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Abstract
This paper considers the decidability of fully quantum nonlocal games with noisy maximally entangled
states. Fully quantum nonlocal games are a generalization of nonlocal games, where both questions
and answers are quantum and the referee performs a binary POVM measurement to decide whether
they win the game after receiving the quantum answers from the players. The quantum value of a
fully quantum nonlocal game is the supremum of the probability that they win the game, where
the supremum is taken over all the possible entangled states shared between the players and all the
valid quantum operations performed by the players. The seminal work MIP∗ = RE [16, 17] implies
that it is undecidable to approximate the quantum value of a fully nonlocal game. This still holds
even if the players are only allowed to share (arbitrarily many copies of) maximally entangled states.
This paper investigates the case that the shared maximally entangled states are noisy. We prove
that there is a computable upper bound on the copies of noisy maximally entangled states for the
players to win a fully quantum nonlocal game with a probability arbitrarily close to the quantum
value. This implies that it is decidable to approximate the quantum values of these games. Hence,
the hardness of approximating the quantum value of a fully quantum nonlocal game is not robust
against the noise in the shared states.

This paper is built on the framework for the decidability of non-interactive simulations of joint
distributions [12, 7, 11] and generalizes the analogous result for nonlocal games in [26]. We extend
the theory of Fourier analysis to the space of super-operators and prove several key results including
an invariance principle and a dimension reduction for super-operators. These results are interesting
in their own right and are believed to have further applications.
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1 Introduction

Nonlocal games are a core model in the theory of quantum computing, which has found
wide applications in quantum complexity theory, quantum cryptography, and the foundation
of quantum mechanics. A nonlocal game is executed by three parties, a referee and two
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non-communicating players, which are usually named Alice and Bob. Before the game starts,
the players may share an arbitrary bipartite quantum state. The referee samples a pair
of questions and sends each of them to the players, separately. Each player is supposed
to reply with a classical answer to the referee. They win the game if the questions and
the answers satisfy a given predicate. The distribution of the questions and the predicate
is known to the players. The quantum value is the supremum of the probability that
the players win the game. It is a central topic in quantum computing to understand the
computational complexity of computing the quantum value of a nonlocal game. After
decades of efforts [6, 21, 20, 14, 15, 24, 9], it has been finally settled by the seminal work
MIP∗ = RE [16, 17], where Ji, Natarajan, Vidick, Wright and Yuen proved that it is
undecidable to approximately compute the quantum value of a nonlocal game with constant
precision. This result implies that there is no computable upper bound on the preshared
entanglement for the players to win the game with a probability close to the quantum value.
Otherwise, the probability of success can be obtained by ε-netting all possible quantum
strategies and brute-force searching for the optimal value. Ji et al. essentially proved that it
is still uncomputable even if the players are only allowed to share (arbitrarily many) EPR
states.

In [26], the authors investigated the robustness of the hardness of the nonlocal games
under noise. More specifically, they considered a variant of nonlocal games, where the
preshared quantum states are corrupted. It is shown that the quantum value of a nonlocal
game is computable if the players are allowed to share arbitrarily many copies of noisy
maximally entangled states (MES). Hence, the hardness of the nonlocal games collapses in
the presence of noise from the preshared entangled states.

In this paper, we consider fully quantum nonlocal games, which are a broader class of
games where both questions and answers are quantum and the predicates are replaced
by quantum measurements with binary outcomes: win and loss. More specifically, a fully
quantum nonlocal game

G =
(
P,Q,R,A,B, ϕPQR

in ,
{
Pwin = MABR, Ploss = 1−MABR

})
consists of a referee and two non-communicating players: Alice and Bob, where P,Q,R,A,B

are quantum systems, ϕPQR
in is a tripartite quantum state in P⊗ Q⊗ R and {Pwin, Ploss} is a

measurement acting on A⊗B⊗ R. Alice, Bob, and the referee share the input state ϕPQR
in ,

where Alice, Bob, and the referee hold P,Q,R, respectively, at the beginning of the game. Alice
and Bob are supposed to perform quantum operations mapping P to A and Q to B, and then
send the quantum states in A and B to the referee, respectively. After receiving the quantum
messages from the players, the referee performs the POVM measurement {Pwin, Ploss}. Again,
the players are allowed to share arbitrary quantum states before the game starts. Both
players know the description of ϕin and the POVM. The quantum value of the game G is
the supremum of the probability that the players win the game. The supremum is over all
possible preshared quantum states and the quantum operations that can be implemented
by both parties. It is not hard to see if ϕin =

∑
x,y µ (x, y) |x⟩⟨x|P ⊗ |y⟩⟨y|Q ⊗ |xy⟩⟨xy|R and

both Pwin and Ploss are projectors on computational basis, where µ is a bipartite distribution,
then it boils down to a nonlocal game.

Fully quantum nonlocal games also capture the complexity class of two-prover one-round
quantum multi-prover interactive proof systems QMIP(2, 1). The variants of nonlocal games,
where either the questions or the answers are replaced by quantum messages have occurred
in much literature [3, 22, 27, 5, 10, 4, 2, 18]. In [3], Buscemi introduced the so-called semi-
quantum nonlocal games, which are nonlocal games with quantum questions and classical
answers, and proved that semi-quantum nonlocal games can be used to characterize LOSR
(local operations and shared randomness) paradigm. Such games are further used to study
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the entanglement verification in the subsequent work [4, 2]. In a different context, Regev
and Vidick in [27] proposed quantum XOR games, where the questions are quantum and the
answers are still classical. In [22], Leung, Toner, and Watrous introduced a communication
task: coherent state exchange and its analogue in the setting of nonlocal games, where
both questions and answers are quantum. In [10], Fitzsimons and Vidick demonstrated
an efficient reduction that transforms a local Hamiltonian into a 5-players nonlocal game
allowing classical questions and quantum answers. They showed that approximating the
value of this game to a polynomial inverse accuracy is QMA-complete. In [5], Chung, Wu,
and Yuen further proved a parallel repetition for nonlocal games where again questions are
classical and answers are quantum.

As fully quantum nonlocal games are a generalization of nonlocal games, Ji et al.’s
result [16, 17] implies that it is also undecidable to approximately compute the quantum
value of a fully quantum nonlocal game, even if they are only allowed to share MESs.

In this paper, we continue the line of research in [26] to investigate whether the hardness
of fully quantum nonlocal games can be maintained against the noise. More specifically,
we consider the games where the players share arbitrarily many copies of noisy MES’s ψST.
Each ψST is a bipartite state in quantum system S⊗ T, where Alice and Bob hold S and T,
respectively. The value of a game can be written as

valQ(G, ψ) = lim
n→∞

max
ΦAlice,ΦBob

Tr
[
Pwin

(
(ΦAlice ⊗ ΦBob)

(
ϕPQR

in ⊗
(
ψST

)⊗n))]
.

where the maximum is taken over all quantum operations ΦAlice : P⊗ S⊗n → A and ΦBob :
Q⊗T⊗n → B. Noisy MESs were introduced in [26], which will be defined later. They include
depolarized EPR states (1− ε) |Ψ⟩⟨Ψ|+ ε1/2⊗1/2, where ε > 0 and |Ψ⟩ = (|00⟩+ |11⟩) /

√
2

is an EPR state. [16, 17] proved that it is undecidable to approximate valQ(G, |Ψ⟩) within
constant precision.

