
New PRGs for Unbounded-Width/Adaptive-Order
Read-Once Branching Programs
Lijie Chen #

Miller Institute for Basic Research in Science at University of California at Berkeley, CA, USA

Xin Lyu #

University of California at Berkeley, CA, USA

Avishay Tal #

University of California at Berkeley, CA, USA

Hongxun Wu #

University of California at Berkeley, CA, USA

Abstract
We give the first pseudorandom generators with sub-linear seed length for the following variants of
read-once branching programs (roBPs):

1. First, we show there is an explicit PRG of seed length O(log2(n/ε) log(n)) fooling unbounded-
width unordered permutation branching programs with a single accept state, where n is the
length of the program. Previously, [Lee-Pyne-Vadhan RANDOM 2022] gave a PRG with seed
length Ω(n) for this class. For the ordered case, [Hoza-Pyne-Vadhan ITCS 2021] gave a PRG
with seed length Õ(log n · log 1/ε).

2. Second, we show there is an explicit PRG fooling unbounded-width unordered regular branching
programs with a single accept state with seed length Õ(

√
n · log(1/ε) + log(1/ε)). Previously,

no non-trivial PRG (with seed length less than n) was known for this class (even in the ordered
setting). For the ordered case, [Bogdanov-Hoza-Prakriya-Pyne CCC 2022] gave an HSG with
seed length Õ(log n · log 1/ε).

3. Third, we show there is an explicit PRG fooling width w adaptive branching programs with
seed length O(log n · log2(nw/ε)). Here, the branching program can choose an input bit to
read depending on its current state, while it is guaranteed that on any input x ∈ {0, 1}n, the
branching program reads each input bit exactly once. Previously, no PRG with a non-trivial
seed length is known for this class.
We remark that there are some functions computable by constant-width adaptive branching
programs but not by sub-exponential-width unordered branching programs.

In terms of techniques, we indeed show that the Forbes-Kelly PRG (with the right parameters)
from [Forbes-Kelly FOCS 2018] already fools all variants of roBPs above. Our proof adds several new
ideas to the original analysis of Forbes-Kelly, and we believe it further demonstrates the versatility
of the Forbes-Kelly PRG.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases pseudorandom generators, derandomization, read-once branching programs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.39

Category Track A: Algorithms, Complexity and Games

Funding Lijie Chen: Supported by a Miller Research Fellowship.
Avishay Tal: Supported by a Sloan Research Fellowship and NSF CAREER Award CCF-2145474.

EA
T

C
S

© Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijiechen@berkeley.edu
https://orcid.org/0000-0002-6084-4729
mailto:xinlyu@berkeley.edu
mailto:avishay.tal@gmail.com
mailto:wuhx@berkeley.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

1 Introduction

One central question in complexity theory is whether randomness is necessary for efficient
computation. In the time setting, the question is essentially asking whether P = BPP. While
it is commonly believed that P = BPP [23, 16], it is known that establishing this would imply
breakthrough lower bounds in complexity theory [13, 17], which seems to be out of reach for
current techniques. Therefore, most previous works are devoted to derandomizing sub-classes
of BPP. In particular, the class of randomized log-space algorithms (BPL) has attracted a
lot of attention, since not only it contains many interesting problems, but also it is indeed
possible to give unconditional derandomizations of BPL [22, 27].

A leading approach to derandomize BPL is to construct explicit PRGs for ordered
read-once branching programs (see below for a formal definition) with short seed length.

▶ Definition 1. An ordered read-once branching program (roBP) B of length n and width
w computes a function B : {0, 1}n → {0, 1}. The program has (n + 1) layers of states
V0 ∪ V1 ∪ · · · ∪ Vn where Vi contains all states in the i-th layer. Being width-w means that
|Vi| ≤ w for every i ∈ [n]. On an input x ∈ {0, 1}n, the branching program computes as
follows. It starts at a fixed start state s ∈ V0. Then for every i = 1, 2, . . . , n, it reads the next
input bit xi and updates its state according to a transition function Bi : Vi−1 × {0, 1} → Vi

by taking vi = Bt(vi−1, xi). Note that the transition function Bi can differ at each time step.

When we use the program to compute a decision problem, we specify a set Vacc ⊆ [w]
of accepting states in the final layer. Let vn be the final state reached by the branching
program on input x. If vn ∈ Vacc, the branching program accepts, denoted by B(x) = 1.
Otherwise, the program rejects, denoted by B(x) = 0.

Next, we recall the definition of a pseudorandom generator (PRG).

▶ Definition 2. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}s → {0, 1}n such that for every f ∈ F ,∣∣∣∣ Pr

x∈{0,1}n
[f(x) = 1] − Pr

x∈{0,1}s
[f(G(x)) = 1]

∣∣∣∣ ≤ ε.

We say that G ε-fools F if it is an ε-PRG for F . The input length s is the seed length of the
PRG G. We say a generator is explicit, if given as input a seed x ∈ {0, 1}s, the output is
computable in space O(s).

In a seminal work, Nisan constructed an explicit PRG that ε-fools length-n width-w
ordered roBPs with seed length O (log n · log(nw/ε)). Since then, many PRGs with improved
seed lengths were constructed for sub-classes of ordered roBPs (see [5, 10, 20] and the
references therein), but Nisan’s PRG remains the state-of-the-art even for width-4 general
roBPs.

