
The Communication Complexity of Set
Intersection Under Product Distributions
Rotem Oshman #

Tel-Aviv University, Israel

Tal Roth #

Tel-Aviv University, Israel

Abstract
We consider a multiparty setting where k parties have private inputs X1, . . . , Xk ⊆ [n] and wish
to compute the intersection

⋂k

ℓ=1 Xℓ of their sets, using as little communication as possible. This
task generalizes the well-known problem of set disjointness, where the parties are required only
to determine whether the intersection is empty or not. In the worst-case, it is known that the
communication complexity of finding the intersection is the same as that of solving set disjointness,
regardless of the size of the intersection: the cost of both problems is Ω (n log k + k) bits in the
shared blackboard model, and Ω (nk) bits in the coordinator model.

In this work we consider a realistic setting where the parties’ inputs are independent of one
another, that is, the input is drawn from a product distribution. We show that this makes finding
the intersection significantly easier than in the worst-case: only Θ̃((n1−1/k (H(S) + 1)1/k) + k) bits
of communication are required, where H(S) is the Shannon entropy of the intersection S. We also
show that the parties do not need to know the exact underlying input distribution; if we are given
in advance O(n1/k) samples from the underlying distribution µ, we can learn enough about µ to
allow us to compute the intersection of an input drawn from µ using expected communication
Θ̃((n1−1/k E[|S|]1/k) + k), where |S| is the size of the intersection.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Communication complexity, intersection, set disjointness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.95

Category Track A: Algorithms, Complexity and Games

Funding Research funded by the Israel Science Foundation, Grant No. 2801/20, and also supported
by Len Blavatnik and the Blavatnik Family foundation.

1 Introduction

Communication complexity is concerned with understanding the communication cost of
computing on data that is partitioned between k ≥ 2 parties, with each party holding a
private input Xi.1 The parties would like to jointly compute some function f(X1, . . . , Xk)
of their data, using as little communication as possible. Two models of communication
are typically studied: in the shared blackboard model, the parties communicate by writing
messages on a “board” that all the other parties can read (essentially, they communicate by
broadcast); in the private-channel model, the parties communicate over private channels.
For both models, there is a wealth of protocols and lower bounds characterizing the cost of
computing different functions, and obtaining applications in areas ranging from distributed
graph algorithms (see [30, 10, 6, 8, 9] and many more), to streaming algorithms (e.g., [1, 3, 15])

1 This is called number-in-hand because each party holds its own private input; in the number-on-forehead
model, each party can see the inputs of all the other parties, but not its own input. The number-on-
forehead model has compelling applications in circuit complexity, but it is not a realistic model of a
distributed system.

EA
T
C
S

© Rotem Oshman and Tal Roth;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 95; pp. 95:1–95:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roshman@tau.ac.il
mailto:roth1@mail.tau.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2023.95
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

95:2 The Communication Complexity of Set Intersection Under Product Distributions

and beyond. We focus on the distributional setting, where the inputs X1, . . . , Xk are drawn
from a distribution µ, and our goal is to compute f(X1, . . . , Xk) with a low error probability
over µ.

In this paper we study the cost of computing an intersection: each party holds a set
Xi ⊆ [n], and our goal is to output the intersection, S =

⋂n
i=1 Xi. This fundamental

problem has many applications, including computing joins for distributed databases [10, 16];
computing the Jaccard similarity of data sets, the number of distinct elements, and rarity [10];
and algebraic function computation on reconciled data [19]. Recently this problem also found
applications in online advertising [14], notably at Google [18].

Computing the intersection of sets X1, . . . , Xk is as at least as hard as solving the set dis-
jointness problem, where we are required to determine whether ∩k

i=1Xi = ∅. Set disjointness
is known to require Ω(n) bits of communication for two-parties [26, 24], Ω(n log k) bits of
communication for k parties on the shared blackboard [8], and Ω(kn) bits of communication
for k parties with private channels [6]. However, all of these hardness results hold only when
the parties’ inputs are highly-correlated; if the input is drawn from a product distribution (i.e.,
the parties’ inputs are independent of one another), then two-party set disjointness requires
only Θ(

√
n) bits [2, 5], and this was recently extended to the multi-party setting, where it

was shown that the communication cost is Θ̃(n1−1/k) in both the shared blackboard and the
coordinator models [12]. We note that all the lower bounds mentioned above hold even for
input distributions where the intersection is of small constant size – that is, either the input
sets do not intersect at all, or they have a non-empty but constant-sized intersection, and
our goal is to distinguish between these two cases.

Our main question in this paper is whether under product distributions we can efficiently
compute the full intersection of the parties’ inputs, rather than merely determining whether
it is empty or not. We show that the answer is yes, at least when the intersection is not too
large: if the expected intersection size is E [S] = s, then we can compute the full intersection
using Θ̃(n1−1/ks1/k) bits of communication in expectation, in both the shared blackboard
and the coordinator models. This can be viewed as a natural extension of the tight bound
for set disjointness in the product case, which is Θ̃(n1−1/k), even when s = Θ(1) [12]. Our
protocol and lower bound bear some similarities to [12]. We generalize our result in two
ways, motivated by practical applications.

“Learning” the input distribution. In this scenario, instead of being told the input distri-
bution µ, we are given iid samples from µ, and must “learn” whatever we can about µ before
running the protocol on the actual input (which is also drawn from µ). Can we learn enough
about µ to exploit its product structure, without requiring a prohibitive number of samples?
In Section 4.1 we show that the answer is yes: Õ(n1/k) sample suffice to learn enough about
µ to solve any future instance with optimal communication cost.

▶ Theorem 1. Let δ > 0, and assume we have access to O
(
n1/k log (nk/δ)

)
iid samples from

an unknown product distribution µ. Then we can construct a zero-error two-round protocol Π
for computing the intersection, such that with probability at least 1−δ over the samples, the pro-
tocol Π that we constructed has expected communication cost O

(
kn1−1/k E [|S|+ 1]1/k log n

)
on inputs drawn from µ.

In particular, when k ≥ log n, we require only a single sample from µ. This is perhaps
surprising, since it is known that in order to fully learn a distribution over kn bits – that is,
in order to output a distribution µ′ that is ϵ-close to µ in statistical distance – the number
of samples required is Ω

(
2nk/(nk)

)
[28]. The key is that instead of learning the entire

distribution, we show that it suffices to estimate the marginal expectation of each input bit,
which is a much easier task.

R. Oshman and T. Roth 95:3

It remains open whether Ω(n1/k) samples are truly necessary to obtain the optimal
communication complexity, and more generally, what is the tradeoff between the number
of samples we have and the communication complexity we can obtain. However, we show
in Section 5 that if we do not have any prior information about the distribution µ (i.e., no
samples), then the fact that µ is a product distribution is not helpful at all: for any function
f , computing f under an unknown product distribution is as hard as computing f under
non-product distributions.

Large but predictable intersections. Although we assume that the parties have independent
inputs, we do not assume that the elements inside a given party’s input are independent
of one another: for example, if each party’s input is a list of items purchased by some
set of customers, then the elements may be highly correlated, as one item purchased by a
customer is likely to tell us a lot about other items the same customer is likely to purchase.
Correlations between elements can lead to a situation where the intersection is “large but
fairly predictable”, in the sense that while the intersection S has large expected size, its
Shannon entropy H(S) is much smaller. As an extreme example, if we have two parties with
inputs X, Y that are each either [n] or ∅ with probability 1/2, then the expected size of the
intersection is n/2, but its Shannon entropy is only 1.

In Section 4.3 we show that it is not the size of the intersection but its entropy that
matters: when the distribution µ is known, we can replace the size |S| of the intersection
with its entropy, H(S), and obtain the following.

▶ Theorem 2. Let µ be a product distribution known to all the parties. Then in the
coordinator model, there is an O (log n)-round zero-error deterministic protocol for finding the
intersection, with expected communication cost at most O

(
k2n1−1/k (H(S) + 1)1/k log n + k

)
,

where the expectation is with respect to the input distribution µ.

We remark that for non-product distributions this is not possible: in the hard distribution
of Razborov [24] for two-party set disjointness, the intersection has entropy O(log n), as
it is always either empty or contains a single element which is uniformly random over [n].
Nevertheless, even determining whether the intersection is empty or not requires Ω(n) bits
of communication, and this of course implies that finding the intersection also requires Ω(n)
communication.

