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Abstract
Spectral hypergraph sparsification, an attempt to extend well-known spectral graph sparsification
to hypergraphs, has been extensively studied over the past few years. For undirected hypergraphs,
Kapralov, Krauthgamer, Tardos, and Yoshida (2022) have proved an ε-spectral sparsifier of the
optimal O∗(n) size, where n is the number of vertices and O∗ suppresses the ε−1 and log n factors.
For directed hypergraphs, however, the optimal sparsifier size has not been known. Our main
contribution is the first algorithm that constructs an O∗(n2)-size ε-spectral sparsifier for a weighted
directed hypergraph. Our result is optimal up to the ε−1 and log n factors since there is a lower
bound of Ω(n2) even for directed graphs. We also show the first non-trivial lower bound of Ω(n2/ε)
for general directed hypergraphs. The basic idea of our algorithm is borrowed from the spanner-based
sparsification for ordinary graphs by Koutis and Xu (2016). Their iterative sampling approach is
indeed useful for designing sparsification algorithms in various circumstances. To demonstrate this,
we also present a similar iterative sampling algorithm for undirected hypergraphs that attains one of
the best size bounds, enjoys parallel implementation, and can be transformed to be fault-tolerant.
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1 Introduction

Graph sparsification is a fundamental idea for developing efficient algorithms and data
structures. One of the earliest developments in this context is a cut sparsifier due to
Benczúr and Karger [4], which approximately keeps the size of cuts (by adjusting edge
weights). Spielman and Teng [24] introduced a generalized notion called a spectral sparsifier,
which approximately preserves the spectrum of the Laplacian matrix of a given graph. Since
this seminal work, spectral sparsification of graphs has been extensively studied and used in
many applications. See, e.g., [27, 26, 23] for more details on spectral graph sparsification.

This paper studies spectral sparsification of undirected/directed hypergraphs. A hy-
pergraph is a standard tool for generalizing graph-theoretic arguments in a set-theoretic
setting, and extending a theory for graphs to hypergraphs is a common theoretical interest.
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94:2 Nearly Tight Spectral Sparsification of Directed Hypergraphs

Besides, many hypergraph-based methods [12, 28, 25, 29, 31] have recently been attracting
much attention as extensions of graph-based methods, which also increases the demand for
advancing the theory of spectral hypergraph sparsification.

An undirected hypergraph is defined by a tuple H = (V, F, z), where V is a finite vertex
set, F is a set of subsets of V , and z : F → R+. Each element in F is called a hyperedge and
zf := z(f) is called the weight of f ∈ F in H. The Laplacian LH : RV → RV of H is defined
as a nonlinear operator such that

x⊤LH(x) =
∑
f∈F

zf max
u,v∈f

(xu − xv)2 for all x ∈ RV .

If x is restricted to {0, 1}V , x⊤LH(x) represents the cut function of H. In this sense, the
above definition gives a proper extension of the ordinary graph Laplacian. (Here, x⊤LH(x)
is an abuse of notation since LH(x) is not defined uniquely; nevertheless, this notation is
widely used in analogy to the case of ordinary graphs.)

A directed hypergraph H = (V, F, z) consists of a finite set V , a set F of hyperarcs, and
z : F ∋ f 7→ zf ∈ R+, where each hyperarc f ∈ F is a pair (t(f), h(f)) of non-empty subsets
of V , called the tail and the head (which may not be disjoint). The Laplacian LH : RV → RV

of H is defined as a nonlinear operator such that

x⊤LH(x) =
∑
f∈F

zf max
u∈t(f),v∈h(f)

(xu − xv)2
+ for all x ∈ RV ,

where (·)+ = max{·, 0} (and (·)2
+ = (max{·, 0})2). If x ∈ {0, 1}V , the definition of directed

hypergraph Laplacian LH also captures the cut function of H. Importantly, cut functions
of directed hypergraphs can represent a large class of submodular functions [10].1 Directed
hypergraphs are also useful for modeling higher-order directional relations that appear in,
e.g., propositional logic [11] and causal inference [14], which have constituted a motivation
for studying spectral properties of directed hypergraphs [7].

Given an undirected/directed hypergraph H = (V, F, z) and ε ∈ (0, 1), a hypergraph
H̃ = (V, F̃ , z̃) is called an ε-spectral sparsifier of H if it satisfies F̃ ⊆ F and

(1− ε)x⊤LH(x) ≤ x⊤LH̃(x) ≤ (1 + ε)x⊤LH(x) for all x ∈ RV .

One of the big motivations for studying spectral sparsification of directed hypergraphs comes
from the connection to the representation of submodular functions. Since such a cut-function
representation uses Ω(2|V |) hyperarcs in general, a spectral sparsifier of a directed hypergraph
can serve as a compact approximate representation (see the full version [20] for more details).

Soma and Yoshida [22] initiated the study of spectral hypergraph sparsification and
gave an algorithm for constructing an ε-spectral sparsifier with O(n3 log n/ε2) hyperedges,
where n is the number of vertices. Unlike ordinary graphs, the hypergraph size can be as
large as 2n (and 4n if directed). Thus, obtaining a polynomial bound is already nontrivial.
For undirected hypergraphs, the result by Soma and Yoshida [22] has been improved to
Õ(nr3/ε2) [3] and to Õ(nr/εO(1)) [15],2 where r denotes the maximum size of a hyperedge
in the input hypergraph H and is called the rank of H. Kapralov et al. [16] has removed the
dependence on r and obtained a nearly linear bound of Õ(n/ε4). Very recently, an improved
bound of Õ(n/ε2) has been shown in [13, 18] (concurrently to our work). This upper bound
is nearly tight since the Ω(n/ε2) lower bound applies even to ordinary graphs [2, 6].

1 In fact, any set function can be represented as a cut function of some directed hypergraph if negative
weights are allowed [10].

2 We use Õ to hide poly(log(n/ε)) factors.
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Table 1 Bounds on sparsification of directed hypergraphs. In the time complexity, additive
poly(n, 1/ε) terms are omitted. Note that Kapralov et al. [15] assume the unweighted case.

Method Cut/Spectral Bound Time complexity

Soma and Yoshida [22] Spectral O(n3 log n/ε2) O(mr2)
Kapralov et al. [15] Spectral O(n2r3 log2 n/ε2) O(mr2)

Rafiey and Yoshida [21] Cut O(n2r2/ε2) O(m2r)
This paper Spectral O(n2 log3(n/ε)/ε2) O(mr2)

As for spectral sparsification of directed hypergraphs, Soma and Yoshida [22] showed that
their algorithm is also applicable, and hence the O(n3 log n/ε2) bound also holds for directed
hypergraphs. Later, Kapralov et al. [15] gave an O(n2r3 log2 n/ε2) bound for unweighted
directed hypergraphs, where the rank r is defined by r = maxf∈F {|h(f)|+ |t(f)|} in the
directed case. Recently, for the case of cut sparsification, Rafiey and Yoshida [21] obtained
sparsifiers with O(n2r2/ε2) hyperarcs.3 See Table 1. On the other hand, a well-known Ω(n2)
lower bound for directed graphs [9] is valid for directed hypergraphs. Therefore, a central
open question in this context is: can we obtain an upper bound of Õ(n2/εO(1)) that has no
dependence on the rank r?

1.1 Main Results and Idea
Our main contribution is the first algorithm that constructs an ε-spectral sparsifier with
Õ(n2/ε2) hyperarcs for a directed hypergraph, thus settling the aforementioned question.

▶ Theorem 1. Let H = (V, F, z) be a directed hypergraph with n vertices. For any ε ∈ (0, 1),
our algorithm (shown in Algorithm 3) returns an ε-spectral sparsifier H̃ = (V, F̃ , z̃) of H such
that |F̃ | = O

(
n2

ε2 log3 n
ε

)
with probability at least 1−O

( 1
n

)
. Its time complexity is O(mr2)

with probability at least 1−O
( 1

n

)
, where m = |F | and r is the rank of H.

This bound improves the previous results and is optimal up to the ε−1 and logarithmic
factors due to the presence of the Ω(n2) lower bound for directed graphs. We prove Theorem 1
in Section 4 by providing a concrete algorithm and its analysis.

