∈ V \ Si | Si + v ∈ Ii} for all i ∈ [k]

Output: a partition (S′
1, . . . , S′

k) of S′ (⊆ V ) such that S′
i ∈ Ii for all i ∈ [k] and

|S′| ≥ |S|.
1 sum← 0
2 J ← ∅
3 E∗ ← {(v, u) ∈ V × S | ∃i ∈ [k], u ∈ Si, Si + v /∈ Ii, Si + v − u ∈ Ii}
4 while sum < 2p̄ do
5 P ← EdgeRecyclingBFS((S1, . . . , Sk), E∗, J,

⋃k
i=1 Fi)

6 if P = NO PATH EXISTS then
7 break
8 For v ∈ S denote by π(v) the index such that v ∈ Sπ(v)
9 Denote by V (P ) = {s, v1, . . . , vl−1, tj} the vertices in the path P

10 for i← 2 to l − 1 do
11 J ← J + π(vi)
12 J ← J + j

13 (S1, . . . , Sk)← Update((S1, . . . , Sk), P )
14 Fj ← {v ∈ V | v /∈ Sj and Sj + v ∈ Ij}
15 sum← sum + |J |
16 return (S1, . . . , Sk)
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Suppose that the procedure EdgeRecyclingBFS is called for J = J1, J2, . . . , Jc in the
procedure EdgeRecyclingAugmentation. Obivously, c ≤ 2p̄ = O(p). Furthermore, by

the condition of the while loop in EdgeRecyclingAugmentation,
c∑

i=1
|Ji| = O(p). Thus,

the number of FindOutEdge calls in the entire procedure EdgeRecyclingAugmentation is

O

(
c∑

i=1
(p + n · |Ji|)

)
, which is O(np). Hence, by Lemma 4, the number of independence

oracle queries by FindOutEdge in the entire procedure EdgeRecyclingAugmentation is
O(np log p), which completes the proof. ◀

At this point, we can obtain a matroid partition algorithm that uses O(np3/2 log p + kn)
independence oracle queries. In the algorithm, we first compute Fi = {v ∈ V \ Si |
Si + v ∈ Ii} for all i ∈ [k]. Next, we apply EdgeRecyclingAugmentation repeatedly to
augment the current partition (S1, . . . , Sk) of S until no (s, T )-path can be found in the
compressed exchange graph G(S1, . . . , Sk). As we will show later in Lemma 22, the number
of independence oracle queries in this algorithm is O(np3/2 log p+kn). In the next subsection,
we improve this by combining the algorithm by the blocking flow approach and the algorithm
by the edge recycling augmentation approach.

4.2 Going Faster for Large k by Combining Blocking Flow and Edge
Recycling Augmentation

We have already presented two algorithms to solve the matroid partitioning problem in the
independence oracle model. We combine the algorithm by the blocking flow approach and
the one by the edge recycling augmentation approach. When the distance from s to T in the
compressed exchange graph is small, we use the blocking flow approach. On the other hand,
when the distance from s to T in the compressed exchange graph is large, we use the edge
recycling augmentation approach. The implementation is described as Algorithm 6. Then
we obtain a matroid partitioning algorithm that uses o(kn

√
p) independence oracle queries

when k = ω(p3/4). This improves upon the algorithm given in Theorem 14 that uses only
the blocking flow approach.

Algorithm 6 Faster Matroid Partition Algorithm for Large k.

1 Compute a 1
2 -approximation p̄ for p by running

1
2 -ApproximationMatroidPartition (Algorithm 3) and determine the value of d.

2 For all i ∈ [k] let Si ← ∅
3 Apply BlockFlowIndependence repeatedly to augment the current partition

(S1, . . . , Sk) of S until the distance from s to T in the compressed exchange graph
G(S1, . . . , Sk) is at least d.

4 For all i ∈ [k] let Fi ← {v ∈ V \ Si | Si + v ∈ Ii}
5 Apply EdgeRecyclingAugmentation (Algorithm 5) repeatedly to augment the

current partition (S1, . . . , Sk) of S and to update Fj with j ∈ [k] until no
(s, T )-path can be found in the compressed exchange graph G(S1, . . . , Sk).

The algorithm is parametrized by an integer d which we set in the end. To analyze
the independence query complexity of Algorithm 6, we first show that Line 3 uses Õ(knd)

independence oracle queries and Line 5 uses Õ

(
p3/2n

d1/2

)
independence oracle queries.

▶ Lemma 21. Line 3 of Algorithm 6 uses O(knd log p) independence oracle queries.
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Proof. Lemma 16 implies that the distance from s to T in the compressed exchange graph
increases by at least 1 after the execution of BlockFlowIndependence. Consequently, the
number of calls of BlockFlowIndependence is bounded by d. Furthermore, Lemma 16 implies
that the number of independence oracle queries in one call of BlockFlowIndependence is
O(kn log p), which completes the proof. ◀

▶ Lemma 22. Line 5 of Algorithm 6 uses O

(
p3/2n

d1/2 log p

)
independence oracle queries.