Main results

In this paper, we prove that it is computable to approximate valQ(G, ψ) within arbitrarily
small precision if ψ is a noisy MES.

▶ Theorem 1 (Main result, informal). Given integer m ≥ 2, δ ∈ (0, 1) and a fully quantum
nonlocal game G, where players are allowed to share arbitrarily many copies m-dimensional
noisy MESs ψ, there exists an explicitly computable bound D = D (ε, δ,m,G) such that it
suffices for the players to share D copies of ψ to achieve the winning probability at least
valQ(G, ψ)− δ. Thus it is feasible to approximate the quantum value of the game (G, ψ) to
arbitrarily precision.

As mentioned above, the class of noisy MESs includes (1− ε) |Ψ⟩⟨Ψ|+ ε1/2⊗ 1/2, where
ε > 0 and Ψ is an EPR state. It is as hard as Halting problem to approximate valQ(G, |Ψ⟩)
proved by [16, 17]. Therefore, our result implies that the hardness of fully quantum nonlocal
games is also not robust against the noise in the preshared states.

This result generalizes [26] where the authors proved that it is feasible to approximate
the values when both questions and answers are classical. Both works are built on the series
of works for the decidability of non-interactive simulations of joint distributions [12, 11, 7].
In the setting of non-interactive simulations of joint distributions, two non-communicating
players Alice and Bob are provided a sequence of independent samples (x1, y1) , (x2, y2) , . . .
from a joint distribution µ, where Alice observes x1, x2, . . . and Bob observes y1, y2, . . .. The
question is to decide what joint distribution ν Alice and Bob can sample. The research on
this problem has a long history and fruitful results (see, for example [19] and the references
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therein). The quantum analogue was first studied by Delgosha and Beigi [8], which is referred
to as local state transformation. The decidability of local state transformation is still widely
open. In this work, we prove that the local state transformation is decidable when the source
states are noisy MESs.

1.1 Contributions
The main contribution in this paper is developing a Fourier-analytic framework for the study
of the space of super-operators. Here we list some conceptual or technical contributions,
which are believed to be interesting in their own right and have further applications in
quantum information science.

1. Analysis in the space of super-operators.
The space of super-operators is difficult to understand in general. In this paper, we make
a crucial observation that the quantum value of a fully quantum nonlocal game can be
reformulated in terms of the Choi representations of the adjoint maps of the quantum
operations. Instead of the space of super-operators, we apply Fourier analysis to the
space spanned by those Choi representations. Then we prove an invariance principle for
super-operators as well as a dimension reduction for quantum operations, which generalize
the analogous results in [26].
Our understanding of Fourier analysis in the space of super-operators is still very limited,
although Boolean analysis has been studied extensively in both mathematics and theoret-
ical computer science for decades. The approach taken in this paper may pave the way
for the theory of Fourier analysis in the space of super-operators.

2. Invariance principle for super-operators.
The classical invariance principle is a central limit theorem for polynomials [23], which
asserts that the distribution of a low-degree and flat polynomial with random inputs
uniformly drawn from {±1}n is close to the distribution which is obtained by replacing
the inputs with i.i.d. standard normal distributions. Here a polynomial is flat means
that no variable has high influence on the value of the polynomial. In [26], the authors
established an invariance principle for matrix spaces. This paper further proves an
invariance principle for super-operators. This is essential to reduce the number of shared
noisy MESs.

3. Dimension reduction for quantum operations.
An important step in our proof is a dimension reduction for quantum operations, which
enables us to reduce the dimensions of both players’ quantum operations. It, in turn,
reduces the number of noisy MESs shared between the players. Dimension reductions for
quantum operations are usually difficult and sometimes even impossible [13, 28]. In this
paper, we prove a dimension reduction via an invariance principle for super-operators and
the dimension reduction for polynomials in Gaussian spaces [11]. we adopt the techniques
in [11] with a delicate analysis. It leads to an exponential upper bound in the main
theorem. which also improves the doubly exponential upper bound in [26].

1.2 Comparison with [26]
In [26], the authors applied Fourier analysis to the Hilbert space where both players’ meas-
urements stay, and proved hypercontractive inequalities, quantum invariance principles and
dimension reductions for matrices and random matrices. In a fully quantum nonlocal game,
both players perform quantum operations. Hence, a natural approach is to further extend
the framework in [12, 26] to the space of super-operators.
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The first difficulty occurs as the answers are quantum. In [26], the authors applied the
framework to each pair of POVM elements (one from Alice and one from Bob). Further
taking a union bound, the result concludes. Hence, it suffices to work on the space where the
POVM elements stay, which is a tensor product of identical Hilbert spaces. This approach
fails when considering fully quantum nonlocal games as the answers are quantum. Hence, we
need to have a convenient representation of super-operators to work on. It is known that
there are several equivalent representations of super-operators [29]. In this paper, we choose
the Choi representations of super-operators, which view a super-operator as an operator in
the tensor product of the input space and the output space. Hence, the underlying Hilbert
space is a tensor product of a number of identical Hilbert spaces and the output Hilbert
space. Thus, the analysis in [26] cannot be generalized here directly.

The second difficulty occurs as the questions are quantum. In [26], the authors essentially
proved an upper bound on the number of noisy MESs for each pair of inputs. If the precision
of the approximation is good enough, then we can obtain an upper bound for all inputs again
by a union bound because the questions are finite in a nonlocal game. This argument cannot
be directly generalized to fully nonlocal games as the questions are the marginal state of the
input state with Alice and Bob. Fortunately, this difficulty can be avoided as the input state
is in a bounded-dimensional space and thus it suffices to prove the theorem for each basis
element from a properly chosen basis in the space, and then take a union bound.

The last difficulty is that the rounding argument in [26] does not apply to fully quantum
nonlocal games. In the end of the construction, the new super-operators are no longer valid
quantum operations. In [26], the construction gives a number of Hermitian operators in the
end. The rounding argument proves that it is possible to round these Hermitian operators
to valid POVMs with small deviation. For fully quantum nonlocal games we need a new
rounding argument which is able to round super-operators to valid quantum operations with
small deviation in the end of the construction.

1.3 Proof overview
The proof is built on the framework in [12, 11, 7] for the decidability of non-interactive
simulation of joint distributions. To explain the high-level idea of our proof, we start with
the decidability of a particular task of local state transformation. Then we explain how to
generalize it to nonlocal games.