Nisan’s PRG (and [15, 9]) crucially relies on the following “communication” argument:
The first half of the roBP can only communicate log w bits (describing the state reached at
the end of the first half) to the second half. Due to this, it is possible to reuse all but log w

bits from the seed that is used to generate the first half of the pseudorandom input, when
generating the second half of the pseudorandom input. Recursively applying the idea gives
the log n log(nw/ε) seed length of Nisan’s PRG.

However, some researchers have the feeling that this type of argument is inherently limited
to having seed length at least log2 n [6, 26, 28]1, and different approaches are required to

1 For example, in [26], “This paradigm seems unlikely to yield pseudorandom generators for general
logspace computations that have a seed length of O(log1.99 n).”

L. Chen, X. Lyu, A. Tal, and H. Wu 39:3

overcome this log2 n barrier. The search for a different paradigm for designing PRGs has
motivated the study of models stronger than normal roBPs, with the hope that studying them
would inspire us to find new techniques. In particular, two interesting models, unordered
roBPs and unbounded-width roBPs, were introduced recently. It turns out that designing
PRGs for both models requires inherently new techniques or analysis compared to Nisan’s
original PRG (or the INW PRG [15]).

Unordered roBPs. Let B be a class of ordered roBPs. We say a function g : {0, 1}n → {0, 1}
is computable by an unordered B roBP, if there is a function f : {0, 1}n → {0, 1} and a
permutation π on [n] such that f is computable by a roBP in B and g(x1, . . . , xn) =
f(xπ(1), xπ(2), . . . , xπ(n)).

It is known that Nisan’s PRG fails to fool unordered roBPs [29]. After a long line of
previous works [4, 14, 26, 28, 11, 19, 7], Forbes and Kelly [8] constructed O(log2 n log(nw/ε))-
seed-length PRGs fooling length-n width-w unordered roBPs with error ε.

Unbounded-width roBPs. Another recent line of works studied roBPs with unbounded
width [12, 25, 24, 3, 18]. Of course, a general roBP with unbounded width can compute any
function (even with a single accept state), so we must restrict our attention to sub-classes
of such roBPs. The following two sub-classes of roBPs are the most studied ones in the
literature.

▶ Definition 3. Let B be an ordered roBP with length n and width w. We say that B is a
regular roBP, if for every t ∈ [n] and every v ∈ [w], there are exactly 2 pairs (u, b) ∈ [w]×{0, 1}
such that Bt(u, b) = v. We say that B is a permutation roBP, if for every t ∈ [n] and every
b ∈ {0, 1}, Bt(·, b) is a permutation on [w].

In [12], an Õ(log n · log 1/ε)-seed length PRG with error ε is constructed for ordered
unbounded-width permutation roBP with length-n and a single accept state. A later work [25]
(building on a prior work [1]) constructed an Õ(log n ·

√
log(n/ε) + log(1/ε))-seed length

weighted PRG for the same class.2

1.1 Our Results
In this work, we consider two even stronger models of roBPs: (1) roBPs that are both
unordered and have unbounded width and (2) roBPs that can read input in an adaptive
order (that is, the next bit to read can depend on the current state).

1.1.1 Unordered and Unbounded-width roBPs
Given the recent developments on unordered roBPs and on unbounded-width roBPs, a natural
question is whether one can construct non-trivial PRGs for unordered and unbounded-width
(permutation or regular) roBPs. A prior, it is even unclear whether such a class admits
non-explicit PRGs with short seed length, since the usual probabilistic argument for the
existence of PRGs with short seed length does not apply here [12].

Our first result is a polylog(n/ε)-seed-length PRG for unordered unbounded-width
permutation roBPs with a single accept state, significantly improving the previous Ω(n)-seed
length PRGs from [18].

2 A weighted PRG for a class of functions F is a pair of functions G : {0, 1}s → {0, 1}n and ρ : {0, 1}s → R
such that Ex∈{0,1}s [ρ(x)f(G(x))] is ε-close to Ex∈{0,1}n [f(x)].

ICALP 2023

39:4 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

▶ Theorem 4 (Unbounded width permutation BP). For all integers n and ε > 0, there is an
explicit ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O(log n · log2(n/ε))

that fools unordered unbounded-width permutation branching programs with a single accept
state.

Our second result is a Õ (
√

n log(1/ε))-seed-length PRG for unordered unbounded-width
regular roBPs with a single accept state. No (even non-explicit) non-trivial PRG is known
for this class even in the ordered setting; Bogdanov, Hoza, Prakriya, and Pyne [3] has
constructed Õ (log n · log(1/ε))-seed-length HSG for the ordered case.3

▶ Theorem 5 (Unbounded width regular BP). For all integers n and ε > 0, there is an explicit
ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O

(√
n log

(n

ε

)
· log n

)
that fools unordered unbounded-width regular branching programs with a single accept state.