Lower bounds. To complement our protocols above, in Section 5 we prove a matching lower
bound, up to polylogarithmic factors:

▶ Theorem 3. For every n, k ∈ N with 2 ≤ k ≤ log n, and for every s ∈ [1, n/2], there exists
a product distribution µ over {0, 1}n×k such that

Eµ [|S|] = s,
s ≤ H (S) ≤ (s + 1) log n, and
Any deterministic protocol for computing the intersection with error probability at most
1/10 over µ has expected communication complexity Ω(n1−1/ks1/k/k2).

Although the lower bound is stated only for k ≤ log n parties, we can “stretch” the lower
bound from k = log n to larger k by generating the inputs of the first log n parties using the
hard distribution from the theorem, and giving the remaining parties the set [n]. As a result,
for k > log n, we obtain a lower bound of Ω̃(n) regardless of the intersection size s, and this
is tight up to polylogarithmic factors.

ICALP 2023

95:4 The Communication Complexity of Set Intersection Under Product Distributions

Our lower bound actually applies to a weak output model, where every element of the
intersection can be output by a different party: at the end of the protocol, each party ℓ

outputs a list of decisions of the form “i ∈ S” or “i ̸∈ S”. We require that for every coordinate
i ∈ [n], one party must output a decision for i, but the identity of the party that output a
decision for i need not be known in advance (that is, it may be a function of the transcript).
The party j that outputs a decision for i may rely on its own input Xj when making the
decision. This output model is quite weak compared to the standard output model that we
assume in our protocols, where the output to the computation must be computable from the
transcript of the protocol. Making the lower bound work in this weak model is technically
challenging: our lower bound uses information-theoretic arguments, which typically rely on
the fact that an external observer must learn a lot of information about the inputs, but this
is not necessarily true in the weak output model.

We also remark that all of the results discussed up to this point (both upper and lower
bounds) assume that the protocol must output the entire intersection correctly with high
probability: if we output a set that differs from the true intersection in even a single element,
this is considered an error. One can also consider a weaker notion, which is more appealing
for lower bounds, where for every i ∈ [n], we only need to determine whether i ∈ S with
good marginal error probability, independent of the other elements. This weaker notion is
only meaningful when many coordinates have constant probability bounded away from 0
and 1 of being in the intersection, otherwise we can simply guess independently for each
coordinate whichever outcome is more likely for that coordinate; e.g., if Pr [i ∈ S] = 1/

√
n

for every i, we can guess that the intersection is empty, and still be correct on every element
with marginal probability 1− 1/

√
n. However, if every element has probability between 1/3

and 1/2 of being in the intersection, then we can also prove a tight lower bound even for
the case where the protocol only needs to succeed with good marginal probability on each
element (see the full version of this paper for a proof of this theorem).

2 Related Work

Set disjointness has been studied extensively, in many versions and models; we refer to the
surveys [11, 27] for more background. The problem of computing the intersection, or of finding
an element in the intersection, has also been studied, for two parties [7, 25, 10, 13, 29, 4, 17]
and for more than two parties [10, 23]; to our knowledge, all previously mentioned prior work
is for either worst-case hardness (that is, a non-distributional setting, where the inputs are
chosen adversarially), or for non-product distributions, and is thus not directly relevant to
the current paper. In addition, [20, 21, 22] studied a different scenario where two parties wish
to compute the bitwise-AND of their input vectors (as well as other functions), assuming the
coordinates of the vectors are iid, in the regime where the input length goes to infinity and
the error is vanishing. In contrast, here we consider multi-party intersection with a fixed
input length and constant error, and we do not assume that the coordinates are iid.

The hardness of set disjointness under product distributions was first studied in [2], which
proved a lower bound of Ω(

√
n) and an upper bound of O(

√
n log n) on the communication

complexity of the problem. Later, [5] eliminated the log-factor and improved the upper bound
to O(

√
n), and showed that in general, when the parties’ inputs have mutual information I

with one another, the communication cost of set disjointness is Θ̃(
√

n(I + 1)) (the product
case is the case where I = 0). It turns out that the techniques of [2, 5] do not scale to more
than 2 parties, but in [12], using different techniques, it was shown that Θ̃(n1−1/k) bits are
necessary and sufficient in the k-player setting.

R. Oshman and T. Roth 95:5

The protocols of [2, 5, 12] for set disjointness share the following feature: at any point
in the protocol, if we identify that given what we have learned so far the probability that
the inputs are disjoint is bounded by some small threshold ϵ, then we halt and output “not
disjoint”. If the probability of disjointness is greater than ϵ, we rely on this fact to make
progress: in [2, 5], we use it to efficiently sample a large set that is disjoint from one player’s
input, and those elements are then discarded from consideration; in [12], we exploit the fact
that no single element is likely to be in the intersection to show that each element i ∈ [n] is
probably missing from the input of some specific player p(i). We then ask each player j to
say only the elements Xj ∩ {i : p(i) = j}, as this set is likely to be small, but at the same
time it helps us learn of many elements that are definitely not in the intersection. If we want
to find the intersection in full, the basic approach of [12] continues to work if we know that
we have a small intersection, but it breaks down when the intersection is large.

Our work generalizes the basic approach of [12] to handle larger intersection sizes. This
yields a protocol for finding the intersection that depends on the entropy of the intersection
instead of its expected size (as already noted in the introduction, the former may be much
smaller than the latter). We also show that the basic protocol of [12] can be made robust, in
the sense that the players do not need to know the exact underlying input distribution.

When the number of players is k ≥ log n, [12] gives a different protocol that actually finds
the entire intersection, and has communication cost Õ(n). We show that this protocol can be
made robust as well, and in fact a single sample from the underlying product distribution is
enough, with high probability, for the players to be able to successfully execute the protocol.

As for lower bounds, [12] gave a lower bound on finding the intersection under a product
distribution, for the case where the expected intersection size is 1 (which coincides with the
set disjointness problem), when the transcript reveals the intersection to an external observer.
In this work, we generalize this lower bound in two ways. First, our lower bound must handle
larger intersections, up to linear in n. This large range of intersection sizes implies, naturally,
that the lower bound proof must handle both very small and very large probabilities, which
requires delicate handling. Secondly, our bound is proven in the weaker model where for
each coordinate, one of the players must decide whether this coordinate is in the intersection
or not, and the identity of this player may not even be known in advance.

3 Preliminaries

Notation. We use boldface letters to denote random variables. Given a vector v indexed
by {1, . . . , m} and a subset of coordinates J = {j1, . . . , jℓ}, we denote by vJ = vj1,...,jℓ

coordinates J of v. If A is a random variable and E is an event, then A|E denotes the
distribution of A conditioned on E .

The input to the k players is denoted X1, . . . , Xk ∈ {0, 1}n. It is convenient to sometimes
view the inputs to the players as sets, and sometimes as the characteristic vectors of their sets.
We use Xℓ

i to denote the i-th coordinate of player ℓ’s input, when viewed as a characteristic
vector. The intersection of the players’ inputs is denoted S =

⋂
ℓ∈[k] Xℓ, and for each i ∈ [n],

Si is an indicator for the event “i ∈ S”. We refer to S1, . . . , Sn as the bits of the intersection.
We sometimes abuse notation by conflating Bernoulli distributions with their expected

value: for example, if the input distribution is µ, we use µℓ
i to denote both the marginal

distribution of Xℓ
i , and the expected value of Xℓ

i .

The shared blackboard model. In this classical model of multiparty communication, we
have k players, with private inputs X1, . . . , Xk. The players communicate by writing on
a shared blackboard that all players can see. At any point in the protocol, the identity of

ICALP 2023

95:6 The Communication Complexity of Set Intersection Under Product Distributions

the next player to write on the board is determined by the current contents of the board.
We refer to the contents of the board as the transcript of the protocol, and denote it by the
random variable Π.

The coordinator model. In the coordinator model of multiparty computation, in addition
to the k players, we also have a coordinator, who has no input. The players communicate
with the coordinator over private channels, but players cannot communicate directly with
one another. The order of communication is governed by the coordinator, and the transcript
of the protocol consists of all messages sent and received by the coordinator.

Set intersection. In the k-player set intersection problem, our goal is to compute:

INTn,k(X1, . . . , Xk) = ∩k
ℓ=1Xℓ.