Local state transformation
We are interested in the decidability of the following local state transformation problem.

Given δ > 0, a bipartite state σ and a noisy MES ψ, suppose Alice and Bob share
arbitrarily many copies of ψ.

Yes. Alice and Bob are able to jointly generate a bipartite state σ′ using only local
operations such that σ′ is δ-close to σ, i.e., ∥σ − σ′∥1 ≤ δ.
No. Any quantum state σ′ that Alice and Bob can jointly generate using only local
operations is 2δ-far from σ, i.e., ∥σ − σ′∥1 ≥ 2δ.

As there is no upper bound on the number of copies of ψ, the decidability of this question
is unclear. If it were proved that any quantum operation could be simulated by a quantum
operation in a bounded dimension, then the problem would be decidable as we could search

ICALP 2023
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all possible quantum operations in a bounded-dimensional space via an ε-net and brute
force. More specifically, suppose Alice and Bob share n copies of noisy MESs ψ and they
perform quantum operations ΦAlice and ΦBob. For any precision parameter δ ∈ (0, 1), we
need to construct quantum operations Φ̃Alice and Φ̃Bob acting on D copies of ψ, where D is
independent of n, such that

(ΦAlice ⊗ ΦBob)
(
ψ⊗n

)
≈
(

Φ̃Alice ⊗ Φ̃Bob

) (
ψ⊗D

)
. (1)

To explain the high-level ideas, we assume that ψ is a 2-qubit quantum state for simplicity.
Let {Xa}a∈{0,1,2,3} be an orthonormal basis in the space of 2× 2 matrices. We observe that
the left hand side of Equation (1) is determined by the following 42n values:{

Tr
[
(Xa ⊗Xb)

(
(ΦAlice ⊗ ΦBob)

(
ψ⊗n

))]}
a,b∈{0,1,2,3}n ,

where Xa = Xa1 ⊗ · · · ⊗ Xan . Notice that

Tr
[
(Xa ⊗Xb)

(
(ΦAlice ⊗ ΦBob)

(
ψ⊗n

))]
= Tr

[(
(ΦAlice)∗ (Xa)⊗ (ΦBob)∗ (Xb)

) (
ψ⊗n

)]
,

where (ΦAlice)∗ and (ΦBob)∗ are the adjoints of ΦAlice and ΦBob, respectively. Hence, Equa-
tion (1) is equivalent to

Tr
[(

(ΦAlice)∗ (Xa)⊗ (ΦBob)∗ (Xb)
)
ψ⊗n

]
≈ Tr

[((
Φ̃Alice

)∗
(Xa)⊗

(
Φ̃Bob

)∗
(Xb)

)
ψ⊗D

]
. (2)

Equation (2) resembles the setting considered in [26]. It is proved in [26] that for any POVM
{Mi ⊗Nj}i,j acting on ψ⊗n, there exists POVM

{
M ′i ⊗N ′j

}
i,j

acting on ψ⊗D such that

Tr
[
(Mi ⊗Nj)ψ⊗n

]
≈ Tr

[(
M ′i ⊗N ′j

)
ψ⊗D

]
,

for all i, j. However, (ΦAlice)∗ (Xa) and (ΦBob)∗ (Xb) are not positive. It is even not clear how
to characterize (ΦAlice)∗ (Xa) and (ΦBob)∗ (Xb) for valid quantum operations ΦAlice and ΦBob.
Thus we cannot directly apply the results in [26]. Instead of working on each of (ΦAlice)∗ (Xa)
and (ΦBob)∗ (Xb), we work on the Choi representations J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
, which

include the information of (ΦAlice)∗ (Xa) and (ΦBob)∗ (Xb) for all a, b. One more advantage of
Choi representations is that we have a neat characterization of the Choi representations of
quantum operations. Thus it is more convenient to bound the deviations of the intermediate
super-operators from valid quantum operations throughout the construction. We consider
the Fourier expansions of J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
, and reduce the dimensions of the

super-operators via the framework for the decidability of non-interactive simulations of
joint distributions in [12, 11, 7, 26]. To this end, we prove an invariance principle for
super-operators, and combine it with the dimension reduction for polynomials in Gaussian
spaces [11]. There are several prerequisites for the invariance principle. Firstly, the Choi
representation should have low degree. Secondly, all but a constant number of systems
are of low influence, that is, all but a constant number of subsystems do not influence the
super-operators much. The construction takes several steps to adjust the Fourier coefficients
of J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
to meet those prerequisites. Meanwhile, the new super-

operators still need to be close to valid quantum operations so that the value of the game
does not change much. Once these prerequisites are satisfied, the basis elements in those
subsystems with low influence are replaced by properly chosen Gaussian variables, which
only causes a small deviation by the invariance principle.

Each step is sketched as follows.
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1. Smoothing
This step is aimed to obtain bounded-degree approximations of J

(
(ΦAlice)∗

)
and

J
(
(ΦBob)∗

)
. We apply a noise operator ∆γ for some γ ∈ (0, 1) defined in Definition 10

to both J
(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
on the input spaces. Note that both Choi rep-

resentations are positive operators. After smoothing the operation and truncating the
high-degree parts, we get bounded-degree approximations M (1) and N (1), of J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
, respectively. Though the bounded-degree approximations may no longer

be positive, the deviation can be proved to be small.
2. Regularity

This step is aimed to prove that the number of subsystems having high influence is
bounded. The influence of a subsystem of a multipartite Hermitian operator is defined in
Definition 3. Informally speaking, the influence measures how much the subsystem can
affect the operator. For a bounded operator, the total influence, which is the summation of
the influences of all subsystems, is upper bounded by the degree of the operator. This is a
generalization of a standard result in Boolean analysis. Note that we have bounded-degree
approximations after the first step. The desired result follows by a Markov inequality.

3. Invariance principle
In this step, we use correlated Gaussian variables to substitute the basis elements in all
the subsystems with low influence in M (1) and N (1), after which we get random operators
M(2) and N(2), whose Fourier coefficients are low-degree multilinear polynomials in
Gaussian variables. We also need to prove that, M(2) and N(2) are close to positive
operators in expectation.

4. Dimension reduction
This step is aimed to reduce the number of Gaussian variables. After applying a dimension
reduction to M(2) and N(2), we get random operators M(3) and N(3) containing a bounded
number of Gaussian random variables. Unlike [26], we get an upper bound independent
of the number of quantum subsystems via a more delicate analysis. However, the Fourier
coefficients of M(3) and N(3) are no longer low-degree polynomials after the dimension
reduction.

5. Smooth random operators
The remaining steps are mainly concerned with removing the Gaussian variables. This
step is aimed to get low-degree approximations of the Fourier coefficients of M(3) and
N(3). We apply the Ornstein-Uhlenbeck operator (aka noise operators in Gaussian space)
to the Gaussian variables in M(3) and N(3) and truncate the high-degree parts to get M(4)

and N(4). We should note that the Fourier coefficients of M(4) and N(4) are polynomials,
but not multilinear.

