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Abstract
Let G be a minor-closed graph class and let G be an n-vertex graph. We say that G is a k-apex of
G if G contains a set S of at most k vertices such that G \ S belongs to G. Our first result is an
algorithm that decides whether G is a k-apex of G in time 2poly(k) · n2. This algorithm improves the
previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022], whose running time
was 2poly(k) · n3. The elimination distance of G to G, denoted by edG(G), is the minimum number of
rounds required to reduce each connected component of G to a graph in G by removing one vertex
from each connected component in each round. Bulian and Dawar [Algorithmica 2017] proved the
existence of an FPT-algorithm, with parameter k, to decide whether edG(G) ≤ k. This algorithm is
based on the computability of the minor-obstructions and its dependence on k is not explicit. We
extend the techniques used in the first algorithm to decide whether edG(G) ≤ k in time 222poly(k)

· n2.
This is the first algorithm for this problem with an explicit parametric dependence in k. In the
special case where G excludes some apex-graph as a minor, we give two alternative algorithms, one
running in time 22O(k2 log k)

· n2 and one running in time 2poly(k) · n3. As a stepping stone for these
algorithms, we provide an algorithm that decides whether edG(G) ≤ k in time 2O(tw·k+tw log tw) · n,
where tw is the treewidth of G. This algorithm combines the dynamic programming framework of
Reidl, Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only
the empty graph (i.e., for treedepth) with the representative-based techniques introduced by Baste,
Sau, and Thilikos [SODA 2020]. In all the algorithmic complexities above, poly is a polynomial
function whose degree depends on G, while the hidden constants also depend on G. Finally, we
provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of
graphs Ek(G) = {G | edG(G) ≤ k}.
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1 Introduction

The distance from triviality is a concept formalized by Guo, Hüffner, and Niedermeier [24] to
express the closeness of a graph to a supposedly “simple” target graph class. One such a
measure of closeness is, for instance, the number of vertices or edges that one must delete/add
from/to a graph G to obtain a graph in the target graph class. This concept of distance to a
graph class has recently gained the interest of the parameterized complexity community. The
motivation is that, if a problem is tractable on a graph class G, it is natural to study other
classes of graphs according to their “distance to G”. In this paper, we focus on two such
measures of distance from triviality: Given a target graph class G, we consider the vertex
deletion distance to G and the elimination distance to G, which we formalize next.

Given a target graph class G and a non-negative integer k, we define Ak(G) as the set of
all graphs containing a set S of at most k vertices whose removal results in a graph in G. If
G ∈ Ak(G), then we say that G is a k-apex of G. We refer to S as a k-apex set of G for the
class G. In other words, we consider the following meta-problem for a fixed class G.

Vertex Deletion to G
Input: A graph G and a non-negative integer k.
Objective: Find, if it exists, a k-apex set of G for the class G.

Throughout the paper, we denote by n (resp. m) the number of vertices (resp. edges) of
the input graph of the problem under consideration. The importance of Vertex Deletion
to G can be illustrated by the variety of graph modification problems that it encompasses.
For instance, if G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval,
chordal) graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex
Planarization, Odd Cycle Transversal, (proper) Interval Vertex Deletion,
Chordal Vertex Deletion) problem.

The second measure of distance from triviality that we study was recently introduced by
Bulian and Dawar [10,11]. Given a graph class G, we define the elimination distance of a
graph G to G, denoted by edG(G), as follows:

edG(G) =


0 if G ∈ G,
1 + min{edG(G \ {v}) | v ∈ V (G)} if G is connected,
max{edG(H) | H is a connected component of G} otherwise.

Given that edG(G) ≤ k, a set S ⊆ V (G) of vertices recursively deleted from G to achieve
edG(G) is called a k-elimination set of G for G. We define the (parameterized) class of
graphs Ek(G) = {G | edG(G) ≤ k}. The above notion can be seen as a natural generalization
of treedepth (denoted by td), which corresponds to the case where G contains only the
empty graph. Treedepth, along with treewidth, are two of the most studied and widely
used parameters to measure the structural complexity of a graph [12, 36, 43]. The second
meta-problem that we consider is the following, again for a fixed graph class G.

Elimination Distance to G
Input: A graph G and a non-negative integer k.
Objective: Find, if it exists, a k-elimination set of G for the class G.

Unsurprisingly, Vertex Deletion to G is NP-hard for every non-trivial graph class
G [41], while Elimination Distance to G is NP-hard even when G contains only the empty
graph [45]. To circumvent this intractability, we study both problems from the parameterized
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complexity point of view and consider their parameterizations by k. In this setting, the most
desirable behavior is the existence of an algorithm running in time f(k) · nO(1), where f is
a computable function depending only on k. Such an algorithm is called fixed-parameter
tractable, or FPT-algorithm for short, and a parameterized problem admitting an FPT-
algorithm is said to belong to the parameterized complexity class FPT. Also, the function f

is called parametric dependence of the corresponding FPT-algorithm, and the challenge is to
design FPT-algorithms with small parametric dependencies and with a polynomial factor of
small degree [12, 14, 17, 44]. We may also consider XP-algorithms, i.e., algorithms running in
time f(k) · ng(k) for some computable functions f and g depending only on k.

In general, for any of the two considered problems, we cannot expect FPT-algorithms for
every graph class G. For instance, the two problems are NP-hard, even for k = 0, for every
graph class G whose recognition problem is NP-hard. This is the case of 3-colorable graphs,
which is a class closed under taking (induced) subgraphs. In this paper, we focus on a family
of graph classes that exhibits a nice behavior with respect to the considered problems (and
many others): we consider G to be a minor-closed graph class, i.e., such that every minor
of a graph in G (that is, obtained from a subgraph of a graph in G by contracting edges;
see Section 2 for the formal definition) is also in G. Indeed, it turns out that, for every such
a family G, the problems become fixed-parameter tractable, as we proceed to discuss.

The minor-obstruction set (in short obstruction set) of G is the set of minor-minimal
graphs that do not belong to G, and is denoted by obs(G). Notice that obs(G) gives a
complete characterization of G as, for every graph G, it holds that G ∈ G if and only if, for
every H ∈ obs(G), H is not a minor of G. Because of Robertson and Seymour’s theorem [49],
obs(G) is finite for every minor-closed graph class. As checking whether an h-vertex graph H
is a minor of G can be done in time f(h) · n2 [31, 47], the finiteness of obs(G) along with the
above characterization imply that, for every minor-closed graph class G, checking whether
G ∈ G can be done in time c · n2, where c is a constant depending on the graph class G.
This meta-theorem implies the existence of FPT-algorithms for a wide family of problems,
including Vertex Deletion to G and Elimination Distance to G. Indeed, this follows
by observing that if G is minor-closed, then for every non-negative integer k, the classes
Ak(G) and Ek(G) are also minor-closed.