A natural next question would be whether the ε−1 term can be deleted. Our new lower
bound shows that the ε−1 term is indeed necessary, and an ε-spectral sparsifier of size O(n2)
may not exist in general, thus complementing our upper bound.

▶ Theorem 2. Let n ∈ Z>0. For any ε ∈
( 1

4n , 1
)
, there is a directed hypergraph H = (V, F, z)

with 2n vertices, Ω
(

n2

ε

)
hyperarcs, and the rank three that has no sub-hypergraph H̃ = (V, F̃ , z̃)

such that F̃ ⊊ F and (1− ε)x⊤LH(x) ≤ x⊤LH̃(x) ≤ (1 + ε)x⊤LH(x) for all x ∈ {0, 1}V .

This gives a lower bound even for the case of cut sparsification and is the first nontrivial lower
bound for sparsification of directed hypergraphs. We give the proof in the full version [20].

The basic idea of our algorithm for Theorem 1 comes from a spanner-based sparsification
method for undirected graphs by Koutis and Xu [17], in contrast to the method of [16] for
nearly tight sparsification of undirected hypergraphs. The analysis of [16] uses a technique
called weight assignment [8], which crucially depends on linear algebraic arguments on the

3 This bound follows from their general result on sparsification of submodular functions.
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linear Laplacian of some underlying undirected graph. Directed hypergraphs, however, do not
have such convenient underlying undirected graphs, and hence their idea cannot be utilized.
We thus take an alternative route and use the algorithmic framework of Koutis and Xu [17] –
iteratively select important edges and sample the remaining edges. Due to its combinatorial
nature, we can analyze errors via combinatorial arguments instead of linear algebraic tools.
Although our algorithm is as simple as theirs, our analysis for proving Theorem 1 involves
novel techniques. Specifically, while building on a recent chaining-based analysis [15, 16],
we develop a completely new discretization scheme based on a non-trivial combinatorial
observation to obtain the optimal upper bound. See Section 3 for an overview of our analysis.

1.2 Additional Results
We also present the following additional results in the full version [20].

Undirected hypergraph sparsification. The iterative sampling approach mentioned above
indeed has much potential in hypergraph sparsification. We exhibit its power by presenting
a natural extension of the spanner-based algorithm by Koutis and Xu [17] to undirected
hypergraphs. The concept of spanners in graphs can be naturally extended to undirected
hypergraphs, and accordingly, Koutis and Xu’s algorithm can also be extended to undirected
hypergraphs. Based on a result by Bansal et al. [3], we show that the resulting algorithm
constructs an ε-spectral sparsifier with O

(
nr3

ε2 log2 n
)

hyperedges, which is nearly optimal if
r is constant and matches the bound of [3] (up to a log n factor). Moreover, our algorithm
inherits advantages of the spanner-based approach in that it can be implemented in par-
allel [17] and can be converted to be fault-tolerant [32], demonstrating that the iterative
sampling approach can enjoy various useful extensions.

Application to learning of submodular functions. A notable application of directed hy-
pergraph sparsification due to [22] is agnostic learning of submodular functions. We apply
our method to this setting and obtain an Õ

(
n3

ε4 + 1
ε2 log 1

δ

)
sample complexity bound for

agnostic learning of nonnegative hypernetwork-type submodular functions on a ground set of
size n, improving the previous Õ

(
n4

ε4 + 1
ε2 log 1

δ

)
bound in [22]. Note that since the rank r of

a hypergraph representing a submodular function can be O(n), eliminating the dependence
on r in the sparsifier size (i.e., our improvement from [15]) is crucial in this application. It
should be mentioned that this application only requires cut sparsifiers. Nevertheless, since
our result gives the first near-optimal bound even on the size of cut sparsifiers of directed
hypergraphs, this application serves as a good motivation for our result.

1.3 Related Work
Besides the aforementioned application to agnostic learning of submodular functions, there
are many other potential applications that involve the quadratic form x⊤LH(x) (which is
sometimes called the energy of hypergraphs), e.g., clustering [25], semi-supervised learning [12,
28, 31, 19], and link prediction [29]. For example, Li et al. [19] use the quadratic form as
a smoothness regularizer. Our result on spectral sparsification can be useful when dealing
with such regularizers on dense directed hypergraphs.

Cohen et al. [9] studied directed graph sparsification under a different definition of
approximation based on Eulerian scaling. While their definition is compatible with fast
Laplacian solvers, how to extend it to directed hypergraphs seems non-trivial. Our definition
is based on a general notion called submodular transformations [30] and admits a natural
interpretation as a generalization of cut sparsification of directed hypergraphs.



K. Oko, S. Sakaue, and S.-i. Tanigawa 94:5

2 Preliminaries

We usually denote a directed hypergraph by H = (V, F, z), the numbers of vertices by n,
and the numbers of hyperarcs by m. The Laplacian LH : RV → RV is defined as a nonlinear
operator that satisfies x⊤LH(x) =

∑
f∈F zf maxu∈t(f),v∈h(f)(xu−xv)2

+ for all x ∈ RV , where
h(f), t(f) ⊆ V are the head and the tail of f , respectively. For each f ∈ F , we denote the
contribution of f to x⊤LH(x) by Qx

H(f) = zf maxu∈t(f),v∈h(f)(xu − xv)2
+, which we call the

energy of f . Note that x⊤LH(x) =
∑

f∈F Qx
H(f) holds. For any subset F ′ of F , we let

Qx
H(F ′) =

∑
f∈F ′ Qx

H(f), i.e., the sum of energies over F ′. For a hyperarc f ∈ F , we define
its biclique as an arc set C(f) = {(u, v) | u ∈ t(f), v ∈ h(f)}. For a subset F ′ ⊆ F , we let
C(F ′) =

⋃
f∈F ′ C(f). Below, we often take argmaxf∈F ′ ζ(f) for a function ζ : F → R and a

hyperarc subset F ′ ⊆ F . For convenience, we let such argmax (or argmin) operations always
return a singleton by using some tie-breaking rule with a pre-defined total order on F . For
example, if vertices are labeled by 1, . . . , n and each f ∈ F is labeled by vertices in f , we may
use the lexicographical order on F with respect to the labels. Similarly, we break ties when
taking argmax/argmin on any E′ ⊆ V × V . We will often use the following Chernoff bound.

▶ Proposition 3 ([1]). Let X1, X2, · · · , Xm be independent random variables in the range of
[0, a]. For any δ ∈ [0, 1] and µ ≥ E[

∑m
i=1 Xi], we have

P

[∣∣∣∣∣
m∑

i=1
Xi − E

[
m∑

i=1
Xi

]∣∣∣∣∣ > δµ

]
≤ 2 exp

(
−δ2µ

3a

)
.

3 Technical Overview

Our algorithm is an iterative algorithm whose each step goes as follows: given a hypergraph
H = (V, F, z) from a previous iteration, it constructs a set S of heavy hyperarcs, called a
coreset, which is kept deterministically in this step, and samples the remaining hyperarcs
with probability 1/2, where weights of sampled ones are doubled. This single step yields a
hypergraph with fewer hyperarcs, which is taken as input in the next step. We iterate this
until a sub-hypergraph of the desired size is obtained. Roughly speaking, the size of the coreset
is about Õ(n2/ε2), and after about O(log

(
mε2/n2)) iterations, we obtain a sub-hypergraph

of size Õ(n2/ε2). This algorithmic framework is identical to that of Koutis and Xu [17] for
ordinary undirected graph sparsification, which iteratively constructs a bundle of spanners
(instead of a coreset) and sample the remaining edges with probability 1/4.

We then describe how to analyze the sparsification error. Note that if a sub-hypergraph
produced in each step is a sparsifier of a hypergraph H = (V, F, z) given from the previous
step with a sufficiently large probability, then we can bound the error accumulated over the
iterations. Thus, we focus on the analysis of a single step (which is presented in Lemma 6). To
bound the sparsification error in Qx

H(F ) = x⊤LH(x) for all x ∈ RV in each step, we adopted
a chaining-type argument [15, 16]; this enables us to derive a desired uniform bound on a
continuous domain from a pointwise bound via adaptive scaling of the domain discretization.
Here, how to design a discretization scheme crucially affects how sharp the resulting uniform
bound is. Therefore, we need to design an appropriate discretization scheme by carefully
looking at the structure of directed hypergraphs.

