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—— Abstract

In this work, we study the problem of approximating the distance to subsequence-freeness in the

sample-based distribution-free model. For a given subsequence (word) w = ws ... wg, a sequence
(text) T =t1...1n is said to contain w if there exist indices 1 < i1 < --- < i < n such that t;; = w;
for every 1 < j < k. Otherwise, T is w-free. Ron and Rosin (ACM TOCT 2022) showed that the
number of samples both necessary and sufficient for one-sided error testing of subsequence-freeness
in the sample-based distribution-free model is ©(k/e).

Denoting by A(T,w,p) the distance of T' to w-freeness under a distribution p : [n] — [0, 1], we
are interested in obtaining an estimate A, such that |3 — A(T,w,p)| < § with probability at least
2/3, for a given distance parameter §. Our main result is an algorithm whose sample complexity is
O(k?/6%). We first present an algorithm that works when the underlying distribution p is uniform,
and then show how it can be modified to work for any (unknown) distribution p. We also show that
a quadratic dependence on 1/§ is necessary.
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1 Introduction

Distance approximation algorithms, as defined in [29], are sublinear algorithms that approx-
imate (with constant success probability) the distance of objects from satisfying a prespecified
property P. Distance approximation (and the closely related notion of tolerant testing) is
an extension of property testing [31, 20], where the goal is to distinguish between objects
that satisfy a property P and those that are far from satisfying the property.! In this work
we consider the property of subsequence-freeness. For a given subsequence (word) wy ... wy
over some alphabet 3, a sequence (text) T =1t; ...t, over X is said to be w-free if there do
not exist indices 1 < j; < --- < ji < n such that t;, = w; for every ¢ € [k]2

In most previous works on property testing and distance approximation, the algorithm is
allowed query access to the object, and distance to satisfying the property in question, P,
is defined as the minimum Hamming distance to an object that satisfies P, normalized by

1 Tolerant testing algorithms are required to distinguish between objects that are close to satisfying a
property and those that are far from satisfying it.
For an integer z, we use [z] to denote the set of integers {1,...,z}
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the size of the object. In this work we consider the more challenging, and sometimes more
suitable, sample-based model in which the algorithm is only given a random sample from the
object. In particular, when the object is a sequence T' = t; ...t,, each element in the sample
is a pair (j,t;).

We study both the case in which the underlying distribution according to which each
index j is selected (independently) is the uniform distribution over [n], and the more general
case in which the underlying distribution is some arbitrary unknown p : [n] — [0, 1]. We refer
to the former as the uniform sample-based model, and to the latter as the distribution-free
sample-based model. The distance (to satisfying the property) is determined by the underlying
distribution. Namely, it is the minimum total weight according to p of indices j such that ¢;
must be modified so as to make the sequence w-free. Hence, in the uniform sample-based
model, the distance measure is simply the Hamming distance normalized by n.

The related problem of testing the property of subsequence-freeness in the distribution-free
sample-based model was studied by Ron and Rosin [30]. They showed that the sample-
complexity of one-sided error testing of subsequence-freeness in this model is ©(k/e) (where
€ is the given distance parameter). A natural question is whether we can design a sublinear
algorithm, with small sample complexity, that actually approximates the distance of a text
T to w-freeness. It is worth noting that, in general, tolerant testing (and hence distance-
approximation) for a property may be much harder than testing the property [18, 3].

1.1 Our results

In what follows, when we say that a sample is selected uniformly from 7', we mean that for
each sample point (j,¢;), j is selected uniformly and independently from [n]. This generalizes
to the case in which the underlying distribution is an arbitrary distribution p.

We start by designing a distance-approximation algorithm in the uniform sample-based
model. Let A(T,w) denote the distance under the uniform distribution of T' from being
w-free (which equals the fraction of symbols in T that must be modified so as to obtain a
w-free text), and let 6 € (0,1) denote the error parameter given to the algorithm.

» Theorem 1. There exists a sample-based distance-approzimation algorithm for subsequence-

freeness under the uniform distribution, that takes a sample of size © (’g—s -log (%)) and

outputs an estimate A such that |£ — A(T,w)| < & with probability at least 2/3.

We then turn to extending this result to the distribution-free sample-based model. For a
distribution p : [n] — [0, 1], we use A(T,w,p) to denote the distance of T from w-freeness
under the distribution p (i.e., the minimum weight, according to p, of the symbols in T that
must be modified so as to obtain a w-free text).

» Theorem 2. There exists a sample-based distribution-free distance-approzimation algorithm
for subsequence-freeness, that takes a sample of size © (’g—z -log (%)) from T, distributed

according to an unknown distribution p, and outputs an estimate A such that \A—A(T, w,p)| <
0 with probability at least %

Finally, we address the question of how tight is our upper bound. We show (using a fairly
simple argument) that the quadratic dependence on 1/4 is indeed necessary, even for the
uniform distribution. To be precise, denoting by k4 the number of distinct symbols in w, we

3 As usual, we can increase the success probability to 1 — 7, for any 1 > 0 at a multiplicative cost of
O(log(1/n)) in the sample complexity.
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give a lower bound of Q(1/(kq6?)) under the uniform distribution (that holds for every w
with k4 distinct symbols, sufficiently large n and sufficiently small § — for a precise statement,
see Theorem 27).

1.2 A high-level discussion of our algorithms

Our starting point is a structural characterization of the distance to w-freeness under the
uniform distribution, which is proved in [30, Sec. 3.1].* In order to state their characterization,
we introduce the notion of copies of w in 7', and more specifically, role-disjoint copies.

A copy of w=wy...wx in T =t¢;...t, is a sequence of indices (j1,...,Jr) such that
1< < <jr<nandty ...t; =w. It will be convenient to represent a copy as an
array C of size k where C[i] = j;. A set of copies {Cy} is said to be role-disjoint if for every
i € [k], the indices in {C[i]} are distinct (though it is possible that Cy[i] = Cy [¢'] for i # i’
(and £ # £')). In the special case where the symbols of w are all different from each other, a
set of copies is role disjoint simply if it consists of disjoint copies. Ron and Rosin prove [30,
Theorem 3.4 + Claim 3.1] that A(T,w) equals the maximum number of role-disjoint copies
of w in T, divided by n.