As Robertson and Seymour’s theorem [49] does not give any way to construct the
corresponding obstruction sets, the aforementioned argument is not constructive, i.e., it cannot
construct the obstruction sets required for the corresponding FPT-algorithms. Moreover,
these algorithms are non-uniform in k, meaning that we have a distinct algorithm for every
value of k. Important steps towards the constructibility of such FPT-algorithms were done
by Adler, Grohe, and Kreutzer [1] and Bulian and Dawar [11], who respectively proved
that obs(Ak(G)) and obs(Ek(G)) are effectively computable. Hence, for both problems, it is
possible to construct uniform (in k) algorithms running in time f(k) ·n2 for some computable
function f . However, this does not imply any reasonable, or even explicit, parametric
dependence of the obtained algorithms.

The main focus of this paper is on the parametric and polynomial dependence of FPT-
algorithms to solve Vertex Deletion to G and Elimination Distance to G, i.e., for
recognizing the classes Ak(G) and Ek(G), when G is a minor-closed graph class.

Concerning Vertex Deletion to G, after a number of articles for particular cases of
minor-closed classes G, such as graphs of bounded treewidth [19,34], planar graphs [27, 42],
or graphs of bounded genus [37], an explicit FPT-algorithm for any minor-closed graph G was
recently proposed by Sau, Stamoulis, and Thilikos [51], running in time 2O(kc) · n3, where
c is a constant that depends on the maximum size of a graph in the obstruction set of G.

ICALP 2023
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Moreover, in the case where obs(G) contains some apex-graph (that is, a 1-apex for the
class of planar graphs), Sau, Stamoulis, and Thilikos [51] gave an improved running time of
2O(kc) · n2. Note also that the more general variant where G is a topological-minor-closed
graph class is in FPT as well [20].

As for Elimination Distance to G when G is minor-closed, no explicit parametric
dependence was known, with the notable exception of treedepth, for which Reidl, Rossmanith,
Villaamil, and Sikdar [46] gave an algorithm deciding whether td(G) ≤ k in time 2O(k·tw) · n,
where tw := tw(G) (see also [9]). Using our terminology, and given that tw(G) ≤ td(G) for
every graph G, this yields an FPT-algorithm for Elimination Distance to G∅, where
G∅ is the class consisting of the empty graph, running in time 2O(k2) · n. Note that this
algorithm [46], combined with the fact that td(G) ≤ log(n) · tw(G) (see [9]), imply an XP-
algorithm for the problem of computing td when parameterized by tw, namely an algorithm
that computes the value of td(G) in time nO(tw(G)2). To the best of our knowledge, it is open
whether computing td parameterized by tw is in FPT.

Before describing our results, let us mention some recent relevant results dealing with
Elimination Distance to G for classes G that are not necessarily minor-closed. Agrawal
and Ramanujan [4] (resp. Agrawal, Kanesh, Panolan, Ramanujan, and Saurabh [3]) provided
FPT-algorithms, with parameter k, when G is the class of cliques (resp. graphs of bounded
degree). Fomin, Golovach, and Thilikos [18] identified sufficient and necessary conditions
for the existence of FPT-algorithms when G is definable in first-order logic (such as having
bounded degree). Jansen, de Kroon, and Włodarczyk [26] proved, among other results, that if
G is a hereditary union-closed graph class and Vertex Deletion to G can be solved in time
2kO(1) ·nO(1) (as it is the case for every minor-closed class G by the results of [51]), then there
is an algorithm that, given an n-vertex graph G, computes an O(edG(G)3)-elimination set of
G for G in time 2edG(G)O(1) · nO(1). Therefore, for union-closed minor-closed graph classes G,
the result of [26] yields an FPT-approximation algorithm for Elimination Distance to G.

Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, and Zehavi [2] proved that
if G is hereditary, union-closed, and definable in monadic second-order logic, then Vertex
Deletion to G is (non-uniformly) in FPT if, and only if, Elimination Distance to G is
(non-uniformly) in FPT. Incidentally, they also showed that if G is defined by excluding a finite
number of connected topological minors, then Elimination Distance to G is (uniformly)
in FPT. We note that the results of [2] do not provide explicit parametric dependencies for
these FPT-algorithms. Also, let us mention that it was conjectured in [2] that Elimination
Distance to G is in FPT parameterized by a generalization of treewidth called G-treewidth
(see [2, 16,26]). Note that, if true, this conjecture would answer the open problem mentioned
above of whether computing td parameterized by tw is in FPT.

Our results. In this paper, we provide explicit FPT-algorithms for Vertex Deletion to
G and Elimination Distance to G for every fixed minor-closed graph class G. Our first
result is the following.

▶ Theorem 1. For every minor-closed graph class G, there exists an algorithm that solves
Vertex Deletion to G in time 2poly(k) · n2.

The degree of the polynomial function poly in the running time of Theorem 1 and of the
other results below, as well as the constants hidden in the O-notation in the running time of
the algorithms, depend on the maximum size of a graph in obs(G). Thus, the algorithm of
Theorem 1, while being uniformly FPT in k, is not uniform in the target class G, as one needs
to know an upper bound on the size of the minor-obstructions. This “meta-non-uniformity”



L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:5

applies to all the algorithms presented in this paper, and it is also the case, among many
others, of the FPT-algorithms in [51]. The algorithm of Theorem 1 improves the algorithm
of [51] from cubic to quadratic complexity in n while keeping the same parametric dependence
on k. This answers positively one of the open problems posed in [51].

Our next algorithmic results concern Elimination Distance to G and provide, to the
authors’ knowledge, the first FPT-algorithms for this problem, when G is minor-closed, with
an explicit parametric dependence.

▶ Theorem 2. For every minor-closed graph class G, there exists an algorithm that solves
Elimination Distance to G in time 222poly(k)

· n2. In the particular case where obs(G)
contains an apex-graph, this algorithm runs in time 22O(k2 log k) · n2.

Examples of classes G where obs(G) contains an apex-graph are graphs of bounded Euler
genus, such as planar graphs. Our next result improves the parametric dependence of the
algorithm of Theorem 2 when obs(G) contains an apex-graph, with a worse polynomial factor.

▶ Theorem 3. For every minor-closed graph class G such that obs(G) contains an apex-graph,
there exists an algorithm that solves Elimination Distance to G in time 2poly(k) · n3.

As discussed later, a crucial ingredient in the algorithms of Theorem 2 and Theorem 3 is
to solve Elimination Distance to G parameterized by the treewidth of the input graph.
The following result, which may be of independent interest, deals with this case.

▶ Theorem 4. For every minor-closed graph class G, there exists an algorithm that solves
Elimination Distance to G in time 2O(k·tw+tw log tw) · n, where tw denotes the treewidth of
the input graph.

The algorithm of Theorem 4 can be seen as a generalization of the algorithm of Reidl,
Rossmanith, Villaamil, and Sikdar [46] deciding whether td(G) ≤ k in time 2O(k·tw) · n.
Since, for any graph G and any graph class G, edG(G) ≤ td(G) ≤ tw(G) · logn, Theorem 4
implies the existence of an XP-algorithm for Elimination Distance to G parameterized
by treewidth, when G is minor-closed, running in time nO(tw2). Given that the conjecture
of [2] is still open, this is the best type of algorithm that one can expect for Elimination
Distance to G parameterized by treewidth.

