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Abstract
A complete deterministic finite (semi)automaton (DFA) with a set of states Q is completely reachable
if every non-empty subset of Q can be obtained as the image of the action of some word applied to Q.
The concept of completely reachable automata appeared several times, in particular, in connection
with synchronizing automata; the class contains the Černý automata and covers a few separately
investigated subclasses. The notion was introduced by Bondar and Volkov (2016), who also raised
the question about the complexity of deciding if an automaton is completely reachable. We develop
a polynomial-time algorithm for this problem, which is based on a new complement-intersecting
technique for finding an extending word for a subset of states. The algorithm works in O(|Σ| · n3)
time, where n = |Q| is the number of states and |Σ| is the size of the input alphabet. Finally, we
prove a weak Don’s conjecture for this class of automata: a subset of size k is reachable with a word
of length smaller than 2n(n − k). This implies a quadratic upper bound in n on the length of the
shortest synchronizing words (reset threshold) for the class of completely reachable automata and
generalizes earlier upper bounds derived for its subclasses.
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1 Introduction

The concept of completely reachable automata origins from the theory of synchronizing
automata. A deterministic finite automaton is synchronizing if starting from the set of all
states, after reading a suitable reset word, we can narrow (reach) the set of possible states
to a singleton. On the other hand, an automaton is completely reachable if starting from
the set of all states, we can reach every non-empty subset of states. Thus, every completely
reachable automaton is synchronizing, and the class of completely reachable automata forms
a remarkable subclass of (synchronizing) automata.
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Synchronizing automata are most famous due to a longstanding open problem: the Černý
conjecture, which states that every synchronizing n-state automaton admits a reset word of
length at most (n− 1)2. Applications of synchronizing automata include testing of reactive
systems [20] and synchronization of codes [2, 4]. The currently best upper bound for the
Černý problem is cubic in n [18, 21, 22]. Finding better bounds for particular cases was a
topic of extensive study. Some of the related computational problems such as checking if an
automaton is synchronizing are solved in polynomial time [11]. Other ones, such as finding a
reset word of the smallest length, are hard, but practical (heuristic and optimizing) methods
are developed [23]. Most of the research on the topic of synchronizing automata was collected
and comprehensively described in the recent survey [25]; we also refer to older ones [16, 24].

Other studies where completely reachable automata appear include the descriptional
complexity of formal languages. Here, the complete reachability of an automaton is often
juxtaposed with the maximality of the state complexity or the syntactic complexity of
languages recognized by automata [5, 15, 17].

The notion of completely reachable automata was first introduced in 2016 by Bondar and
Volkov [6], who also asked about the complexity of the computational problem of deciding
whether a given automaton is completely reachable. The analogous decision problem for
synchronizing automata is easily solvable in quadratic time in the number of states. Later
studies revealed a connection to the so-called Rystsov graph, whose generalization can be
used to characterize completely reachable automata [5, 7]. However, this does not yet lead
to an effective algorithm, as it is unknown how to compute these graphs. Recently, the case
of binary automata was solved with a quasilinear-time algorithm [8], which strongly relies on
the specificity of both letters when they ensure the complete reachability of the automaton.

The class of completely reachable automata contains several previously studied cases. It
contains the Černý automata [9], which meet the conjectured bound (n− 1)2 for the Černý
problem, and some of the so-called slowly synchronizing series [1]. The class of automata
with the full transition monoid [13], synchronizing automata with simple idempotents [19]
and aperiodically 1-contracting automata [10] are proper subclasses of completely reachable
automata. For the first two subclasses and a special case of the third one quadratic upper
bounds on the length of the shortest reset words instead of a cubic one were established for
the Černý problem. However, for the whole class of completely reachable automata, only
cubic bounds were known (though better than in the general case) [5].

In connection to the bounds, a remarkable conjecture and a generalization of the Černý
one is Don’s conjecture [10, Conjecture 18]. It states that for an n-state automaton, for
every 1 ≤ k < n, if a subset of states of size k is reachable, then it can be reached with a
word of length at most n(n− k). This conjecture was disproved in general [14] but weaker
versions were proposed: one restricting to completely reachable automata [14, Problem 4]
and another general one, in relation to avoiding words [12, Conjecture 15].

1.1 Contribution
We design a polynomial-time algorithm for the problem of deciding whether an automaton is
completely reachable, thus solving the 7-year-old open question [6]. For this solution, we
develop a complement-intersecting technique, which allows finding a short extending word
for a given subset of states (i.e., that gives a larger preimage). We optimize the complexity
of the algorithm to work in O(|Σ| · n3) time.

Based on the discovered properties, we prove that every non-empty subset of k < n states
in a completely reachable n-state automaton is reachable with a word of length smaller
than 2n(n− k). This is a weaker version (by the factor of 2) of Don’s conjecture stated for
completely reachable automata [14, Problem 4].
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It follows that a completely reachable n-state automaton has a reset word of length at
most 2n2 − n ln n− 4n + 2 (for n ≥ 3). This generalizes and improves the previous bounds
obtained with different techniques for known proper subclasses of completely reachable
automata: automata with a full transition monoid (with the previous upper bound 2n2 −
6n + 5) [13], synchronizing automata with simple idempotents (with the previous upper
bound 2n2 − 4n + 2) [19], and 1-contracting automata (only a special case was solved) [10].