Note that the analysis of the sample complexity of one-sided error sample-based testing
of subsequence-freeness translates to bounding the size of the sample that is sufficient
and necessary for ensuring that the sample contains evidence that T' is not w-free when
A(T,w) > e. Here evidence is in the form of a copy of w in the sample, so that the testing
algorithm simply checks whether such a copy exists. On the other hand, the question of
distance-approximation has a more algorithmic flavor, as it is not determined by the problem
what must be done by the algorithm given a sample.

Focusing first on the uniform case, Ron and Rosin used their characterization (more
precisely, the direction by which if A(T,w) > €, then T contains more than en role-disjoint
copies of w), to prove that a sample of size O(k/e) contains at least one copy of w with
probability at least 2/3. In this work we go further by designing an algorithm that actually
approximates the number of role-disjoint copies of w in T' (and hence approximates A(T, w)),
given a uniformly selected sample from 7. It is worth noting that the probability of obtaining
a copy in the sample might be quite different for texts that have exactly the same number of
role-disjoint copies of w (and hence the same distance to being w-free).’

In the next subsection we discuss the aforementioned algorithm (for the uniform case),
and in the following one address the distribution-free case.

1.2.1 The uniform case

Let R(T,w) denote the number of role-disjoint copies of w in T. In a nutshell, the algorithm
works by computing estimates of the numbers of occurrences of symbols of w in a relatively
small number of prefixes of T, and using them to derive an estimate of R(7,w). The more
precise description of the algorithm and its analysis are based on several combinatorial claims
that we present and which we discuss shortly next.

Let Rg (T, w) denote the number of role-disjoint copies of the length-i prefix of w, wy ... w;,
in the length-j prefix of T', ¢ ...¢;, and let Nij(T, w) denote the number of occurrences of
the symbol w; in ¢; ...¢;. In our first combinatorial claim, we show that for every i € [k]

4 Indeed, Ron and Rosin note that: “The characterization may be useful for proving further results
regarding property testing of subsequence-freeness, as well as (sublinear) distance approximation.”
5 For example, consider w =1...k, T1 = (1... k:)”/k and Tp = 1% k%,
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and j € [n], the value of R?(T,w) can be expressed in terms of the values of N7 I(T, w) for
4" € [§] (in particular, N/ (T, w)) and the values of R} " (T,w) for j' € [j]. In other words,
we establish a recursive expression which implies that if we know what are Rg/:ll(T, w) and

Nij/(T7 w) for every j' € [j], then we can compute R (T,w) (and as an end result, compute
R(T,w) = R} (T, w)).

In our second combinatorial claim we show that if we only want an approximation of
R(T,w), then it suffices to define (also in a recursive manner) a measure that depends on
the values of N7 (T, w) for every i € [k] but only for a relatively small number of choices of 7,
which are evenly spaced. To be precise, each such j belongs to the set J = {r - 'yn}i/gl
v = ©(d/k). We prove that since each interval [(r — 1)yn + 1, ryn] is of size yn for this choice
of 7, we can ensure that the aforementioned measure (which uses only j € J) approximates
R(T, w) to within O(dn).

We then prove that if we replace each N7 (T,w) for these choices of j (and for every
i € [k]) by a sufficiently good estimate, then we incur a bounded error in the approximation
of R(T,w). Finally, such estimates are obtained using (uniform) sampling, with a sample of
size O(k2/62).

for

1.2.2 The distribution-free case

In [30, Sec. 4] it is shown that, given a word w, a text T and a distribution p, it is possible
to define a word @ and a text T for which the following holds. First, A(T,w,p) is closely
related to A(T, w). Second, the probability of observing a copy of w in a sample selected
from T according to p is closely related to the probability of observing a copy of w in a
sample selected uniformly from T.

We use the first relation stated above (i.e., between A(T,w,p) and A(T,@)). However,
since we are interested in distance-approximation rather than one-sided error testing, the
second relation stated above (between the probability of observing a copy of w in 7" and that
of observing a copy of w in TV) is not sufficient for our needs, and we need to take a different
(once again, more algorithmic) path, as we explain shortly next.

Ideally, we would have liked to sample uniformly from T, and then run the algorithm
discussed in the previous subsection using this sample (and w). However, we only have
sampling access to T' according to the underlying distribution p, and we do not have direct
sampling access to uniform samples from T. Furthermore, since T is defined based on (the
unknown) p, it is not clear how to determine the aforementioned subset of (evenly spaced)
indices J.

For the sake of clarity, we continue the current exposition while making two assumptions.
The first is that the distribution p is such that there exists a value 3, such that p;/f is an
integer for every j € [n] (the value of 8 need not be known). The second is that in w there are
no two consecutive symbols that are the same. Under these assumptions, T= tfl/ A tﬁ“/ d ,
w = w, and A(T, w) = A(T,w,p) (where t§ for an integer z is the subsequence that consists
of x repetitions of ¢;).

Our algorithm for the distribution-free case (working under the aforementioned as-
sumptions), starts by taking a sample distributed according to p and using it to select a
(relatively small) subset of indices in [n]. Denoting these indices by by, b1,...,bs, where
bp=0<by <---<by_1 < by =n, we would have liked to ensure that the weight according
to p of each interval [b,_1 + 1,b,,] is approximately the same (as is the case when considering
the intervals defined by the subset J in the uniform case). To be precise, we would have
liked each interval to have relatively small weight, while the total number of intervals is not
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too large. However, since it is possible that for some single indices j € [n], the probability p;
is large, we also allow intervals with large weight, where these intervals consist of a single
index (and there are few of them).

The algorithm next takes an additional sample, to approximate, for each i € [k] and
u € [€], the weight, according to p, of the occurrences of the symbol w; in the length-b,
prefix of T. Observe that prefixes of T' correspond to prefixes of T. Furthermore, the weight
according to p of occurrences of symbols in such prefixes, translates to numbers of occurrences
of symbols in the corresponding prefixes in T, normalized by the length of T. The algorithm
then uses these approximations to obtain an estimate of A(f, w).