Finally, for any minor-closed graph class G, we provide an upper bound on the size of the
graphs in the obstruction set of Ek(G).

▶ Theorem 5. For every minor-closed graph class G and for every positive integer k, each

graph in obs(Ek(G)) has at most 2222poly(k)

vertices. Moreover, if obs(G) contains an apex-graph,
this bound drops to 22poly(k) .

The only previously known bound for the graphs in obs(Ek(G)) is the one for treedepth
by Dvořák, Giannopoulou, and Thilikos [15], who proved that every graph in obs(Ek(G∅)) has
size at most 22k−1 . Theorem 5 can be seen as a generalization of the results of Sau, Stamoulis,
and Thilikos [52], who provided similar upper bounds for the graphs in obs(Ak(G)).

These two results are, to the authors’ knowledge, the first upper bounds on the size of
the graphs in the obstruction set for the elimination distance parameter, and give, as an
immediate consequence, the first known upper bound for the size of these obstruction sets.

ICALP 2023
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Our techniques. This paper builds heavily on the techniques recently introduced in [51] in
order to deal with Vertex Deletion to G, which are based on exploiting the Flat Wall
Theorem of Robertson and Seymour [47], namely the version proved by Kawarabayashi,
Thomas, and Wollan [32] and its recent restatement by Sau, Stamoulis, and Thilikos [50]. In
a nutshell, the idea of Theorem 1, Theorem 2, and Theorem 3 is that, as far as the treewidth
of the input graph is sufficiently large as an appropriate function of k, it is possible to either
“branch” into a number of subproblems that depends only on k and where the value of the
parameter is strictly smaller, or to find an irrelevant vertex (i.e., a vertex that does not
change the answer to the considered problem) and remove it from the graph. The irrelevant
vertex technique originates from Robertson and Seymour [47] and is further developped
in [50–52]. Once the treewidth is bounded, what remains is to apply the most efficient
possible algorithm to solve the problem via dynamic programming on tree decompositions.

Let us focus more particularly on the techniques we use to prove Theorem 1. Contrary to
the algorithm of [51] that solves Vertex Deletion to G for any minor-closed class G, we
avoid using iterative compression. This explains the improvement from cubic to quadratic
complexity in n. The algorithm of Theorem 1 can be seen as an extension of the algorithm
of [51] that solves Vertex Deletion to G in the particular case where obs(G) contains
some apex-graph, and uses ideas that date back to the work of Marx and Schlotter [42] for
the Planarization problem, that is, when G is the class of planar graphs. In Section 3 we
provide a sketch of the algorithms claimed in Theorem 1, Theorem 2, and Theorem 3, and
in Section 4 we present the algorithm of Theorem 1 in full detail, along with a proof of its
correctness.

The proof of Theorem 4 consists of a dynamic programming algorithm that combines the
framework of [46] for the particular case where G contains only the empty graph (i.e., for
treedepth) with the representative-based techniques introduced in [5]. A bit more precisely,
the idea is to encode the partial solutions (called characteristic) via sets of annotated trees
with some additional properties. Here, the trees correspond to partial elimination trees and
the annotations indicate the representatives, in the leaves of the elimination trees, with
respect to the canonical equivalence relation defined for the target class G. The size of the
characteristic dominates the running time of the whole algorithm. As usual when dealing
with dynamic programming, the formal description of the algorithm is quite technical and
lengthy, and has been deferred to the full version of the paper.

Finally, to obtain the upper bound on the size of a graph G ∈ obs(Ek(G)) claimed in
Theorem 5, we proceed in two steps. First, we bound the treewidth of G by a function of k.
To do so, we observe that if the treewidth of G is big enough, then there is a big enough wall
in G, and we find an irrelevant vertex v for Elimination Distance to G in G. However,
G \ {v} ∈ Ek(G) and G /∈ Ek(G), hence we reach a contradiction. The second step is to bound
the size of a minor-minimal obstruction of small treewidth. This uses the classic technique of
Lagergren [39] (see also [21–23,28,29,38,40,52]) combined with the encoding of the tables of
the dynamic programming algorithm that we use to prove Theorem 4; see the full paper.

2 Preliminaries

In this section we give some basic definitions needed to understand the main body of the
paper. Due to space limitations and the length of all the formal definitions, the complete
preliminaries are provided in the full version of the paper (definitions and preliminary results
regarding treedepth, treewidth and boundaried graphs, and framework of flat walls).
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Minors and obstructions. A graph G′ is a minor of a graph G, denoted by G′ ⪯ G, if
G′ can be obtained from G by a sequence of vertex removals, edge removals, and edge
contractions. Let G be a graph class that is closed under taking minors. Recall that the
minor obstruction set of G is defined as the set of all minor-minimal graphs that are not in G,
and is denoted by obs(G). Given a finite non-empty collection of non-empty graphs F , we
denote by exc(F) the set containing every graph G that excludes all graphs in F as minors.
We call each graph in exc(F) F-minor-free.

Restating the problems. Let G be a minor-closed graph class and F be its obstruction set.
Clearly, Vertex Deletion to G is the same problem as asking, given a graph G and some
k ∈ N, for a vertex set S ⊆ V (G) of at most k vertices such that G \ S ∈ exc(F). Following
the terminology of [5–8, 19, 20, 34, 35, 51], we call this problem F-M-Deletion. Likewise,
Elimination Distance to G is the same problem as asking whether edexc(F)(G) ≤ k. We
thus follow a similar notation and call this problem F-M-Elimination Distance. Using
the notation, {K1}-M-Elimination Distance is the problem of asking whether td(G) ≤ k.

Some conventions. In the rest of the paper, we fix G to be a minor-closed graph class and F
to be the set obs(G). From Robertson and Seymour’s theorem [49], we know that F is a finite
collection of graphs. Given a graph G, we define its apex number to be the smallest integer a
for which there is a set A ⊆ V (G) of size at most a such that G \A is planar. An apex-graph
is a graph with apex number one. Also, we define the detail of G, denoted by detail(G), to be
the maximum among |E(G)| and |V (G)|. We define three constants depending on F that will
be used throughout the paper whenever we consider such a graph family F . We define aF as
the minimum apex number of a graph in F , we set sF := max{|V (H)| | H ∈ F}, and we
set ℓF := max{detail(H)| | H ∈ F}. Given a tuple t = (x1, . . . , xℓ) ∈ Nℓ and two functions
χ, ψ : N → N, we write χ(n) = Ot(ψ(n)) in order to denote that there exists a computable
function ϕ : Nℓ → N such that χ(n) = O(ϕ(t) · ψ(n)). Notice that sF ≤ ℓF ≤ sF (sF − 1)/2,
and thus OℓF (·) = OsF (·). Observe also that Ak(G) and Ek(G) are KsF +k-minor-free graph
classes, and thus, due to [53], we can always assume that G has OsF (k

√
log k · n) edges,

otherwise we can directly conclude that (G, k) is a no-instance for both problems.