2 Solving Complete Reachability in Polynomial Time

2.1 Reachability
A complete deterministic finite semiautomaton (called simply automaton) is a 3-tuple (Q, Σ, δ),
where Q is a finite set of states, Σ is an input alphabet, and δ : Q× Σ→ Q is the transition
function, which is extended to a function Q× Σ∗ → Q in the usual way. Throughout the
paper, by n we always denote the number of states in Q.

Given a subset S ⊆ Q, the image of S under the action of a word w ∈ Σ∗ is δ(S, w) =
{δ(q, w) | q ∈ S}. The preimage of S under the action of w is δ−1(S, w) = {q ∈ Q | δ(q, w) ∈
S}. For a state q, we also simplify δ−1(q, w) = δ−1({q}, w). Note that q ∈ δ(Q, w) if and
only if δ−1(q, w) ̸= ∅. For a subset S ⊆ Q, by S we denote its complement Q \ S.

For two subsets S, T ⊆ Q, if there exists a word w ∈ Σ∗ such that δ(T, w) = S, then we
say that S is reachable from T with the word w. Then we also say that T is a w-predecessor
of S. It is simply a predecessor of S if it is a w-predecessor for some word w. One set can
have many w-predecessors, but there is at most one maximal with respect to inclusion (and
size).
▶ Remark 1. For S ⊆ Q and w ∈ Σ∗, the preimage δ−1(S, w) is a w-predecessor of S if and
only if δ−1(q, w) ̸= ∅ for every state q ∈ S. Equivalently, we have δ(δ−1(S, w)) = S.
▶ Remark 2. For S ⊆ Q and w ∈ Σ∗, if δ−1(S, w) is a w-predecessor of S, then all w-
predecessors of S are contained in it, thus δ−1(S, w) is maximal in terms of inclusion and
size. If δ−1(S, w) is not a w-predecessor of S, then S does not have any w-predecessors.

A word w is called extending for a subset S, or w extends S, if |δ−1(S, w)| > |S|. It is
called properly extending if additionally δ−1(S, w) is a w-predecessor of S, i.e., δ−1(q, w) ̸= ∅
for all q ∈ S.

A subset S ⊆ Q is reachable in the automaton if S is reachable from Q with any
word. An automaton is completely reachable if all non-empty subsets S ⊆ Q are reachable.
Equivalently, Q is a predecessor of all its non-empty subsets. The latter leads to an alternative
characterization of completely reachable automata:
▶ Remark 3. An automaton (Q, Σ, δ) is completely reachable if and only if for every non-empty
proper subset of Q, there is a properly extending word.

The decision problem Completely Reachable is the following: Given an automaton
(Q, Σ, δ), is it completely reachable?

2.2 Witnesses
For an automaton (Q, Σ, δ), we consider unreachable sets that have the maximal size among
all unreachable subsets of Q. They play the role of witnesses for the non-complete reachability
of the automaton (or counterexamples for its complete reachability).

▶ Definition 4 (Witness). A non-empty set S ⊊ Q is a witness if it is unreachable and has
the maximal size of all unreachable subsets of Q.

ICALP 2023
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Since Q is trivially reachable, the maximal size of unreachable subsets of Q is in
{0, . . . , n− 1}. It equals 0 (i.e., there is no witness) if and only if the automaton is completely
reachable.

Although any non-empty unreachable set is evidence that the automaton is not completely
reachable, it turns out that verifying if a set is a witness is computationally easier – later
we show that we can verify the complete reachability and also find a witness if it exists in
polynomial time. Verifying whether a given set is reachable (or unreachable) in general is
PSPACE-complete [6] and it remains hard in many variations of the problem [3].

We start with a simpler solution in co-NP, where we just guess a candidate for a witness
and verify it. A witness obviously cannot have a larger predecessor, as this predecessor or
maybe some other larger set would be unreachable and so a witness instead. Still, a set can
have exponentially many predecessors of the same size. The following observation allows us
to infer the existence of a larger predecessor indirectly.

▶ Lemma 5. Let S, T ⊆ Q be distinct. If a word u ∈ Σ∗ is properly extending S ∪ T , then u

is also properly extending S or T .

Proof. Let u be a properly extending word for U = S∪T ⊊ Q, thus there is a larger maximal
u-predecessor U ′ of U , i.e., δ(U ′, u) = U , δ−1(U, u) = U ′, and |U ′| > |U |. By Remark 1, we
have |δ−1(q, u)| ≥ 1 for all q ∈ U . As this holds for all the states of S and T , they also have
their u-predecessors δ−1(S, u) and δ−1(T, u), respectively. Suppose that |δ−1(S, u)| = |S|
and |δ−1(T, u)| = |T |. Then |δ−1(q, u)| = 1 for all q ∈ U , which gives a contradiction with
|U ′| > |U |. ◀

▶ Corollary 6. Let S, T ⊊ Q be two distinct witnesses. Then S ∪ T = Q.

Proof. Since S ̸= T , the union S ∪ T is larger than the witness size |S| = |T |, thus it must
be reachable. If S ∪ T ̸= Q, then S ∪ T has a larger predecessor. By Lemma 5, either S or T

also has a larger predecessor, which contradicts that they both are witnesses. ◀

Now, we focus on detecting sets that are potential witnesses. We relax the required
property for being a witness and introduce an auxiliary definition:

▶ Definition 7 (Witness candidate). A non-empty set S ⊊ Q is a witness candidate if it
does not have a larger predecessor and all its predecessors (which are of the same size) have
pairwise disjoint complements.