We note that some pairs of consecutive prefixes in T might be far apart, as opposed to
what we had in the algorithm for the uniform case described in Section 1.2.1. However, this
is always due to single-index intervals in T' (for j such that p; is large). Each such interval
corresponds to a consecutive subsequence in T with repetitions of the same symbol, and we
show that no additional error is incurred because of such intervals.

1.3 Related results

As we have previously mentioned, the work most closely related to ours is that of Ron
and Rosin on distribution-free sample-based testing of subsequence-freeness [30]. For other
related results on property testing (e.g., testing other properties of sequences, sample-based
testing of other types of properties and distribution-free testing (possibly with queries)), see
the introduction of [30], and in particular Section 1.4. For another line of work, on sublinear
approximation of the longest increasing subsequence, see [27] and references within. Here we
shortly discuss related results on distance approximation / tolerant testing.

As already noted, distance approximation and tolerant testing were first formally defined
in [29], and were shown to be significantly harder for some properties in [18, 3]. Almost
all previous results are query-based, and where the distance measure is with respect to the
uniform distribution. These include [21, 19, 1, 26, 16, 11, 23, 7, 25, 17, 28]. Kopparty and
Saraf [24] present results for query-based tolerant testing of linearity under several families
of distributions. Berman, Raskhodnikova and Yaroslavtsev [5] give tolerant (query based)
L,-testing algorithms for monotonicity. Berman, Murzbulatov and Raskhodnikova [4] give a
sample-based distance-approximation algorithms for image properties that works under the
uniform distribution.

Canonne et al. [12] study the property of k-monotonicity of Boolean functions over various
posets. A Boolean function over a finite poset domain D is k-monotone if it alternates
between the values 0 and 1 at most £ times on any ascending chain in D. For the special
case of D = [n], the property of k-monotonicity is equivalent to being free of w of length
k + 2 where wy € {0,1} and w; = 1 — w;_; for every i € [2,k + 2]. One of their results
implies an upper bound of 9] (5%) on the sample complexity of distance-approximation for
k-monotonicity of functions f : [n] — {0,1} under the uniform distribution (and hence for
w-freeness when w is a binary subsequence of a specific form). This result generalizes to
k-monotonicity in higher dimensions (at an exponential cost in the dimension d).

Blum and Hu [9] study distance-approximation for k-interval (Boolean) functions over
the line in the distribution-free active setting. In this setting, an algorithm gets an unlabeled
sample and asks queries on a subset of sample points. Focusing on the sample complexity,
they show that for any underlying distribution p on the line, a sample of size 9] (5%) is
sufficient for approximating the distance to being a k-interval function up to an additive
error of §. This implies a sample-based distribution-free distance-approximation algorithm
with the same sample complexity for the special case of being free of the same pair of w’s
described in the previous paragraph, replacing k + 2 by k + 1.

44:5
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Blais, Ferreira Pinto Jr. and Harms [8] introduce a variant of the VC-dimension and use
it to prove lower and upper bounds on the sample complexity of distribution-free testing for
a variety of properties. In particular, one of their results implies that the linear dependence
on k in the result of [9] is essentially optimal.

Finally we mention that our procedure in the distribution-free case for constructing
“almost-equal-weight” intervals by sampling is somewhat reminiscent of techniques used in
other contexts of testing when dealing with non-uniform distributions [6, 22, 10].

1.4 Further research

The main open problem left by this work is closing the gap between the upper and lower
bounds that we give, and in particular understanding the precise dependence on k, or possibly
other parameters determined by w (such as kq). One step in this direction can be found in
the Master Thesis of the first author [13].

1.5 Organization

In Section 2 we present our algorithm for distance-approximation under the uniform distri-
bution. Some of the main details of the distribution-free case appears in Section 3, and in
Section 4 we prove our lower bound. All missing details and proofs can be found in the full
version of this paper [14].

2 Distance approximation under the uniform distribution

In this section, we address the problem of distance approximation when the underlying
distribution is the uniform distribution. As mentioned in the introduction, Ron and Rosin
showed [30, Thm. 3.4] that A(T,w) (the distance of T from w-freeness under the uniform
distribution), equals the number of role-disjoint copies of w in T, divided by n = |T'| (where
role-disjoint copies are as defined in the introduction — see Section 1.2). We may use T'[j] to
denote the ;' symbol of T' (so that T'[j] = ;).

We start by introducing the following notations.
» Definition 3. For every i € [k] and j € [n], let N7 (T,w) denote the number of occurrences
of the symbol w; in the length j prefix of T, T[1,j] = T[1]...T[j].¢ Let R}(T,w) denote the
number of role-disjoint copies of the subsequence wy ... w; in T[1,j]. When i =k and j = n,
we use the shorthand R(T,w) for R}(T,w) (the total number of role-disjoint copies of w
inT).
Observe that R} (T, w) equals N? (T, w) for every j € [n].

Since, as noted above, A(T,w) = R(T,w)/n, we would like to estimate R(T,w). More
precisely, given § > 0 we would like to obtain an estimate ]/%, such that: ‘E — R(T, w)’ < in.

To this end, we first establish two combinatorial claims. The first ‘/claim shows that the
value of each R} (T, w) can be expressed in terms of the values of N/ (T, w) for j' € [j] (in

particular, N7 (T,w)) and the values of Rgl:ll(T, w) for j' € [j]. In other words, if we know
what are Rg/:ll(ﬂw) and Nij/(T,w) for every j' € [j], then we can compute R’ (T, w).

> Claim 4. For every ¢ € {2,...,k} and j € [n],

RI(Tw) = N/ (7, w) — max {N/(1,w) - RIS (T w) )
J'els

6 Indeed, if w; = w; for i # i/, then Nij (T, w) = Nij, (T, w) for every j.
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Clearly, R (T, w) < N/(T,w) (for every i € {2,...,k} and j € [n]), since each role-disjoint
copy of wy ... w; in T[1, j] must end with a distinct occurrence of w; in T[1, j]. Claim 4 states
by exactly how much is RZ (T, w) smaller than Nf (T, w). Roughly speaking, the expression
max;e(j] {Nij,(T7 w) — Rgl:ll(T7 w)} accounts for the number of occurrences of w; in T[1, j]

that cannot be used in role-disjoint copies of w ... w; in TY[1, j].