We below sketch our discretization scheme. Inspired by the previous studies [15, 16], we
classify hyperarcs f ∈ F \ S based on their energies Qx

H(f). Here, since the coreset S is
always selected, we can exclude it when discussing the following probabilistic arguments. For

ICALP 2023



94:6 Nearly Tight Spectral Sparsification of Directed Hypergraphs

each x ∈ RV , we consider a partition of F \ S into F x
i (i ∈ Z) such that each F x

i consists
of hyperarcs f with energies Qx

H(f) ≈ 2−iQx
H(F ). Then, the Chernoff bound offers the

following pointwise guarantee for each x ∈ RV :

P
[
|Qx

H̃
(F̃ x

i )−Qx
H(F x

i )| ≥ εQx
H(F )

]
≲ exp

(
− ε2Qx

H(F )
2−iQx

H(F )

)
= exp

(
−ε22i

)
,

where H̃ is a sparsifier obtained from H and Qx
H̃

(F̃ x
i ) denotes the energy of H̃ with hyperarcs

restricted to F x
i . To obtain a desired uniform bound using this inequality, we need to design

a discretization scheme that satisfies the following two requirements:
(R1) the discretization error is O(ε), and
(R2) the number of possible discretized energies is bounded by about exp(ε22i).
Kapralov et al. [15] obtained such a scheme by looking at underlying clique digraphs. By
contrast, we obtain a discretization scheme by directly looking at hypergraphs. This strategy
enables us to eliminate the extra r3 factor in their bound, but it also poses a new challenge.

We explain the challenge when designing such a discretization scheme by directly looking
at hypergraphs. Once x ∈ RV is fixed, the number of hyperarcs f with Qx

H(f) ≈ 2−iQx
H(F )

is bounded by about 2i; on the other hand, we need to prepare at least poly(n, 1/ε) possible
discretized energies for each f to satisfy requirement (R1). Thus, naive counting implies
that the number of total discretized energies for all f ∈ F x

i is (poly(n, 1/ε))2i ≈ exp(Õ(2i)),
which is too large to satisfy requirement (R2). To overcome this problem, we need an
additional combinatorial idea: we count the number of discretized energies by focusing on
the number of possible critical pairs. We say that (u, v) ∈ C(F \ S) is a critical pair of
f if (u, v) = argmaxu′∈t(f),v′∈h(f)(xu′ − xv′)2

+ (see also Figure 1b). Suppose that a lot of
hyperarcs in F x

i share a common critical pair for a given x ∈ RV , particularly when F x
i

contains as many as 2i hyperarcs. Then, since the energy of f is determined by the (xu−xv)2
+

value of the critical pair (u, v) of f , we may get a sharper bound on the number of discretized
energies by defining a discretization scheme based on (xu − xv)2

+ values so that hyperarcs
with the same critical pairs share the same discretized energies (up to scaling of weights).

To accomplish the counting based on this idea, we use the existence of a coreset kept
in each iteration. As we will see shortly from the definition, a λ-coreset S ⊆ F contains λ

heaviest hyperarcs for each (u, v) ∈ C(F ) (see also Figure 1a). Roughly speaking, important
properties of λ-coresets are as follows:
(P1) |S| ≤ λn2,
(P2) for any fixed x ∈ RV , many hyperarcs with large energies are included in S, and
(P3) for any fixed x ∈ RV , the number of critical pairs of hyperarcs in F x

i is at most 2i/λ.4
If we set λ = Õ(ε−2), the size of λ-coreset S is Õ(n2/ε2) by property (P1), which is small
enough that the output size decreases geometrically in each iteration until we obtain an
Õ(n2/ε2) size sparsifier. Property (P2) bounds the range of i such that F x

i is non-empty.
Most importantly, property (P3) implies that if we count possible discretized energies over F x

i ,
the total number is at most (poly(n, 1/ε))2i/λ ≈ exp

(
Õ(ε22i)

)
, satisfying requirement (R2).

In summary, once the coreset is selected, we can categorize the remaining hyperarcs in
each F x

i based on a moderate number of critical pairs, which yields a sharp bound on the
number of possible discretized energies of the remaining hyperarcs. This is the key idea of
our discretization scheme, which, together with the chaining-type argument, provides the
desired uniform bound on the sparsification error.

4 For ease of exposition, λ is used differently from Section 4. In Section 4.2, we will instead define F x
i

based on 2−iQx
H(F )/λ values and, accordingly, bound the number of critical pairs by 2i (Lemma 11).
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4 Spectral Sparsification of Directed Hypergraphs

We prove Theorem 1 by presenting a concrete algorithm. Section 4.1 presents our algorithm
and key lemmas. Section 4.2 focuses on the analysis of a single iteration, and Section 4.3
bounds the overall sparsification error and the resulting sparsifier size, thus proving Theorem 1.
Section 4.4 shows the O(mr2) time complexity bound of our algorithm.

4.1 Algorithm Description
Our algorithm consists of CoresetFinder (Algorithm 1), DH-Onestep (Algorithm 2),
and DH-Sparsify (Algorithm 3). DH-Sparsify iteratively calls DH-Onestep, which uses
CoresetFinder as a subroutine. We below explain them one by one.

Algorithm 1 CoresetFinder(H, λ): greedy algorithm for coreset construction.

Input: H = (V, F, z) and λ > 0
Output: S ⊆ F

1: S ← ∅ and Suv ← ∅ for each (u, v) ∈ C(F )
2: Auv ← {f ∈ F | (u, v) ∈ C(f)} for each (u, v) ∈ C(F )
3: for each (u, v) ∈ C(F ) :
4: if |Auv \ S| ≥ λ :
5: Find the first λ heaviest hyperarcs fuv

1 , fuv
2 , · · · , fuv

λ ∈ Auv \ S

6: Add fuv
1 , fuv

2 , · · · , fuv
λ to Suv

7: else
8: Suv ← Auv \ S

9: S ← S ∪ Suv

10: return S

Algorithm 2 DH-Onestep(H, λ): sampling algorithm called in each iteration in Algorithm 3.

Input: H = (V, F, z) and λ > 0
Output: H̃ = (V, F̃ , z̃)

1: S ← CoresetFinder(H, λ)
2: F̃ ← S and z̃f ← zf for f ∈ S

3: for each f ∈ F \ S :
4: With probability 1

2 , add f to F̃ and set z̃f ← 2zf

5: return H̃ = (V, F̃ , z̃)

The first building block of our algorithm is CoresetFinder(H, λ) given in Algorithm 1.
It takes a hypergraph H and a parameter λ as input, constructs a set, Suv, of up to λ

hyperarcs for each (u, v) ∈ C(F ), and outputs S =
⋃

(u,v)∈C(F ) Suv. For each pair (u, v)
(in arbitrary order), Suv is obtained by selecting up to the λ heaviest hyperarcs f with
(u, v) ∈ C(f) among those not selected yet. The parameter λ controls the size of output S.

▶ Lemma 4. Let H be a directed hypergraph and λ be a positive integer.
CoresetFinder(H, λ) returns a set S of at most λn2 hyperarcs that can be partitioned into
disjoints subsets {Suv | (u, v) ∈ C(F )} satisfying the following conditions:
1. for any (u, v) ∈ C(F ), every f ∈ Suv satisfies (u, v) ∈ C(f),
2. if (u, v) ∈ C(F \ S), |Suv| = λ holds, and
3. for any (u, v) ∈ C(F ), f ∈ Suv, and f ′ ∈ F \ S such that (u, v) ∈ C(f ′), zf ≥ zf ′ holds.

ICALP 2023



94:8 Nearly Tight Spectral Sparsification of Directed Hypergraphs

Algorithm 3 DH-Sparsify(H, ε): iterative algorithm that computes an ε-spectral sparsifier.

Input: H = (V, F, z) with |V | = n and |F | = m, and ε > 0
Output: H̃ = (V, F̃ , z̃)

1: m∗ ← n2

ε2 log3 n
ε ▷ This is the (asymptotic) target size of the resulting sparsifier.