▶ Remark 8. For two sets T, T ′ ⊆ Q, the condition of disjoint complements T ∩ T ′ = ∅ is
equivalent to T ∪ T ′ = Q.

▶ Lemma 9. A witness is a witness candidate.

Proof. Let S be a witness and let T and T ′ be two distinct predecessors of S. As they are
of the same size |T | = |T ′| = |S| and S is reachable from both T and T ′, they also must
be witnesses. By Corollary 6, T ∪ T ′ = Q. Therefore, S meets the definition of a witness
candidate. ◀

Thus, every witness is a witness candidate and clearly, every witness candidate is un-
reachable (moreover, it is unreachable from every larger set). However, both converses do
not necessarily hold.

▶ Example 10. The automaton from Figure 1 (left) is not completely reachable, and:
All sets of size 5 are witnesses.
The sets Q \ {qi, q(i+1) mod 6} for i ∈ {0, . . . , 5} are reachable.
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Figure 1 Left: an example of an automaton that is not completely reachable. Right: an example
of a completely reachable automaton [8, Fig. 3]. (a’s transitions are solid, b’s transitions are dashed.)

The sets Q \ {qi, q(i+2) mod 6} for i ∈ {0, . . . , 5} are unreachable (only the action of b

yields a predecessor). They do not admit a properly extending word but they are not
witness candidates, since their complements are not disjoint.
The set {q0, q2, q4} and its complement {q1, q3, q5} are witness candidates but not wit-
nesses, as they have size 3.
All non-empty proper subsets of Q are extensible, e.g., δ−1(q1, (ab)3, a) = Q, but not
necessarily properly extensible.

The following remark will be useful for efficient checking if a set is a witness candidate:

▶ Remark 11. A witness candidate S has at most ⌊n/(n− |S|)⌋ predecessors.

Proof. The complements of the predecessors of S are pairwise disjoint, so each state is
contained in at most one complement of size n− |S|. ◀

2.3 An Algorithm in co-NP
We build a polynomial procedure that checks whether a given set S is a witness candidate.
It is shown in Algorithm 1. Starting from S, we process all its predecessors in a breath-first
search manner; for this, a FIFO queue Process is used. A next set T is taken in line 6. Then,
we verify whether T ∩ T ′ ̸= ∅, for some previously processed set T ′. For this, we maintain
Absent array, which for every state q indicates whether q occurred in the complement of some
previously processed set, and if so, this set is stored as Absent[q]. We additionally use this
array to check whether the same set T has been processed previously (line 9); if so, then it is
ignored. Otherwise, S is not a witness candidate as the complements of its two predecessors
have a non-empty intersection. We update this array in lines 12–13. Finally, in lines 14–19,
we add one-letter predecessors of T to the queue. If one of the predecessors is larger than
T , then this immediately implies that S is not a witness candidate. Since predecessors are
never smaller, this means that all processed sets that are put into the queue are of the same
size |S|. When all predecessors of S have been considered and neither of the two conditions
occurred, the function reports that S is a witness candidate.

The function is a base for our next algorithms. Hence, even though we do not need to
optimize it here, in the next lemma, we describe the technical details for achieving optimal
time complexity. In particular, an important optimization that lowers the time complexity

ICALP 2023
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Algorithm 1 Verifying whether a given subset is a witness candidate from Definition 7.

Input: An n-state automaton A = (Q, Σ, δ) and a non-empty S ⊊ Q.
Output: true if S is a witness candidate; false otherwise.

1: function IsWitnessCandidate(A , S)
2: Process ← EmptyFifoQueue() ▷ It contains predecessors of S to be processed
3: Process.Push(S)
4: Absent ← Array indexed by q ∈ Q initialized with none
5: while not Process.Empty() do
6: T ← Process.Pop()
7: if Absent[q] ̸= none for some q ∈ T then ▷ Then T ∪ T ′ ̸= Q

8: T ′ ← Absent[q]
9: if T = T ′ then

10: continue ▷ T has been processed previously
11: return false ▷ T and T ′ are predecessors with non-disjoint complements
12: for all q ∈ T do
13: Absent[q]← T

14: for all a ∈ Σ do
15: if T has a-predecessor then
16: T ′ = δ−1(T, a)
17: if |T ′| > |S| then
18: return false
19: Process.Push(T ′)
20: return true ▷ All predecessors of S were checked

is storing each processed set T as a list of states in its complement. Then we can perform
all operations on a set T in O(n− |S|) time, which compensates the number of iterations,
which is at most O(n/(n− |S|)).

▶ Lemma 12. Function IsWitnessCandidate from Algorithm 1 is correct and can be
implemented to work in O(|Σ| · n) time.

Proof. Correctness: The function can end in line 11, 18, or 20. The first case means that S

has two distinct predecessors, T and T ′ such that T ∩ T ′ ̸= ∅, which implies that S is not a
witness candidate. The second case (line 18) means that we have found a larger predecessor
of S, thus S is not a witness candidate. The last possibility (line 20), where the function
ends with a positive answer, occurs when there are no more predecessors of S to consider
(Process becomes empty), so all predecessors of S have been checked and the two previous
cases have not occurred. Thus, S satisfies the conditions from Definition 7.
Running time: We separately consider the time complexity of two types of iterations of the
main loop: full and extra iterations. An extra iteration is where the case from line 7 holds;
then the iteration ends either in line 10 or 11. Otherwise, we count it as a full iteration.