Proof. For simplicity (in terms of notation), we prove the claim for the case that i = k and
j =n. The proof for general i € {2,...,k} and j € [n] is essentially the same up to renaming
of indices. Since T' and w are fixed throughout the proof, we shall use the shorthand Nij for
N{(T,w) and R{ for Rf(T,w).

For the sake of the analysis, we start by describing a simple greedy procedure, that
constructs R = R} role-disjoint copies of w in T'. The correctness of this procedure follows
from [30, Claim 3.5] and a simple inductive argument (details are provided in the full version
of the paper [14]). Every copy C,,, for m € [R] is an array of size k whose values are

monotonically increasing, where for every i € [k] we have that Cy,[i] € [n], and T[C,[i]] = w;.

Furthermore, for every i € [k] the indices C1[i], ..., Cgl[i] are distinct. For everym =1,... R
and ¢ = 1,...,k, the procedure scans T, starting from T[Cy,[i — 1] + 1] (where we define
Cn[0] to be 0) and ending at T'[n] until it finds the first index j such that T[j] = w; and
j ¢ {C]i],...,Cn-1[i]}. It then sets C,[i] = j. For i > 1 we say in such a case that the
procedure matches j to the partial copy C,[1],...,Cpnli — 1].

For i € [k], define: G; = {j € [n] : T[j] = w;}. Also define: G = {j € G; : Im,C,,[i] =
jtand G; = {j € G; : Im,Cy,[i] = j} (recall that C,,[i] is the i-th index in the m-th
greedy copy).

It is easy to verify that |G| = N, |G| = R and |G;| = |G} |+ |G; |. To complete the
proof, we will show that |GZ_| = maX;¢[p {Nlj — Rfjll}

Let j* be an index j that maximizes {Nf — Rf:ll} In the interval [j*] we have Nf

occurrences of w;, and in the interval [j* — 1] we only have Rf_;l role-disjoint copies of

wy ... w;_1. This implies that in the interval [j*] there are at least N7 = Rfi}l occurrences
of w; that cannot be the ¢-th index of any greedy copy, and so we have

G| >N/ — R ' =max {N/ —RIZ| . (1)
7 % 1—1 jeml 7 1—1

On the other hand, denote by j** the largest index in G; . Since each index j € [j**]
such that T[j] = w; is either the i-th element of some copy or is not the i-th element of any
copy, N/ =R/ '+ ‘G;’. We claim that R/ ~' = R7_ ', Otherwise, R} ' < RJ_7!,

in which case the index j** would have to be the the i-th element of a greedy copy. Hence,

|Gl_’ _ Nij** o Rgi*lfl < max {N,] - Ri:ll} . (2)

J€[n]

In conclusion,

1 _ i Jv;l
|Gi ’ = %% {Nz Rz—l} ) (3)
and the claim follows. <

In order to state our next combinatorial claim, we first introduce one more definition,
which will play a central role in obtaining an estimate for R(T, w).

44:7
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» Definition 5. For ¢ < n, let N be a k x { matriz of non-negative numbers, where we shall
use N to denote N[i][r]. For everyr € [{] let M{(N) = N7, and for every i € {2,...,k},
let

M](N) déf/\/'i’" — max {/\/'Z"/ —Mf;l(N’)} .

r'<r
When i =k and r = [ we use the shorthand M(N') for M}(N).

In our second combinatorial claim we show that for an appropriate choice of a matrix
. j€[n]
N, whose entries are a subset of all values in {sz (T, w)} "’ we can bound the difference
i€

between M (N') and R(T,w). We later use sampling to obtain an estimated version of N.
> Claim 6. Let J = {jo, j1,...,j¢} be a set of indices satisfying jo = 0 < j1 <j2 <+ <
je = n. Let N = N(J,T,w) be the matrix whose entries are N/ = N]"(T,w), for every
i € [k] and r € [£]. Then we have

IMN) = R(T,w)| < (k—1) ‘max {jr —jr1} -

Proof. Recall that M(N) = M{(N) and R(T,w) = Ri*(T,w). We shall prove that for every
i € [k] and for every r € [¢], ‘M{(N) — RI"(T, w)‘ < (i—1) -max,¢p) {jr — jr—1}. We prove
this by induction on 3.
For i = 1 and every r € [{],
M{(W) = B (Tw)| = N (2, 0) = N{*(T,0)| = 0 < (1= 1) - ma (- = oo} o (4
TE

where the first equality follows from the setting of N and the definitions of M](N) and
RIN(T,w).

For the induction step, we assume the claim holds for i — 1 > 1 (and every r € [¢]) and prove
it for 7. We have,

= NPT w) = max { N (T w) = ME (V) = R (T, w) (5)
be(r]

— J _ pi—1 _ Jb _ aAgb

= max {N/(T,w) = RIZH(Tw) | —max (N7 (T w) = ML (W) (6)

where Equation (5) follows from the setting of A/ and the definition of M/ (N'), and Equa-
tion (6) is implied by Claim 4. Denote by j* an index j € [j,] that maximizes the first max
term and let b* be the largest index such that j,« < j*. We have:

N/(T,w) — R-NT - N (T, w) — M? (N
max { N7 (T, w) = R (Tw) f = max (NI (T, w) = M, (V) }
< N/ (T,w) — RI_TN (T, w) — N}»" (T, w) + MY (N)
= N7 (T, w) + R} (T,w) — R (T,w) — RI_7"(T,w) — N} (T.w) + M (N)
< (MIL (V) = R (Tow) ) + (N (T w) = NP (Tow)) + (R (Tow) = RN (Tw))
< (i — S -*_~b* ~b*_ ko
< (i =2 max (e — g} + (37 ) + (7 - G- D) ()
=(i—2) max {r —Jraa} +1
< (i —2)max {jr — jr—1} +max {j; —jr 1}

TE[?"] TE[T"]

=(i—1) f_%a[ﬁ {]T - jr—l} ) (8)
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where in Equation (7) we used the induction hypothesis. By combining Equations (6) and (8),
we get that