In terms of techniques, we indeed prove that the Forbes-Kelly PRG suffices for the
two theorems above. Our analysis carefully modifies the original analysis from [8]. In
fact, we prove that a single round of Forbes-Kelly pseudorandom restriction fools unordered
unbounded-width regular roBPs (see Theorem 10). Iterating this restriction O(log(n/ε)) times
proves Theorem 4. Unfortunately, it is unclear whether the same iterative construction fools
unordered unbounded-width regular roBPs since they are not closed under restrictions. Still,
doing the pseudorandom restriction exactly once with the right parameters proves Theorem 5.

1.1.2 Adaptive roBPs
While an unordered roBP can read its input in any order, it cannot change the ordering
based on the input it has read so far (i.e., the order is input oblivious). We also consider an
even stronger variant of roBPs, called adaptive roBPs, which are programs that can decide
the next bit to read given its current state. We formally define them as follows.

▶ Definition 6. An adaptive read-once branching program B of length n and width w computes
a function B : {0, 1}n → {0, 1}. The program has states V0 ∪V1 ∪· · ·∪Vn where Vi consists of
the w states in the i-th layer. On an input x ∈ {0, 1}n, the branching program B computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for every t = 1, 2, . . . , n, it reads the bit
xpos(t−1,vt−1) and updates its state according to a transition function Bt : Vt−1×{0, 1} → Vt by
taking vt = Bt(vt−1, xpos(t−1,vt−1)). Here, pos : V0 ∪ · · · ∪ Vn−1 → [n] is a function specifying
the index of the next bit to read given the current state vt−1. We require that on every input
x ∈ {0, 1}n, B reads each bit in x exactly once.

We remark that adaptive roBPs are strictly stronger than unordered roBPs as shown by
an example function f : {0, 1} × {0, 1}n × {0, 1}n → {0, 1} as

f(b, x, y) = 1[b = 0] · 1[x = y] + 1[b = 1] · 1[x = yR].

3 A hitting set generator (HSG) H : {0, 1}s → {0, 1} for a class of functions F satisfies the following: for
every f ∈ F such that Prx∈{0,1}n [f(x) = 1] > ε, there exists z ∈ {0, 1}s such that f(H(z)) = 1. Note
that a PRG is automatically an HSG, while the converse may not hold.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:5

Here, yR denotes the reversed string of y. Observe that there is a constant-width adaptive
roBP for f . The program first reads b. If b = 0, the program reads and compares x and y

bit by bit. Otherwise, the program compares x and yR bit by bit. Moreover, it is easy to
see (via a communication complexity argument) that every unordered roBP for f requires
exponential width.

Our third result gives O(polylog(nw/ε))-seed-length PRG for adaptive roBPs. To the
best of our knowledge, no explicit PRGs with seed length less than n was known prior to our
work.

▶ Theorem 7. For every n, w ≥ 1 and ε > 0, there is an explicit ε-PRG G : {0, 1}s → {0, 1}n

fooling width-w adaptive roBPs with seed length s = O(log n · log2(nw/ε)).

We prove Theorem 7 by adapting the argument in [8]. The key observation allowing
us to do so is the following. Suppose B satisfies the read-once promise. Then, for every
vertex v ∈ Vi, if we denote by Prev (resp. Postv) the set of possible variables read in any
path from the starting state to v (resp. v to the accepting state). It must be the case that
Prev and Postv are disjoint for every v. By a delicate argument (Claim 15), we show that
this disjointness property is sufficient for applying the key technique of Forbes-Kelley proof:
decomposing the branching program by high/low-degree Fourier terms.

Moreover, when the width w of the adaptive roBP is small, we can show that the branching
program has bounded Fourier growth (following [7]). In particular, we show that the L-th
level Fourier mass of a width-w adaptive roBP is bounded by O(log(nw))2Lw. As shown in
[8], for programs with bounded Fourier growth, we can further improve the seed length by a
log(n) factor. Formally, we show

▶ Theorem 8. For every n, w ≥ 1 and ε > 0, there is an explicit ε-PRG G : {0, 1}s → {0, 1}n

fooling width-w adaptive roBPs with seed length s = Õ(w log2(n/ε)).

Theorem 8 is a direct corollary of the new Fourier growth bound. We briefly comment on
how we get the Fourier growth of O(log n)2Lw for adaptive roBP. Roughly speaking, given a
width-w, length-n adaptive roBP B, we construct a related witdh-2w, length-n2 oblivious
roBP B′, such that the Fourier spectrum of B is “dominated” by that of B′. The idea is
simple: we duplicate each input of B for n times and get n2 bits. Now, it is easy to construct
a width-2w oblivious roBP running on the n2 bits to simulate B. (Essentially, the n2 bits
allow us to make n passes over the input, we can use each pass to implement one step of
transition of B.)

Although B′ has n2 input bits, we can exploit the promise that B is read-once, and prove
the following nice property: For any input z ∈ {0, 1}n2 , B′(z) depends only on n bits of z

(that is to say, there is a subset of n bits from z, such that flipping all other bits of z cannot
change the output). This allows us to connect the Fourier weights of B′ and B. The details
can be found in Appendix A.