Since the intersection can be very large, it is crucial that we do not charge the players for
“writing” the output at the end of the protocol. Instead, we assume one of the following two
output models:

In our upper bounds, the output is some predetermined function of the transcript; in other
words, an external observer can learn the intersection just by observing the transcript of
the protocol, without knowing any of the inputs.
In our lower bounds, the output is jointly produced by the players, with each player j

choosing at the end of the protocol a set of indices Ij , and outputting the bits {Si : i ∈ Ij}.
The index set Ij may depend on the transcript of the protocol, but not on player j’s
input. However, the values that player j outputs for the bits {Si : i ∈ Ij} may depend on
player j’s input. Thus, an external observer that sees only the transcript of the protocol
is able to learn which player will output which bits, but not the values of the output bits.
We require that every bit Si must be output by some player; if more than one player
outputs the bit Si, and the players disagree, this is considered an error.

Information theory and entropy. The Shannon entropy of a random variable A ∼ µ is
given by

Hµ(A) =
∑

a∈supp(µ)

µ(a) log 1
µ(a) ,

where supp(µ) denotes the support of the distribution µ. We omit the subscript µ when the
distribution is clear from the context.

Given jointly-distributed variables (A, B) ∼ µ, with marginal distributions µA and µB

respectively, the conditional entropy of A given B is

Hµ(A|B) = E
b∼µB

[
Hµ|B=b

(A)
]

.

We sometimes abuse notation by writing Hµ(A|E) to denote Hµ|E (A) (here, E is an event,
not a random variable).

We rely on the following basic properties of the entropy:
1. Entropy is non-negative: H(A) ≥ 0.
2. Conditioning does not increase entropy: H(A|B) ≤ H(A).
3. The chain rule for entropy: H(A1, . . . , Am) =

∑m
i=1 H(Ai|Ai−1, . . . , A1).

4. Subadditivity: H(A1, . . . , Am) ≤
∑m

i=1 H(Ai), with equality iff A1, . . . , Am are indepen-
dent.

R. Oshman and T. Roth 95:7

For p ∈ [0, 1], we use H(p) as short-hand notation for the Shannon entropy of a Bernoulli
random variable with probability p of being 1. In our lower bound, we use the following fact:

▶ Fact 4. Let p ∈ [0, 1], Then min {p, 1− p} ≤ H (p).

To measure the amount of information a protocol reveals about its inputs, we use mutual
information. The mutual information between random variables A and B is given by
I(A ; B) := H(A) − H(A | B). For random variables A, B, C, the conditional mutual
information between A and B given C is I(A ; B | C) := H(A | C)−H(A | B, C).

The following Lemma will be useful in our lower bound:

▶ Lemma 5. Let A, B, Π be random variables, such that A and B are independent. Then
I (A ; Π |B) = I (A ; Π) + I (A ; B |Π).

For an event E , we sometimes abuse notation and denote I(A ; B | E) := I(A|E ; B|E).
To measure the difference between two distributions, we use KL divergence:

▶ Definition 6 (KL divergence). For two distributions µ,µ′ supported over a set χ, the KL
divergence of µ from µ′ is:

D (µ || µ′) :=
∑
x∈χ

µ(x) log µ(x)
µ′(x) .

We sometimes use D (p || p′) as short-hand notation for the divergence between the Bernoulli
distributions with probability p and p′ (resp.) of being 1.

KL divergence has the following monotonicity property, which will be useful in our upper
bound:

▶ Lemma 7. Let 0 < p < q ≤ a < 1/100 be constants, then D (p + a || p) ≥ D (q + a || q).

The proof of Lemma 7 will appear in the full version of this paper.
Our lower bound also uses Pinsker’s inequality, which asserts that for any p, p′ ∈ (0, 1)

we have |p− p′| ≤
√

D (p || p′) ln 2/2.
The mutual information between two variables A, B is equal to the expected divergence

of A’s posterior distribution given B, from A’s prior distribution (or vice-versa):

▶ Fact 8. For any random variables A, B we have I (A ; B) = Eb∼B [D (A|B=b ||A)].

The following technical lemmas will be useful in our lower bound. The first bounds the
“difference” between two Bernoulli random variables, in terms of their KL divergence:

▶ Lemma 9. Let p, q be constants in (0, 1), and let α ∈ (0, 1/2), such that D (q || p) <

pα2/(4 ln 2). Then we have q/p ∈ ((1− α)p, (1 + α)p).

In Section 4.2 we use the tight version of the additive Chernoff bound, which is stated
in terms of KL divergence: for a sum Y =

∑m
i=1 Yi of iid Bernoulli random variables with

E [Yi] = p, we have

Pr
[

n∑
i=1

Yi/n ≥ p + ϵ

]
≤ e−D(p+ϵ || p), and Pr

[
n∑

i=1
Yi/n ≤ p− ϵ

]
≤ e−D(p−ϵ || p).

ICALP 2023

95:8 The Communication Complexity of Set Intersection Under Product Distributions

4 Upper Bounds

In this section we give three upper bounds. The first two address the case where the number of
parties is k ≤ log n: we first give a protocol with expected communication Õ(n1−1/k E [S]1/k),
which can also handle input distributions that are known only approximately, and then build
on it to construct a protocol with expected communication Õ(n1−1/kH (S)1/k), replacing
the expected size of the intersection with its entropy. These two protocols can be used in
either the shared blackboard model or the coordinator model, since one model can simulate
the other with multiplicative cost at most O(k) = O(log n).

The third protocol is for the case where k > log n, in the coordinator model, which is the
harder of the two models when k is large. This final protocol relies on advance access to only
a single sample from the input distribution, and computes the intersection with expected
communication Õ(n + k).

Approximate knowledge of a distribution. As explained above, some of our protocols
assume that the players do not exactly know the underlying input distribution, and instead
are provided advanced access to samples from the distribution. We use these samples to
approximate the marginal distribution of every bit Xj

i in the input. It is crucial to allow both
multiplicative and additive approximation error, as allowing only one type of error would
make it costlier to obtain the approximation (in terms of the number of samples required;
see Section 4.2 below).

▶ Definition 10. Let ϵ ≥ 0, α ∈ [0, 1) and let b ∈ [0, 1]. We say that a value a ∈ [0, 1] is an
(α, ϵ)-approximation of b if (1 − α)a − ϵ ≤ b ≤ (1 + α)a + ϵ and also (1 − α)(1 − a) − ϵ ≤
1− b ≤ (1 + α)(1− a) + ϵ.

We extend this definition to a distribution µ over {0, 1}n×k by saying that a collection of
values

(
aℓ

i

)
i∈[n],ℓ∈[k] ⊆ [0, 1]n×k is an (α, ϵ)-approximation for the marginals of µ if aℓ

i is an
(α, ϵ)-approximation of the marginal µℓ

i for every i ∈ [n] and ℓ ∈ [k].

4.1 Basic Protocol for Computing Intersections (k ≤ log n)
In this section we give our protocol for computing the intersection of the players’ inputs
assuming approximate knowledge of the marginals of the input distribution. We assume that
the number of players is k ≤ log n.

▶ Theorem 11. Suppose all players know values
(
aℓ

i

)
i∈[n],ℓ∈[k] that (α, ϵ)-approximate the

marginals of a product distribution µ. Then there is a zero-error two-round protocol in the
coordinator model for finding the intersection, with expected communication cost

O

((
1 + α

1− α

)(
kn1−1/k E [|S|]1/k + 2ϵkn

)
log n + k

)
,

where the expectation is over the input distribution µ.

From here on, we will refer to this protocol as Πbase.

High-level overview. We begin with a high-level overview of Πbase, assuming for simplicity
that the players know the true marginals

(
µℓ

i

)
i∈[n],ℓ∈[k] of the input distribution.