M{WN) = RY"(T,w) < (i = 1) max {jr = jr—1} - (9)
Similarly to Equation (6),
RI" (T, w)—M! (N) = max {Ng'b (T, w) — Mf,l(/\/)}—max {Ng(T, w) — RIZN(T, w)} . (10)
belr] i€lirl

Let b** be the index b € [r] that maximizes the first max term. We have

max { N7 (7, w) = My (W) } = max { N7 (T,w) = RIZN(T,w) }
belr] j€lir]

< NPT, w) — MEL(N) — NP (T, w) + R~ H(T, w)

< R (Tow) = ML) < RIS (Tow) = MY (V)|

< (i-2) max {r —Jr—a} < (1) ma {r = Jra} - (11)

Hence (combining Equations (10) and (11)),”

R (T.0) = M) < (6= 1w G — 1) (12)
Together, Equations (9) and (12) give us that

M) — B (Tw)] < G- Dmax (G, — o1} (13)
and the proof is completed. <

—~ ~

In our next claim we bound the difference between M (N) — M (N) for any two matrices
(with dimensions k X £), given a bound on the L., distance between them. We later apply
this claim with ' = A for A as defined in Claim 6, and A/ being a matrix that contains
estimates NI of N/ (T, w) (respectively). We discuss how to obtain N in Claim 8.

> Claim 7. Let v € (0,1), and let A’ and N be two k x £ matrices. If for every i € [t] and
re [, |[N7T — N7| < yn, then ‘M(/\?) - M(/\N/)‘ < (2k — D).

Proof. We shall prove that for every ¢ € [k] and for every r € [{], |M] (/(/'\) — MI(N)| <

(2t — 1)yn. We prove this by induction on ¢.
For t =1 and every r € [{], we have

M) = M (V)| = | - A

< . (14)

Now assume the claim is true for ¢t — 1 > 1 and for every r € [¢], and we prove it for t. For
any r € [¢], by the definition of M{ (-),

| M7 () = 27 (V)]

’ ~

= 'fM[ill(N)}*./\ZTerax {/\NQT'M[Q(/\N/)}‘

N{ — max {./\/'[

r'elr] r’€lr]
< et fmax (AT - L () = max (AT - a7 (D (15)
r’€lr] r’€[r]

T It actually holds that M](N) > RJ"(T,w), so that R/ (T,w) — M{(N) < 0, but for the sake of
simplicity of the inductive argument, we prove the same upper bound on RI" (T, w) — M (N) as on
M](N) = Ri" (T, w).
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where in the last inequality we used the premise of the claim. Assume that the first max
term in Equation (15) is at least as large as the second (the case that the second term is
larger than the first is dealt with analogously), and let r* be the index that maximizes the
first max term. Then,

max {/\7{/ — Mtril(J\N/)} — max {./\7[” - M[Z1(ﬁ)}‘

r’€[r] r''e(r]
< (M=) + (D) - ML ()|
< -] ML) - M ()|
< yn+ (2t —3)yn= (2t —2)yn, (16)
where we used the premise of the claim once again, and the induction hypothesis. The claim
follows by combining Equation (15) with Equation (16). N
. rell)
The next claim states that we can obtain good estimates for all values in {Nfr (T, w)} "
i€lk

(with a sufficiently large sample). Its (standard) proof is deferred to the full version of this
paper [14].

> Claim 8. For any v € (0,1) and J = {j1,...,je} (such that 1 < j; <--- < j, =n), by
taking a sample of size © (%5#) from T, we can obtain with probability at least 2/3

Y TE]
estimates {J\/’[} , such that
1€ [k]

‘J\Aff’ - N(T, w)‘ <qn, (17)
for every i € [k] and r € [{].

We can now restate and prove our main theorem for distance approximation under the
uniform distribution.
» Theorem 1. There exists a sample-based distance-approximation algorithm for subsequence-
freeness under the uniform distribution, that takes a sample of size © (’g—j -log (%)) and

outputs an estimate A such that |£ — A(T,w)| < & with probability at least 2/3.8

While our focus is on the sample complexity of the algorithm, we note that its running time
is linear in the size of the sample.

Proof. The algorithm sets v = §/(3k) and J = {yn,2yn,...,n}. It first applies Claim 8
with the above setting of v to obtain the estimates {J\Aff} for every i € [k] and r € [¢], which

with probability at least 2/3 are as stated in Equation (17). If we take N =N for N as
defined in Claim 6, then the premise of Claim 7 holds. We can hence apply Claim 7, and
combining with Claim 6 and the definition of J, we get that with probability at least 2/3,
for the matrix A )

M(N) = R(T,w)| < (2k — 1)yn + (k — 1)yn = (3k — 2)yn < én . (18)
The algorithm hence computes M (/\7 ) = M}(N) in an iterative manner, based on Definition 5,
and outputs A = M (N)/n. Since R(T,w)/n = A(T,w), the theorem follows. <

~

8 As usual, we can increase the success probability to 1 — 7, for any > 0 at a multiplicative cost of
O(log(1/n)) in the sample complexity.
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3 Distribution-free distance approximation

As noted in the introduction, our algorithm for approximating the distance from subsequence-
freeness under a general distribution p works by reducing the problem to approximating
the distance from subsequence-freeness under the uniform distribution. However, we won’t
be able to use the algorithm presented in Section 2 as is. There are two main obstacles,
explained shortly next. In the reduction, given a word w and access to samples from a
text T, distributed according to p, we define a word w and a text T such that if we can
obtain a good approximation of A(T, w) then we get a good approximation of A(T,w,p).
(Recall that A(T, w, p) denotes the distance of T' from being w-free under the distribution p.)
However, first, we don’t actually have direct access to uniformly distributed samples from ZN“,
and second, we cannot work with a set J of indices that induce equally sized intervals (of a
bounded size), as we did in Section 2.

We address these challenges (as well as precisely define T and @) in several stages. We
start, in Sections 3.1 and 3.2, by using sampling according to p, in order to construct intervals
in T that have certain properties (with sufficiently high probability). The role of these
intervals will become clear as we proceed. Due to space constraints, several proofs are
deferred to the full version of this paper [14].