2 Preliminaries

For a Boolean predicate P , we use 1{P } to denote the indicator of P , which takes value 1 if
P holds, value 0 otherwise. We often use Un to denote the uniform distribution over {0, 1}n

(when n is clear from the context, we will just write U for simplicity), and U(X) to denote
the uniform distribution over a set X. For two strings α, β ∈ {0, 1}n, we use α ∧ β and α + β

to denote their bit-wise AND and bit-wise XOR, respectively. Similarly, for two distributions
D1, D2, we use D1 ∧ D2 (resp. D1 + D2) to denote the distributions obtained by drawing
α ∼ D1 and β ∼ D2 and outputting α ∧ β (resp. α + β).

ICALP 2023

39:6 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

We always work with the {−1, 1}n basis for Boolean function analysis. For a function
f : {−1, 1}n → R, recall that its Fourier characters indexed by α ⊆ [n], is defined by

f̂(α) = E
x∈{−1,1}n

[
f(x) ·

∏
i∈α

xi

]
.

We often use greek letters (such as α, β, γ) to index Fourier characters.
We will need k-wise independent and γ-almost k-wise independent distributions through-

out the paper, which look locally uniform and thus fool functions that only depend on a few
bits.

▶ Definition 9. Let D be a distribution over {0, 1}n. We say D is k-wise independent if, for
every f : {0, 1}n → [−1, 1] that depends on at most k bits, we have

E
D

f(D) = E
U

f(U).

If D merely satisfies∣∣∣E
D

f(D) − E
U

f(U)
∣∣∣ ≤ γ

for every such f , we say that D is γ-almost k-wise independent.

It is possible to sample from a k-wise independent distribution using O(k · log n) random bits
([30]) and from a γ-almost k-wise independent distribution using O(k + log log n + log 1/γ)
random bits ([21, 2]).

3 PRGs for Unbounded-width Branching Programs

In this section, we will prove the following theorem, which shows that one round of pseu-
dorandom restriction fools regular branching programs with unbounded width and a single
accept state.

▶ Theorem 10. Let B be an unbounded-width regular branching program of length n with
starting state s ∈ V0 and a single accept state t ∈ Vn. Let D, U denote a 2k-wise independent
distribution and a uniform distribution over {0, 1}n, respectively. Let T (a) denote a 2k-wise
independent distribution over [a]n, and let distribution T be defined as Ti = 1{T

(a)
i

=1} for all
i ∈ [n]. Then

|E[B(U)] − E[B(D + T ∧ U)]| ≤ n · (1 − 1/a)k/2.

Since the class of permutation BPs is closed under restrictions, we can iteratively apply
Theorem 10 to it with k = log(n) and a = 2. The immediate consequence is that we get a
PRG for unordered unbounded-width permutation branching programs.

▶ Corollary 11 (Restating Theorem 4). For all integers n and ε > 0, there is an explicit
ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O(log n · log2(n/ε))

that fools unordered unbounded-width permutation branching programs with a single accept
state.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:7

However, when it comes to regular branching programs, this class is no longer closed under
restrictions. Hence we can only apply Theorem 10 once and set k = Õ(

√
n) and a = Õ(

√
n).

It remains an interesting open problem to apply iterative restriction for unbounded-width
regular branching programs.

▶ Corollary 12 (Restating Theorem 5). For all integers n and ε > 0, there is an explicit
ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O

((√
n log

(n

ε

)
+ log

(
1
ε

))
· log n

)
that fools unordered unbounded-width regular branching programs with a single accept state.

We will prove Theorem 10 in Subsection 3.1 and Subsection 3.2. In Subsection 3.3, we
prove Corollary 11 and Corollary 12.

3.1 Fourier Decomposition of Regular BPs
Recall that Vi is the set of nodes in the i-th level of our branching program. s ∈ V0 is the
starting point and t ∈ Vn is the unique accepting state. x ∈ {0, 1}n is the input to our
branching program B. In order to work with {−1, 1} basis, we let yi = (−1)xi for all i ∈ [n].

For any two nodes a ∈ Vi and b ∈ Vj . We define the indicator Pa,b : {−1, +1}n → {0, 1},

Pa,b(y) =
{

1 Starting from a, we reach at node b on inputs xi+1, . . . , xj ;
0 Otherwise.

Its Fourier expansion is as follows:

Pa,b(y) =
∑

α⊆{i+1,i+2,...,j}

P̂a,b(α) · χα(y)

where the Fourier characters are defined as

χα(y) =
∏
i∈α

yi.

This naturally extends Pa,b to Rn → R.
Furthermore, we define

P̄
[k]
a,b(y) =

∑
α⊆{i+1,i+2,...,j}

|α|=k, j∈α

P̂a,b(α) · χα(y)

which is the sum all the degree k terms that contain yj .
We also define

P
(k)
a,b (y) =

∑
α⊆{i+1,i+2,...,j}

|α|=k, i+1∈α

P̂a,b(α) · χα(y)

which is the sum all the degree k terms that contain yi+1.

▶ Fact 13. Let D, T, U be the distributions defined in Theorem 10, and let G be a distribution
defined as

Gi =
{

(−1)Di Ti = 0,

0 Ti = 1.
∀i ∈ [n].

Then, we have E[B(U)] = P̂s,t(∅) and E[B(D + T ∧ U)] = Ey∼G[Ps,t(y)].

ICALP 2023

39:8 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Proof. Notice that when yi = (−1)xi for all i, B(x) = Ps,t(y). The first fact holds because
for all α ̸= ∅, we have Ey∼U({±1}n)[χα(y)] = 0. Hence E[B(U)] = Ey∼U({±1}n)[Ps,t(y)] =
P̂s,t(∅).