2: T ←
⌈
log4/3

(
m

m∗

)⌉
3: i← 0, H̃0 = (V, F̃0, z̃0)← H, and m0 ← |F̃0|
4: while i < T and mi ≥ C2m∗ : ▷ C2 is a constant that is explained in Section 4.3.
5: εi ← ε

4 log2
4/3( mi

m∗ ) and λi ←
⌈

C1 log3 mi

ε2
i

⌉
▷ εi is used in the analysis.

6: H̃i+1 = (V, F̃i+1, z̃i+1)← DH-Onestep(H̃i, λi)
7: mi+1 ← |F̃i+1|
8: i← i + 1
9: iend ← i and H̃ ← H̃iend

10: return H̃ = (V, F̃ , z̃)

Proof. Since CoresetFinder(H, λ) constructs Suv for each (u, v) ∈ C(F ) by selecting up
to the λ heaviest hyperarcs f with (u, v) ∈ C(f) among those that have not been selected yet,
Suv for (u, v) ∈ C(F ) are mutually disjoint. This also implies |S| =

∑
(u,v)∈C(F ) |Suv| ≤ λn2

and the first and third conditions. After S is constructed, if there is a hyperarc f ′ ∈ F \ S

such that (u, v) ∈ C(f ′), then λ hyperarcs must have been added to Suv. Hence |Suv| = λ if
(u, v) ∈ C(F \ S), implying the second condition. ◀

We call the set S shown in Lemma 4 a coreset, which plays a key role in the analysis.

▶ Definition 5. Given a directed hypergraph H = (V, F, z), a subset S ⊆ F , and a posit-
ive integer λ, we say S is a λ-coreset of H if S can be partitioned into disjoints subsets
{Suv | (u, v) ∈ C(F )} satisfying the three conditions in the statement of Lemma 4.

In short, if there is a hyperarc f ′ /∈ S with (u, v) ∈ C(f ′), Suv contains (at least) λ hyperarcs
that are at least as heavy as zf ′ . Figure 1a illustrates an example of a coreset. We use this
coreset as a counterpart of a bundle of spanners in the spanner-based sparsification.

Next, we explain DH-Onestep(H, λ) given in Algorithm 2, which is the main
subroutine in our algorithm. The algorithm first computes a λ-coreset S by calling
CoresetFinder(H, λ). The hyperarcs in the coreset S are deterministically added to
the output. Then, it randomly chooses the remaining hyperarcs with probability 1/2 and
doubles the weights if sampled, thus preserving the expected total weight. The main technical
observation is that, under an appropriate choice of λ, the output of DH-Onestep(H, λ) is
an ε-spectral sparsifier of H. Formally, we can show the following lemma, which is the main
technical contribution and will be proved in Section 4.2.

▶ Lemma 6. Let H = (V, F, z) be a directed hypergraph with |V | = n and |F | = m. For any
ε ∈ (0, 1) and λ ≥ C1 log3 m

ε2 , where C1 is a sufficiently large constant, DH-Onestep(H, λ)
returns an ε-spectral sparsifier H̃ = (V, F̃ , z̃) of H satisfying |F̃ | ≤ m

2 + (3m log n)
1
2 + λn2

with probability at least 1−O
( 1

n2

)
.

Finally, we present our sparsification algorithm DH-Sparsify(H, ε) in Algorithm 3. In
the algorithm description, C1 denotes the constant given in the statement of Lemma 6, and
C2 is a sufficiently large constant (which we can compute explicitly by carefully expanding
the analysis in Section 4.3). The algorithm iteratively calls DH-Onestep(H̃i, λi), where H̃i
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(a) Coreset.
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(b) Critical pairs.

Figure 1 Illustration of a coreset and critical pairs on (a part of) a given hypergraph. A circle is
a vertex, and a hyperarc is indicated by an arrow and two ellipses representing a head and a tail. A
hyperarc contains a vertex if the line originating from the vertex pierces its head or tail. Figure 1a
presents an image of a coreset, focusing on a vertex pair (u, v). Suppose that the hyperarcs are
aligned in decreasing order of their weights from top to bottom. The blue hyperarcs are the three
heaviest ones having u and v as elements of their tails and heads, respectively, and they are included
in a subset Suv of a coreset S. We suppose that gray hyperarcs are not in S. While the bottommost
gray hyperarc f also satisfies u ∈ t(f) and v ∈ h(f), the three blue hyperarcs are heavier than it.
Thus, the conditions of the λ-coreset with λ = 3 are satisfied for (u, v). Figure 1b presents an image
of critical pairs of three hyperarcs, which are missed by the coreset S in Figure 1a. Suppose that
vertices v have xv values of 2, 3, 4, 5, and 1 from left to right, respectively, as shown nearby the
vertices. Then, the green and yellow hyperarcs have (u1, v1) and (u2, v2), respectively, as x-ctirical
pairs. If the three hyperarcs constitute F x

i ⊆ F \ S, we have Ex
i = {(u1, v1), (u2, v2)}, and F x

i is
partitioned into F x,u1v1

i and F x,u2v2
i , shown in green and yellow, respectively.

is the sub-hypergraph obtained in the previous step. Here, the parameter λi is defined as
in Line 3, which makes H̃i+1 an εi-spectral sparsifier of H̃i by the condition in Lemma 6.5
The algorithm repeatedly calls DH-Onestep(H̃i, λi) until the size of H̃i becomes Õ(n2/ε2)
or the maximum number of iterations, T , is reached. With this choice of εi, we will show
that the size of H̃i decreases geometrically and that the accumulated sparsification error is
bounded by ε. Consequently, the final output is an ε-spectral sparsifier of the desired size,
which completes the proof of Theorem 1. We present the analysis in Section 4.3.

4.2 Proof of Lemma 6
We prove Lemma 6, which ensures the correctness of DH-Onestep. In this section, we let
H = (V, F, z), λ ≥ C1 log3 m

ε2 , and ε ∈ (0, 1) be as given in the statement of Lemma 6, and let
H̃ = (V, F̃ , z̃) be the output of DH-Onestep(H, λ).

To prove Lemma 6, we bound the size and sparsification error of H̃ from above. The former
is an easy consequence of the Chernoff bound. We below prove it assuming m > 12 log n;
otherwise, an input hypergraph is already sparsified and we do not run DH-Onestep.

▶ Lemma 7. Let H = (V, F, z) be a directed hypergraph with |V | = n and |F | = m, and
let λ be a positive integer. If m > 12 log n, DH-Onestep(H, λ) outputs a sub-hypergraph
H̃ = (V, F̃ , z̃) of H satisfying |F̃ | ≤ m

2 + (3m log n)
1
2 + λn2 with probability at least 1− 2

n2 .

Proof. Let S be a λ-coreset constructed in Line 2 in DH-Onestep(H, λ). By Lemma 4, S

has at most λn2 hyperarcs. To bound |F̃ \ S|, for each f ∈ F \ S, we let Xf be a random
variable that takes 1 if f is sampled and 0 otherwise. Note that |F̃ \ S| =

∑
f∈F \S Xf holds.

5 Unlike the existing spanner-based algorithm [17], we need to change εi adaptively since fixing εi = ε
T

does not yield a sparsifier of the desired size when the input hypergraph is exponentially large in n.
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Since we have E
[∑

f∈F \S Xf

]
= (m− |S|)/2 ≤ m/2, for any t ∈ (0, 1), the Chernoff bound

(Proposition 3) implies

P

 ∑
f∈F \S

Xf − E

 ∑
f∈F \S

Xf

 >
m

2 t

 ≤ 2 exp
(
−mt2

6

)
.

By setting t =
(

12 log n
m

) 1
2 , which is smaller than 1 due to the lemma assumption, we obtain

P

 ∑
f∈F \S

Xf ≤
m

2 + (3m log n)
1
2

 ≥ 1− 2
n2 .

Thus, we have |F̃ | = |S|+
∑

f∈F \S Xf ≤ m
2 + (3m log n)

1
2 + λn2 with probability at least

1− 2
n2 . ◀

The rest of this section focuses on showing that H̃ is an ε-spectral sparsifier of H, i.e.,
(1 − ε)x⊤LH(x) ≤ x⊤LH̃(x) ≤ (1 + ε)x⊤LH(x) for any x ∈ RV . Since this relation is
invariant under scaling of x, it suffices to prove the relation for any x satisfying x⊤LH(x) = 1.
Let SH =

{
x ∈ RV

∣∣ x⊤LH(x) = 1
}

. A similar normalization is used in [15] with respect to
the total energy of the corresponding underlying clique digraphs. By contrast, we directly
normalize the total energy of a hypergraph, x⊤LH(x). This difference is a key to eliminating
the extra r3 factor, while it requires a new discretization scheme, as described later.