6. Multilinearization
This step is aimed to get multilinear approximations of the Fourier coefficients of M(4)

and N(4). To this end, We apply the multilinearization lemma in [11] to get random
operators M(5) and N(5). Now we are ready to use the invariance principle again to
convert random operators back to operators.

7. Invariance to operators
In this step we substitute the Gaussian variables with properly chosen basis elements,
to get operators M (6) and N (6), which have a bounded number of quantum subsystems.
Again, we need to apply a quantum invariance principle to ensure that M (6) and N (6)

are close to positive operators.

ICALP 2023
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8. Rounding
We now have operators M (6) and N (6) that are close to positive operators. The last
thing to do is to round them to the Choi representations of the adjoints of some quantum
operations. After the rounding, the whole construction is done.

2 Preliminary

Given n ∈ Z>0, let [n] and [n]≥0 represent the sets {1, . . . , n} and {0, . . . , n− 1}, respectively.
For all a ∈ Zn≥0, we define |a| = |{i : ai > 0}|. In this paper, the lower-cased letters in bold
g,h, . . . are reserved for random variables, and the capital letters in bold M,N are reserved
for random operators.

2.1 Quantum mechanics
We denote the set of Hermitian operators in a quantum system S by HS. The identity
operator is denoted by 1S. We use the shorthand SA to represent S ⊗ A. The Hermitian
space of the composition of n Hermitian space HS is denoted by H⊗nS , or HnS for short.

Given quantum systems S,A, let L (S,A) denote the set of all linear maps from MS to
MA A quantum operation from the input system S to the output system A is represented by a
CPTP (completely positive and trace preserving) map Φ ∈ L (S,A). We define ψS = TrA ψSA

to represent the state obtained by tracing out system A from ψSA.
For a given map Φ ∈ L (S,A), the adjoint of Φ is defined to be the unique map Φ∗ ∈

L (A, S) that satisfies

Tr Φ∗(Q)†P = Tr Q†Φ(P ) for all P ∈ L(S) and Q ∈ L(A). (3)

Given Ψ ∈ L (A, S), the Choi representation of Ψ is a linear map J : L (A, S)→ H (SA)
defined as follows:

J (Ψ) =
∑
a

Ψ
(
Ãa
)
⊗ Ãa, (4)

where Ãa = Aa/
√
|A|1, and

{
Aa : a ∈

[
|A|2

]
≥0

}
is an orthonormal basis in A. J is a linear

bijection. Ψ can be recovered from its Choi representation J (Ψ) as follows.

Ψ (P ) = TrA
(
J (Ψ)

(
1S ⊗ P †

))
. (5)

▶ Fact 2. Φ ∈ L (S,A) is a quantum operation if and only if J (Φ∗) ≥ 0 and TrAJ (Φ∗) = 1S.

2.2 Fourier analysis in Gaussian space
Given n ∈ Z>0, let γn represent a standard n-dimensional normal distribution. A function
f : Rn → R is in L2 (R, γn) if

∫
Rn f(x)2γn (dx) <∞.

All the functions involved in this paper are in L2 (R, γn). We equip L2 (R, γn) with an
inner product ⟨f, g⟩γn

= Ex∼γn [f(x)g(x)] .

1 The denominator is because of the demoninator in the definition of the inner product 1
s Tr P †Q.
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The set of Hermite polynomials forms an orthonormal basis in L2 (R, γ1) with respect to
the inner product ⟨·, ·⟩γ1

. The Hermite polynomials Hr : R→ R for r ∈ Z≥0 are defined as

H0 (x) = 1;H1 (x) = x;Hr (x) = (−1)r√
r!

ex
2/2 dr

dxr e−x
2/2.

For any σ ∈ (σ1, . . . , σn) ∈ Zn≥0, define Hσ : Rn → R as Hσ (x) =
∏n
i=1 Hσi

(xi) .
The set

{
Hσ : σ ∈ Zn≥0

}
forms an orthonormal basis in L2 (R, γn). Every function f ∈

L2 (R, γn) has an Hermite expansion as

f (x) =
∑
σ∈Zn

≥0

f̂ (σ) ·Hσ (x) ,

where f̂ (σ)’s are the Hermite coefficients of f , which can be obtained by f̂ (σ) = ⟨Hσ, f⟩γn
.

We say f ∈ L2 (R, γn) is multilinear if f̂ (σ) = 0 for σ /∈ {0, 1}n.

▶ Definition 3. The influence of the i-th coordinate(variable) on f , denoted by Infi (f), is
defined by

Infi (f) = E
x∼γn

[
Varx′

i
∼γ1 [f (x1, . . . ,xi−1,x′i,xi+1, . . .xn)]

]
.

The following fact summarizes some basic properties of variance and influence.

▶ Fact 4 ([25, Proposition 8.16 and Proposition 8.23]). Given f ∈ L2 (R, γn), it holds that
1. Var[f ] =

∑
σ ̸=0n f̂ (σ)2 ≤

∑
σ f̂ (σ)2 = ∥f∥2

2 .

2. Infi (f) =
∑
σi ̸=0 f̂ (σ)2 ≤ Var[f ] .

2.3 Fourier analysis in matrix space
Given 1 ≤ m, p ≤ ∞, and H ∈ Hm, the p-norm of H is defined to be

∥H∥p =
(

Tr
(
H2)p/2

)1/p
.

The normalized p-norm of H is defined as

|||H|||p =
(

1
m

Tr
(
H2)p/2

)1/p
.

Given P,Q ∈ Hm, we define an inner product over R:

⟨P,Q⟩ = 1
m

Tr PQ.

We need the following particular classes of bases in Hm on which our Fourier analysis is
based.

▶ Definition 5. Let {Bi}i∈[m2]≥0
be an orthonormal basis in Hm over R. We say {Bi}i∈[m2]≥0

is a standard orthonormal basis if B0 = 1m.

▶ Fact 6. Let {Bi}m
2−1

i=0 be a standard orthonormal basis in Hm. Then the set{
Bσ = ⊗ni=1Bσi

: σ ∈ [m2]n≥0
}

is a standard orthonormal basis in H⊗nm .
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Given a standard orthonormal basis {Bi}m
2−1

i=0 in Hm, every H ∈ H⊗nm has a Fourier
expansion:

H =
∑

σ∈[m2]n
≥0

Ĥ (σ)Bσ,

where Ĥ (σ) ∈ R are the Fourier coefficients. The basic properties of Ĥ (σ)’s are summarized
in the following fact, which can be easily derived from the orthonormality of {Bσ}σ∈[m2]n

≥0
.

▶ Fact 7 ([26, Fact 2.11]). Given a standard orthonormal basis {Bi}i∈[m2]≥0
in Hm and

M,N ∈ Hm, it holds that
1. ⟨M,N⟩ =

∑
σ M̂ (σ) N̂ (σ).