For each coordinate i ∈ [n], the protocol checks whether i is in the intersection using one
of the following two strategies:

R. Oshman and T. Roth 95:9

“The 1-strategy”: this strategy is appropriate for coordinates i where some player ℓ has
a very small probability that Xℓ

i = 1. In this case we can make good progress at little
expected cost by asking player ℓ to speak up only if it has Xℓ

i = 1: with good probability,
player ℓ says nothing, and we learn that coordinate i is not in the intersection.
Concretely, we find the player ℓ that has the smallest probability that Xℓ

i = 1, that is,
the smallest value of µℓ

i (breaking ties arbitrarily), and ask this player to send index i iff
Xℓ

i = 1. If player ℓ did not send index i, we learn that Xℓ
i = 0, and therefore coordinate

i is not in the intersection. However, if player i did send index i, then Xℓ
i = 1, and

coordinate i might be in the intersection; to check, we simply ask all players ℓ′ ̸= ℓ to
send Xℓ′

i , and then we check if they all sent 1.
The expected communication cost of this strategy is at most k log n minℓ∈[k] µℓ

i : with
probability 1− µℓ

i we have Xℓ
i = 0, and in this case no bits are sent.2 With probability

minℓ∈[k] µℓ
i , the player that has the minimum µℓ

i sends index i, and the other players ℓ′

follow suit by announcing Xℓ′

i , for a total cost of at most k log n bits.
“The 0-strategy”: this strategy is appropriate for coordinates i where all players ℓ ∈ [k]
are fairly likely to have Xℓ

i = 1 (i.e., µℓ
i is fairly large). In this case, we ask each player

ℓ to announce index i iff Xℓ
i = 0, and we then know that i is in the intersection iff no

player sent index i.
The expected communication cost of this strategy is log n ·

∑
ℓ∈[k]

(
1− µℓ

i

)
.

To choose which strategy to pursue for a given coordinate i, we simply compare the
expected cost of the two strategies, and choose the strategy with the smaller expected cost;
however, since we do not have access to the true marginals

(
µℓ

i

)
i∈[n],ℓ∈[k], we use the estimates(

aℓ
i

)
i∈[n],ℓ∈[k] in their place. Thus, we estimate the cost of the 1-strategy to be k minℓ∈[k] aℓ

i ,
and the cost of the 0-strategy to be

∑
ℓ∈[k](1− aℓ

i) (ignoring the log n factor), and we choose
to follow the 1-strategy for coordinate i iff k minℓ∈[k] aℓ

i <
∑

ℓ∈[k](1− aℓ
i).

We remark that this protocol generalizes a protocol for set disjointness that appeared
in [12], but in [12] only the 1-strategy was required, because we could assume that no single
coordinate had high probability of being in the intersection – otherwise we could simply
guess that the intersection is not empty.

Detailed description of the protocol. The players first partition the coordinates into two
sets, I1 (for the 1-strategy) and I0 (for the 0-strategy), defined as follows:

I1 :=

i ∈ [n]

∣∣∣∣∣∣ k min
ℓ∈[k]

aℓ
i ≤

∑
ℓ∈[k]

(1− aℓ
i)

 , and I0 := [n] \ I1.

Note that this is done with no communication, as all players know (aℓ
i)i∈[n],ℓ∈[k].

Next, for any i ∈ I1, let owner(i) be the player ℓ believed to be most likely to have i ̸∈ Xℓ
i

(if there are several such players, we choose the first one):

owner(i) := min
{

ℓ ∈ [k]
∣∣∣∣ aℓ

i = min
m∈[k]

am
i

}
.

2 Technically, players are not allowed to convey information by staying silent. In our implementation
below, this is handled by having the players announce all their indices as a set, rather than going
over the coordinates one-by-one as we do in our informal overview here. The sets are encoded using a
variable-length encoding, and “no bits are sent for coordinate i” technically means that index i does not
appear in any player’s set.

ICALP 2023

95:10 The Communication Complexity of Set Intersection Under Product Distributions

We partition I1 into subsets I1
1 , . . . , Ik

1 by owner, with Iℓ
1 := {i ∈ I1 | owner(i) = ℓ} for each

i ∈ [k]. The protocol proceeds as follows.
1. Each player ℓ ∈ [k] announces Xℓ ∩ I0 and Xℓ ∩ Iℓ

1.
2. The coordinator can now deduce the intersection in the I0 coordinates, as it holds that
∪ℓ∈[k]

(
Xℓ ∩ I0

)
= I0 \ ∩ℓ∈[k]X

ℓ. The coordinator also sets T := ∪ℓ∈[k]
(
Xℓ ∩ Iℓ

1
)
, and

announces T to all players.
3. Each player ℓ ∈ [k] sends Xℓ ∩ T to the coordinator. The coordinator declares that the

intersection in I1 is
(
∩ℓ∈[k]X

ℓ
)
∩ T .

Expected communication cost. We prove a tighter bound than the one claimed in Theo-
rem 11, as the tighter bound will be useful to us in Section 4.3:

▷ Claim 12. When executed with an (α, ϵ)-approximation of the marginals of µ, the expected
communication cost of Πbase is

O

((
1 + α

1− α

)(
k

n∑
i=1

min
{
E [Si]1/k

, (1− E [Si])1/k
}

+ 2ϵkn

)
log n + k

)
. (1)

To obtain Theorem 11 from the claim, we apply Hölder’s inequality to the inner sum:

n∑
i=1

min
{
E [Si]1/k

, (1− E [Si])1/k
}
≤

n∑
i=1

E [Si]1/k ≤ n1−1/k E [|S|]1/k
.

Plugging this into (1) yields the theorem.
The proof of Claim 12 is given in the full version of this paper, but we give a sketch

here. We begin by considering an idealized version of the protocol, where the coordinates
are partitioned into subsets J0, J1 based on their true marginals (which are not known the
players):

J1 :=

i ∈ [n]

∣∣∣∣∣∣ k min
ℓ∈[k]

E
[
Xℓ

i

]
≤
∑
ℓ∈[k]

(
1− E

[
Xℓ

i

]) and J0 := [n] \ J1.

For each i ∈ J1, the idealized protocol follows the 1-strategy, paying k minℓ∈[k] E
[
Xℓ

i

]
in

expected communication; for each i ∈ J0, the idealized protocol follows the 0-strategy, paying∑
ℓ∈[k]

(
1− E

[
Xℓ

i

])
in expected communication.

Due to the way in which J0, J1 are defined, we are able to show that the idealized protocol
pays an expected cost per coordinate of at most k min

{
E [Si]1/k

, (1− E [Si])1/k
}

:

▶ Lemma 13. Let i ∈ [n]. If i ∈ J0, then∑
ℓ∈[k]

E
[
1−Xℓ

i

]
≤ k min

{
E [Si]1/k

, (1− E [Si])1/k
}

,

and if i ∈ J1, then

k min
ℓ∈[k]

E
[
Xℓ

i

]
≤ k min

{
E [Si]1/k

, (1− E [Si])1/k
}

.

R. Oshman and T. Roth 95:11

Proof. Fix a coordinate i ∈ [n]. Observe that since µ is a product distribution,

min
ℓ∈[k]

E
[
Xℓ

i

]
≤

∏
ℓ∈[k]

E
[
Xℓ

i

]1/k

=

E

∏
ℓ∈[k]

Xℓ
i

1/k

= E [Si]1/k
.

Hence if E [Si]1/k ≤ (1− E [Si])1/k and i ∈ J1, then we have:

min
ℓ∈[k]

E
[
Xℓ

i

]
≤ E [Si]1/k = min

{
E [Si]1/k

, (1− E [Si])1/k
}

.

Similarly, if E [Si]1/k ≤ (1− E [Si])1/k and i ∈ J0, then we have:∑
ℓ∈[k]

E
[
1−Xℓ

i

]
< k min

ℓ∈[k]
E
[
Xℓ

i

]
≤ k E [Si]1/k = k min

{
E [Si]1/k

, (1− E [Si])1/k
}

.

Now, if (1− E [Si])1/k
< E [Si]1/k, i.e., E [Si] > 1/2, then observe that this implies that

i ∈ J0, as we have that:

1/2 < E [Si] = E

∏
ℓ∈[k]

Xℓ
i

 =
∏

ℓ∈[k]

E
[
Xℓ

i

]
≤ min

ℓ∈[k]
E
[
Xℓ

i

]
,

where the last inequality is since all the expectations are upper bounded by 1. This in turn
implies that:∑

ℓ∈[k]

E
[
1−Xℓ

i

]
≤ k

2 < k min
ℓ∈[k]

E
[
Xℓ

i

]
,

and hence i ∈ J0. Now we have that:∑
ℓ∈[k]

E
[
1−Xℓ

i

]

= k

1− (1/k)
∑
ℓ∈[k]

E
[
Xℓ

i

]
≤ k

1−

∏
ℓ∈[k]

E
[
Xℓ

i

]1/k
 (AM-GM inequality.)

= k
(

1− E [Si]1/k
)

.