Since we analyze the contribution of each hyperarc to the energy of H, it is convenient
to use the notation of Qx

H(f) and Qx
H(F ′) for f ∈ F and F ′ ⊆ F , respectively, defined in

Section 2. Our goal is to prove (1− ε)Qx
H(F ) ≤ Qx

H̃
(F̃ ) ≤ (1 + ε)Qx

H(F ) for all x ∈ SH .
Given x ∈ SH and a λ-coreset S ⊆ F , our strategy is to partition F \S into subsets based

on the energies and evaluate the error caused by sparsification for each subset. Specifically,
we classify hyperarcs f ∈ F \ S into subsets F x

i defined for each i ∈ Z as follows:

F x
i :=

{
f ∈ F \ S

∣∣∣∣ Qx
H(f) ∈

[
1

2iλ
,

1
2i−1λ

)}
.

We also define F̃ x
i := F x

i ∩ F̃ for each i ∈ Z.
Since Qx

H(F \ S) =
∑

i∈Z Qx
H(F x

i ) and Qx
H̃

(F̃ \ S) =
∑

i∈Z Qx
H̃

(F̃ x
i ), our goal is to prove

that |Qx
H̃

(F̃ x
i )−Qx

H(F x
i )| is sufficiently small for all i ∈ Z and x ∈ SH . This is not difficult

if i is sufficiently large, as in the following lemma.

▶ Lemma 8. Let I = ⌈log2(9m)⌉. For any x ∈ SH ,
∣∣∣Qx

H(∪i≥I+1F x
i )−Qx

H̃

(
∪i≥I+1F̃ x

i

)∣∣∣ ≤ ε
3 .

Proof. Due to the assumption in Lemma 6, λε ≥ C1 log3 m
ε ≥ 1 holds for sufficiently large C1.

By the definition of F x
i , the energy of each hyperarc in ∪i≥I+1F x

i is less than 1
2I λ

, which is
at most ε

9m by I = ⌈log2(9m)⌉ and λε ≥ 1. Thus, it holds that

Qx
H(∪i≥I+1F x

i ) =
∑

f∈∪i≥I+1F x
i

Qx
H(f) ≤ m · ε

9m
≤ ε

9 . (1)

As for F̃ ⊆ F , since the weight of each hyperarc in F̃ is doubled in DH-Onestep, we have

Qx
H̃

(
∪i≥I+1F̃ x

i

)
≤ 2 ·Qx

H(∪i≥I+1F x
i ) ≤ 2ε

9 . (2)

Combining eqs. (1) and (2), we obtain the claim. ◀
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We then introduce additional definitions for the convenience of describing our discretization
scheme and analyzing the sparsification error.

▶ Definition 9. For x ∈ SH , we say (u, v) ∈ V × V is an x-critical pair of f ∈ F if we have
(u, v) = argmax(u,v)∈C(f)(xu−xv)2

+, breaking ties as in Section 2. For i ∈ Z and x ∈ SH , let

Ex
i = {(u, v) ∈ C(F ) | (u, v) is an x-critical pair of some f ∈ F x

i }

and, for each (u, v) ∈ Ex
i , let

F x,uv
i = {f ∈ F x

i | (u, v) is an x-critical pair of f }.

Note that the collection of F x,uv
i for (u, v) ∈ Ex

i forms a partition of F x
i . Figure 1b presents

an example of x-critical pairs.
We now discuss how to bound |Qx

H̃
(F̃ x

i )−Qx
H(F x

i )| for i that is not covered in Lemma 8.
By using the Chernoff bound, it is easy to evaluate the probability that |Qx

H̃
(F̃ x

i )−Qx
H(F x

i )|
is small for each x ∈ SH . To convert it to a uniform bound over all x ∈ SH , we construct an
appropriate discretization scheme, as follows.

Let ∆ = ε
9m . For (u, v) ∈ Ex

i , we define the discretization width as ∆uv
i := ∆

maxf∈F
x,uv
i

zf
.

Note that F x,uv
i ̸= ∅ holds for (u, v) ∈ Ei by the definitions of Ei and F x,uv

i , and hence ∆uv
i

is well-defined. The denominator plays the role of scaling the width. Given any x ∈ SH ,
we consider discretizing (xu − xv)2

+ for each (u, v) ∈ Ex
i , not the energy itself. Specifically,

for each i ∈ Z and (u, v) ∈ Ex
i , we use

⌊
(xu−xv)2

+
∆uv

i

⌋
∆uv

i as a discretized value of (xu − xv)2
+.

Then, for each f ∈ F x,uv
i such that (u, v) ∈ Ex

i , we define the discretized energy Dx
H(f) by

Dx
H(f) := zf

⌊
(xu − xv)2

+
∆uv

i

⌋
∆uv

i .

It should be noted that the discretized energy of f ∈ F x,uv
i is defined by first discretizing

(xu − xv)2
+ and then scaling it by zf . This somewhat indirect discretization scheme will turn

out important when bounding the number of possible discretized energies.
For each sampled hyperarc f ∈ F x,uv

i ∩ F̃ with (u, v) ∈ Ex
i , we define the discretized

energy after sampling by Dx
H̃

(f) := 2Dx
H(f). We also let Dx

H(F x
i ) =

∑
f∈F x

i
Dx

H(f) and
Dx

H̃
(F̃ x

i ) =
∑

f∈F̃ x
i

Dx
H̃

(f). We can ensures that discretization errors are small as follows.

▶ Lemma 10. For any x ∈ SH , we have∑
i∈Z
|Dx

H(F x
i )−Qx

H(F x
i )| ≤ ε

9 and
∑
i∈Z

∣∣Dx
H̃

(F̃ x
i )−Qx

H̃
(F̃ x

i )
∣∣ ≤ 2ε

9 .

Proof. Recall that the discretized energy Dx
H(f) of each f ∈ F x,uv

i is obtained by discretizing
(xu−xv)2

+ with the width ∆uv
i and scaling it by zf . Therefore, the discretization error for each

f is bounded by zf ∆uv
i . From the definition of ∆uv

i , we have zf ∆uv
i = zf

∆
maxf∈F

x,uv
i

zf
≤ ∆.

Hence, the total discretization error over all f ∈ F \ S is bounded by m∆, which is at most
ε
9 since ∆ = ε

9m . Thus, we obtain the first inequality. The second inequality follows from
the fact that the weights of sampled hyperarcs are doubled. ◀

From Lemma 10, we can bound the sparsification error |Qx
H̃

(F̃ x
i )−Qx

H(F x
i )| for all x ∈ SH

by bounding |Dx
H̃

(F̃ x
i )−Dx

H(F x
i )| for all x ∈ SH . Since the number of possible discretized

energies is finite, we can use the standard Chernoff bound and union bound to evaluate the
sparsification error. Thus, what remains is to prove that the number of discretized energies is

ICALP 2023



94:12 Nearly Tight Spectral Sparsification of Directed Hypergraphs

small enough so that we can obtain the desired uniform bound. To this end, we first bound
the size of Ex

i and then bound the number of possible discretized values. The following
lemma bounds the size of Ex

i , in which the existence of a λ-coreset plays an important role.

▶ Lemma 11. For i ∈ Z, we have |Ex
i | < 2i.