2. |||M |||22 = ⟨M,M⟩ =
∑
σ M̂ (σ)2.

3. ⟨1m,M⟩ = M̂ (0).

▶ Definition 8. Let B = {Bi}i∈[m2]≥0
be a standard orthonormal basis in Hm, P,Q ∈ H⊗nm

1. The degree of P is defined to be degP = max
{
|σ| : P̂ (σ) ̸= 0

}
.

2. For any i ∈ [n], the influence of i-th coordinate is defined to be

Infi (P ) = |||P − 1m ⊗ TriP |||22,

where 1m is in the i’th quantum system, and Tri means tracing out the i’th system.
3. The total influence of P is defined to be Inf (P ) =

∑
i Infi (P ) .

▶ Fact 9 ([26, Lemma 2.16]). Given P ∈ H⊗nm , a standard orthonormal basis B = {Bi}i∈[m2]≥0

in Hm, it holds that
1. Infi (P ) =

∑
σ:σi ̸=0

∣∣∣P̂ (σ)
∣∣∣2 .

2. Inf (P ) =
∑
σ |σ|

∣∣∣P̂ (σ)
∣∣∣2 ≤ degP · |||P |||22.

▶ Definition 10. Given a quantum system S with dimension |S| = s, γ ∈ [0, 1], the depolarizing
operation ∆γ : HS → HS is defined as follows. For any P ∈ HS,

∆γ (P ) = γP + 1− γ
s (Tr P ) · 1S.

▶ Fact 11 ([26, Lemma 3.6 and Lemma 6.1]). Given n,m ∈ Z>0, γ ∈ [0, 1], a standard
orthonormal basis of Hm: B = {Bi}m

2−1
i=0 , the following holds:

1. For any P ∈ H⊗nm with a Fourier expansion P =
∑
σ∈[m2]n

≥0
P̂ (σ)Bσ, it holds that

∆γ (P ) =
∑

σ∈[m2]n
≥0

γ|σ|P̂ (σ)Bσ.

2. For any P ∈ H⊗nm , |||∆γ (P )|||2 ≤ |||P |||2.
3. ∆γ is a quantum operation.
4. For any d ∈ Z>0, P ∈ H⊗nm , it holds that

∣∣∣∣∣∣∣∣∣(∆γ(P ))>d
∣∣∣∣∣∣∣∣∣

2
≤ γd|||P |||2.

▶ Definition 12 (Maximal correlation). [1] Given quantum systems S,T with dimensions
s = |S| and t = |T|, ψST ∈ HST with ψS = 1S/s, ψT = 1T/t, the maximal correlation of ψST

is defined to be

ρ
(
ψST

)
= sup

{|Tr((P⊗Q)ψST)| :P∈HS,Q∈HT ,

Tr P=Tr Q=0,|||P |||2=|||Q|||2=1

}
.
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2.4 Random operators
In this subsection, we introduce random operators defined in [26], which unifies Gaussian
variables and operators.

▶ Definition 13 ([26]). Given p, h, n,m ∈ Z>0, we say P is a random operator if it can be
expressed as

P =
∑

σ∈[m2]h
≥0

pσ (g)Bσ,

where {Bi}i∈[m2]≥0
is a standard orthonormal basis in Hm, pσ : Rn → R for all σ ∈ [m2]h≥0

and g ∼ γn. P ∈ Lp
(
H⊗hm , γn

)
if pσ ∈ Lp (R, γn) for all σ ∈ [m2]h≥0.

We say P is multilinear if pσ (·) is multilinear for all σ ∈ [m2]h≥0.

▶ Fact 14 ([26, Lemma 2.23]). Given n, h,m ∈ Z>0, let P ∈ L2 (H⊗hm , γn
)

with an associated
vector-valued function p under a standard orthonormal basis. It holds that E

[
|||P|||22

]
= ∥p∥2

2 .

2.5 Rounding maps
Define a function ζ : R→ R as follows.

ζ (x) =
{
x2 if x ≤ 0
0 otherwise

. (6)

The function ζ measures the distance between an Hermitian operator and the set of positive
semi-definite operators in 2-norm.

▶ Fact 15 ([26, Lemma 9.1]). Given m ∈ Z>0, H ∈ Hm, it holds that

Tr ζ (H) = min
{
∥H −X∥2

2 : X ≥ 0
}
.

3 Main results

▶ Theorem 16. Given ϵ ∈ (0, 1), n, s ∈ Z>0, and quantum systems P,Q,R, S,T,A,B with
dimensions p = |P| , q = |Q| , r = |R| , s = |S| , t = |T| , a = |A| , b = |B| . Let {Aa}a∈[a2]≥0

,
{Bb}b∈[b2]≥0

, {Rr}r∈[r2]≥0
be orthonormal bases in HA, HB and HR, respectively. Let

ψST ∈ HST be a noisy MES with the maximal correlation ρ = ρ
(
ψST

)
< 1, which is defined

in Definition 12. Let ϕPQR
in ∈ HPQR be an arbitrary tripartite quantum state. Then there exists

an explicitly computable D = D (ρ, ϵ, s, p, q, r, s, t, a, b), such that for all quantum operations
ΦAlice ∈ L (SnP,A), ΦBob ∈ L (TnQ,B), there exist quantum operations Φ̃Alice ∈ L

(
SDP,A

)
,

Φ̃Bob ∈ L
(
TDQ,B

)
such that for all a ∈

[
a2]
≥0, b ∈

[
b2]
≥0, r ∈

[
r2]
≥0, 2

∣∣∣Tr
[(

Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗ R̃r

)(
ϕPQR

in ⊗
(
ψST

)⊗n)]
− Tr

[(
Φ̃∗Alice

(
Ãa
)
⊗ Φ̃∗Bob

(
B̃b
)
⊗ R̃r

)(
ϕPQR

in ⊗
(
ψST

)⊗D)]∣∣∣ ≤ ϵ.

In particular, one may choose

D = exp
(

poly
(

a, b, p, q, r, log s, log t, 1
1− ρ ,

1
ϵ

))
.

2 Remind that Ãa = Aa/
√

a, B̃b = Bb/
√

b and R̃r = Rr/
√

r.
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▶ Theorem 17. Given parameters 0 < ϵ, ρ < 1, and a fully quantum nonlocal game

G =
(
P,Q,R,A,B, ϕin,

{
MABR,1−MABR

})
,

with dimensions p = |P| , q = |Q| , r = |R| , s = |S| , t = |T| , a = |A| , b = |B|, suppose the
two players are restricted to share an arbitrarily finite number of noisy MES states ψST,
i.e., ψS = 1S/s, ψT = 1T/t with the maximal correlation ρ < 1 as defined in Definition 12.
Let valQ(G, ψST) be the supremum of the winning probability that the players can achieve.
Then there exists an explicitly computable bound D = D (ρ, ϵ, p, q, r, s, t, a, b) such that it
suffices for the players to share D copies of ψST to achieve the winning probability at least
valQ(G, ψST)− ϵ. In particular, one may choose

D = exp
(

poly
(

a, b, p, q, r, log s, log t, 1
1− ρ ,

1
ϵ

))
.