Walls and flat walls. In this paper we extensively deal with walls and flat walls, following
the framework of [50]. Unfortunately, more than ten pages are required to provide all the
technical notions to correctly present all this framework, that is necessary to use the tools
developed in [50–52]. Thus, formal definitions are provided in the full version of the paper.
More precisely, we introduce walls and several notions concerning them (just look at Figure 1
to understand what a wall is). We then provide the definitions of a rendition and a painting
in order to define flat walls. There are a number of technical terms (such as tilts, influence,
regular flatness pairs, ...) that are not the main focus of this work. Let us just mention
that the perimeter of a flat wall of a graph G separates V (G) into two sets X and Y with Y
containing the wall. The compass of a flat wall is G[Y ].

We define canonical partitions and the notion of bidimensionality. Informally speaking, a
canonical partition of a graph with respect to some wall W refers to a partition of the vertex
set of a graph in bags that follow the structure of a wall subgraph of the given graph; see
Figure 1 for an illustration. The bidimensionality of a vertex set X with respect to a wall W
of a graph G intuitively expresses the “spread” of a set X in a W -canonical partition of G.
The crucial idea is that a set X of small bidimensionality cannot “destroy” a large (flat) wall
too much.

ICALP 2023



93:8 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

Figure 1 A 5-wall and its canonical partition Q. The red bag is the external bag Qext.

Finally, we present homogeneous walls. Intuitively, homogeneous flat walls are flat walls
that allow the routing of the same set of (topological) minors in the augmented flaps (i.e., the
flaps together with the apex set) “cropped” by each one of their bricks. Such a homogeneous
wall can be detected in a big enough flat wall (Proposition 10) and this “homogeneity”
property implies that some central part of a big enough homogeneous wall can be declared
irrelevant (Proposition 11).

3 Sketch of the algorithms

In this section we provide a sketch of the algorithms claimed in Theorem 1, Theorem 2 and
Theorem 3. As mentioned in the introduction, Theorem 1 can be seen as a generalization of
the algorithm of [51] that solves F-M-Vertex Deletion in the particular case where F
contains some apex-graph. While many techniques taken from [51] remain the same, some
new ingredients are needed so as to deal with the possible existence of many apices in all
graphs in F . On the other hand, Theorem 2 and Theorem 3 can be seen as an adaptation of
Theorem 1 to F-M-Elimination Distance. Since these three algorithms follow a common
streamline, we sketch all of them simultaneously while pointing out the steps where they
differ. Moreover, the full proof of Theorem 1 is given in Section 4, while the proofs of
Theorem 2 and Theorem 3 can be found in the full version of the paper.

The first common step is to run the following algorithm that states that a graph G in
Ak(exc(F)) or Ek(exc(F)) either has bounded treewidth or contains a large wall. This result
was proved in [51] in the case of F-M-Deletion. The proof in the case of F-M-Elimination
Distance, necessary for Theorem 2 and Theorem 3, can be found in the full version of the
paper.

▶ Proposition 6 ([51], full paper). Let F be a finite collection of graphs. There exist a
function f1 : N → N and an algorithm with the following specifications:

Find-Wall(G, r, k)
Input: A graph G, an odd r ∈ N≥3, and k ∈ N.
Output: One of the following:

Case 1: Either a report that (G, k) is a no-instance of F-M-Deletion (resp. F-M-
Elimination Distance), or
Case 2: a report that G has treewidth at most f1(sF ) · r + k, or
Case 3: an r-wall W of G.

Moreover, f1(sF ) = 2O(s2
F ·log sF ), and the algorithm runs in time 2OℓF (r2+(k+r)·log(k+r)) · n

(resp. 2OℓF (r2+k2) · n).

In Case 1, we can immediately conclude. In Case 2, since the treewidth of G is bounded,
we use a dynamic programming algorithm to solve the corresponding problem. Namely, we
solve F-M-Deletion on instances of bounded treewidth using the main result from [5].
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▶ Proposition 7 ([5]). For every finite collection of graphs F , there exists an algorithm that,
given a triple (G, tw, k) where G is a graph of treewidth at most tw and k is a non-negative
integer, solves F-M-Deletion in time 2OℓF (tw·log tw) · n.

For F-M-Elimination Distance, we use Theorem 4 to conclude. The proof of this
(quite technically involved) dynamic programming algorithm is given in the full version of
the paper.

Therefore, it only remains to deal with Case 3. Given an r-wall W of G, we want to
reduce the size of G. To do so, we observe that we can either:

Case 3a: find a subwall Wa of W and an apex set Aa such that Wa is flat in G \Aa and
has a compass of bounded treewidth, or
Case 3b: find a subwall Wb of W that is very “well connected” to an apex set Ab of
small size.

The above distinction is done using two algorithmic versions of the Flat Wall Theorem
consecutively. The first one comes from [32, Theorem 7.7] and is translated here in the new
framework with tilts of [50]. Informally, we say that a graph H is grasped by a wall W in a
graph G if there is a model of H in G such that the model of every node of H intersects W .

▶ Proposition 8 ([32]). There are two functions f2, f3 : N → N, such that the images of f2
are odd integers, and an algorithm with the following specifications:

Grasped-or-Flat(G, r, t,W )
Input: A graph G, an odd r ∈ N≥3, t ∈ N≥1, and an f2(t) · r-wall W of G.
Output: One of the following:

Either a model of a Kt-minor in G grasped by W , or
a set A ⊆ V (G) of size at most f3(t) and a flatness pair (W ′,R′) of G \ A of heigth r

such that W ′ is a W̃ ′-tilt of some subwall W̃ ′ of W .
Moreover, f2(t) = O(t26), f3(t) = O(t24), and the algorithm runs in time O(t24m+ n).

We would like to mention that the notion of being grasped by a wall is one of the new main
arguments yielding the improvement of the complexity for F-M-Deletion compared to [51].

The second one comes from [51] and adds the condition that W ′ has a compass of bounded
treewidth, at the price of dropping the condition that the model of Kt is grasped by W .

▶ Proposition 9 ( [51]). There exist a function f4 : N → N and an algorithm with the
following specifications:

Clique-Or-twFlat(G, r, t)
Input: A graph G, an odd r ∈ N≥3, and t ∈ N≥1.
Output: One of the following:

Either a report that Kt is a minor of G, or
a tree decomposition of G of width at most f4(t) · r, or
a set A ⊆ V (G) of size at most f3(t) and a regular flatness pair (W ′,R′) of G \ A of
height r whose R′-compass has treewidth at most f4(t) · r.

Moreover, f4(t) = 2O(t2 log t) and this algorithm runs in time 2Ot(r2) ·n. The algorithm can be
modified to obtain an explicit dependence on t in the running time, namely 22O(t2 log t)·r3 log r ·n.

Grasped-or-Flat is used to find a big enough complete graph “controlled” by the input
wall, while we need Clique-or-twFlat to find a flat wall whose compass has bounded
treewidth. Unfortunately, we cannot obtain both conditions simultaneously, and this is why
we need both results. If, after using both algorithms, we obtain a flatness pair (W̃ ′,R′) of
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G \Aa of heigth ra whose compass has bounded treewidth, then we are in Case 3a. In that
case, the following result from [51] provides an algorithm that, given a flatness pair of big
enough height, outputs a homogeneous flatness pair.