Finally, observe that

1− E [Si]1/k ≤ 1− E [Si] ≤ (1− E [Si])1/k = min
{
E [Si]1/k

, (1− E [Si])1/k
}

. ◀

Since the idealized protocol pays k min
{
E [Si]1/k

, (1− E [Si])1/k
}

per coordinate i, its
total cost matches the bound from Claim 12 with α = ϵ = 0. To prove the claim for the
actual protocol, we relate it to the idealized protocol, and show that its communication cost
is similar. The key here is to show that even if we “misclassify” a coordinate i by placing it
in I1 when the idealized protocol has it in J0 or vice-versa, the penalty is not too large: the
partition into I1 vs. I0 is based on the estimates

(
aℓ

i

)
i∈[n],ℓ∈[k], which are close to the true

ICALP 2023

95:12 The Communication Complexity of Set Intersection Under Product Distributions

marginals
(
µℓ

i

)
i∈[n],ℓ∈[k] on which the partition into J1 vs. J0 is based. If i ∈ I1 but i ∈ J0 or

vice-versa, then we must be close to the threshold where one strategy becomes preferable to
the other, and therefore it does not matter too much which strategy we choose to pursue. For
example, consider the case where i ∈ I1 but i ∈ J0. Then our actual protocol communicates
k E
[
X

owner(i)
i

]
bits in expectation for coordinate i, while an idealized protocol (where the

players use J0, J1) communicates
∑

ℓ∈[k] E
[
1−Xℓ

i

]
bits in expectation. Now, since i ∈ I1,

we have k minℓ∈[k] aℓ
i ≤

∑
ℓ∈[k](1− aℓ

i). Hence:

k E
[
X

owner(i)
i

]
≤ k

(
(1 + α)aowner(i)

i + ϵ
)

= (1 + α)k min
ℓ∈[k]

aℓ
i + ϵk

≤ (1 + α)
∑
ℓ∈[k]

(1− aℓ
i) + ϵk

≤ (1 + α)
∑
ℓ∈[k]

(1− E
[
Xℓ

i

]
) + ϵ

1− α
+ ϵk

≤ 1 + α

1− α

∑
ℓ∈[k]

E
[
1−Xℓ

i

]
+ 2ϵk

 .

Finally, showing a similar bound on the other possible types of misclassification, summing
over all coordinates and applying Lemma 13 completes the proof for Claim 12.

4.2 Approximating the Marginals
In this section we show how to compute an (1/4, n1/k)-approximation of a value b ∈ [0, 1],
given access to Θ̃(n1/k) iid samples from a Bernoulli distribution with probability b of
returning 1. We then apply this procedure to obtain the estimates

(
aℓ

i

)
i∈[n],ℓ∈[k] that are

used in the protocol of the previous section.
In general, to obtain an (α, ϵ)-approximation of a value b ∈ [0, 1], it suffices to take

Θ̃(1/(α2ϵ)) samples from Bernoulli(b). In fact, we can provide a stronger guarantee: with
high probability, our estimate a is either

Purely additive: a (0, ϵ)-approximation of b, that is, a− ϵ ≤ b ≤ a + ϵ; or,
Purely multiplicative: an (α, 0)-approximation of b, that is, (1− α)a ≤ b ≤ (1 + α)a and
(1− α)(1− a) ≤ 1− b ≤ (1 + α)(1− a).

However, we do not know in advance (or even in hindsight) whether the estimate that we get
will be purely additive or purely multiplicative. We note that if we were to insist on always
having a purely additive estimate or on always having a purely multiplicative estimate, then
we would require significantly more samples. For example, to obtain an purely additive
±ϵ approximation of a value b close to 1/2, we would require Ω(1/ϵ2) samples rather than
Ω(1/ϵ), which is important in our case, since ϵ is very small (roughly n−1/k); to obtain a
purely multiplicative (1±α)-approximation of a value b close to 0 we require Ω(1/b) samples
(i.e., an unbounded number of samples when b is unknown). Thus, it is important that our
protocol can handle the type of estimate that we produce here, which can have both types of
approximation error.

Obtaining the estimate is very simple, but the analysis is somewhat delicate:

▶ Lemma 14. For any α, ϵ, δ ∈ (0, 1) and b ∈ (0, 1), given access to O(1
α2ϵ log(1/δ)) iid

samples of Bernoulli(b), with probability 1− δ we can compute a value a that is either an
(α, 0)-approximation or a (0, ϵ)-approximation to b (or both).

R. Oshman and T. Roth 95:13

Proof. Let m = (100/(α2ϵ)) log(4/δ). Given samples B1, . . . , Bm ∼ Bernoulli(b), the esti-
mate we output is a =

∑m
i=1 Bi/m. We claim that this estimate (α, ϵ)-approximates b with

probability 1− δ. We divide into cases based on the values of ϵ and b.

Case 1: ϵ > 1
100 . In this case we prove that a is a (0, ϵ)-approximation to b with probability

1− δ. By the additive Chernoff bound,

Pr (a > b + ϵ) ≤ e−m·D(b+ϵ || b) ≤ e−m·ϵ2
≤ e−m·ϵ/100,

where the second step uses Pinsker’s inequality, and the last step uses the fact that ϵ > 1/100.
Similarly, Pr (a < b− ϵ) ≤ e−m·D(b−ϵ || b) ≤ e−m·ϵ2 ≤ e−m·ϵ/100. Since m ≥ (100/ϵ) log(4/δ)
we have e−m·ϵ/100 ≤ δ/4, so the probability that either a > b + ϵ or a < b− ϵ is less than δ.
In other words, with probability at least 1− δ, we have a− ϵ ≤ b ≤ a + ϵ, as required.

Case 2: ϵ < b < 1−ϵ. In this case we prove that a is an (α, 0)-approximation to b with prob-
ability 1− δ. By the multiplicative Chernoff bound, Pr (a ̸∈ (1± α/2)b) ≤ 2e−(α/2)2bm/3 ≤
2e−α2ϵm/12. Similarly, Pr (1− a ̸∈ (1± (α/2))(1− b)) ≤ 2e−(α/2)2(1−b)m/3 ≤ 2e−α2ϵm/12.

Since m = (100/(α2ϵ)) log(4/δ), we have e−α2ϵm/3 ≤ δ/4, and thus the probability that either
a /∈ (1±α/2)b or 1−a /∈ (1±α/2)(1−b) is at most δ. Note that if (1−α/2)b ≤ a ≤ (1+α/2)b,
then we also have b ≤ a/(1− α/2) ≤ (1 + α)a and b ≥ a/(1 + α/2) ≥ (1− α)a, as required,
and similarly for 1− b and 1− a.

Case 3: b ≤ ϵ ≤ 1/100 or 1 − b ≤ ϵ ≤ 1/100. In this case we prove that a is a
(0, ϵ)-approximation to b with probability 1− δ. Let us assume that b ≤ ϵ ≤ 1/100, as the
other case is symmetric. First, observe that Pr (a < b− ϵ) = 0, as b− ϵ < 0. For the other
side, by the additive Chernoff bound, Pr [a > b + ϵ] ≤ e−m·D(b+ϵ || b). Using Lemma 7 and
the fact that b ≤ ϵ, we can bound the divergence from below by D (b + ϵ || b) ≥ D (2ϵ || ϵ);
and using a technical lemma from [9] and the fact that ϵ ≤ 1/100, we have D (2ϵ || ϵ) ≥ 2ϵ/10.
All together, we see that Pr [a > b + ϵ] ≤ e−2ϵm/10 ≤ δ. ◀

Plugging in ϵ = n−1/k and α = 1/4, we see that O(n1/k) samples suffice to estimate a single
marginal µℓ

i with sufficient accuracy, and O(n1/k log(nk)) samples suffice to approximate the
entire distribution.

4.3 Entropy-Based Protocol (k ≤ log n)
In this section we refer to the protocol of Section 4.1 as the base protocol, Πbase. We show how
to build on the base protocol to obtain a better protocol in the case where the intersection
has small entropy. For convenience, we describe the new protocol in the shared blackboard
model (the protocol can be adapted to the coordinator model with a multiplicative overhead
of O(k) = O(log n) by having the coordinator forward every message to all players).

High-level overview. In this overview we assume for simplicity that Pr [Si = 1] ≤ 1/2 for
each i, which means that H(Si) ≥ E [Si]. This suffices to convey the main ideas; in the
actual protocol, we work with min (E [Si] , 1− E [Si]) instead of E [Si], and rely on the fact
that H(p) ≥ min(p, 1− p) for every p ∈ [0, 1].