3.1 Interval construction and classification

We begin this subsection by defining intervals in [n] that are determined by p (which is
unknown to the algorithm). We then construct intervals by sampling from p, where the latter
intervals are in a sense approximations of the former (this will be formalized subsequently).
Each constructed interval will be classified as either “heavy” or “light”, depending on its
(approximated) weight according to p. Ideally, we would have liked all intervals to be light,
but not too light, so that their number won’t be too large (as was the case when we worked
under the uniform distribution and simply defined intervals of equal size). However, for a
general distribution p we might have single indices j € [n] for which p; is large, and hence
we also need to allow heavy intervals (each consisting of a single index). We shall make use
of the following two definitions.

» Definition 9. For any two integers j1 < jo, let [j1,72] denote the interval {ji,...,72}.
For every ji,j2 € [n], define wt,([j1, j2]) def Z;ijl pj to be the weight of the interval [j1, jo)
according to p. We shall use the shorthand wty(j) for wty([7, j])-

» Definition 10. Let S be a multiset of size s, with elements from [n]. For every j € [n],

let Ng(j) be the number of elements in S that equal j. For every ji,jo € [n], define
wts([41,72]) def %Z;ijl Ns(j) to be the estimated weight of the interval [ji, ja| according to
S. We shall use the shorthand wtg(j) for wts([4,])-

In the next definition, and the remainder of this section, we shall use
) (19)

where let ¢, = 100.

We next define the aforementioned set of intervals, based on p. Roughly speaking, we
try to make the intervals as equally weighted as possible, keeping in mind that some indices
might have a large weight, so we assign each to an interval of its own.
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» Definition 11. Define a sequence of indices in the following iterative manner. Let hg =0
and for £ =1,2,..., as long as hy_1 < n, let hy be defined as follows. If wt,(he—1 +1) > é,
then hy = hy—1 + 1. Otherwise, let hy be the mazimum index h, € [he—1 + 1,n] such that
wtp([he—1 + 1,h)]) < & and for every b} € [ho—1 + 1, )], wt,(h)) < 5-. Let L be such that
hL =n.

Based on the indices {ho}L_, defined above, for every ¢ € [L], let Hy = [hy—1 + 1, h¢] and
let H = {Hg}eLzl. We partition H into three subsets as follows. Let Hgin be the subset of
all H € H such that |H| =1 and wt,(H) > g-. Let Hypea be the set of all H € H such that
|H| #1 and é <wt,(H) < ﬁ. Let Hsmu be the set of all H € H such that wt,(H) < é.

Observe that since wt,(T") = 1, then |Hsin U Himed| < 8z. In addition, since between each
H',H" € Hgpy there has to be at least one H € H;p,, then we also have |H | < 82+ 1.

By its definition, H is determined by p. We next construct a set of intervals B based on
sampling according to p (in a similar, but not identical, fashion to Definition 11). Consider
a sample S; of size s; selected according to p (with repetitions), where s; will be set
subsequently.

» Definition 12. Given a sample S1 (multiset of elements in [n]) of size s1, determine a
sequence of indices in the following iterative manner. Let by = 0 and for u=1,2,..., as
long as by—1 < n, let b, be defined as follows. If wtg, (by—1+1) > 1/z, then by, =by—1 + 1.
Otherwise, let b, be the mazimum index bl, € [by—1 + 1,n] such that wtg, ([by—1 +1,b}]) < L.
Let U be such that by = n.

Based on the indices {b,}Y_, defined above, for every u € [U], let B, = [by—_1 + 1,by],
and let B = {Bu}gzl. For every u € [U], if wts,(By) > 1, then we say that B, is heavy,
otherwise it is light.

Observe that each heavy interval consists of a single element.
In order to relate between H and B, we introduce the following event, based on the
sample S;.

» Definition 13. Denote by Fy the event where

1
VH € Hsin U Hmedv 5
VH € Hsmla Wt51 (H) S 5. (21)

wt,(H) < wtg, (H) < gwtp(H) , (20)
1
2z

> Claim 14. If the size of the sample S is s1 = 120z1og(240z), then Pr[E;] > & where

the probability is over the choice of S;.

> Claim 15.  Conditioned on the event Ej, for every u € [U] such that B, is light,
wtp(By) < 2.

3.2 Estimation of symbol density and weight of intervals

In this subsection we estimate the weight, according to p, of every interval [b,] for u € U, as
well as its symbol density, focusing on symbols that occur in w. Note that [b,] is the union
of the intervals By, ..., B,. We first introduce some notations.

For any word w*, text T*, i € [|w*|] and j € [|T*]], let I7 (T*,w*) = 1 if T*[j] = w} and
0 otherwise. We next set

&= L(Twp;. (22)

JE€[bu]
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Consider a sample Sy of size so selected according to p (with repetitions), where so will
be set subsequently. For every u € [U] and i € [k], set

o 1 . .
&'=— > H(TuwNs(). (23)
% jelb)
» Definition 16. The event Ey (based on S3) is defined as follows. For every i € [k] and
u € [U],
& - ¢

and for every u € [U]

1
< - 24
<:, 24)

| =

[wts, ([bu]) — th([bU])‘ < - (25)

> Claim 17. If the size of the sample S is sy = 22 log (40kU), then Pr [E] > <%, where the
probability is over the choice of Ss.

3.3 Reducing from distribution-free to uniform

In this subsection we give the aforementioned reduction from the distribution-free case to the
uniform case, using the intervals and estimators that were defined in the previous subsections.
We start by providing three definitions, taken from [30], which will be used in the reduction.
The first two definitions are for the notion of splitting (variants of this notion were also used
in previous works, e.g., [15]).

» Definition 18. ForatextT =t;...1,, a text T is said to be a splitting of T’ sz =ttt
for some oy ...y, € NT. We denote by ¢ the splitting map, which maps each (index of a)
symbol off to its origin in T. Formally, ¢ : [|1~“H — [n] is defined as follows. For every
te(|T| = (>0 il let ¢(€) be the unique i € [n] that satisfies Zf;ll o <Ll < Zf«:l Q.