For the second fact, conditioned on an instantiation of T , we define an intermediate
distribution G′ as

G′
i =

{
(−1)Di Ti = 0,

(−1)Ui Ti = 1.
.

we know that E[B(D + T ∧ U)] = Ey∼G′ [Ps,t(y)].

When Ti = 1, we have Ey∼G′ [yi | Ti = 1] = Ey∼G[yi | Ti = 1] = 0 since yi is sampled
uniformly and independently from {±1}.
When Ti = 0, we always have Gi = G′

i = (−1)Di .
Hence for all α, we know that

Ey∼G′ [χα(y)] = Ey∼G′

[∏
i∈α

yi

]
= ET

∏
i∈α

Ti=1

Ey∼G′ [yi | Ti = 1] · Ey∼G′

∏
i∈α

Ti=0

yi

∣∣∣∣∣∣∣ T

= ET

∏
i∈α

Ti=1

Ey∼G [yi | Ti = 1] · Ey∼G

∏
i∈α

Ti=0

yi

∣∣∣∣∣∣∣ T

 = Ey∼G[χα(y)].

As a result, Ey∼G′ [Ps,t(y)] = Ey∼G[Ps,t(y)]. This finishes the proof. ◀

3.2 Bounding the Error
In the error analysis, we follow the approach of Forbes and Kelley [8]. By Fact 13, the result
we wish to prove is equivalent to∣∣∣Ey∼G[Ps,t(y)] − P̂s,t(∅)

∣∣∣ ≤ n · (1 − 1/a)k/2.

In the analysis of [8], they considered the decomposition,

Lk(y) =
∑

α⊆{1,2,...,n}
0<|α|<k

P̂s,t(α) · χα(y),

Ps,t(y) − P̂s,t(∅) = Lk(y) +
n∑

i=1

∑
m∈Vi

P̄ [k]
s,m(y) · Pm,t(y).

Here Lk(y) are the low-degree terms, and P̄
[k]
s,m(y) · Pm,t(y) are the terms that reaches degree

k exactly at node m ∈ Vi. The intuition is that the 2k-wise independent distribution D fools
Lk(y) while the high-degree terms are fooled by T ∧ U .

However, in order to work for unbounded-width regular branching programs, we have to
consider a different decomposition. Let Lk(y) be the same as before. We have

Ps,t(y) − P̂s,t(∅) = Lk(y) +
n∑

i=1

∑
m∈Vi

Ps,m(y) · P
(k)
m,t(y).

Observe that we are using P
(k)
m,t(y) instead of P̄

[k]
m,t(y). The benefit of this decomposition is

that now for all y, we have∑
m∈Vi

Ps,m(y)2 ≤ 1,

L. Chen, X. Lyu, A. Tal, and H. Wu 39:9

since from s only one state m can be reached under input y. In contrast, in the original
decomposition,

∑
m∈Vi

Pm,t(y)2 could be very large. This difference will be essential in our
analysis.

Now we are ready to prove Theorem 10.

Proof of Theorem 10. By our decomposition, we know∣∣∣Ey∼G[Ps,t(y)] − P̂s,t(∅)
∣∣∣ ≤ |Ey∼G[Lk(y)]| +

n∑
i=1

∑
m∈Vi

∣∣∣Ey∼G

[
Ps,m(y) · P

(k)
m,t(y)

]∣∣∣ . (1)

Since G is k-wise independent, we know Ey∼G [Lk(y)] = 0. Now we bound the second term.
We will need the following fact: For any two (not necessarily independent) sequences of
random variables {fm}m∈Vi , {gm}m∈Vi , we have

E
[∑

m∈Vi

fmgm

]
≤ E

[∑
m∈Vi

f2
m

]1/2

E
[∑

m∈Vi

g2
m

]1/2

.

This is the Cauchy-Schwarz Inequality for random variables.
Let fm = |Ps,m(y)| and gm = |P (k)

m,t(y)|. We have

∑
m∈Vi

∣∣∣Ey∼G

[
Ps,m(y)P (k)

m,t(y)
]∣∣∣ ≤ Ey∼G

[∑
m∈Vi

(Ps,m(y))2

]1/2

Ey∼G

[∑
m∈Vi

P
(k)
m,t(y)2

]1/2

We bound these two separately.
We first bound Ey∼G

[∑
m∈Vi

P
(k)
m,t(y)2

]
. Suppose

P
(k)
m,t(y) =

∑
α

cαχα(y).

By 2k-wise independence of G, we know for all α ̸= β and |α| + |β| ≤ 2k, the cross term

Ey∼G[χα(y)χβ(y)] = 0.

For the square terms, notice that for all Ti = 1, we have yi = 0. When Ti = 0, yi = (−1)Di .
Ti = 1 happens with probability 1/a. D, T are 2k-wise independent. Hence when |α| = k,
we have4

Ey∼G[χα(y)2] = Ey∼D[χα(y)2 · 1{∀i∈α,Ti=0}]

=
(

1 − 1
a

)k

· Ey∼U [χα(y)2]

=
(

1 − 1
a

)k

.