▶ Proposition 10 ([51]). There is a function f5 : N4 → N, whose images are odd integers,
and an algorithm with the following specifications:

Homogeneous(r, ã, a, ℓ, t, G,A,W,R)
Input: Five integers r ∈ N≥3, ã, a, ℓ, t ∈ N, where ã ≤ a, a graph G, a set A ⊆ V (G) of size
at most a, and a flatness pair (W,R) of G \A of height f5(r, a, ã, ℓ) whose R-compass has
treewidth at most t.
Output: A flatness pair (W̆ , R̆) of G \A of height r that is ℓ-homogeneous with respect to(

A
≤ã

)
and is a W ′-tilt of (W,R) for some subwall W ′ of W .

Moreover, f5(r, ã, a, ℓ) = O(rf6(ã,a,ℓ)) where f6(ã, a, ℓ) = 2aã·2O((ã+ℓ)·log(ã+ℓ)) and the algorithm
runs in time 2O(f6(ã,a,ℓ)·r log r+t log t) · (n+m).

Then we use the next result, that essentially says that the central vertex v of a big enough
homogeneous wall is irrelevant, i.e., (G, k) and (G \ v, k) are equivalent instances of the
corresponding problem. Here, bidG\A,W (X) denotes the bidimensionality of a set X in the
wall W with apex set A.

▶ Proposition 11 ([52]). Let F be a finite collection of graphs. There exist two functions
f7 : N4 → N and f8 : N2 → N, and an algorithm with the following specifications:

Find-Irrelevant-Vertex(k, a,G,A,W,R)
Input: Two integers k, a ∈ N, a graph G, a set A ⊆ V (G), and a regular flatness pair (W,R)
of G \A of height at least f7(a, ℓF , 3, k) that is f8(a, ℓF )-homogeneous with respect to

(
A

≤a

)
.

Output: A vertex v of G \A such that for every set X ⊆ V (G) with bidG\A,W (X) ≤ k and
|A \X| ≤ a, it holds that G \X ∈ exc(F) if and only if G \ (X \ v) ∈ exc(F).
Moreover, f7(a, ℓF , q, k) = O(k · (ful(16a + 12ℓF ))3 + q), where ful is the function of the
Unique Linkage Theorem (see [33]) and f8(a, ℓF ) = a+ ℓF + 3, and this algorithm runs in
time O(n+m).

We can prove that both k-apex sets and k-elimination sets have small bidimensionality.
If, for every k-apex set S, G \ S ∈ exc(F) if and only if G \ (S \ v) ∈ exc(F), then it is
straightforward to see that v is irrelevant for F-M-Deletion. It is slightly less trivial
to prove that, for each k-elimination set S, we can find some superset X ⊇ S of small
bidimensionality such that a similar statement holds. Additional details are available in the
full paper.

Therefore we can recursively solve the problems on the instance (G \ v, k).

If no flatness pair whose compass has bounded treewidth was found, then we are in
Case 3b. In this case, inspired by [42] and [51], we use the following result of [52] that
basically says that if there is a big enough flat wall W and an apex set A′ of aF vertices
that are all adjacent to many bags of a canonical partition of W , then each k-apex set or
k-elimination set intersects A′.

▶ Proposition 12 ([52]). There exist three functions f9, f10, f11 : N3 → N, such that if G is
a graph, k ∈ N, A is a subset of V (G), (W,R) is a flatness pair of G \A of height at least
f9(aF , sF , k), Q̃ is a W -canonical partition of G \A, A′ is a subset of vertices of A that are
adjacent, in G, to vertices of at least f10(aF , sF , k) many f11(aF , sF , k)-internal bags of Q̃,
and |A′| ≥ aF , then for every set X ⊆ V (G) such that G\X ∈ exc(F) and bidG\A,W (X) ≤ k,
it holds that X∩A′ ̸= ∅. Moreover, f9(a, s, k) = O(2a ·s5/2 ·k5/2), f10(a, s, k) = O(2a ·s3 ·k3),
and f11(a, s, k) = O((a2 + k) · s), where a = aF and s = sF .
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For the F-M-Deletion problem, if we find such a set A′, then we can branch by guessing
which vertex v ∈ A′ belongs to a k-apex set and recursively solving (G \ v, k− 1). Given that
A′ has size aF and that k decreases after each guess, this step is applied at most ak

F times.
However, for F-M-Elimination Distance, k does not decrease, given that the size of a

k-elimination set may not depend on k. Thus, this step may be done an
F times, which does

not give an FPT-algorithm. To circumvent this problem, we propose two alternatives:
Option 1: The first alternative is to only use Case 3a. This is possible given that (KsF +k, k)

is a no-instance of both problems. Thus, when using the algorithms Grasped-or-Flat
and Clique-or-twFlat, we force the outcome to be an apex set A and a flatness pair of
G \ A. However, the bound on the size of A now depends on k, and thus, so does the
variable a in the input of the algorithm Homogeneous. This explains the triple-exponential
parametric dependence on k in Theorem 2. Interestingly, a precise analysis of the time
complexity shows that if aF = 1, i.e., when F contains an apex graph, the parametric
dependence is only double-exponential on k (cf. Theorem 2).

Option 2: The second alternative is to restrict ourselves to the case where aF = 1. Thus, in
Case 3b, we find a vertex v that belongs to every k-elimination set. There is no need to
branch, and this step is done at most n times. However, the fact that the time complexity
of this step is quadratic in n explains the cubic complexity of the algorithm in Theorem 3.

It remains to show that if no flatness pair whose compass has bounded treewidth was
found, then we can find a flatness pair and a set A′ satisfying the conditions of Proposition 12.
To do so, using flow techniques, we find the set A of vertices with sufficiently many internally-
disjoint paths to W , independently from one another. If this set is too large, we can safely
declare a no-instance. Otherwise, we extend the canonical partition of W and just check
whether aF vertices of A are adjacent to many vertices of this new canonical partition. If
this happens, then we can safely use Proposition 12. The second main improvement with
respect to the algorithm in [51] is the new argument that the extension of the canonical
partition of W can be done in a totally arbitrary manner. The quadratic complexity of this
step stems from the search for internally-disjoint paths for every vertex of the input graph.

4 Vertex deletion to a minor-closed graph class

In this section we prove our main result for the F-M-Deletion problem, namely Theorem 1.
All the propositions necessary for this proof have already been stated in Section 3, aside

from the following result proved in [52] that intuitively states that, given a canonical partition
Q̃ of a flat wall (W,R) of big enough height, we can find a “packing” of subwalls of W that
are inside some central part of W and such that the vertex set of every bag of Q̃ intersects
the vertices of at most one of these walls.