Our protocol is motivated by the observation that the base protocol from Section 4.1
already has the desired communication cost of Õ(n1−1/kH(S)1/k) in the special case where
the intersection bits S1, . . . , Sn are independent: by our assumption that H(Si) ≥ E [Si] for
each i, we can use Claim 12 and Hölder’s inequality to see that the base protocol computes

ICALP 2023

95:14 The Communication Complexity of Set Intersection Under Product Distributions

the intersection with expected communication cost Õ
(

n1−1/k (
∑n

i=1 H (Si))
1/k
)

. In general,∑n
i=1 H(Si) can be much greater than H(S) (e.g., if S1 = . . . = Sn). However, if S1, . . . , Sn

are independent, then
∑n

i=1 H (Si) = H(S), and we are done.
What should we do when S1, . . . , Sn are not independent? In this case we show that we

can exploit the correlation between the bits. Given a set of coordinates I ⊆ [n], let us say
that the bits of SI are nearly-independent if∑

i∈I

H (Si) ≤ 2H (SI) . (2)

Intuitively, (2) requires that the bits of SI behave “almost as nicely” as independent bits, in
that the sum of their marginal entropies is not much greater than their joint entropy (where
for truly independent bits these would be equal).

Our protocol finds a maximal subset of coordinates I ⊆ [n] such that the bits SI are
nearly-independent, and uses the base protocol to compute SI . By (2), the communication
cost is Õ

(
n1−1/k

(∑
i∈I H (Si)

)1/k
)

= Õ
(

n1−1/kH (SI)1/k
)

. Each remaining coordinate
j ̸∈ I is “somewhat dependent” on SI , otherwise we could add j to I and obtain a larger
set, contradicting the maximality of I. Intuitively, this means that our uncertainty about Sj

should decrease after learning SI , and indeed we can prove that H (Sj | SI) ≤ (1/2)H (Sj)
(see Lemma 15 in the next section). We now recurse on the remaining coordinates.

After O(log n) iterations, for each coordinate j that we have not yet solved, the entropy of
Sj is reduced to at most 1/2log n = 1/n. We can now afford to simply call the base protocol
to solve all the remaining coordinates: if F ⊆ [n] is the set of remaining coordinates, then the
cost of solving all of them using the base protocol is roughly Õ

(
n1−1/k

(∑
i∈F H (Si)

)1/k
)

=

Õ
(

n1−1/k ·
(∑

i∈F (1/n)
)1/k

)
= Õ

(
n1−1/k · 1

)
.

Detailed description of the protocol. Throughout the protocol, the players maintain
a subset J ⊆ [n] of coordinates in which the intersection was already computed, and a
distribution µ′, which is the posterior input distribution given what the protocol has learned
so far. All entropies computed during the run of the protocol are with respect to the updated
distribution, µ′. The protocol is as follows.
1. Initialize J ← ∅, µ′ ← µ.
2. Repeat R = ⌈log n⌉ times, or until J = [n]:
2.1. Let I ⊆ [n] \ J be a maximal set of nearly-independent coordinates (see (2) above). If

there is more than one possible choice for I, we choose the lexicographically-smallest
one. This step does not require communication.

2.2. Execute the base protocol Πbase on the coordinates of I, using the distribution µ′. Let
τ be the transcript of Πbase, and let µ′|τ be the distribution µ′ conditioned on the
event that the transcript of Πbase is τ .

2.3. Update J ← J ∪ I, µ′ ← µ′|τ .
3. Finally, if J ̸= [n], call the protocol Πbase on the remaining coordinates [n] \ J , using the

distribution µ′.

At the end, we output all intersection elements found during any of the calls to Πbase.

Expected communication cost. In the analysis we rely on the finer bound given in Claim 12
for the communication cost of Πbase. The bound is stated in terms of the expectations E [Si],
but since H(p) ≥ min {p, 1− p} for every p ∈ [0, 1], Claim 12 and Hölder’s inequality imply
that the expected cost of Πbase when α = ϵ = 0 is

R. Oshman and T. Roth 95:15

O

(
k

n∑
i=1

H(Si)1/k + k

)
= O

kn1−1/k

(
n∑

i=1
H(Si)

)1/k
 . (3)

Our goal now is essentially to replace the term
∑n

i=1 H(Si) in the bound above by H(S).
The full analysis will be given in the full version of this paper. The main idea is that in

every iteration r ≤ ⌈log n⌉, if Ir is the set of coordinates on which we call Πbase in iteration
r, then by choice of Ir we have

∑
i∈Ir

Hµr
(Si) ≤ 2Hµr

(SIr
). Note that the expectation

here is taken with respect to the distribution µr, which is the input distribution conditioned
on the transcript up to iteration r (exclusive). Together with (3), this means that the cost of
calling Πbase on Ir is O(kn1−1/kHµr

(SIr
)1/k).

When we reach the last step of the protocol, the set of remaining coordinates may not be
nearly-independent. However, we claim that for every coordinate i ∈ [n], given the transcript
of the entire protocol so far, the conditional entropy of Si is reduced to at most 1/n. This is
because in every iteration, the protocol either determines Si, reducing its entropy to zero, or
solves a set of coordinates on which Si depends strongly, which also reduces its entropy.

▶ Lemma 15. Let Π<r denote the transcript of the protocol up to iteration r, exclusive. For
every i ∈ [n] and iteration r ≤ R, Hµ (Si |Π<r+1) ≤ 1

2 Hµ (Si |Π<r).

Proof. We prove that for every iteration r ≤ R and transcript τ<r,

Hµ (Si |Π<r+1, Π<r = τ<r) ≤ 1
2Hµ (Si |Π<r = τ<r) .

The lemma then follows by taking the expectation over τ<r.
The transcript τ<r determines the sets I1, . . . , Ir on which Πbase is called in every iteration

1, . . . , r, as well as SI1 = SI1 , . . . , SIr−1 = SIr−1 . The value of SIr
is not determined by τ<r,

but it is determined by Π<r+1, as it is computed in iteration r itself. Therefore,

H (Si |Π<r+1, τ<r) = H (Si |Π<r+1, τ<r, SI1 , . . . , SIr
) ≤ H (Si | τ<r, SI1 , . . . , SIr

) ,

where the last step uses the fact that conditioning does not increase entropy.
If there is some iteration t ≤ r such that i ∈ It, then clearly H (Si | τ<r, SI1 , . . . , SIr

) = 0,
and the lemma follows from the non-negativity of entropy. Otherwise, i is not an element of
any set I1, . . . , Ir, and in particular i ̸∈ Ir. We claim that H (Si | τ<r, SIr) ≤ (1/2)H (Si | τ<r),
which proves the claim, as H (Si | τ<r, SIr

) = H
(
Si

∣∣ τ<r, SIr
, SI1 , . . . , SIr−1

)
and similarly

H (Si | τ<r) = H
(
Si

∣∣ τ<r, SI1 , . . . , SIr−1

)
(as SI1 , . . . , SIr−1 are all determined by τ<r).

Suppose for the sake of contradiction that

H (Si | τ<r, SIr
) > (1/2)H (Si | τ<r) . (4)

Then we can write∑
j∈Ir∪{i}

H (Sj | τ<r) = H (Si | τ<r) +
∑
j∈Ir

H (Sj | τ<r)

≤ 2H (Si | τ<r, SIr
) + 2H (SIr

| τ<r) (by (4) and by choice of Ir)
= 2H

(
SIr∪{i}

∣∣ τ<r

)
,

which contradicts the maximality of Ir. ◀

▶ Corollary 16. For every i ∈ [n] we have Hµ (Si |Π<R+1) ≤ 1/n.

ICALP 2023

95:16 The Communication Complexity of Set Intersection Under Product Distributions

By the corollary, we can simply use (3) to bound the cost of calling Πbase on all the
remaining coordinates by O

(
kn1−1/k · (

∑n
i=1(1/n))1/k

)
= O

(
kn1−1/k

)
. The final step in

the proof is to carefully sum the costs of all the iterations, using Hölder’s inequality and the
chain rule for entropy to obtain the final bound of Theorem 2.

4.4 Upper Bound for Large k

For the case where we have k ≥ log n players, we show that a single sample from the
input distribution suffices to later compute the intersection on new inputs with expected
communication cost Õ(n + k). To do so, we modify a protocol from [12].