Hence,

Ey∼G

[(
P

(k)
m,t(y)

)2
]

= Ey∼G

∑
|α|=k

c2
αχα(y)2

=
(

1 − 1
a

)k ∑
|α|=k

c2
α ≤

(
1 − 1

a

)k

Ey∼U

[
(Pm,t(y))2

]
.

4 For brevity, we use y ∼ U to mean that y ∼ U({−1, 1}n).

ICALP 2023

39:10 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

The last step follows from Parseval identity. Summing over all m ∈ Vi for a fixed i, we get

∑
m∈Vi

Ey∼G

[(
P

(k)
m,t(y)

)2
]

≤
(

1 − 1
a

)k ∑
m∈Vi

Ey∼U

[
(Pm,t(y))2

]
=
(

1 − 1
a

)k ∑
m∈Vi

Ey∼U [Pm,t(y)] =
(

1 − 1
a

)k

.

The last step is because now y ∼ U , and the branching program is regular so that∑
m∈Vi

Ey∼U [Pm,t(y)] = 1.5
On the other hand, as we mentioned, for any y, s can reach a single vertex in Vi, hence∑

m∈Vi

Ey∼G

[
Ps,m(y)2] ≤ 1.

Putting these two together, we get

|Ey∼G[Ps,t(y)] − P̂s,t(∅)| ≤
n∑

i=1
Ey∼G

[∑
m∈Vi

(Ps,m(y))2

]1/2

· Ey∼G

[∑
m∈Vi

P
(k)
m,t(y)2

]1/2

≤
(

1 − 1
a

)k/2
n. ◀

3.3 Applications
Finally, we prove Corollary 11 and Corollary 12 in the rest of this section.

Proof of Corollary 11. Let {D(i)}i∈[ℓ], {T (i)}i∈[ℓ] be ℓ independent copies of 2k-wise inde-
pendent dsitributions defined in Theorem 10 with k = log

(
n
ε

)
+ log log(n

ε) + 1 and a = 2.
We construct pseudorandom distributions G(0), G(1), . . . , G(ℓ) with ℓ = Θ(log(n/ε)). We

let G0 be the set of all one strings in {0, 1}n and set

G(i+1) = D(i) + T (i) ∧ G(i).

Let branching program B(i) be defined as B(ℓ) = B and

B(i)(x) = B(i+1)(D(i) + T (i) ∧ x).

Since any restriction of a permutation branching program is still a permutation branching
program. For any realization of D(i) and T (i), Theorem 10 says that,∣∣∣E[B(i+1)(U)] − E[B(i)(U)]

∣∣∣ =
∣∣∣Ex∼D(i)+T (i)∧U [B(i)(x)] − E[B(i)(U)]

∣∣∣
≤
(

1 − 1
2

)log(n
ε)+log log(n

ε)+1
n ≤ ε/2

log(n
ε) .

From a standard Chernoff bound, with probability at least 1 − ε/2, T (1) ∧ T (2) ∧ · · · ∧ T (ℓ) =
0000 . . . 0. This implies that

∣∣E[B(0)(U)] − Ex∼G(0) [B(0)(x)]
∣∣ ≤ ε/2 since B(0) does not

depend on its input when T (1) ∧ T (2) ∧ · · · ∧ T (ℓ) = 0000 . . . 0.

5 This is the only place we use the regularity of the program.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:11

On the other hand, by definition, we know EB(0),x∼G(0) [B(0)(x)] = Ex∼G(ℓ) [B(x)]. Hence
a hybrid argument proves that

|Ex∼G(ℓ) [B(x)] − E[B(U)]| =
∣∣Ex∼G(0) [B(0)(x)] − E[B(0)(U)]

∣∣+
∣∣E[B(0)(U)] − E[B(ℓ)(U)]

∣∣
≤ ε/2 +

ℓ∑
i=1

∣∣E[B(i−1)(U)] − E[B(i)(U)]
∣∣

≤ ε. ◀

Proof of Corollary 12. For regular branching programs, let D and T be 2k-wise independent
distributions defined in Theorem 10 with k = 2

√
n log

(
n
ε

)
+ log

(1
ε

)
+ 2 and a =

√
n

log(n
ε) .

We let D′ be another independent copy of D.
We construct pseudorandom distribution G = D + T ∧ D′. From Theorem 10, we know

that

|Ex∼D+T ∧U [B(x)] − E[B(U)]| ≤ n ·
(

1 − 1
a

)k

≤ ε/2.

Let N = |{i | Ti = 1}|. Since T is 2k-wise independent,

E[Nk] ≤
∑

i1,i2,...,ik∈[n]

Pr[Ti1 = Ti2 = · · · = Tik
= 1]

= nk · Pr
i1,i2,...,ik∈[n]

[Ti1 = Ti2 = · · · = Tik
= 1]

= nk ·
k∏

j=1
Pr[Tij

= 1 | Ti1 = Ti2 = · · · = Tij−1 = 1]

≤ nk ·
k∏

j=1
(Pr[ij ∈ {i1, i2, . . . , ij−1}] + Pr[Tij = 1 | ij ̸∈ {i1, i2, . . . , ij−1}])

≤ nk ·
(

k

n
+ 1

a

)k

From Markov inequality, we get that Pr[N ≥ 2k] ≤ 2 · (1/2)k + 2 · (n/(2ak))k. By the 2k

wise independence of D′,

|Ex∼G[B(x)] − Ex∼D+T ∧U [B(x)]| ≤ 2 · (1/2)k + 2 · (n/(2ak))k ≤ ε/2.