Note that by this definition, ¢ is a non-decreasing surjective map, satisfying T[E] = T[¢(¢)]
for every £ € [|T]]. For a set S C [|T]] we let ¢(S) = {¢(¥) : £ € S}. With a slight abuse of
notation, for any i € [n] we use ¢ (i) to denote the set {E e[| : o(0) = i}, and for a set

S C [n] we let ¢~1(S) = {z e [IT]] : 6(0) € s}

» Definition 19. Given text T = t1...t, and a corresponding probability distribution
p = (p1,-..,pn), a splitting of (T,p) is a text T along with a corresponding probability
distribution p = (p1, . . . ’ﬁlfl)’ such that T is a splitting of T and ZZ@),]@ D¢ = p; for every
i€ n.

The third definition is of a set of words, where no two consecutive symbols are the same.

» Definition 20. Let W, = {w : w;1 # w;,Vj € [k —1]}.

3.3.1 A basis for reducing from distribution-free to uniform

Let w be a word of length kand T a text of length m. In this subsection we establish a claim,
which gives sufficient conditions on a (normalized version) of an estimation matrix N , under
which it can be used to obtain an estimate of A(T, w) with a small additive error.

We first state a claim that is similar to Claim 6, with a small, but important difference,
that takes into account intervals in 7' (determined by a set of indices J) that consist of
repetitions of a single symbol. Recall that M (-) was defined in Definition 5, and that R(T', @)
denotes the number of role-disjoint copies of w in T.

44:13
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> Claim 21. Let J = {jo, j1,. .., je} be a set of indices satisfying jo =0 < ji <jo <+ <
je=n. Let N be the matrix whose entries are N = N;" (T, w) for every i € [k] and r € [£].
Let J ={relf] : T[jr—1+ 1] =--- =T[jr]}. Then

M(N) = R(T,@)| < (k- 1) Jmax (GG =)}

The following observation can be easily proved by induction.
» Observation 22. Let N be a matriz of size kx £. Then

%M(/\?) —M <§/> . (26)

n

The next claim will serve as the basis for our reduction from the general, distribution-free
case, to the uniform case.

> Claim 23. Let N beak x ¢ matrix, J = {Jjo, j1,j2,- - -, je} be a set of indices satisfying
Jo=0<j1 <jo<---<je=nandlet ¢c; and co be constants. Suppose that the following
conditions are satisfied.

1. For every r € [{], if j, — jr—1 > c1 - %, then T[jr—1 +1]=--= T[jr]-
2. For every i € [k] and r € [, ‘./\71’" — NIN(T, )| < ey %.
Then,

‘M (g) — AT, ®)| < (1 + 2¢2)8 .

3.3.2 Establishing the reduction for w € W, and quantized p

For the ease of readability, in this subsection we address the special case in which w € W,
(recall Definition 20), and in the full version of this paper [14] we show how to deal with the
general case.

For the case considered in this subsection, let T = t7t ... thm where a = % for every

j € [n], so that |T| = % Define p by p; = 3 for every j € [|T]], so that p is the uniform

distribution. Since p; = - a;, for every j € [n], we get that (f,@ is a splitting of (T, p)

(recall Definition 19), and hence by [30, Clm. 4.4] (using the assumption that w € W.),
A(T,w,p) = AT, w,p) . (27)

Denote 77 = |T|. We begin by defining a set of intervals of [f2], where {by, ...,by} and
B ={Bi,...,By} are as defined in Section 3.1, and ¢ is as in Definition 19.
» Definition 24. Let by = 0, and for every u € [U], let b, = max {h € [71] : ¢(h) = b,}. For
- ~ - - U
every u € [U] let By = [by—1 + 1,by], and define B = {Bu}

u=1
We next introduce a notation for the weights, according to p, of unions of these intervals.
For every i € [k] and u € [U],

&= > I(T,w)p;. (28)

J€E[bu]

Note that

& = —NI(Tw) . (29)
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> Claim 25. For every i € [k] and u € [U] £ = £*, where £¥ is as defined in Equation (22).
We can now state and prove the following lemma.

» Lemma 26. Let w be a word of length k in W,., T a text of length n, and p a distribution
over [n] for which there exists § € (0,1) such that p;/f is an integer for every j € [n]. There

exists an algorithm that, given a parameter 6 € (0,1), takes a sample of size © (’g—z -log (g))

from T, distributed according to p, and outputs an estimate A such that |£ —A(T,w,p)| <o
with probability at least 2/3.

As in the uniform case, the running time of the algorithm is linear in the size of the sample.

Proof. The algorithm first takes a sample S; of size s; = 120z log(240z) and constructs a set
of intervals B as defined in Definition 12. Next the algorithm takes another sample, So, of size
59 = 2% log(40kU) according to which it defines an estimation matrix fA of size k x U as follows.
For every i € [k] and u € [U], it sets g[z] [u] = €, where £* is as defined in Equation (23).
Lastly the algorithm outputs A=M (2), where M is as defined in Definition 5.

We would like to apply Claim 23 in order to show that |£ - A(T, w)| < & with probability
of at least % By the setting of s1, applying Claim 14 gives us that with probability at least
%, the event F7, as defined in Definition 13, holds. By the setting of s5, applying Claim 17
gives us that with probability at least 1%, the event Fs, as defined in Definition 16, holds.
We henceforth condition on both events (where they hold together with probability at least
7/10).

In order to apply Claim 23, we set w = w, J = {50,317 o ,EU} (recall Definition 24) and

N = ﬁZ, for gas defined above. Also, we set ¢; = % and ¢p = i. We next show that both
items in the premise of the claim are satisfied.
To show that Item 1 is satisfied, we first note that since p is uniform, then for every

ueU, th(bu) = bzﬁ%. We use the consequence of Claim 15 (recall that we condition
on E;) by which for every u such that buzbums > g, B, is heavy (since for every u € U,

n

Wt;(Bu) = wt,(B,)). By Definition 12 this implies that B,, contains only one index, and so

Thy—1+1]=---= Tv[gu] By the definition of z (Equation (19)) and the setting of ¢, the
item is satisfied.