High-level overview. The protocol from [12] handles coordinates differently based on
whether they have a non-negligible probability of being in the intersection or not. Let us say
that a coordinate i is negligible if Pr [Si = 1] < δ/n. For negligible coordinates i, the protocol
simply guesses that Si = 0, without trying to actually compute Si. By union bound, this
contributes a total of at most O(δ) to our error probability. For non-negligible coordinates i,
it is observed in [12] that since µ is a product distribution, the expected number of players ℓ

that have Xℓ
i = 0 must be very small; otherwise, Pr [Si = 1] =

∏
ℓ∈[k] Pr

[
Xℓ

i = 1
]

would be
very small, but we assumed that Pr [Si = 1] ≥ δ/n. This means we can afford to have every
player ℓ that has Xℓ

i = 0 announce this fact to the coordinator, who then determines that
Si = 1 iff no player ℓ announced that Xℓ

i = 0.
In our setting we do not know the input distribution exactly, which can lead to two types

of mistakes:
Classifying a coordinate i as negligible when it is in fact non-negligible: we cannot afford
to make even one such mistake, because for such coordinates we always output Si = 0,
even though there is non-negligible probability that Si = 1. Thus, when we classify a
coordinate as negligible, it must truly be negligible under the unknown input distribution.
Classifying a coordinate i as non-negligible when it is in fact negligible: this type of mistake
does not lead to incorrect outputs, but it can increase our expected communication cost,
depending on the expected players that have 0 in coordinate i. Unlike the previous case,
here we can afford to make some mistakes, but we should avoid classifying a coordinate i

as non-negligible if
∑k

i=1 E
[
1−Xℓ

i

]
is large.

We show that when k ≥ log n, a single sample from the input distribution suffices to
classify coordinates well enough for our purposes. Let zi =

∑
ℓ∈[k]

(
1− E

[
Xℓ

i

])
be the

expected number of zeroes in coordinate i ∈ [n], under the unknown input distribution.
Given one sample A ∼ µ, we estimate zi by vi :=

∑
ℓ∈[k]

(
1−Aℓ

i

)
. Since k ≥ log n, the value∑

ℓ∈[k]
(
1−Aℓ

i

)
is concentrated about its mean, which is zi. This allows us to simultaneously

estimate z1, . . . , zn with enough precision that no non-negligible coordinate is classified as
negligible, and at the same time, every coordinate i that is classified as non-negligible has
small zi.

Detailed description of the protocol. As outlined above, we first take a sample A ∼ µ,
compute the estimates vi :=

∑
ℓ∈[k]

(
1−Aℓ

i

)
, and then choose the following set of coordinates

N ⊆ [n] to classify as non-negligible: N = {i ∈ [n] : vi ≤ β ln (n/δ)}, where β ≥ 1 is a
constant whose value will be fixed later.

The protocol then proceeds as follows: given input X ∼ µ,
1. For each coordinate i ̸∈ N , the coordinator declares that Si = 0, that is, i ̸∈

⋂
ℓ∈[k] Xℓ.

2. Simultaneously, each player ℓ sends N ℓ := N ∩
(
[n] \Xℓ

)
to the coordinator.

3. The coordinator outputs N \
⋃

ℓ∈[k] N ℓ as its estimate for the intersection S.

R. Oshman and T. Roth 95:17

Correctness and expected communication cost. Let zi =
∑

ℓ∈[k]
(
1− E

[
Xℓ

i

])
be the

expected number of zeroes in coordinate i ∈ [n], and let E be the event that for every
coordinate i ∈ [n],

If zi < ln (n/δ) then i ∈ N (that is, vi ≤ β ln (n/δ)), and
If zi > β2 ln (n/δ) then i ̸∈ N (that is, vi > β ln (n/δ)).

Intuitively, E is the event that we have classified every coordinate “well enough”. Using
Chernoff, it is easy to see that when β is large enough (say, β ≥ 8), the event E occurs
with probability ≥ 1 − δ over the sample A ∼ µ. This implies the correctness of the
protocol: whenever E occurs, every coordinate i ∈ [n] where zi < β ln(n/δ) is identified as
non-negligible, i ∈ N . The coordinates in N are correctly solved by the protocol, since every
player that has a zero in such a coordinate informs the coordinator. As for coordinates
i ̸∈ N , these coordinates must have zi ≥ β ln(n/δ). By Lemma 4 in [12], this implies that
Pr [Si = 1] ≤ δ/n. By union bound, the probability that any such coordinate is in the
intersection is at most δ. The error probability of the protocol is therefore bounded by
Pr
[
E
]

+ Pr [E] · δ ≤ 2δ.
To bound the expected communication, we again condition on the event E , which

implies that every coordinate i ∈ N that we actually solve has zi ≤ β2 ln(n/δ). Since
log n · zi = log n

∑
ℓ∈[k]

(
1− E

[
Xℓ

i

])
is the expected communication cost of solving i, this

means we send an expected O(log(n) log(n/δ)) bits per coordinate in N , for a total of
O(n log(n) log(n/δ)).

5 Lower Bounds

We begin by observing that when we know nothing about the input distribution other than
the fact that it is a product distribution, the distributional communication complexity of
computing any function f is the same as the worst-case cost. This justifies our need for
taking samples from the distribution before constructing the protocols of Sections 4.1, 4.4.

▶ Observation 17. Let f be a function over {0, 1}n×k, and let C be the worst-case randomized
communication complexity3 of f with error probability 1/3 (on any input). Let Π be a
(possibly randomized) protocol for computing f , such that under any product distribution µ

over {0, 1}n×k we have PrX∼µ [Π correctly computes f(X)] ≥ 2/3. Then there is a product
distribution µ such that the expected communication cost of Π under µ is C.

Proof. For each input X ∈ {0, 1}n×k, let µX be the product distribution µX that assigns
to each player ℓ the input Xℓ (this is a deterministic assignment, but it still qualifies as a
product distribution). Because µX is a product distribution, and Π can handle any product
distribution, when we run Π on inputs drawn from µX it has success probability at least
2/3, which means that it correctly computes f(X) with probability at least 2/3. Thus, Π
is in fact a protocol for computing f with worst-case error probability at most 1/3 on any
input. Therefore there must exist some input X, and hence some product distribution µX ,
on which Π sends C bits in expectation. ◀

Lower bound on the expected communication cost. To prove the lower bound of Theo-
rem 3, we follow the information-theoretic lower bound technique of [12]. We note that the
common information-theoretic strategy of using a direct sum argument, where we lower-bound

3 The randomized communication complexity of a function f is the minimum over all protocols that
compute f with worst-case error ≤ 1/3 of the expected number of bits sent in the worst case (i.e., on
any input) by the protocol. The error probability and the expectation are taken with respect to the
protocol’s internal randomness.

ICALP 2023

95:18 The Communication Complexity of Set Intersection Under Product Distributions

the cost of solving each bit of the problem correctly and then sum over the costs, cannot be
used in this context: it yields lower bounds on the cost of solving each coordinate with small
marginal error, but as we explained in Section 1, computing each bit Si of the intersection
with small marginal error is easy when the marginal probabilities that Si = 1 tend to be
small:

▶ Proposition 18. Let α ∈ (0, 1), ϵ ∈ (0, 1] be constants, n > (1/ϵ)2/α, k ≥ 2, and
let µ be a product distribution over ({0, 1}n)k, with expected intersection size s ≤ n1−α.
Then there exists a deterministic protocol that reveals the intersection to an external ob-
server, with per-coordinate error at most ϵ and expected communication cost at most
Õ
(
n(1−α/2)(1−1/k)(s + 1)1/k

)
.

Proof. First, observe that the average coordinate i ∈ [n] has expected intersection size
s/n = n−α. Denote by I the set of coordinates i ∈ [n] that have expected intersection size
E[Si] > n−α/2. Note that by Markov’s inequality |I| ≤ n−α/2 ·n = n1−α/2. Now, if k ≤ log n,
then the players execute the basic protocol of Theorem 11 on the coordinates of I. Note that
the protocol reveals the intersection in coordinates I to an external observer with zero error.
Since the overall expected intersection size for the coordinates is at most s, the protocol has
expected communication cost Õ

(
n(1−α/2)(1−1/k)(s + 1)1/k

)
.