In each iteration, T has size |S|, because a predecessor cannot be smaller than the set and
we check in line 18 if it is larger. The number of distinct processed predecessors (including S

itself) of the same size |S| < n with pairwise disjoint complements is at most ⌊n/(n− |S|)⌋.
This bounds the number of full iterations. In extra iterations, the same sets can be repeated.
As these sets are added in full iterations, and one full iteration adds at most |Σ| sets to the
queue, the number of extra iterations is at most |Σ| · (⌊n/(n− |S|)⌋).
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If we store T (and all sets in Process) as a list of states in its complement, then full one
iteration takes O(|Σ| · (n− |S|)) time: Lines 6–11 trivially take O(n− |S|) time. Updating
Absent in lines 12–13 also takes O(n−|S|) time, if we store a pointer/reference to T (line 14 in
O(1)) instead of copying. Computing one-letter predecessors in lines 15–19 can be performed
in O(|Σ| · (n− |S|)) time as follows. At the beginning of the function, we additionally do
some preprocessing of the automaton. For each a ∈ Σ and q ∈ Q, we compute the list of
states δ−1(q, a); note that for the same a, these lists are always disjoint. For each a ∈ Σ,
we also count the states q ∈ Q such that |δ−1(q, a)| = 0; let za be their number. Then
in line 15, we check if δ−1(T, a) is a-predecessor by counting the states p ∈ T such that
|δ−1(p, a)| = 0. The set δ−1(T, a) is a-predecessor if and only if the number of such states
p equals za, because if it is smaller, then some state q ∈ T has an empty preimage under
the action of a. Next, we compute δ−1(T , a) by joining the preprocessed lists for a for each
q ∈ T , and T ′ = Q \ δ−1(T , a) is also stored in the form of a list of states in the complement.
Since a predecessor is never smaller than the set, we have |T ′| ≥ |T | = |S|, thus the length of
this list is at most |S|, so we do this computation in O(n− |S|) time.

Also, the running time of an extra iteration (lines 6 up to 11) is easily bounded by
O(n− |S|) time.

Summarizing, full iterations take O(n/(n− |S|) · |Σ| · (n− |S|)) time and extra iterations
take O(|Σ| · n/(n − |S|) · (n − |S|)) time, which gives the same upper bound on the total.
The aforementioned preprocessing can be done in O(|Σ| · n) time as well. ◀

▶ Remark 13. The asymptotic running time of IsWitnessCandidate in terms of |Σ| and n

is the best possible because |Σ| · n is the number of automaton’s transitions that we have to
read in the worst case.

▶ Theorem 14. Problem Completely Reachable can be solved in co-NP.

Proof. To certify that a given automaton A is not completely reachable, we can guess a
witness candidate S ⊊ Q and call IsWitnessCandidate(A , S) to verify it. If the automaton
is not completely reachable, then there exists some witness, which is a witness candidate.
Otherwise, there are no unreachable non-empty sets, thus no witness candidates. ◀

2.4 A Polynomial-Time Algorithm
The overall idea to make the algorithm work in deterministic polynomial time is as follows.
We replace guessing a witness with a constructive procedure. We extend the function
from Algorithm 1 so that instead of a Boolean answer, it finds a properly extending word for
S. This works under a certain assumption that S is not a witness candidate and there are
no witness candidates of size larger than |S|. When S is a witness candidate, the function
returns none.

Then, we use this function to hunt for a witness. We iteratively reduce each set of size
n − 1 to smaller sets S in the way that if some witness is a subset of the initial set, then
this witness is also a subset of set S. As we process the sets from the largest size, we keep
the assumption that there are no witness candidates larger than the currently processed set.
Hence, the first found witness candidate will be a witness.

2.4.1 Finding Properly Extending Words
The function for finding properly extending words is shown in Algorithm 2. Here, together
with predecessor sets T of S, we also keep track of the words w such that δ(T, w) = S. The
main difference with IsWitnessCandidate is the case in line 7. For the union T ∪ T ′,

ICALP 2023
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Algorithm 2 An algorithm finding a properly extending word (a larger predecessor) for a given
set (recursive version).

Input: An n-state automaton A = (Q, Σ, δ) and a non-empty S ⊊ Q.
Output: A properly extending word for S or none . If S is a witness candidate, then always

returns none . If S is not a witness candidate and there are no witness candidates
of size > |S|, then always returns a word.

1: function FindProperlyExtendingWord(A , S)
2: Process ← EmptyFifoQueue() ▷ It contains pairs (T, w) such that δ(T, w) = S

3: Process.Push((S, ε))
4: Absent ← Array indexed by q ∈ Q initialized with none
5: while not Process.Empty() do
6: (T, w)← Process.Pop()
7: if Absent[q] ̸= none for some q ∈ T then ▷ Then T ∪ T ′ ̸= Q

8: (T ′, w′)← Absent[q]
9: if T ′ = T then

10: continue ▷ T ′ has been processed previously
11: u← FindProperlyExtendingWord(A , T ∪ T ′)
12: if u = none then
13: return none
14: else ▷ u is a properly extending word for T ∪ T ′

15: if |δ−1(T, u)| > |T | then ▷ u properly extends T

16: return uw

17: else ▷ u properly extends T ′

18: return uw′

19: for all q ∈ T do
20: Absent[q]← (T, w)
21: for all a ∈ Σ do
22: if T has a-predecessor then
23: T ′ = δ−1(T, a)
24: if |T ′| > |S| then
25: return aw

26: Process.Push((T ′, aw))
27: return none ▷ S is a witness candidate

we aim at finding a properly extending word for it, which then turns out to be properly
extending either for T or T ′ by Lemma 5; this is done by a recursive call in line 11. This call
can return none instead, which means that a witness candidate larger than S was found.