To show that Item 2 is satisfied, we use the definition of E5 (Definition 16, Equation (24))
together with Claim 25, which give us \5:" - §“| < 1 for every i € [k] and u € [U]. By
Equation (29), the definition of z and the setting of co, we get that the item is satisfied.

After applying Claim 23 we get that |3 - A(T, w)| < (e1 + 2¢2)d, which by the setting of
¢ and ¢, is at most 8. Since p is the uniform distribution, A(T, w) = A(T,w, p) and since
A(T,w,p) = A(T,w,p) (by Equation (27)), the lemma follows. <

In the full version of this paper [14] we address the general case where we do not necessarily
have that w € W, or that there exists a value § such that for every j € [n], p;/f is an
integer.

4 A lower bound for distance approximation

In this section we give a lower bound for the number of samples required to perform distance-
approximation from w-freeness of a text T'. The lower bound holds when the underlying
distribution is the uniform distribution.
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» Theorem 27. Let kq be the number of distinct symbols in w. Any distance-approrimation
algorithm for w-freeness under the uniform distribution must take a sample of size Q(kd%),

. 1 8k 200
conditioned on § < 30073 and n > max {7, kd62}

Note that if 6 > 1/kg, then the algorithm can simply output 0. This is true since the number
of role disjoint copies of w in T is at most the number of occurrences of the symbol in w
that is least frequent in T. This number is upper bounded by 2 = and so the distance from
w-freeness is at most ;. In this case no sampling is needed, so only the trivial lower bound
holds. The proof will deal with the case of ¢ € (0, 300kd]

Proof. The proof is based on the difficulty of distinguishing between an unbiased coin and a
coin with a small bias. Precise details follow.

Let V = {v1,...,vk,} be the set of distinct symbols in w, and let 0 be a symbol that
does not belong to V. We define two distributions over texts, 73 and 73 as follows. For each
7 € [3t] and p € [0,1], let A7 be a random variable that equals 0 with probability p and
equals vy with probability 1 — p. Let ¢’ = 3k40 and consider the following two distributions

over texts
1 2 n/kq
T = |:)\%,U271}3,...71}kd,)\%,’02,v37...,’(}kd7 ...... ,)\% 71}2,’[}3,...,’de:| , (30)
_[y1 2 n/ka
7—2—|:)\%+6/,1)2,’l}3,...,’de7)\%+5/,’l)2,1)3,...,’de, ...... ,)\%+6,,v2,v3,...,vkd} . (31)

Namely, the supports of both distributions contain texts that consist of n/ky blocks of size
kq each. For i € {2,...,kq}, the i-th symbol in each block is v;. The distributions differ only
in the way the first symbol in each block is selected. In 77 it is 0 with probability 1/2 and v,
with probability 1/2, while in 75 it is 0 with probability 1/2 + ¢’ = 1/2 + 36k, and vy with
probability 1/2 — ¢’

For b € {1,2}, consider selecting a text Tj, according to T, (denoted by T}, ~ Tp), and
let Op be the number of occurrences of v1 in the text (so that Op is a random variable).
Observe that E[O1] = 5~ and E[O>] = — 36n. By applying the additive Chernoff bound
(Theorem 28) and using the premise of the theorem regarding n,

Prr,7; (01 < BIO)] — 9n/8] < exp(~2(kad /) - n/ka) < o (32)
and
Proy 7, [Os < E[Os] + 61/8] < exp(—2(kad /8)? - 1 /kg) < ﬁ (33)

For b € {1,2} let Ry = R(Tp,w) (recall that R(T}, w) denotes the number of disjoint copies
of w in T}, and note that R; is a random variable). Observe that R; > O; — k + 1, and
R2 < 02.

Hence, by Equation (32), if we select T1 according to 7; and use the premise that n > 8&,
then R(T1,w) > 5= — $on—k+1> F= — 26n with probablhty at least 99/100, and by
Equation (33), if we select T, according to 7—2, then R(Ty,w) < T —30n+ 1 s0n = 5 %(571
with probability at least 99/100.

Assume, contrary to the claim, that we have a sample-based distance-approximation
algorithm for subsequence-freeness that takes a sample of size Q(kq, ) = 1/(ckqd?), for some
sufficiently large constant ¢, and outputs an estimate of the distance to w-freeness that has
additive error at most §, with probability at least 2/3. Consider running the algorithm on
either 71 ~ 71 or Ty ~ 7. Let L denote the number of times that the sample landed on an
index of the form j = ¢- k4 + 1 for an integer ¢. By Markov’s inequality, the probability that
L >10-Q(ka,0)/ka = 10/(ck35?) is at most 1/10.
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By the above, if we run the algorithm on 77 ~ 77, then with probability at least
2/3 —1/100 — 1/10 the algorithm outputs an estimate A> 2~ 10 while L < 10/(ck36?).
Similarly, if we run it on T» ~ T3, then with probability at least 2/3 — 1/100 — 1/10 the
algorithm outputs an estimate A < o 12 while L < 10/(ck36%). (In both cases the
probability is taken over the selection of T}, ~ Tp, the sample that the algorithm gets, and
possibly additional internal randomness of the algorithm.) Based on the definitions of 7; and
T2, this implies that it is possible to distinguish between an unbiased coin and a coin with

bias 3k46 with probability at least 2/3 — 1/100 — 1/10 > &, using a sample of size 7555 in
d

15°
contradiction to the result of Bar-Yosef [2, Thm. 8] (applied with m = 2, ¢ = 3k40. Since we
have § < m, then € < 9—16, as the cited theorem requires). |
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A  Chernoff bounds

» Theorem 28. Let x1,...,Xxm be m independent random variables where x; € [0,1] for

def

every 1 <i<m. Letp = % > Elxi]. Then, for every v € (0,1], the following bounds hold:

(Additive Form)

1 & 9
Pr Esz>p+'y <eXp(—2v m) (34)

i=1 i

L -
Pr ooy ; Xi <p—7| <exp (—272m) (35)
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(Multiplicative Form)

Pr

Pr

.
—> xi > (1 +9)p
miZl

.
—> xi<(1=7)p
mi:l

< exp (—72pm/3)

< exp (—72pm/2)
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