Proof. To keep the notations short, the superscripts will be omitted whenever it is clear from
the context. Suppose the players share n copies of ψST and employ the strategy (ΦAlice,ΦBob)
with the winning probability valQ(G, ψST). We apply Theorem 16 to (ΦAlice,ΦBob) with
ϵ← ϵ/(abr)3/2 to obtain

(
Φ̃Alice, Φ̃Bob

)
. We claim that the strategy

(
Φ̃Alice, Φ̃Bob

)
wins the

game with probability at least valQ(G, ψST)− ϵ.
Let {Aa}a∈[a2]≥0

, {Bb}b∈[b2]≥0
, {Rr}r∈[r2]≥0

be orthonormal bases in HA, HB and HR,
respectively. From Theorem 16, for all a ∈

[
a2]
≥0, b ∈

[
b2]
≥0, r ∈

[
r2]
≥0, we have

∣∣∣Tr
[(

Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗n

)]
− Tr

[(
Φ̃∗Alice

(
Ãa
)
⊗ Φ̃∗Bob

(
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]∣∣∣ ≤ ϵ/(abr)3/2.

By Equation (3), it is equivalent to∣∣∣Tr
[(

(ΦAlice ⊗ ΦBob)
(
ϕin ⊗ ψ⊗n

)) (
Ãa ⊗ B̃b ⊗ R̃r

)]
−Tr

[((
Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

))(
Ãa ⊗ B̃b ⊗ R̃r

)]∣∣∣ ≤ ϵ/(abr)3/2.

We finally get the desired result:∣∣∣Tr
[
MABR

(
(ΦAlice ⊗ ΦBob)

(
ϕin ⊗ ψ⊗n

)
−
(

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

))]∣∣∣
(⋆)
≤
∥∥MABR

∥∥ · ∥∥∥(ΦAlice ⊗ ΦBob)
(
ϕin ⊗ ψ⊗n

)
−
(

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

)∥∥∥
1

≤ (abr)1/2
∥∥∥(ΦAlice ⊗ ΦBob)

(
ϕin ⊗ ψ⊗n

)
−
(

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

)∥∥∥
2

=

abr
∑
a,b,r

(
Tr
[(

(ΦAlice ⊗ ΦBob)
(
ϕin ⊗ ψ⊗n

)) (
Ãa ⊗ B̃b ⊗ R̃r

)]

−Tr
[((

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

))(
Ãa ⊗ B̃b ⊗ R̃r

)])2
)1/2

≤ ϵ,

where (⋆) is by Hölder’s inequality. ◀
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3.1 Notations and setup
The proof of Theorem 16 involves a number of notations. To keep the proof succinct, we
introduce the setup and the notations that are used frequently in the rest of the paper.

▶ Setup 18. Given quantum systems P,Q,R, S,T,A,B with dimensions

p = |P| , q = |Q| , r = |R| , s = |S| , t = |T| , a = |A| , b = |B| ,

let ϕPQR
in be the input state in P ⊗ Q ⊗ R shared among Alice, Bob and the referee, where

Alice, Bob and the referee hold P, Q and R, respectively. Let ψST ∈ HST be the noisy MES
shared between Alice and Bob, where Alice has S and Bob has T. Let ρ < 1 be the maximal
correlation of ψST. Let A and B be the answer registers of Alice and Bob, respectively.

Let {Ss}s∈[s2]≥0
, {Tt}t∈[t2]≥0

be standard orthonormal bases in HS,HT, respectively. Let
{Aa}a∈[a2]≥0

, {Bb}b∈[b2]≥0
, {Pp}p∈[p2]≥0

, {Qq}q∈[q2]≥0
, {Rr}r∈[r2]≥0

be orthonormal bases
(not necessary to be standard orthonormal) in HA,HB,HP,HQ,HR, respectively. For con-
venience, we denote Ãa to be Aa/

√
a. The same for B̃b, P̃p, Q̃q, R̃r.

When we use universal quantifiers, we omit the ranges of the variables whenever they
are clear in the context. For example, we say “for all a, b” to mean “for all a ∈

[
a2]
≥0,

b ∈
[
b2]
≥0”.

Given M ∈ HSnPA, for all p, a, we define Ma to be TrA
[(
1SnP ⊗ Ãa

)
M
]
, and Mp,a to

be TrP
[(
1Sn ⊗ P̃p

)
Ma

]
. Similar for N,Nb, Nq,b. In other words,

M =
∑

a∈[a2]≥0

Ma ⊗ Ãa, N =
∑

b∈[b2]≥0

Nb ⊗ B̃b. (7)

and

Ma =
∑

p∈[p2]≥0

Mp,a ⊗ P̃p, Nb =
∑

q∈[q2]≥0

Nq,b ⊗ Q̃q. (8)

3.2 Proof of Theorem 16
Proof of Theorem 16. Let δ, θ be parameters which are chosen later. The proof is composed
of several steps.

Smoothing
We apply a noise operator defined in Definition 10 to J (Φ∗Alice) and J (Φ∗Bob), and truncate
the high-degree parts to get M (1) and N (1), respectively. 3 They satisfy the following.

1. For all a, b,
∣∣∣∣∣∣∣∣∣M (1)

a

∣∣∣∣∣∣∣∣∣
2
≤ 1 and

∣∣∣∣∣∣∣∣∣N (1)
b

∣∣∣∣∣∣∣∣∣
2
≤ 1, where M (1)

a and N
(1)
b are defined in

Equation (7).
2. For all a, b, r:∣∣∣Tr

[(
Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗n

)]
− Tr

[(
M (1)
a ⊗N (1)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗n

)]∣∣∣ ≤ δ.

3 Readers may refer to the full version for details.
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3. For all a, b, p, q, M (1)
p,a and N

(1)
q,b have degree at most d1, where M (1)

p,a and N
(1)
q,b are

defined in Equation (8).
4.

1
snTr ζ

(
M (1)

)
≤ δ and 1

tnTr ζ
(
N (1)

)
≤ δ,

where ζ is defined in Equation (6).
5. M

(1)
0 = 1SnP/

√
a and N

(1)
0 = 1TnQ/

√
b.

Here d1 = O
(

a2b2pq
δ(1−ρ)

)
.

Regularization
We denote H ⊆ [n] to be the set of registers with high influence, satisfying h = |H| ≤
d1 (a + b) /θ such that for all i /∈ H:

Infi (M) ≤ θ, Infi (N) ≤ θ.

Invariance to random operators
Substituting the basis elements in the subsystems with low influence in M (1) and N (1),
we obtain joint random operators M(2) and N(2) satisfying the following.