Proof. By the definition of Ex
i , for each (u, v) ∈ Ex

i , there is a hyperarc fuv ∈ F x
i ⊆ F \ S

such that (u, v) is an x-critical pair of fuv. Since S is a λ-coreset, S admits a partition
{Suv | (u, v) ∈ C(F )} satisfying the three conditions in Lemma 4. Since fuv /∈ S, the third
condition in Lemma 4 implies zf ≥ zfuv for any f ∈ Suv. Hence, for any f ∈ Suv, we have

Qx
H(fuv) = zfuv (xu − xv)2

+ ≤ zf (xu − xv)2
+ ≤ max

(u′,v′)∈C(f)
zf (xu′ − xv′)2

+ = Qx
H(f). (3)

Since the second condition in Lemma 4 implies |Suv| = λ for (u, v) ∈ Ex
i ⊆ C(F \ S),

Qx
H(F ) ≥

∑
(u,v)∈Ex

i

(Qx
H(Suv) + Qx

H(fuv)) (since all Suv and fuv /∈ S are disjoint)

≥
∑

(u,v)∈Ex
i

(λ + 1) ·Qx
H(fuv) (by eq. (3) and |Suv| = λ)

≥
∑

(u,v)∈Ex
i

(λ + 1) · (2iλ)−1 (by fuv ∈ F x
i ).

holds, hence Qx
H(F ) > 2−i|Ex

i |. Since Qx
H(F ) = 1 by x ∈ SH , we obtain |Ex

i | < 2i. ◀

From Lemma 11, if i ≤ 0, we have |Ex
i | < 2i ≤ 1, which implies Ex

i = ∅ and F x
i = ∅. Thus,

the following corollary holds.

▶ Corollary 12. If i ≤ 0, we have F x
i = ∅.

Due to Corollary 12 and Lemma 8, we can focus on i ∈ Z with 1 ≤ i ≤ I = ⌈log2 9m⌉. In
this range, we have the following bound on the number of possible discretized values.

▶ Lemma 13. For each positive integer i, let Li =
{(

F x
i , {Dx

H(f)}f∈F x
i

) ∣∣ x ∈ SH

}
, where

{Dx
H(f)}f∈F x

i
is the list of the discretized energies over all hyperarcs in F x

i . If 1 ≤ i ≤ I =

⌈log2 9m⌉, we have |Li| ≤
(

648n4m4

λε

)2i

.

Since the proof of Lemma 13 is not short, we first complete the proof of Lemma 6 assuming
that Lemma 13 is true; then, we prove Lemma 13 in Section 4.2.1.

Proof of Lemma 6. Let I = ⌈log2(9m)⌉ as in Lemma 8 and define Li as in Lemma 13. Fix
i ∈ {1, 2, . . . , I} and consider any element of Li, which we denote by (F y

i , {Dy
H(f)}f∈F y

i
) for

some y ∈ SH . Since the discretized energy of each hyperarc is obtained by rounding down,
we have Dy

H(f) ≤ Qy
H(f). Thus, for every f ∈ F y

i , it holds that

Dy
H(f) ≤ Qy

H(f) <
1

2i−1λ
. (4)

For each f ∈ F \S, let Xf be a random variable that takes 1 with probability 1/2 and 0 other-
wise, which represents the randomness of sampling and hence Dy

H̃
(F̃ y

i ) =
∑

f∈F y
i

2Xf Dy
H(f).

By Dy
H(f) ≤ Qy

H(f) again, we have

E

[ ∑
f∈F y

i

2Xf Dy
H(f)

]
=
∑

f∈F y
i

Dy
H(f) = Dy

H(F y
i ) ≤ Qy

H(F y
i ) ≤ Qy

H(F ) = 1. (5)
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Due to eqs. (4) and (5), the Chernoff bound (Proposition 3) with µ = 1, a = 1
2i−2λ , and

δ = ε
3I implies

P
[∣∣∣Dy

H̃
(F̃ y

i )−Dy
H(F y

i )
∣∣∣ >

ε

3I

]
= P

∣∣∣∣∣∣
∑

f∈F y
i

2Xf Dy
H(f)− E

∑
f∈F y

i

2Xf Dy
H(f)

∣∣∣∣∣∣ >
ε

3I


≤ 2 exp

(
−2i · ε2λ

108I2

)
.

This bound is true for each (F y
i , {Dy

H(f)}f∈F y
i

) ∈ Li, and we can convert it to a uniform
bound over all (F y

i , {Dy
H(f)}f∈F y

i
) ∈ Li by using Lemma 13 and the union bound as follows:

P
[
∃(F y

i , {Dy
H(f)}f∈F

y
i

) ∈ Li,
∣∣Dy

H̃
(F̃ y

i ) − Dy
H(F y

i )
∣∣ >

ε

3I

]
≤ 2 exp

(
−2i · ε2λ

108I2

)
·
(

648n4m4

λε

)2i

.

We may assume nm ≥ 648 (otherwise Lemma 6 is trivial for a sufficiently large C1). Letting
C1 be sufficiently large, we have λ ≥ C1 log3 m

ε2 ≥ 108I2

ε2 (6 log n + 5 log m) and λε ≥ 1. Thus,
we can further bound the right-hand side from above by

2 exp
(
−2i · ε2λ

108I2

)
·
(
n5m5)2i

≤ 2 exp
(
−2i · (6 log n + 5 log m)

)
·
(
n5m5)2i

≤ 2
n2i .

Therefore, P[∀(F y
i , {Dy

H(f)}f∈F y
i

) ∈ Li, |Dy

H̃
(F̃ y

i ) −Dy
H(F y

i )| ≤ ε
3I ] ≥ 1 − 2

n2i holds. Since
(F x

i , {Dx(f)}f∈F x
i

) ∈ Li holds for all x ∈ SH , we can equivalently rewrite the bound as

P
[
∀x ∈ SH ,

∣∣Dx
H̃

(F̃ x
i )−Dx

H(F x
i )
∣∣ ≤ ε

3I

]
≥ 1− 2

n2i .

By the union bound over 1 ≤ i ≤ I = ⌈log2(9m)⌉ and
∑I

i=1
2

n2i ≤
∑∞

i=1
2

n2i ≤ 2
n2−1 ≤

3
n2

(for n ≥ 2), we obtain

P

[
∀x ∈ SH ,

I∑
i=1

∣∣Dx
H̃

(F̃ x
i )−Dx

H(F x
i )
∣∣ ≤ ε

3

]
≥ 1− 3

n2 . (6)

Thus, for all x ∈ SH , we can bound |x⊤LH̃(x)− x⊤LH(x)| = |Qx
H̃

(F̃ )−Qx
H(F )| as follows:∣∣Qx

H̃
(F̃ )−Qx

H(F )
∣∣

= ε

3 +
I∑

i=1
|Qx

H̃
(F̃ x

i )−Qx
H(F x

i )| (by Lemma 8 and Corollary 12)

≤ ε

3 +
I∑

i=1

[
|Qx

H̃
(F̃ x

i )−Dx
H̃

(F̃ x
i )|+ |Dx

H̃
(F̃ x

i )−Dx
H(F x

i )|+ |Dx
H(F x

i )−Qx
H(F x

i )|
]

≤ ε

3 + ε

9 + ε

3 + 2ε

9 (by Lemma 10 and eq. (6))

= ε,

which holds with probability at least 1 − 3
n2 . Hence, H̃ is an ε-spectral sparsifier of H.

Combining this with the size bound in Lemma 7, we obtain Lemma 6. ◀

4.2.1 Proof of Lemma 13
We present the proof of Lemma 13. Our goal is to bound the size of Li defined in Lemma 13
for i ∈ Z with 1 ≤ i ≤ I = ⌈log2 9m⌉. To this end, we proceed in two steps: we first bound
the number of possible combinations of (F x

i , Ex
i , {F x,uv

i }f∈Ex
i
) over all x ∈ SH , and then

bound the number of possible lists {Dx
H(f)}f∈F x

i
of discretized energies. For convenience,

we define the following notion.
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▶ Definition 14. Let (E, {fuv}(u,v)∈E , πE) be a tuple such that E ⊆ V ×V , {fuv}(u,v)∈E is a
list of hyperarcs indexed by (u, v) ∈ E, and πE is a total ordering on E. For i ∈ {1, 2, . . . , I},
we say (E, {fuv}(u,v)∈E , πE) is i-realized by x ∈ SH if the following conditions hold:
1. E = Ex

i ,
2. fuv = argminf∈F x,uv

i
zf for each (u, v) ∈ Ex

i , and
3. πE is the increasing order of the values of (xu − xv)2

+, i.e., (u, v) is smaller than (u′, v′)
in πE if and only if (xu − xv)2

+ ≤ (xu′ − xv′)2
+ (where the tie-breaking rule explained in

Section 2 is used when the equality holds).

The following lemma says that the i-realizability determines Ex
i , F x

i , and F x,uv
i , implying

that we can reduce the problem of counting the number of possible (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
)

to that of counting the number of possible tuples (E, {fuv}(u,v)∈E , πE).