The seed length is 3k(log n + log a) = O
((√

n log
(

n
ε

)
+ log

(1
ε

))
· log n

)
. ◀

▶ Remark 14. We believe the seed length in Corollary 11 can be improved to O(log2 n·log(n/ε))
following the sharper analysis in Section 7.1 of [8]. However, for the simplicity of presentation,
we choose to only present it for the seed length of O(log n · log2(n/ε)).

4 PRGs for Adaptive Branching Programs

In this section, we prove our results for adaptive roBPs.

4.1 Decomposition of roBPs
As before, We use B : {0, 1}n → {0, 1} to denote the adaptive branching program we are
analyzing and use P : {±1}n → {0, 1} to denote the function computed by BP over {±1}
basis. For every input x ∈ {0, 1}n, define y ∈ {±1}n as yi = (−1)xi for every i ∈ [n], and

ICALP 2023

39:12 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

define P (y) = B(x). For any state v in the program, we denote by posv the index of the
variable queried on state v. We have two outgoing edges from v, one marked with xposv

= 0
and another with xposv

= 1.
For any state v in the program, we denote by Prev the set of variables read in any path

from the starting state to v, and by Postv the set of variables read in any path from v to the
accepting state. We observe that Prev and Postv are disjoint as otherwise there exists a path
from the starting state to the accepting state (and passes through v) and reads the same
variable twice.

Formally, suppose there exists a vertex v and an index i ∈ Prev ∩ Postv. We choose a
computation path π from starting vertex v0 to v that queries the set S ⊆ [n] of variables,
and a path π′ from v to the final layer that queries the set T ⊆ [n], where i ∈ S.

We can construct an input x ∈ {0, 1}n that guides the program to follow the computational
path of π ◦ π′. Each time the program reads a variable xj , if xj has been queried before, this
clearly violates the read-once requirement. Otherwise, we can set xj to make the program
follow the path of π ◦ π′. However, since know xi is queried at least twice along the path,
there must be some point, where the “read-once” requirement is violated.

Define P : {−1, 1}n → {0, 1} as the function computed by the program. For a state v

in the branching program, we denote by P→v the event that the path from the starting
state passes through v. Note that P→v can be described as a branching program on the
variables Prev. We denote by Pv→ the sub-program of P starting at v. Note that Pv→ can
be described as a branching program on the variables Postv.

4.1.1 Fourier Decomposition for Adaptive BP
Recall that the Fourier representation of any function f : {±1}n → R is

∑
α⊆[n] f̂(α)χα(y)

where χα(y) =
∏

i∈α yi and f̂(α) = Ey∼{±1}n [f(y) · χα(y)]. Furthermore, we have that
Ey∼{±1}n [f(y)2] =

∑
α f̂(α)2 and Ey∼{±1}n [f(y)] = f̂(∅).

Let k ∈ N. Let α be a set of size ℓ > k. We express P̂ (α) as a sum of products of Fourier
coefficients, where the Fourier coefficients come from sub-programs of B. In particular, we
have the following claim.

▷ Claim 15. We have

P̂ (α) =
∑

v:|Prev∩α|=k,posv∈α

P̂→v(α ∩ Prev) · P̂v→(α ∩ Postv).

Proof. By definition

P̂ (α) = Ey∼{±1}n [P (y) · χα(y)] = Ey∼{±1}n [P (y) · 1{B on y reads all the variables in α} · χα(y)]

where the second equality holds due to the following reason. For any β ⊆ α let Xβ be the set
of strings on which the program reads β and doesn’t read α \ β. We note that if x ∈ Xβ for
some set β which is a strict subset of α, then also x′ := x ⊕ ei for i ∈ α \ β is in Xβ , since
the path for both x and x′ will be the same (as the path doesn’t query xi). We see that the
inputs in Xβ can be partitioned to pairs, and each pair contributed 0 to Ey∼{±1}n [χα(y)].

For any x for which B(x) reads all the variables in α, there is a unique state v along the
path such that B reads exactly k variables in α before v, and B reads the k + 1 variable
from α immediately on the edge that goes out from v.

Thus, we can partition these paths according to the state v. We observe that v is the
state immediately before reading the k + 1 variable in α if |Prev ∩ α| = k and if posv ∈ α.
This gives

L. Chen, X. Lyu, A. Tal, and H. Wu 39:13

P̂ (α) = Ey∼{±1}n

 ∑
v:|Prev∩α|=k,posv∈α

P→v(y)Pv→(y) · χα(y) · 1{B reads all the variables in α}

=

∑
v:|Prev∩α|=k,posv∈α

Ey∼{±1}n

[
P→v(y)Pv→(y) · χα(y)] · 1{B reads all the variables in α}

]
=

∑
v:|Prev∩α|=k,posv∈α

Ey∼{±1}n [P→v(y)Pv→(y) · χα(y)]

where the last equality follows from the same argument as before by observing that
P→v(y)Pv→(y) is equivalent to the indicator of a program B′ that checks that we passed
through v and reached the accept state of B.