1. For all a, b, p, q:

E
[∣∣∣∣∣∣∣∣∣M(2)

p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
=
∣∣∣∣∣∣∣∣∣M (1)

p,a

∣∣∣∣∣∣∣∣∣
2

and E
[∣∣∣∣∣∣∣∣∣N(2)

q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
=
∣∣∣∣∣∣∣∣∣N (1)

q,b

∣∣∣∣∣∣∣∣∣
2
.

2. For all a, b, r:

E
[
Tr
[(

M(2)
a ⊗N(2)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
= Tr

[(
M (1)
a ⊗N (1)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗n

)]
.

3. ∣∣∣∣ 1
sh E

[
Tr ζ

(
M(2)

)]
− 1

snTr ζ
(
M (1)

)∣∣∣∣ ≤ O(p10/3a4
(

3d1sd1/2
√
θd1

)2/3
)

and∣∣∣∣ 1
th E

[
Tr ζ

(
N(2)

)]
− 1

tnTr ζ
(
N (1)

)∣∣∣∣ ≤ O(q10/3b4
(

3d1td1/2
√
θd1

)2/3
)
.

4. M(2)
0 = 1ShP/

√
a and N(2)

0 = 1ThQ/
√

b.

Dimension Reduction
We then reducing the number of Gaussian variables in

(
M(2),N(2)) randomly. With

probability at least 3/4− δ/2 > 0, we get joint random operators
(
M(3),N(3)) such that

the following holds:

1. For all a, b, p, q:

E
[∣∣∣∣∣∣∣∣∣M(3)

p,a

∣∣∣∣∣∣∣∣∣2
2

]
≤ (1 + δ)E

[∣∣∣∣∣∣∣∣∣M(2)
p,a

∣∣∣∣∣∣∣∣∣2
2

]
and E

[∣∣∣∣∣∣∣∣∣N(3)
q,b

∣∣∣∣∣∣∣∣∣2
2

]
≤ (1 + δ)E

[∣∣∣∣∣∣∣∣∣N(2)
q,b

∣∣∣∣∣∣∣∣∣2
2

]
.
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2.

E
x

[
Tr ζ

(
M(3)

)]
≤ 8E

g

[
Tr ζ

(
M(2)

)]
and E

y

[
Tr ζ

(
N(3)

)]
≤ 8E

h

[
Tr ζ

(
N(2)

)]
.

3. For all a, b, r:

∣∣∣∣ Ex,y[Tr
[(

M(3)
a ⊗N(3)

b ⊗ R̃r
)(

ϕin ⊗
(
ψST

)⊗h)]]
− E

g,h

[
Tr
[(

M(2)
a ⊗N(2)

b ⊗ R̃r
)(

ϕin ⊗
(
ψST

)⊗h)]]∣∣∣∣ ≤ δ.

4. M(3)
0 = 1ShP/

√
a and N(3)

0 = 1ThQ/
√

b.

Here n0 = O

(
(abr)12(pq)20d

O(d1)
1

δ6

)
.

Smoothing random operators
To get low-degree approximations of the Fourier coefficients of M(3) and N(3), we obtain
joint random operators

(
M(4),N(4)) satisfying the following.

1. For all a, b, p, q:

deg
(

M(4)
p,a

)
≤ d2 and deg

(
N(4)
q,b

)
≤ d2.

2. For all a, b, p, q:

E
[∣∣∣∣∣∣∣∣∣M(4)

p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
≤ E

[∣∣∣∣∣∣∣∣∣M(3)
p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
and E

[∣∣∣∣∣∣∣∣∣N(4)
q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
≤ E

[∣∣∣∣∣∣∣∣∣N(3)
q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
.

3.

E
[
Tr ζ

(
M(4)

)]
≤ E

[
Tr ζ

(
M(3)

)]
+ δ and E

[
Tr ζ

(
N(4)

)]
≤ E

[
Tr ζ

(
N(3)

)]
+ δ.

4. For all a, b, r:∣∣∣E[Tr
[(

M(4)
a ⊗N(4)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
−E

[
Tr
[(

M(3)
a ⊗N(3)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]∣∣∣ ≤ δ.

5. M(4)
0 = 1ShP/

√
a and N(4)

0 = 1ThQ/
√

b.

Here d2 = O
(

a2b2pq
δ(1−ρ)

)
.

Multilinearization
Suppose that

M(4)
p,a =

∑
s∈[s2]h

≥0

m(4)
s,p,a (x)Ss and N(4)

q,b =
∑

t∈[t2]h
≥0

n
(4)
t,q,b (y) Tt.

To get multilinear approximations of the Fourier coefficients of M(4) and N(4), we obtain
multilinear random operators

(
M(5),N(5)) such that the following holds:
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1. For all a, b, p, q, M(5)
p,a and N(5)

q,b are degree-d2 multilinear random operators.
2. Suppose that

M(5)
p,a =

∑
s∈[s2]h

≥0

m(5)
s,p,a (x)Ss and N(5)

q,b =
∑

t∈[t2]h
≥0

n
(5)
t,q,b (y) Tt,

where (x,y) ∼ G⊗n0·n1
ρ . For all (i, j) ∈ [n0]× [n1], a, b, p, q, s, t,

Inf(i−1)n1+j

(
m(5)
s,p,a

)
≤ θ·Infi

(
m(4)
s,p,a

)
and Inf(i−1)n1+j

(
n

(5)
t,q,b

)
≤ θ·Infi

(
n

(4)
t,q,b

)
.

3. For all a, b:

E
[∣∣∣∣∣∣∣∣∣M(5)

a

∣∣∣∣∣∣∣∣∣2
2

]
≤ E

[∣∣∣∣∣∣∣∣∣M(4)
a

∣∣∣∣∣∣∣∣∣2
2

]
and E

[∣∣∣∣∣∣∣∣∣N(5)
b

∣∣∣∣∣∣∣∣∣2
2

]
≤ E

[∣∣∣∣∣∣∣∣∣N(4)
b

∣∣∣∣∣∣∣∣∣2
2

]
.

4.

1
sh
∣∣∣E[Tr ζ

(
M(5)

)]
− E

[
Tr ζ

(
M(4)

)]∣∣∣ ≤ δ
and

1
th
∣∣∣E[Tr ζ

(
N(5)

)]
− E

[
Tr ζ

(
N(4)

)]∣∣∣ ≤ δ.
5. For all a, b, r:

∣∣∣E[Tr
[(

M(5)
a ⊗N(5)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
−E

[
Tr
[(

M(4)
a ⊗N(4)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]∣∣∣ ≤ δ.

6. M(5)
0 = 1ShP/

√
a and N(5)

0 = 1ThQ/
√

b.

Here n1 = O
(

a4b4p2q2d2
2

θ2

)
.

Invariance to operators
Applying item 2 above, Fact 4 and Fact 14, we have∑

s,p,a

Infi
(
m(5)
s,p,a

)
≤ θ · p · a · E

[∣∣∣∣∣∣∣∣∣M(4)
∣∣∣∣∣∣∣∣∣2

2

]
.