▶ Proposition 13 ([52]). There exists a function f12 : N3 → N such that if p, l ∈ N≥1, r ∈ N≥3
is an odd integer, G is a graph, (W,R) is a flatness pair of G of height at least f12(l, r, p),
and Q̃ is a W -canonical partition of G, then there is a collection W = {W 1, . . . ,W l} of
r-subwalls of W such that

for every i ∈ [l],
⋃

influenceR(W i) is a subgraph of
⋃

{Q | Q is a p-internal bag of Q̃}
and
for every i, j ∈ [l], with i ̸= j, there is no internal bag of Q̃ that contains vertices of both
V (

⋃
influenceR(W i)) and V (

⋃
influenceR(W j)).

Moreover, f12(l, r, p) = O(
√
l · r + p) and W can be constructed in time O(n+m).
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4.1 Description of the algorithm for F-M-DELETION

Our algorithm for F-M-Deletion has three steps. In Step 1, either we can easily conclude
with a positive or a negative answer (Cases 1 and 2) or we find a big wall. If we can find
a large flat wall of bounded treewidth inside this wall, then we go to Step 2 and find an
irrelevant vertex (Case 3a). Otherwise, we proceed to Step 3 where, by using flow techniques,
we find a set of vertices that intersects every solution, and we branch on this set or we report
a negative answer (Case 3b). The correctness of the algorithm is not trivial and will be
justified in Subsection 4.2.

Given a non-negative integer x, we denote by odd(x) the smallest odd number that is not
smaller than x. We define the following constants.

a = f3(sF + aF − 1), b = f3(sF ),
q = f10(aF , sF , k), p = f11(aF , sF , k),
l = (q − 1) · (k + b), r6 = f7(a+ b, ℓF , 3, k)
d = f8(a+ b, ℓF ) r5 = f5(r6, a+ b, a+ b, d),
t = f4(sF ) · r5, r4 = odd(t+ 3),
r3 = f12(aF , r4, 1), r2 = odd(2 + f2(sF + aF − 1) · r3),
r′

2 = odd(max{f9(aF , sF , k), f12(l + 1, r2, p)}), r1 = odd(f2(sF ) · r′
2 + k).

Note that r6 = OℓF (k), r5, r4, r3, r2, t = OℓF (kc), and r′
2, r1 = OℓF (kc+2) where c =

f6(a+ b, a+ b, d). Recall from Section 2 that we may assume that G has OsF (k
√

log k · n)
edges.

Step 1. Run the algorithm Find-Wall from Proposition 6 with input (G, r1, k) and, in time
2OℓF (r2

1+(k+r1) log(k+r1)) · n = 2OℓF (k2(c+2)) · n,
either report a no-instance, or
conclude that tw(G) ≤ f1(sF ) · r1 + k and solve F-M-Deletion in time
2OℓF ((r1+k) log(r1+k)) · n = 2OℓF (kc+2·log k) · n using the algorithm of Proposition 7, or
obtain an r1-wall W1 of G.

If the output of Proposition 6 is an r1-wall W1, consider all the
(

r1
r2

)2 = 2OℓF (kc log k)

r2-subwalls of W1. For each one of them, say W2, let W ∗
2 be the central (r2 −2)-subwall of W2

and let DW2 be the graph obtained from G after removing the perimeter of W2 and taking the
connected component containing W ∗

2 . Run the algorithm Grasped-or-Flat of Proposition 8
with input (DW2 , r3, sF + aF − 1,W ∗

2 ). This can be done in time OsF (k
√

log k · n).
If for some of these subwalls the result is a set A ⊆ V (DW2) with |A| ≤ a and a flatness

pair (W3,R3) of DW2 \A of height r3 then, as in Proposition 13, compute a W3-canonical
partition Q̃ of DW2 \A and a collection W = {W 1, ...,W aF } of r4-subwalls of W3 such that
for every i ∈ [aF ],

⋃
influenceR3(W i) is a subgraph of

⋃
{Q | Q is a p-internal bag of Q̃} and

for every i, j ∈ [aF ], with i ̸= j, there is no internal bag of Q̃ that contains vertices of both
V (

⋃
influenceR3(W i)) and V (

⋃
influenceR3(W j)). This can be done in time OsF (k

√
log k ·n).

For i ∈ [aF ], let W i∗ be the central (r4 − 2)-subwall of W i and let DW i be the graph
obtained from DW2 after removing A and the perimeter of W i and taking the connected
component containing W i∗. Run the algorithm Clique-or-twFlat of Proposition 9 with
input (DW i , r5, sF ). This takes time 2OℓF (r2

5) · n = 2OℓF (k2c) · n. If for one of these subwalls
the result is a set A′ of size at most b and a regular flatness pair (W5,R5) of DW i \ A′ of
height r5 whose R5-compass has treewidth at most t, then we proceed to Step 2.
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If, for every flatness pair (W3,R3) and for every i ∈ [aF ], the result is a report that KsF

is a minor of DW i , then we proceed to Step 3.

Step 2 (irrelevant vertex case). We obtain a 7-tuple R′
5 by adding all vertices of G \

V (CompassR5(W5)) to the set in the first coordinate of R5, such that (W5,R
′
5) is a regular

flatness pair of G\(A∪A′) whose R′
5-compass has treewidth at most t. We apply the algorithm

Homogeneous of Proposition 10 with input (r6, a + b, a + b, d, t, G,A ∪ A′,W5,R
′
5), which

outputs, in time 2OℓF (t log t+k log k) ·n = 2OℓF (kc log k) ·n, a flatness pair (W6,R6) of G\(A∪A′)
of height r6 that is d-homogeneous with respect to 2A∪A′ and is a W ∗-tilt of (W5,R

′
5) for some

subwall W ∗ of W5. We apply the algorithm Find-Irrelevant-Vertex of Proposition 11
with input (k, a+ b,G,A∪A′,W6,R6), which outputs, in time O(n+m) = OℓF (k

√
log k ·n),

a vertex v such that (G, k) and (G \ v, k) are equivalent instances of F-M-Deletion. Then
the algorithm runs recursively on the equivalent instance (G \ v, k).

Step 3 (branching case). Consider all the r′
2-subwalls of W1, which are at most

(
r1
r′

2

)2 =
2OℓF (kc+2 log k) many, and for each of them, say W ′

2, compute its canonical partition Q. Then,
contract each bag Q of Q to a single vertex vQ, and add a new vertex vall and make it
adjacent to all vQ’s. In the resulting graph G′, for every vertex y of G \ V (W ′

2), check, using
a path augmentation algorithm [13], whether there are q internally vertex-disjoint paths from
vall to y in time O(q ·m) = OℓF (k4√

log k · n). Let Ã be the set of all such y’s.
If |Ã| < aF , then report a no-instance.
If aF ≤ |Ã| ≤ k + b, then consider all the

(|Ã|
aF

)
= 2OℓF (log k) subsets of Ã of size aF . For

each one of them, say A∗, construct Q̃ by enhancing Q on G \ A∗. Then, we distinguish
two cases depending on whether for every A∗ all its vertices are adjacent to vertices of q
p-internal bags of Q̃.

If each vertex of A∗ is adjacent to vertices of q p-internal bags of Q̃, then (due to
Proposition 12) A∗ should intersect every solution of F-M-Deletion for the instance (G, k).
Therefore, the algorithm runs recursively on each instance (G \ y, k− 1) for y ∈ A∗. If one of
them is a yes-instance with (k − 1)-apex set S of G \ y, then (G, k) is a yes-instance with
k-apex set S ∪ {y} of G. If all of them are no-instances, then report a no-instance. This
concludes the case where each vertex of A∗ is adjacent to vertices of q p-internal bags of Q̃.