▶ Example 15. For the automaton from Figure 1 (left) and S = {q0, q2, q4, q5} (this is
an unreachable and not properly extensible set, but not a witness candidate), FindProp-
erlyExtendingWord returns none using one recursive call.

Proof. Since letter a cannot be applied, the second iteration is with T = δ−1(S, b) =
{q5, q1, q3, q4}, and similarly, the third one is with T = δ−1(S, b2) = {q4, q0, q2, q3}. Now,
since the complements of {q4, q0, q2, q3} and S contain the common state q1, we recursively
call the function for the union Q \ {q1}. This union set is a witness and has 6 predecessors
(including itself). After processing all these predecessors, the function returns none. ◀
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▶ Example 16. For the automaton from Figure 1 (right) and let S = {q0, q10}, FindProp-
erlyExtendingWord returns the word ab2 using 8 recursive calls.

▶ Lemma 17. Function FindProperlyExtendingWord is correct and works in at most
O(|Σ| · n2 log n) time. Moreover, if a word is returned, then it has length at most O(n log n).

Proof sketch. The correctness can be proved by descending induction on the set size, using
similar arguments as for Lemma 12 and Lemma 5

Without counting the recursive call, the running time is O(|Σ| · n2/(n− |S|); for this, to
avoid higher complexity by copying potentially long words, we need to concatenate words
by storing pointers to both parts and maintain the induced transformations Q→ Q along
them. If we consider the recursive calls, in the worst case n− |S| we call the function on sets
of sizes n− |S|, n− |S|+ 1, . . . , n− 1; in the calculation we get the harmonic series what is
bounded by the logarithm, giving the final running time and word length bounds. ◀

2.4.2 Set Reduction for Witness Containment

Suppose that given a subset S ⊊ Q, we search for a witness that is contained within it.
Having a properly extending word w for S, we can reduce S to its proper subset by excluding
some states which surely cannot be in any witness contained in S. The next lemma shows
the criterion.

▶ Lemma 18. Let S ⊆ Q and δ−1(S, w) be a w-predecessor of S for some w. Then for every
witness candidate S′ ⊆ S, every state q ∈ S′ is such that |δ−1(q, w)| = 1.

Proof. Since δ−1(S, w) is a w-predecessor of S, by Remark 1, we have δ−1(q, w) ̸= ∅ for
every state q ∈ S. Suppose for a contradiction that there exists S′ ⊆ S that is a witness
candidate and contains a state p ∈ S′ such that |δ−1(p, w)| > 1. Note that the set δ−1(S′, w)
is a w-predecessor of S′, since its superset S has a w-predecessor, and:

|δ−1(S′, w)| = |δ−1(p, w)|+
∑

s∈S\{p}

|δ−1(s, w)| > 1 + (|S| − 1) = |S|.

Thus, S′ cannot be a witness candidate, since it has a larger predecessor. ◀

As a witness is also a witness candidate, the lemma also applies to witnesses. From the
lemma, we know that by having a properly extending word for S, we can remove at least
one state from S and all the witnesses will still be contained in the resulting set. Function
Reduce(A , S, w) in Algorithm 3 realizes this reduction and returns a set of states that can
be removed. If w is given as a transformation, the function trivially works in O(n) time.

Algorithm 3 Reducing a set for possible witness containment.

Input: An n-state automaton A = (Q, Σ, δ), a non-empty S ⊊ Q, and a properly extending
word w for S.

Output: A non-empty subset R ⊆ S such that all the witnesses contained in S are also
contained in S \R.

1: function Reduce(A , S, w)
2: return {p ∈ S : |δ−1(p, w)| > 1}
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2.4.3 Finding a Witness
We have all ingredients to build a polynomial algorithm that solves the decision problem
Completely Reachable. It is shown in Algorithm 4. If the automaton is not completely
reachable, the algorithm also finds a witness. Starting from all sets of size n− 1, we process
sets in descending order by size. Processing a set consists of finding a properly extending
word for it and reducing the set for a witness containment by this word.

Algorithm 4 A polynomial-time algorithm verifying the complete reachability of an automaton
or finding a witness.

Input: An n-state automaton A = (Q, Σ, δ).
Output: none if A is completely reachable; a witness otherwise.

1: function FindWitness(A )
2: Queue ← EmptyPriorityQueue() ▷ Ordered by set size; the largest sets go first
3: for all q ∈ Q do
4: Queue.Push(Q \ {q}) ▷ Initialize with sets of size n− 1
5: while not Queue.Empty() do
6: S ← Queue.Pop() ▷ Get a set of the largest size
7: w ← FindProperlyExtendingWord(A , S)
8: if w = none then
9: return S ▷ Found witness

10: R← Reduce(A , S, w) ▷ R is non-empty
11: S′ ← S \R ▷ S′ ⊊ S

12: if S′ ̸= ∅ then
13: Queue.Push(S′)
14: return none ▷ No witnesses

▶ Lemma 19. Function FindWitness is correct and works in O(|Σ| · n4 log n) time.