Proof. Let m denote the number of calls of EdgeRecyclingAugmentation in Line 5 of Al-

gorithm 6. By Lemma 20, we only have to show that m = O

(√
p

d

)
. For i ∈ [m], let ci denote

the number of augmenting paths found in the i-th call of EdgeRecyclingAugmentation. For

i ∈ [m− 1] ∪ {0}, we write si =
m∑

j=i+1
cj .

We first show the following two claims.

▷ Claim 23. There is a positive constant C such that ci ≥ C
√

si for all i ∈ [m− 1].

Proof. Let i ∈ [m − 1]. We denote by li the length of the augmenting path found in the
last EdgeRecyclingBFS in the i-th call of EdgeRecyclingAugmentation. Lemma 12 implies

that si = O

(
p

li

)
. We note that, by Lemma 13, the length of shortest augmenting paths

never decreases as the partitionable set size increases.
In the i-th call of EdgeRecyclingAugmentation, the sum of the sizes of J is upper

bounded by c2
i · li, because the size of J is upper bounded by ci · li. Furthermore, by the

condition of the while loop in EdgeRecyclingAugmentation, the sum of the sizes of J is at

least 2p̄(≥ p). Thus, we obtain c2
i · li ≥ p, and then we have c2

i ≥
p

li
. Since si = O

(
p

li

)
, we

have √si = O(ci), which completes the proof. ◁

▷ Claim 24. For all i ∈ [m− 1], we have C√
1 + C

≤
∫ si−1

si

dx√
x

.

Proof. Let i ∈ [m− 1]. Since ci ≥ C
√

si by Claim 23, we obtain∫ si−1

si

dx√
x

=
∫ si+ci

si

dx√
x
≥
∫ si+C

√
si

si

dx√
x
≥
∫ si+C

√
si

si

dx√
si + C

√
si

=
C
√

si√
si + C

√
si

= C√
1 + C 1√

si

≥ C√
1 + C

,

which completes the proof. ◁

By Claim 24, m− 1 =
m−1∑
i=1

1 ≤
√

1 + C

C

m−1∑
i=1

∫ si−1

si

dx√
x

= O

(∫ s0

sm−1

dx√
x

)
= O (

√
s0) .

Since Lemma 12 implies that s0 = O
(p

d

)
, the number of calls of

EdgeRecyclingAugmentation in Line 5 of Algorithm 6 is O

(√
p

d

)
. By Lemma 20, the

proof is complete. ◀

In Algorithm 6, we set a parameter d in order to balance the number of independence
oracle queries used in Lines 3 and 5. Thus we obtain the following proof.

ICALP 2023
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Proof of Theorem 18. We set d = p̄

k2/3 and run Algorithm 6. Then, by Lemmas 21 and
22, the number of independence oracle queries used in Lines 3 and 5 is O(k1/3np log p).
Furthermore, the number of independence oracle queries used in Lines 1 and 4 is O(kn),
which completes the proof. ◀

Note that Algorithm 6 requires O
(

np · p

d

)
= O(k2/3np) time complexity other than

independence oracle queries. This is because we use the edge set E∗ of size np in
EdgeRecyclingBFS and the number of total EdgeRecyclingBFS calls in Algorithm 6 is
O
(p

d

)
.

5 Concluding Remarks

By simply combining Cunningham’s algorithm [7] and the binary search technique proposed
by Nguy˜̂en [25] and Chakrabarty-Lee-Sidford-Singla-Wong [5], we can not break the O(n5/2)-
independence-query bound for the matroid partitioning problem. However, we introduce a
new approach edge recycling augmentation and break this barrier and obtain an algorithm
that Õ(n7/3) independence oracle queries. This result will be a substantial step forward
understanding the matroid partitioning problem.

Our key observation is that some edges in the compressed exchange graph will remain
the same after an augmentation, and then we need not query again to find them. That is, we
can recycle some edges in the compressed exchange graph. This yields a matroid partition
algorithm whose independence query complexity is sublinear in k. This idea is quite simple,
and we believe that edge recycling augmentation will be useful in the design of algorithms in
future.

In a recent breakthrough, Blikstad-van den Brand-Mukhopadhyay-Nanongkai [4] broke
the Õ(n2)-independence-query bound for matroid intersection. Then it is natural to ask
whether we can make a similar improvement for the matroid partition algorithm. However,
such an improvement is impossible. As one anonymous reviewer pointed out, it is easy to
show that the matroid partitioning problem requires Ω(kn) independence oracle queries,
which is Ω(n2) when k = Θ(n).3 Then, there is a clear difference between these two problems.

We also consider a matroid partition algorithm in the rank oracle model and present a
matroid partition algorithm that uses Õ(n3/2) rank oracle queries when k ≤ n. Blikstad et
al. [4] asks whether the tight bounds of the matroid intersection problem are the same under
independence oracle model and rank oracle model. The same kind of problem is natural for
the matroid partitioning problem. Unlike the matroid intersection problem, we believe there
exists a difference between independence oracle and rank oracle in terms of query complexity
of the matroid partitioning problem.
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