▶ Lemma 15. Let (E, {fuv}(u,v)∈E , πE) be a tuple as defined in Definition 14 and x, y ∈ SH .
If both x and y i-realize (E, {fuv}(u,v)∈E , πE) and

⋃i−1
j=1 F x

j =
⋃i−1

j=1 F y
j holds, then, for every

(u, v) ∈ E, we have Ex
i = Ey

i , F x
i = F y

i , and F x,uv
i = F y,uv

i .

Proof. By the definition of the i-realizability, we have Ex
i = E = Ey

i . If we can assume
F x,uv

i = F y,uv
i for every (u, v) ∈ E, we have F x

i =
⋃

(u,v)∈E F x,uv
i =

⋃
(u,v)∈E F y,uv

i = F y
i

since {F x,uv
i | (u, v) ∈ C(F )} and {F y,uv

i | (u, v) ∈ C(F )} are partitions of F x
i and F y

i ,
respectively. Therefore, we below focus on proving F x,uv

i = F y,uv
i for every (u, v) ∈ E.

For a contradiction, suppose F x,u1v1
i ̸= F y,u1v1

i for some (u1, v1) ∈ E. Without loss of
generality, we assume there is a hyperarc f∗ ∈ F x,u1v1

i \F y,u1v1
i . Since both x and y i-realize

(E, {fuv}(u,v)∈E , πE) and (u1, v1) ∈ E, the second condition of the i-realizability implies

argmin
f∈F

x,u1v1
i

zf = fu1v1 = argmin
f∈F

y,u1v1
i

zf . (7)

In particular, we have zfu1v1
≤ zf∗ for f∗ ∈ F x,u1v1

i . Hence

Qy
H(f∗) = zf∗ max

(u,v)∈C(f∗)
(yu − yv)2

+

≥ zfu1v1
(yu1 − yv1)2

+
(
by (u1, v1) ∈ C(f∗) and zf∗ ≥ zfu1v1

)
= zfu1v1

max
(u,v)∈C(fu1v1 )

(yu − yv)2
+ (by fu1v1 ∈ F y,u1v1

i as in eq. (7))

≥ 2−i

λ
(by fu1v1 ∈ F y

i ).

From Qy
H(f∗) ≥ 2−i

λ and f∗ ∈ F x,u1v1
i ⊆ F \ S, it must hold that f∗ ∈

⋃i
j=1 F y

j . Moreover,
since

⋃i−1
j=1 F x

j =
⋃i−1

j=1 F y
j by the lemma assumption and f∗ /∈

⋃i−1
j=1 F x

j by f∗ ∈ F x,u1v1
i , we

have f∗ /∈
⋃i−1

j=1 F y
j , hence f∗ ∈ F y

i . Since the orderings of E with respect to (xu − xv)2
+ and

(yu − yv)2
+ are both equal to πE and (u1, v1) is an x-critical pair of f∗, we have

(u1, v1) = argmax
(u,v)∈C(f∗)∩E

(yu − yv)2
+. (8)

Since f∗ ∈ F y
i , eq. (8) implies f∗ ∈ F y,u1v1

i , contradicting the assumption of f∗ /∈ F y,u1v1
i .

Therefore, F x,uv
i = F y,uv

i holds for every (u, v) ∈ E. ◀

Lemma 15 enables us to bound the number of possible (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
) for x ∈ SH .

▶ Lemma 16. For each i ≥ 1,
∣∣{(F x

i , Ex
i , {F x,uv

i }f∈Ex
i
)
∣∣ x ∈ SH

}∣∣ ≤ (2in2m
)2i+1

holds.
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Proof. First, we suppose that F x
j for j = 1, . . . , i− 1 are fixed. Then, due to Lemma 15, we

can bound the number of possible combinations of (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
) for all x ∈ SH by

counting the number of possible tuples (E, {fuv}(u,v)∈E , πE) that can be i-realized by some
x ∈ SH . Since |E| < 2i by Lemma 11, the number of possible E is

∑|E|
k=1

(
n2

k

)
≤
∑2i−1

k=1
(

n2

k

)
.

Once E is specified, there are up to m possible choices of fuv for each (u, v) ∈ E. Furthermore,
the number of possible total orderings πE of E is at most (|E|)! ≤ (2i)!. Thus, the number
of possible tuples (E, {fuv}(u,v)∈E , πE) that can be i-realized by some x ∈ SH is at most(∑2i−1

k=1
(

n2

k

))
·m2i ·(2i)!. This is further upper bounded by

(
2in2m

)2i

by a simple calculation.
We now remove the assumption that F x

j for j = 1, . . . , i − 1 are fixed. By inductively
using the above bound in increasing order of j, the number of possible combinations of
(F x

i , Ex
i , {F x,uv

i }f∈Ex
i
) over all x ∈ SH is at most

∏i
j=1
(
2jn2m

)2j

≤
(
2in2m

)∑i

j=1
2j

≤(
2in2m

)2i+1

, thus completing the proof. ◀

We then fix any tuple (F y
i , Ey

i , {F y,uv
i }f∈Ey

i
) for some representative y ∈ SH and upper

bound the number of possible lists of discretized energies, {Dx
H(f)}f∈F x

i
, over a subspace of

SH that consists of x with (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
) = (F y

i , Ey
i , {F y,uv

i }f∈Ey
i
).

▶ Lemma 17. Let i ≥ 0 and fix y ∈ SH arbitrarily. The number of possible lists
{Dx

H(f)}f∈F x
i

for all x ∈ SH with (F x
i , Ex

i , {F x,uv
i }(u,v)∈Ex

i
) = (F y

i , Ey
i , {F y,uv

i }(u,v)∈Ey
i
)

is at most
( 9m

2i−2λε

)2i

.

Proof. Let x ∈ SH satisfy the condition in the lemma statement and fix (u, v) ∈ Ex
i . Since

every f ∈ F x,uv
i ⊆ F x

i satisfies zf (xu − xv)2
+ = Qx

H(f) < 1
2i−1λ , the range of (xu − xv)2

+ is
restricted to

[
0, 1

2i−1λ minf∈F
x,uv
i

zf

)
. Hence, the number of possible discretized (xu − xv)2

+

values,
⌊
(xu − xv)2

+/∆uv
i

⌋
∆uv

i , over all x ∈ SH under the lemma condition is at most

1
∆uv

i 2i−1λ minf∈F x,uv
i

zf
= 1

∆2i−1λ
·

maxf∈F x,uv
i

zf

minf∈F x,uv
i

zf
≤ 1

∆2i−2λ
, (9)

where the equality is due to ∆uv
i = ∆/maxf∈F x,uv

i
zf and the inequality comes from zf (xu −

xv)2
+ = Qx

H(f) ∈
[ 1

2iλ , 1
2i−1λ

)
for f ∈ F x,uv

i ⊆ F x
i , i.e., maxf∈F x,uv

i
zf ≤ 2 minf∈F x,uv

i
zf .

Since the discretized energy of f ∈ F x,uv
i is defined by Dx

H(f) = zf

⌊
(xu − xv)2

+/∆uv
i

⌋
∆uv

i ,
fixing the discretization of (xu − xv)2

+ determines discretized energies of all f ∈ F x,uv
i .

Therefore, the number of possible lists {Dx
H(f)}f∈F x,uv

i
is also bounded by eq. (9) for each

(u, v) ∈ Ex
i . Since |Ex

i | < 2i by Lemma 11, the number of possible lists {Dx
H(f)}f∈F x

i
is at

most
( 1

∆2i−2λ

)2i

. By substituting ∆ = ε
9m into it, we obtain the lemma. ◀

We are now ready to prove Lemma 13.