▶ Remark 20. The number of witnesses of size k is at most ⌊n/k⌋, as their complements must
be pairwise disjoint – otherwise, we could properly extend at least one of them by Lemma 5.
Function FindWitness can be easily modified to find all the witnesses: after finding the
first witness of size k, we can continue the main loop until all sets of size k are processed.

2.5 Improving Running Time
The main idea for the improvement is to use already computed reductions instead of finding
a properly extending word recursively (Algorithm 2, line 13), which is required when we
encounter the case of non-disjoint complements. For lowering the time complexity by this
optimization, using adequate set representations is also crucial.

2.5.1 Reduction History
A reduction history RED is an array of size n of lists of states. For a state q ∈ Q, RED[q]
denotes the list of states assigned to q. Let |RED[q]| denote the length of this list, and let
RED[q][i] denote the i-th state for 1 ≤ i ≤ |RED[q]|. The states in the list must be pairwise
different and distinct from q.

A reduction history represents our current knowledge about possible witness containment
and will be progressively filled out in the algorithm, starting from the empty lists. For each
q ∈ Q, the reduction history defines a reduction chain that is a sequence of reduced sets
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Rq
0, Rq

1, . . . , Rq
|RED[q]|. The first set Rq

0 = Q \ {q}, and each next set is obtained from the
previous set by removing the corresponding state in the list: for 1 ≤ i ≤ |RED[q]|, we define
Rq

i = Rq
i−1 \ {RED[q][i]} (equivalently, Rq

i = Q \ ({q} ∪
⋃

i∈{1,...,|RED[q]|}{RED[q][i])}).
A reduction history RED is valid (for an automaton) if for each q ∈ Q and each 1 ≤ i ≤

|RED[q]|, there exists a properly extending word w for Rq
i−1 such that |δ−1(RED[q][i], w)| > 1.

This means that the reduction for witness containment of Rq
i−1 to Rq

i by removing the state
RED[q][i] is justified by Lemma 18, i.e., all witnesses contained in Rq

i−1 are also contained in
Rq

i . However, note that the reduction can be not exhaustive with respect to w, i.e., there
may exist other states p ∈ Rq

i−1 \ {RED[q][i]} such that |δ−1(p, w)| > 1, which also could
be removed by Lemma 18. In our algorithm, this situation will be possible because we do
not always compute properly extending words directly but infer their existence based on the
reductions computed for other sets, tracing only one state to remove.

Besides being valid, we need that our reduction history is sufficiently filled out. For
q ∈ Q, the deficiency of RED[q] is the length |RED[q]| thus equals the number of states to
be removed from Q \ {q}. The deficiency of the whole reduction history RED is its minimum
deficiency over q ∈ Q. Hence, a valid history reduction of deficiency d stores information for
reducing every set of size n− 1 to a set of size at most n− 1− d.

Algorithm 5 A fast reduction retrieval for witness containment for a given set from the past
stored reductions.

Input: An n-state automaton A = (Q, Σ, δ), a non-empty set S ⊊ Q, and a reduction
history RED.

Require: RED is a valid reduction history of deficiency at least n− |S|.
Output: A state p ∈ S such that there exists a properly extending word w for S such that
|δ−1(p, w)| > 1.

1: function GetStoredReduction(A , S, RED)
2: q ← any state from S

3: for i← 1, 2, . . . do
4: assert(i ≤ |RED[q]|)
5: p← RED[q][i]
6: if p ∈ S then
7: return p

Function GetStoredReduction from Algorithm 5 quickly finds a reduction of a given
set S, provided that a valid reduction history with a large enough deficiency is available. The
function starts from picking any q outside of S, and it repeats the reduction chain starting
from Q \ {q} ⊇ S. It seeks the first removed state that belongs to S. In this way, since the
same reduction was applied previously to a superset of S, it can be correctly applied to S as
well, i.e., the same word is properly extending word for both the superset and S. We note
that this may not hold for the states removed later, since then a properly extending word
inferred from the reduction history may not be properly extending for S (may not give a
predecessor of S).

Since the found state p ∈ S has the property that there exists a properly extending word
w for S such that |δ−1(p, w)| > 1, we can apply Lemma 18 and get a smaller S′ = S \{p} ⊊ S

such that every witness in S is also contained in S′.

▶ Lemma 21. Function GetStoredReduction is correct and can be implemented to work
in O(n) time.
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2.5.2 Finding a Reduction
We redesign earlier Algorithm 2 for finding a properly extending word so that we return a
reduction (here, one state to remove) directly for the given S. GetStoredReduction can
be used for computing the reduction fast, but only if our reduction history has a large enough
deficiency, i.e., in each of the reduction chains, Q \ {q} is reduced to a set smaller than the
set that we want to reduce. We cannot ensure this for S, but if in the main algorithm, we
reduce the sets in descending order by their size, then we can fulfil the weaker requirement
that the reduction chains end with sets of size at most |S|. Then, to reduce S, we perform as
the previous algorithm until encountering the case of a non-empty complements intersection.
Then we can use GetStoredReduction for the obtained set of size at least |S|+ 1.