Similarly, we have∑
t,q,b

Infi
(
n

(5)
t,q,b

)
≤ θ · q · b · E

[∣∣∣∣∣∣∣∣∣N(4)
∣∣∣∣∣∣∣∣∣2

2

]
.

Let

θ0 = max
{
θE
[∣∣∣∣∣∣∣∣∣M(4)

∣∣∣∣∣∣∣∣∣2
2

]
, θE

[∣∣∣∣∣∣∣∣∣N(4)
∣∣∣∣∣∣∣∣∣2

2

]}
.

Substituting the Gaussian variables in
(
M(5),N(5)) with matrix basis elements to get(

M (6), N (6)) satisfying that:
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1. For all a, b, p, q:∣∣∣∣∣∣∣∣∣M (6)
p,a

∣∣∣∣∣∣∣∣∣
2

= E
[∣∣∣∣∣∣∣∣∣M(5)

p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
and

∣∣∣∣∣∣∣∣∣N (6)
q,b

∣∣∣∣∣∣∣∣∣
2

= E
[∣∣∣∣∣∣∣∣∣N(5)

q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
.

2. For all a, b, r:

Tr
[(
M (6)
a ⊗N (6)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗n0n1+h)]

= E
[
Tr
[(

M(5)
a ⊗N(5)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
.

3. ∣∣∣∣ 1
sn0n1+hTr ζ

(
M (6)

)
− 1

sh E
[
Tr ζ

(
M(5)

)]∣∣∣∣ ≤ O(p10/3a4
(

3d2sd2/2
√
θ0d2

)2/3
)

and∣∣∣∣ 1
tn0n1+hTr ζ

(
N (6)

)
− 1

th E
[
Tr ζ

(
N(5)

)]∣∣∣∣ ≤ O(q10/3b4
(

3d2td2/2
√
θ0d2

)2/3
)
.

4. M
(6)
0 = 1Sn0n1+hP/

√
a and N

(6)
0 = 1Tn0n1+hQ/

√
b.

Rounding
At last, we round M (6) and N (6) to the Choi representations of the adjoints of some
quantum operations, M̃ and Ñ , satisfying

∑
a

∣∣∣∣∣∣∣∣∣M (6)
a − M̃a

∣∣∣∣∣∣∣∣∣2
2

= a ·
∣∣∣∣∣∣∣∣∣M (6) − M̃

∣∣∣∣∣∣∣∣∣2
2
≤ O

((
a7

psD Tr ζ
(
M (6)

))1/2)
, (9)

∑
b

∣∣∣∣∣∣∣∣∣N (6)
b − Ñb

∣∣∣∣∣∣∣∣∣2
2

= b ·
∣∣∣∣∣∣∣∣∣N (6) − Ñ

∣∣∣∣∣∣∣∣∣2
2
≤ O

((
b7

qtD Tr ζ
(
N (6)

))1/2)
. (10)

Let D = h+ n0n1. Then∣∣∣Tr
[(
M (6)
a ⊗N (6)

b ⊗ R̃r − M̃a ⊗ Ñb ⊗ R̃r
) (
ϕin ⊗ ψ⊗D

)]∣∣∣
≤
∣∣∣Tr
[(
M (6)
a ⊗

(
N

(6)
b − Ñb

)
⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]∣∣∣
+
∣∣∣Tr
[((

M (6)
a − M̃a

)
⊗ Ñb ⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]∣∣∣
≤ (pq)1/2

(∣∣∣∣∣∣∣∣∣M (6)
a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣N (6)
b − Ñb

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣M (6)

a − M̃a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Ñb∣∣∣∣∣∣∣∣∣
2

)
≤ (pq)1/2

∣∣∣∣∣∣∣∣∣M (6)
a

∣∣∣∣∣∣∣∣∣
2

(∑
b

∣∣∣∣∣∣∣∣∣N (6)
b − Ñb

∣∣∣∣∣∣∣∣∣2
2

)1/2

+
(∑

a

∣∣∣∣∣∣∣∣∣M (6)
a − M̃a

∣∣∣∣∣∣∣∣∣2
2

)1/2 ∣∣∣∣∣∣∣∣∣Ñb∣∣∣∣∣∣∣∣∣
2


(⋆)
≤
∣∣∣∣∣∣∣∣∣M (6)

a

∣∣∣∣∣∣∣∣∣
2
O

((
b7p2q

tD Tr ζ
(
N (6)

))1/4)

+
∣∣∣∣∣∣∣∣∣Ñb∣∣∣∣∣∣∣∣∣

2
O

((
a7pq2

sD Tr ζ
(
M (6)

))1/4)
,

where (⋆) is by Equation (9) and Equation (10).
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Smoothing

ϵ Regularization

δ, θ in Equation (11)
Given a, b, p, q,

r, s, t, ρ

Dimension reduction D = h + n0 · n1

Smoothing random operators

Multilinearization

determines

δ←δ

θ←θ

δ←δ/4(abpqr)2

δ←δ

δ←θ

d←d1=O
(

a2b2pq
δ(1−ρ)

)
h≤d1(a+b)/θ

n0=O

(
(abr)12(pq)20d

O(d1)
1

δ6

)

d←d2=O
(

a2b2pq
δ(1−ρ)

)
n1=O

(
a4b4p2q2d2

2
θ2

)

d←d1

Figure 1 Dependency of parameters in the proof of Theorem 16.

Keeping track of the parameters in the construction, we are able to upper bound
Tr ζ

(
M (6)) /sD and Tr ζ

(
N (6)) /tD. Finally, by the triangle inequality we are able to

upper bound∣∣∣Tr
[(

Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗Rr

) (
ϕin ⊗ ψ⊗n

)]
− Tr

[(
M̃a ⊗ Ñb ⊗Rr

) (
ϕin ⊗ ψ⊗D

)]∣∣∣
The dependency of the parameters is pictorially described in Figure 1.

We define ΨAlice ∈ L
(
A, SDP

)
, ΨBob ∈ L

(
B,TDQ

)
as follows:

ΨAlice (X) = TrA
(
M̃
(
1SDP ⊗X†

))
, ΨBob (Y ) = TrB

(
Ñ
(
1TDQ ⊗ Y †

))
,

just as Equation (5). Let Φ̃Alice = Ψ∗Alice and Φ̃Bob = Ψ∗Bob. Then by Fact 2, Φ̃Alice and Φ̃Bob
are quantum operations. Furthermore,

Tr
[((

Φ̃Alice

)∗ (
Ãa
)
⊗
(

Φ̃Bob

)∗ (
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]
= Tr

[(
M̃a ⊗ Ñb ⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]
.

Choosing

δ = O(ϵ), θ = ϵ12

exp
(

a2b2pq log s log t
ϵ(1−ρ)

) , (11)

we finally conclude the result. ◀
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