Proof of Lemma 13. We can uniquely specify any element of Li by first fixing
(F x

i , Ex
i , {F x,uv

i }f∈Ex
i
) and then {Dx

H(f)}f∈F x
i

. Therefore, we have |Li| ≤ (2in2m)2i+1 ·( 9m
2i−2λε

)2i

=
(

36·2in4m3

λε

)2i

by Lemmas 16 and 17. Combining this with i ≤ I = ⌈log2 9m⌉
completes the proof. ◀

4.3 Proof of Theorem 1
Let H = (V, F, z) be a directed hypergraph with |V | = n and |F | = m, ε ∈ (0, 1), and
H̃ = (V, F̃ , z̃) the output of DH-Sparsify(H, ε). Our goal is to prove that H̃ is an ε-spectral
sparsifier of H and |F̃ | = O

(
n2

ε2 log3 n
ε

)
. We here use m∗, T , iend, (H̃i = (V, F̃i, z̃i), λi), mi,
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and εi given in the description of DH-Sparsify(H, ε) (Algorithm 3), where m∗ = n2

ε2 log3 n
ε

is the target sparsifier size, T =
⌈
log4/3

(
m

m∗

)⌉
is the maximum number of iterations, iend is

the number of iterations performed, (H̃i = (V, F̃i, z̃i), λi) is the input of DH-Onestep at
the ith iteration, mi = |F̃i|, and εi = ε

4 log2
4/3( mi

m∗ ) , as in Line 3 of Algorithm 3.
We first show that the number of hyperarcs decreases geometrically in each step.

▶ Lemma 18. Let mi be the number of hyperarcs in H̃i. Assume mi ≥ C2m∗ = C2
n2

ε2 log3 n
ε

for a sufficiently large constant C2. Then, we have (3mi log n)
1
2 + λin

2 ≤ mi

4 .

Proof. It is easy to show that (3mi log n)
1
2 ≤ mi

8 holds if mi ≥ 192 log n, which is true if C2
is sufficiently large. Hence, the desired inequality holds if λin

2 ≤ mi

8 , which we show below.
By Line 3 in Algorithm 3, we have εi = ε

4 log2
4/3

mi
m∗

and λi =
⌈

C1 log3 mi

ε2
i

⌉
. Hence,

mi

8 − λin
2 ≥ mi

8 −
2500C1n2

ε2 log3 mi log4 mi

m∗ (by 42/ log4(4/3) < 2500).

Let mi = αm∗ and g(α) be the right-hand side of the above inequality, which we regard as a
function of α. Since m∗ = (n/ε)2 log3(n/ε), we have

g(α) = m∗

(
α

8 −
2500C1

log3(n/ε)
log3(αm∗) log4 α

)
≥ m∗

(
α

8 −
10000C1

log3(n/ε)
(log3 α + log3 m∗) log4 α

)
(by (a + b)3 ≤ 4(a3 + b3))

≥ m∗

(
α

8 − 10000C1

(
log3 α

log3(n/ε)
+ 125

)
log4 α

) (
by m∗ = n2

ε2 log3 n

ε
≤
(n

ε

)5)
.

Thus, there exists a sufficiently large constant C2, which is independent of n and ε, such
that g(α) ≥ 0 holds for all α ≥ C2. Using this constant C2, for all mi ≥ C2m∗, we have
λin

2 ≤ mi

8 as desired. ◀

Proof of Theorem 1. We say DH-Onestep(Hi, λi) is successful if H̃i+1 is an εi-spectral
sparsifier of H̃i and mi+1 ≤ 3

4 mi holds. DH-Sparsify(H, ε) calls DH-Onestep(Hi, λi)
only when mi ≥ C2m∗ and i ≤ T . Therefore, by Lemmas 6 and 18, with probability at
least 1−O

(
T
n2

)
≳ 1−O

( 1
n

)
, DH-Onestep(Hi, λi) is successful for all i with 0 ≤ i ≤ iend.

Hence, assuming all DH-Onestep(Hi, λi) to be successful, we below prove that the output
hypergraph H̃ has O

(
n2

ε2 log3 n
ε

)
hyperarcs and that H̃ is an ε-spectral sparsifier of H.

We first discuss the size of H̃. If mi ≤ C2m∗ = C2n2 log3(n/ε)
ε2 occurs for some i ≤ T − 1,

then mi gives the size of H̃ by the termination rule of DH-Sparsify, which is already small
enough. Hence we below assume mi ≥ C2m∗ for all i < T . Since every DH-Onestep(Hi, λi)
is successful, mi+1 ≤ 3

4 mi holds for all i = 0, 1, · · · , T − 1. Thus, it holds that

mT ≤ m ·
(

3
4

)T

≤ m ·
(

3
4

)log4/3
mε2

n2 log3(n/ε)
= n2 log3(n/ε)

ε2 .

Therefore, we have |F̃ | = O
(

n2

ε2 log3 n
ε

)
.

We then show that H̃ is an ε-spectral sparsifier of H. Since H̃i+1 is an εi-spectral sparsifier
of H̃i for all i = 0, 1, · · · , iend−1, the output hypergraph H̃ = H̃iend is an ε̃-spectral sparsifier
of H, where

ε̃ = max
{

iend−1∏
i=0

(1 + εi)− 1, 1−
iend−1∏

i=0
(1− εi)

}
.
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A simple calculation yields the following upper bound on ε̃:

ε̃ ≤
iend∑
j=1

∑
0≤i1<···<ij≤iend−1

εi1εi2 · · · εij
≤

iend∑
j=1

(
iend−1∑

i=0
εi

)j

. (10)

Since mi+1 ≤ 3
4 mi and miend−1 ≥ C2m∗, we have miend−j ≥

( 4
3
)j−1

C2m∗ ≥
( 4

3
)j

m∗ for
sufficiently large C2 ≥ 4

3 , hence log4/3
(miend−j

m∗

)
≥ j. Using

∑∞
j=1

1
j2 ≤ π2

6 , we obtain

iend−1∑
i=0

εi =
iend−1∑

i=0

ε

4 log2
4/3
(

mi

m∗

) ≤ ∞∑
j=1

ε

4j2 ≤
ε

4 ·
π2

6 ≤
ε

2 .

Putting this into the right-hand side of eq. (10), we have

iend∑
j=1

(
iend−1∑

i=0
εi

)j

≤
iend∑
j=1

(ε

2

)j

≤
ε
2

1− ε
2
≤ ε. (11)

By eqs. (10) and (11), H̃ = H̃iend is an ε-spectral sparsifier of H.
To conclude, with probability at least 1−O

( 1
n

)
, DH-Sparsify(H, ε) outputs an ε-spectral

sparsifier of H with O
(

n2

ε2 log3 n
ε

)
hyperarcs. ◀

4.4 Total Time Complexity
We show that our algorithm runs in O(r2m) time with probability at least 1−O(1/n).

▶ Theorem 19. For any directed hypergraph H = (V, F, z) with the rank r and m hyperarcs
and ε ∈ (0, 1), DH-Sparsify(H, ε) runs in O(r2m) time with probability at least 1−O(1/n).

Proof. We first discuss the running time of DH-Onestep(H̃i, λi), where H̃i = (V, F̃i, z̃i)
and |F̃i| = mi. It first constructs a λi-coreset by calling CoresetFinder(H̃i, λi). Coreset-
Finder first constructs Auv = {f ∈ F | C(f) ∋ (u, v)} for (u, v) ∈ C(F ), which is done in
O(r2mi) time since we have |C(f)| = O(r2) for each f ∈ F̃i. Then, for each (u, v) ∈ C(F ),
it selects the λi heaviest hyperarcs from Auv \ S in O(|Auv \ S|) time by using a selection
algorithm [5], thus taking O

(∑
(u,v)∈C(F ) |Auv \ S|

)
= O(r2mi) time in total. Therefore,

CoresetFinder(H̃i, λi) takes O(r2mi) time. After that, DH-Onestep samples the remain-
ing hyperarcs in O(mi) time. Thus, DH-Onestep(H̃i, λi) takes O(r2mi) time.

We then bound the total time complexity. Since DH-Sparsify(H, ε) calls DH-
Onestep(H̃i, λi) for i = 0, 1, . . . , T − 1 (or stops earlier), the total time complexity is
at most O

(
r2∑T −1

i=0 mi

)
. From Lemmas 7 and 18, whenever DH-Onestep is called, we

have mi+1 ≤ 3
4 mi with probability at least 1 − O(1/n2). This implies that

∑T −1
i=0 mi ≤

m
∑T −1

i=0
( 3

4
)i ≤ 4m holds with probability at least 1 − O(T/n2) ≳ 1 − O(1/n). Therefore,

the total time complexity is bounded by O(r2m) with probability at least 1−O(1/n). ◀
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