If for every subset A∗ of Ã of size aF , there is a vertex of A∗ that is not adjacent to
vertices of q p-internal bags of the given Q̃, then report a no-instance. This concludes the
case that aF ≤ |Ã| ≤ k + b.

If for every wall, |Ã| > k + b, then report that (G, k) is a no-instance of F-M-Deletion.
Notice that Step 3, when applied, takes time 2OℓF (kc+2 log k) · n2, because we apply the

flow algorithms to each of the 2OℓF (kc+2 log k) r′
2-subwalls and for each vertex of G. However,

the search tree created by the branching algorithm has at most aF branches and depth at
most k. So Step 3 cannot be applied more than aF

k times during the course of the algorithm.
Since Step 1 runs in time 2OℓF (k2(c+2)) · n, Step 2 runs in time 2OℓF (k2c) · n, and both may be
applied at most n times, the claimed time complexity follows: the algorithm runs in time
2OℓF (k2(c+2)) · n2.

4.2 Correctness of the algorithm
Suppose first that (G, k) is a yes-instance and let S be a k-apex set of G. The application of
the algorithm Find-Wall of Proposition 6 with input (G, r1, k) either returns a report that
tw(G) ≤ f1(sF ) · r1 + k or returns an r1-wall. In the first case, i.e., if tw(G) ≤ f1(sF ) · r1 + k,
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the application of the algorithm of Proposition 7 correctly outputs a k-apex set of G. We
will focus on the latter case, i.e., where the algorithm Find-Wall returns an r1-wall of G, say
W1. Since r1 ≥ f2(sF ) · r′

2 + k, there is an (f2(sF ) · r′
2)-subwall of W1, say W ∗

1 , that does not
contain vertices of S. Since G \S does not contain KsF as a minor, there is no model of KsF

grasped by W ∗
1 and therefore, due to Proposition 8 with input (G \ S, r′

2, sF ,W
∗
1 ), we know

that there is a set B ⊆ V (G \ S), with |B| ≤ b, and a flatness pair (W ′
2,R

′
2) of G \ (S ∪B)

of height r′
2 such that W ′

2 is a W ′′-tilt of some subwall W ′′ of W ∗
1 .

Let Q be the canonical partition of W ′
2. Let G′ be the graph obtained by contracting

each bag Q of Q to a single vertex vQ, and adding a new vertex vall and making it adjacent
to all vQ’s. Let Ã be the set of vertices y of G \ V (W ′

2) such that there are q internally
vertex-disjoint paths from vall to y in G′. We claim that Ã ⊆ S ∪ B. To show this, we
first prove that, for every y /∈ S ∪ B, the maximum number of internally vertex-disjoint
paths from vall to y in G′ is k + b + 4. Indeed, if y is a vertex in the R′

2-compass of W ′
2,

there are at most k + b such paths that intersect the set S ∪ B and at most four paths
that do not intersect S ∪B (in the graph G′ \ (S ∪B)) due to the fact that (W ′

2,R
′
2) is a

flatness pair of G \ (S ∪B). If y is not a vertex in the R′
2-compass of W ′

2, then, since by the
definition of flatness pairs the perimeter of W ′

2 together with the set S ∪B separate y from
the R′

2-compass of W ′
2, every collection of internally vertex-disjoint paths from vall to y in

G′ should intersect the set {vQext} ∪ S ∪B, where Qext is the external bag of Q. Therefore,
in both cases, if y /∈ S ∪B, the maximum number of internally vertex-disjoint paths from
vall to y in G′ is k + b+ 4. Since k + b+ 4 < q, we have that y /∈ Ã. Hence, Ã ⊆ S ∪B and
therefore |Ã| ≤ k + b. Hence, if (G, k) is a yes-instance we cannot have that |Ã| > k + b, so
the algorithm correctly reports a no-instance at the end of Step 3.

Let Q̃ be a W ′
2-canonical partition of G\ (S ∪B) obtained by enhancing Q on G\ (S ∪B).

Let Ã′ be the set of vertices in S ∪ B that are adjacent to vertices of at least q p-internal
bags of Q̃ (recall that Ã is the set of vertices in S ∪ B that are adjacent to vertices of at
least q internal bags of Q̃). Note that Ã′ ⊆ Ã and therefore |Ã′| ≤ |Ã|.

If |Ã′| < aF , then at most aF − 1 vertices of S ∪B are adjacent to vertices of at least q
p-internal bags of Q̃. This means that the p-internal bags of Q̃ that contain vertices adjacent
to some vertex of (S ∪B) \ Ã′ are at most (q − 1) · (k + b) = l.

Consider a family W = {W 1, . . . ,W l+1} of l + 1 r2-subwalls of W ′
2 such that for every

i ∈ [l + 1],
⋃

influenceR′
2
(W i) is a subgraph of

⋃
{Q | Q is a p-internal bag of Q̃} and for

every i, j ∈ [l + 1], with i ̸= j, there is no internal bag of Q̃ that contains vertices of
both V (

⋃
influenceR′

2
(W i)) and V (

⋃
influenceR′

2
(W j)). The existence of W follows from

Proposition 13 and the fact that r′
2 ≥ f12(l + 1, r2, p).

The fact that the p-internal bags of Q̃ that contain vertices adjacent to some vertex
of (S ∪ B) \ Ã′ are at most l implies that there exists an i ∈ [l + 1] such that no vertex
of V (

⋃
influenceR′

2
(W i)) is adjacent, in G, to a vertex in (S ∪ B) \ Ã′. Let W2 := W i, let

W ∗
2 be the central (r2 − 2)-subwall of W2, and let DW2 be the graph obtained from G by

removing the perimeter of W2 and taking the connected component that contains W ∗
2 . Since

no vertex of V (
⋃

influenceR′
2
(W i)) is adjacent, in G, to a vertex in (S ∪B) \ Ã′, any path

in DW2 going from a vertex of W ∗
2 to a vertex in S must intersect a vertex of Ã′. Thus,

there is no model of KsF +aF −1 grasped by W ∗
2 in DW2 , because otherwise KsF would be

a minor of G \ S. So, by applying the algorithm Grasped-or-Flat of Proposition 8 with
input (DW2 , r3, sF + aF − 1,W ∗

2 ), since r2 − 2 ≥ f2(sF + aF − 1) · r3, we should find a set
A ⊆ V (DW2) with |A| ≤ a and a flatness pair (W3,R3) of DW2 \ A of height r3, such that
W3 is a tilt of some subwall W̃3 of W2.
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Let Q̃′ be a W3-canonical partition of DW2 \A. Let W ′ = {W 1, ...,W aF } be a collection
of r4-subwalls of W3 such that for every i ∈ [aF ],

⋃
influenceR3(W i) is a subgraph of⋃

{Q | Q is an internal bag of Q̃′} and for every i, j ∈ [aF ], with i ̸= j, there is no internal
bag of Q̃′ that contains vertices of both V (

⋃
influenceR3(W i)) and V (

⋃
influenceR3(W j)).