Similarly, if k > log n, the players execute our protocol for k > log n (described at 4.4) on
the coordinates of I. Note that the protocol reveals the intersection to an external observer
with per-coordinate error at most ϵ/n1−α/2 < ϵ and expected communication cost at most
Õ
(
n(1−α/2)(1−1/k) + k

)
.

For any remaining coordinate i ̸∈ I, the external observer simply declares that i ̸∈
∩ℓ∈[k]X

ℓ, and has a per-coordinate error at most n−α/2 < ϵ. ◀

Fix an expected intersection size s. Our lower bound uses the distribution where each bit
of the input has iid probability (s/n)1/k of being 1 (that is, the distribution is also a product
distribution over the elements, not just the players). It is not hard to see that this yields the
desired expected intersection size of s, and also that the entropy of the intersection is Θ̃(s).

Now suppose we are given a protocol Π that sends o
(
n1−1/ks1/k

)
bits in expectation.

Following [12], we first show that for the average coordinate i ∈ [n] and transcript τ of the
protocol, for each player ℓ, the distribution of Xℓ

i conditioned on Π = τ is very close to its
prior: intuitively, to rule out an event with prior probability p, the protocol must spend
Ω(p) of its information budget; in our case the event is Xℓ

i = 1, and p = (s/n)1/k. The
protocol expends o

(
n1−1/ks1/k/n

)
= o

(
(s/n)1/k

)
of its total information budget on the

average coordinate, so the event Xℓ
i = 1 remains roughly as likely as it was originally.

Consider a specific coordinate i ∈ [n], and assume that for all the coordinates j < i,
the bits Si have been computed correctly; we denote this event by E<i. Since the protocol
computes the entire intersection correctly w.h.p., the event E<i has high probability. Assume
w.l.o.g. that player 1 is the one that outputs Si given the transcript τ : given on the transcript
τ , the event E , and the event X1

i = 1, player 1 must decide whether to output Si = 0 or
Si = 1 (if X1

i = 0 then player 1 knows that Si = 0 and does not need to work to learn the
answer). However, we can show that even conditioned on τ, E , and X1

i = 1, the distribution
of Si is still very close to its prior, and therefore player 1 has roughly the same uncertainty
about whether or not Si = 1 as it had originally, H(Si) = Θ̃(s/n).

After analyzing the uncertainty about the output in each coordinate i ∈ [n] conditioned
on τ, E and the event that the player ℓ deciding this coordinate has Xℓ

i = 1, we carefully
“collect” these uncertainties and add them up, to show that the players jointly have too much
uncertainty about the entire intersection and cannot output it correctly with sufficiently high

R. Oshman and T. Roth 95:19

probability. We note that unlike [12], in this process we need to handle conditioning on some
fairly high-probability events (e.g., the event that Xℓ

i = 1 has probability (s/n)1/k, which
is constant when s = Ω(n)). This has the potential of distorting the distributions we work
with by a lot if not handled properly.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity

theory. In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
337–347, 1986.

3 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In 43rd Symposium on Foundations
of Computer Science (FOCS 2002), pages 209–218, 2002.

4 Anup Bhattacharya, Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Manaswi
Paraashar. Disjointness through the lens of vapnik-chervonenkis dimension: Sparsity and
beyond. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, volume 176 of LIPIcs, pages 23:1–23:15, 2020.

5 Ralph Bottesch, Dmitry Gavinsky, and Hartmut Klauck. Correlation in hard distributions in
communication complexity. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM, volume 40 of LIPIcs, pages 544–572,
2015.

6 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan. A
tight bound for set disjointness in the message-passing model. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, pages 668–677, 2013.

7 Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information to
exact communication. In STOC, pages 151–160. ACM, 2013.

8 Mark Braverman and Rotem Oshman. On information complexity in the broadcast model.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC
2015, pages 355–364, 2015.

9 Mark Braverman and Rotem Oshman. A rounds vs. communication tradeoff for multi-party
set disjointness. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, pages 144–155, 2017.

10 Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff, and Grigory
Yaroslavtsev. Beyond set disjointness: The communication complexity of finding the intersec-
tion. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 106–113, 2014.

11 Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. ACM SIGACT
News, 41(3):59–85, 2010.

12 Nachum Dershowitz, Rotem Oshman, and Tal Roth. The communication complexity of
multiparty set disjointness under product distributions. In STOC, pages 1194–1207. ACM,
2021.

13 Dmitry Gavinsky. The communication complexity of the inevitable intersection problem. Chic.
J. Theor. Comput. Sci., 2020, 2020.

14 Badih Ghazi, Ben Kreuter, Ravi Kumar, Pasin Manurangsi, Jiayu Peng, Evgeny Skvortsov, Yao
Wang, and Craig Wright. Multiparty reach and frequency histogram: Private, secure, and practi-
cal. Proc. Priv. Enhancing Technol., 2022(1):373–395, 2022. doi:10.2478/popets-2022-0019.

15 André Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party informa-
tion complexity of the and-function and disjointness. In 26th International Symposium on
Theoretical Aspects of Computer Science, STACS 2009, volume 3 of LIPIcs, pages 505–516,
2009.

ICALP 2023

https://doi.org/10.2478/popets-2022-0019

95:20 The Communication Complexity of Set Intersection Under Product Distributions

16 Dirk Van Gucht, Ryan Williams, David P. Woodruff, and Qin Zhang. The communication
complexity of distributed set-joins with applications to matrix multiplication. In Proceedings
of the 34th ACM Symposium on Principles of Database Systems, PODS, pages 199–212, 2015.
doi:10.1145/2745754.2745779.

17 Dawei Huang, Seth Pettie, Yixiang Zhang, and Zhijun Zhang. The communication complexity
of set intersection and multiple equality testing. SIAM J. Comput., 50(2):674–717, 2021.

18 Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In IEEE European Symposium on Security and Privacy,
EuroS&P, pages 370–389. IEEE, 2020. doi:10.1109/EuroSP48549.2020.00031.

19 Ivo Kubjas and Vitaly Skachek. Two-party function computation on the reconciled data. In
55th Annual Allerton Conference on Communication, Control, and Computing, pages 390–396.
IEEE, 2017. doi:10.1109/ALLERTON.2017.8262764.

20 Nan Ma and Prakash Ishwar. Two-terminal distributed source coding with alternating messages
for function computation. In 2008 IEEE International Symposium on Information Theory,
pages 51–55. IEEE, 2008.

21 Nan Ma and Prakash Ishwar. Infinite-message distributed source coding for two-terminal
interactive computing. In 2009 47th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1510–1517. IEEE, 2009.

22 Nan Ma and Prakash Ishwar. Some results on distributed source coding for interactive function
computation. IEEE Transactions on Information Theory, 57(9):6180–6195, 2011.

23 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. SIAM J. Comput., 45(1):174–196, 2016.

24 Alexander A Razborov. On the distributional complexity of disjointness. In International
Colloquium on Automata, Languages, and Programming, pages 249–253, 1990.

25 Mert Saglam and Gábor Tardos. On the communication complexity of sparse set disjointness
and exists-equal problems. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, pages 678–687, 2013.

26 Georg Schnitger and Bala Kalyanasundaram. The probabilistic communication complexity of
set intersection. In Proceedings of the Second Annual Conference on Structure in Complexity
Theory 1987, 1987.

27 Alexander A Sherstov. Communication complexity theory: Thirty-five years of set disjointness.
In International Symposium on Mathematical Foundations of Computer Science, pages 24–43,
2014.

28 Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating entropy.
Electron. Colloquium Comput. Complex., TR10-183, 2010. URL: https://eccc.weizmann.ac.
il/report/2010/183.

29 Thomas Watson. Communication complexity with small advantage. Comput. Complex.,
29(1):2, 2020.

30 David P. Woodruff and Qin Zhang. When distributed computation is communication expensive.
In Distributed Computing: 27th International Symposium, DISC 2013, pages 16–30, 2013.

https://doi.org/10.1145/2745754.2745779
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/ALLERTON.2017.8262764
https://eccc.weizmann.ac.il/report/2010/183
https://eccc.weizmann.ac.il/report/2010/183

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Upper Bounds
	4.1 Basic Protocol for Computing Intersections (k < = log n)
	4.2 Approximating the Marginals
	4.3 Entropy-Based Protocol (k < = log n)
	4.4 Upper Bound for Large k

	5 Lower Bounds