Function FindReduction from Algorithm 6 for a given S finds a state to remove or
none if S is a witness candidate. The most important difference with previous FindProp-
erlyExtendingWord is the use of GetStoredReduction in line 11 and processing its
result p.

To keep the time complexity low, as before, we need to store the sets T in the form of a
list of states in the complement. This time, we do not maintain the induced transformations
for words (they are too costly here). Instead, we compute δ(p, w) applying the letters one by
one, but only for this state, which is doable in O(n/(n− |S|)) time, avoiding quadratic time
complexity.

▶ Lemma 22. Function FindReduction is correct and can be implemented to work in
O(|Σ| · n) time.

2.5.3 The Optimized Algorithm
The optimized algorithm FindWitnessFaster is shown in Algorithm 7. For reducing
sets, it relies on FindReduction, which returns a state p such that there exists a properly
extending word w for S and |δ−1(p, w)| > 1. We can remove p from S by Lemma 18, i.e.,
every witness contained in S must be also contained in S′ = S \ {p}.

Additionally, the sets in Queue are stored together with their initially removed state q, to
know where to store their reductions in the reduction history. Note that in an iteration, the
set S taken from the queue is the currently last set Rq

|RED[q]| from the reduction chain for q,
and S′ will be a next set in this chain. Updating the reduction history with state p keeps
it valid, which also follows from the guaranteed existence of a properly extending word by
FindReduction. As we process the sets in descending order by size, our reduction history
always has the required deficiency when used in line 8.

▶ Lemma 23. Function FindWitnessFaster is correct and works in O(|Σ| · n3) time.

3 An Upper Bound on Reset Threshold

3.1 Synchronization
A reset word is a word w such that |δ(Q, w)| = 1. Equivalently, we have δ−1(q, w) = Q for
some q ∈ Q. If an automaton admits a reset word, then it is called synchronizing and its
reset threshold is the length of the shortest reset words.

The central problem in the theory of synchronizing automata is the famous Černý
conjecture, which states that every synchronizing n-state automaton has its reset threshold
at most (n− 1)2. For the subclass of completely reachable automata, the previously known
upper bound on the reset threshold was 7/48n3 +O(n2) [5], which has been obtained through
the technique of avoiding [22], that is, it follows in particular from the fact that every set of
size n− 1 is reachable with a word of length at most n.
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Algorithm 6 An algorithm finding a reduction for witness containment using a reduction history.

Input: An n-state automaton A = (Q, Σ, δ), a non-empty S ⊊ Q, and a reduction history
RED.

Require: RED is a valid reduction history of deficiency at least n− |S| − 1.
Output: If S is not a witness candidate: a state p ∈ S such that there exists a properly

extending word w for S such that |δ−1(p, w)| > 1. Otherwise: none.
1: function FindReduction(A , S, RED)
2: Process ← EmptyFifoQueue()
3: Process.Push((S, ε))
4: Absent ← Array indexed by q ∈ Q initialized with none
5: while not Process.Empty() do
6: (T, w)← Process.Pop()
7: if Absent[q] ̸= none for some q ∈ T then ▷ Then T ∪ T ′ ̸= Q

8: (T ′, w′)← Absent[q]
9: if T ′ = T then

10: continue ▷ T ′ has been processed previously
11: p← GetStoredReduction(A , T ∪ T ′, RED)
12: if p ∈ T then
13: return δ(p, w)
14: else ▷ Then p ∈ T ′

15: return δ(p, w′)
16: for all q ∈ T do
17: Absent[q]← (T, w)
18: for all a ∈ Σ do
19: if T has a-predecessor then
20: T ′ = δ−1(T, a)
21: if |T ′| > |S| then
22: p← any state such that |δ−1(T, a)| > 1
23: return δ(p, w)
24: Process.Push((T ′, aw))
25: return none ▷ S is a witness candidate

3.2 Finding Short Properly Extending Words

For a completely reachable automaton, function FindProperlyExtendingWord from Al-
gorithm 8 always finds a properly extending word. Therefore, using the well-known extension
method (e.g., [24]), we can construct a synchronizing word starting from some singleton {q}
and iteratively increasing the set by at least one in at most n− 1 iterations, finally obtaining
Q. This is an easy way to get the upper bound of order O(n2 log n) by Lemma 17. However,
it is not enough to prove a quadratic upper bound, so we are going to further adapt the
algorithm for that.

The idea is to keep track of all subsets for an intersection of complements, instead of
starting an independent search for a properly extending word recursively. This modification
is shown in Algorithm 8.

The function keeps Trace map, which stores for a given predecessor set, by the application
of what letter it has been obtained or, in the second case, of what two sets it is a union.
It also stores S′ as the current origin set, which is the set for which we are going to find a
larger predecessor currently.
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Algorithm 7 A faster algorithm for finding a witness.

Input: An n-state automaton A = (Q, Σ, δ).
Output: none if A is completely reachable; a witness otherwise.