Since |Ã′| < aF , there is an i ∈ [aF ] such that V (
⋃

influenceR3(W i)) does not intersect Ã′.
The existence of W ′ follows from Proposition 13 and the fact that r3 ≥ f12(aF , r4, 1).

Let W4 := W i. Let W ∗
4 be the central (r4 − 2)-subwall of W4 and let DW4 be the

graph obtained from DW2 after removing A and the perimeter of W4 and taking the
connected component containing W ∗

4 . Observe that any path between a vertex of S
and a vertex of V (

⋃
influenceR3(W4)) in DW2 intersects Ã′. Since Ã′ does not intersect

V (
⋃

influenceR3(W4)), it implies that Ã′ does not intersect DW4 , and thus S ∩ DW4 = ∅.
Therefore, DW4 is a minor of G \ S and KsF is not a minor of DW4 . Moreover, W ∗

4 is a wall
of DW4 of height r4 − 2 ≥ t+ 1, so tw(DW4) > t = f4(sF ) · r5. Therefore, by applying the
algorithm Clique-or-twFlat of Proposition 9 with input (DW4 , r5, sF ), we should obtain a
set A′ of size at most b and a regular flatness pair (W5,R5) of DW4 \A′ of height r5 whose
R5-compass has treewidth at most t. All this is checked in Step 1, and thus, the algorithm
should run Step 2.

If |Ã′| ≥ aF , then, due to Proposition 12 and the fact that r′
2 ≥ f9(aF , sF , k), for any

set X ⊆ V (G) such that bidG\(S∪B),W ′
2
(X) ≤ k and such that G \X ∈ exc(F), it holds that

X ∩ Ã′ ̸= ∅. In particular, for any k-apex set S′, bidG\(S∪B),W ′
2
(S′) ≤ |S′| ≤ k, and thus

S′ ∩ Ã′ ≠ ∅. Thus, there is a vertex y ∈ Ã′ such that (G \ y, k − 1) is a yes-instance. Hence,
if the algorithm runs Step 3, it finds a vertex y ∈ Ã′ such that (G \ y, k− 1) is a yes-instance.

Note that the enhancement Q̃ of the canonical partition Q is not unique. In particular,
Ã′ depends on Q̃. However, as long as there is such a Q̃ such that |Ã′| < aF , the algorithm
finds the wanted flatness pair (W4,R4) in Step 1 and then runs Step 2. Hence, if (G, k) is a
yes-instance, the algorithm runs Step 3 only if for all such Ã′, |Ã′| ≥ aF . Note that, since
|Ã| ≥ |Ã′|, in this case we have that, for all such Ã′, |Ã| ≥ aF . This justifies the arbitrary
canonical partition enhancement in Step 3 and the fact that, if |Ã| < aF in Step 3, then the
algorithm reports a no-instance.

Let us now show the correctness of Step 2, and for this we do not suppose anymore that
(G, k) is a yes-instance since the argument is the same for both types of instances. Suppose
that the algorithm finds in Step 1 a set A′ of size at most b and a regular flatness pair
(W5,R5) of DW4 \A′ of height r5 whose R5-compass has treewidth at most t. We obtain a
7-tuple R′

5 by adding all vertices of G \ V (CompassR5(W5)) to the set in the first coordinate
of R5. Since (W5,R5) is a regular flatness pair of DW4 \A′ and since the vertices added in
R′

5 are either in A, or adjacent at most to the perimeter of W4, then (W5,R
′
5) is a regular

flatness pair of G \ (A ∪ A′). Since CompassR5(W5) = CompassR′
5
(W5), CompassR′

5
(W5)

has treewidth at most t. Thus, if we apply the algorithm Homogeneous of Proposition 10
with input (r6, a + b, a + b, d, t, G,A ∪ A′,W5,R

′
5), we obtain a flatness pair (W6,R6) of

G \ (A ∪ A′) of height r6 that is d-homogeneous with respect to 2A∪A′ and is a W ∗-tilt
of (W5,R

′
5) for some subwall W ∗ of W5. Since |A ∪ A′| ≤ a + b, for any set X ⊆ V (G),

|A \ X| ≤ a + b. Since G \ S ∈ exc(F) and bidG\(A∪A′),W6(S) ≤ |S| ≤ k, by applying the
algorithm Find-Irrelevant Vertex of Proposition 11 with input (k, a+b,G,A∪A′,W6,R6),
we obtain a vertex v such that G \ S ∈ exc(F) if and only if G \ (S \ v) ∈ exc(F). It follows
that (G, k) and (G \ v, k) are indeed equivalent instances of F-M-Deletion.

We now suppose that (G, k) is a no-instance. In the beginning of Step 1, the algorithm
either reports a no-instance or finds a wall. In the latter case, the algorithm either goes
to Step 2 or Step 3. If it runs Step 2, the previous paragraph justifies that the algorithm
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finds a vertex v such that (G \ v, k) is a no-instance. If the algorithm runs Step 3, then it
either reports a no-instance or recursively runs on instances (G \ y, k − 1). If (G \ y, k − 1)
is yes-instance, then so is (G, k). Thus, (G \ y, k − 1) is a no-instance for every considered
vertex y and the algorithm always reports a no-instance. Hence, Theorem 1 follows.

5 Concluding remarks

For a minor-closed graph class G, we proved that Vertex Deletion to G can be solved in
time 2poly(k) · n2 and that Elimination Distance to G can be solved in time 222poly(k)

· n2,
and in time 22c·k2 log k · n2 and 2poly(k) · n3 in the case where the obstruction set of G contains
an apex-graph. Here the degree of poly and c heavily depend on the size of the obstructions
of G. An open question is whether poly(k) could be replaced by c · kd for some constant c
depending on G and some universal constant d (independent of G). We tend to believe that
this dependence on G in the exponent of the polynomial is unavoidable, at least if we want
to use the irrelevant vertex technique, and specially our definition of homogeneity.

On the other hand, we are not aware, for any of the two considered problems, of any
lower bound, assuming the Exponential Time Hypothesis [25], stronger than 2o(k) · nO(1),
which follows quite easily from known results for Vertex Cover. Proving stronger lower
bounds seems to be quite challenging.

Another open problem is whether it is possible to drop the time complexity of Elimination
Distance to G to 2poly(k) · n2 for every minor-closed graph class G. We tend to believe that
this should be possible. However, it seems to require to use branching ingeniously and, in
particular, to find equivalent instances of Elimination Distance to G with a decreasing
value of k.

As for the polynomial running time of our FPT-algorithms, a priori, nothing prevents the
existence of algorithms running in linear time, although we are quite far from achieving this.
Kawarabayashi [30] presented such a linear FPT-algorithm for the Planarization problem,
heavily relying on the embedding on the resulting planar graph. Extending this technique
to general minor-closed classes would require a very compact encoding of the (entangled)
structure of minor-free graphs [48] that would be possible to handle in linear time.
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