1: function FindWitnessFaster(A )
2: RED[q]← EmptyList for all q ∈ Q ▷ Empty reduction history
3: Queue ← EmptyPriorityQueue() ▷ Contains pairs (S, q); ordered by |S|
4: for all q ∈ Q do
5: Queue.Push((Q \ {q}, q))
6: while not Queue.Empty() do
7: (S, q)← Queue.Pop() ▷ Get a set of the largest size
8: p← FindReduction(A , S, RED)
9: if p = none then

10: return S ▷ Found witness
11: RED[q].append(p) ▷ Store the removed state
12: S′ ← S \ {p}
13: if S′ ̸= ∅ then
14: Queue.Push((S′, q))
15: return none ▷ No witnesses

The function has two phases. First, it searches for a larger predecessor or a non-empty
complement intersection as the previous variants. In the second case, it only changes the
origin set S′ (line 15), notes this in the map Trace and initiates a fresh search for S′.
In the second phase (from line 25), a properly extending word is reconstructed (like in
FindProperlyExtendingWord after a recursive call) until we reach our original S.

▶ Lemma 24. Function FindShortProperlyExtendingWord is correct.

The remaining effort is to prove an upper bound on the length of the returned word.

3.2.1 Nested Boxes
To bound the length of the found word, we consider an auxiliary combinatorial problem.
Consider an n-element universe Q. Two subsets S, T ⊆ Q are colliding if S ∩ T /∈ {∅, S, T}.
Thus, colliding sets have a non-trivial intersection. A family of non-empty subsets of Q is
called non-colliding if all the subsets are pairwise non-colliding.

▶ Definition 25. For an n ≥ 1, the number MaxNestedBoxes(n) is the maximum size of a
non-colliding family for an n-element universe.

The problem is equivalent to, e.g., the maximum number of boxes for n items, such that
a box must contain either an item or at least two boxes.

▶ Lemma 26. MaxNestedBoxes(n) = 2n− 1.

The generalized version of the problem limits the maximum size of the subsets:

▶ Definition 27. For an n ≥ 1, the number MaxNestedBoxes(n, k) is the maximum size of
a non-colliding family for an n-element universe where each subset from the family has size
at most k.

▶ Lemma 28. MaxNestedBoxes(n, k) = 2n− ⌈n/k⌉.
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Algorithm 8 An algorithm finding a short properly extending word.

Input: An n-state automaton A = (Q, Σ, δ) and a non-empty S ⊊ Q.
Require: A is completely reachable.
Output: A properly extending word w of S.

1: function FindShortProperlyExtendingWord(A , S)
2: Trace ← EmptyMap() ▷ For a processed set, it stores how this set was obtained; for

not yet processed sets, it gives none
3: Process ← EmptyFifoQueue()
4: S′ ← S ▷ Current origin set
5: Trace[S′]← ε

6: Process.Push(S′)
7: while true do
8: assert(not Process.IsEmpty()) ▷ Otherwise S′ is a witness candidate
9: T ← Process.Pop()

10: if |T | > |S′| then ▷ Found a properly extending word for S′

11: S′ ← T

12: break
13: if there is T ′ such that Trace[T ′] ̸= none and T ⊊ T ∪ T ′ ⊊ Q then
14: S′ ← T ∪ T ′ ▷ New origin set; |S′| > |S|
15: Trace[S′]← (T, T ′)
16: Process.Clear() ▷ Continue only for the new origin
17: Process.Push(S′)
18: else
19: for all a ∈ Σ do
20: if a is properly extending T then
21: T ′ ← δ−1(T, a)
22: if Trace[T ′] = none then ▷ A not yet processed set
23: Trace[T ′]← a ▷ δ(T ′, a) = T

24: Process.Push(T ′)
25: w ← ε ▷ Word reconstruction starts with the empty word
26: while S′ ̸= S do
27: assert(Trace[S′] ̸= none)
28: if Trace[S′] is a letter then
29: a← Trace[S′]
30: S′ ← δ(S′, a)
31: w ← wa

32: else
33: (T, T ′)← Trace[S′] ▷ w properly extends T ∪ T ′

34: if |δ−1(T, w)| > |T | then ▷ w properly extends T

35: S′ ← T

36: else ▷ w properly extends T ′

37: S′ ← T ′

38: return w

3.2.2 Final Bounding

We apply the above combinatorial problem to derive an upper bound on the length of a
word found by FindShortProperlyExtendingWord. The crucial property is that the
family of the complements of all subsets T that are processed in the block of lines 19–24 is
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non-colliding, since for these subsets T , the condition in line 13 does not hold. The upper
bound follows since all the letters in the final word are added in line 31, where S′ is always
the complement of one of the sets from the family.

▶ Lemma 29. For a completely reachable automaton and a non-empty proper subset S ⊊ Q,
the word returned by FindShortProperlyExtendingWord from Algorithm 8 has length
at most MaxNestedBoxes(n, n− |S|) = 2n− ⌈n/(n− |S|)⌉.

Finally, using the standard extension method (starting from a subset S and iteratively
extending it to Q) and some calculations, we obtain a weaker Don’s conjecture (cf. [14,
Problem 4]):

▶ Theorem 30. For a completely reachable n-state automaton (Q, Σ, δ), every non-empty
proper subset S ⊆ Q is reachable with a word of length at most

(n− |S|)2n− n ln(n− |S|)− n/(n− |S|) < 2n(n− |S|).

▶ Corollary 31. The reset threshold of a completely reachable automaton with n ≥ 3 states
is at most

(n− 2)2n− n ln(n− 2)− n/(n− 2) < 2n2 − n ln n− 4n + 2.
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