Now, for every state v : |Prev ∩ α| = k, posv ∈ α, we get

Ex[P→v(y)Pv→(y) · χα(y)]
= Ey∈{0,1}Prev [P→v(y)χα∩Prev

(y)] · Ey∈{0,1}Postv [Pv→(y)χα∩Postv
(y)]

= P̂→v(α ∩ Prev) · P̂v→(α ∩ Postv),

which completes the proof. ◁

By summing over all sets of size larger than k we get∑
α:|α|>k

P̂ (α)χα(y)

=
∑

α,v:|Prev∩α|=k,posv∈α

P̂→v(α ∩ Prev)χα∩Prev (y) · P̂v→(α ∩ Postv)χα∩Postv (y)

=
∑

v

 ∑
α′:α′⊆Prev,|α′|=k

P̂→v(α′)χα′(y)

 ·

 ∑
α′′:α′′⊆Postv,posv∈α′′

P̂→v(α′′)χα′′(y)

 .

For each v we denote

Hv(y) :=
∑

α′:α′⊆Prev,|α′|=k

P̂→v(α′)χα′(y)

and

Gv(y) :=
∑

α′′:α′′⊆Postv,posv∈α′′

P̂→v(α′′)χα′′(y).

We observe that Gv(y) is the posv-Laplacian6 of Pv→. As such, Gv(y) is a bounded function,
i.e., |Gv(y)| ≤ 1 for all y ∈ {±1}n.

▶ Lemma 16. For any read-once adaptive branching program B, let P be the function
computed by B. We have

P (y) = E[P (U)] + L(y) +
∑
v∈V

Hv(y) · Gv(y)

where L(y) =
∑

1≤|α|≤k P̂ (α)χα(y).

6 Given a function f : {±1}n → R and index i ∈ [n]. The i-Laplacian of f is defined as a new function
Lif(y) := f(y)−f(y+ei)

2 , where ei denotes the i-th unit vector. Observe that Lif(y) =
∑

S:i∈S
f̂(S)χS(y).

ICALP 2023

39:14 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Proof. Any function can be written in the Fourier representation, i.e.

P (y) =
∑

α⊆[n]

P̂ (α) · χα(y).

Now, we can partition this sum to the sum of sets of size at least k and the sum of sets of
size smaller than k,

P (y) = E[P] + L(y) + H(y)

where

E[P] = P̂ (∅), L(y) =
∑

1≤|α|≤k

P̂ (α)χα(y) and H(y) =
∑

|α|>k

P̂ (α)χα(y).

We decompose H(y) by the above decomposition. ◀

4.2 Forbes-Kelley PRG fools Adaptive roBP
In this section, we prove that the Forbes-Kelley PRG fools adaptive roBP. First, the following
lemma is the analog of [8, Lemma 6.3] for adaptive roBP.

▶ Lemma 17. Let B be a read-once adaptive branching program of size s. Suppose D, T,

and U are independently drawn from a 2(k + 1)-wise independent distribution, a (k + 1)-wise
independent distribution, and the uniform distribution over {±1}n, respectively. Then,

|E[P (U)] − E[P (D + T ∧ U)]| ≤ s · 2−k/2.

Since we are working over ±1 basis, T ∧U is a coordinate-wise operation defined as (T ∧U)i =
−1 if and only if Ti = Ui = −1, and D +(T ∧U) is defined as (D +(T ∧U))i = Di × (T ∧U)i.

Proof. We use the Decomposition Lemma (Lemma 16):

|E[P] − E[P (D + T ∧ U)]| ≤ |E[L(D + T ∧ U)]| +
∑
v∈V

|E[(Hv · Gv)(D + T ∧ U)]|. (2)

The first summand in the RHS of Eq. (2) equals zero since D + T ∧ U fools any χα for
|α| ≤ k. Namely,

E[L(D + T ∧ U)] =
∑

0<|α|≤k

P̂ (α) · E[χα(D + T ∧ U)] = 0.

We bound the second summand in the RHS of Eq. (2) term by term. For each v ∈ V :

|ED,T,U [(Hv · Bv→)(D + T ∧ U)]|
≤ ED,T [|EU [(Hv · Bv→)(D + T ∧ U)]|]
= ED,T [|EU [Hv(D + T ∧ U)]| · |EU [Gv(D + T ∧ U)]|] (3)
≤ ED,T [|EU [Hv(D + T ∧ U)]|] (4)

≤ 2−k/2. (Claim 18)

Here, (3) follows by observing that, for every fixed T and D, Hv(D+T ∧U) and Gv(D+T ∧U)
are independent. (4) is due to that Bv→ is bounded. Finally, the last line utilizes a claim
that is to be introduced and proved next.

Overall, we get

|E[B(U)] − E[B(D + T ∧ U)]| ≤
∑

i,v∈Vi

2−k/2 = s · 2−k/2,

as desired. ◀

L. Chen, X. Lyu, A. Tal, and H. Wu 39:15

The following claim has been used in the proof of Lemma 17. We show its proof now.

▷ Claim 18. Let Hv : {±1}m → R be a function whose Fourier spectrum is k-homogeneous,
i.e.,

Hv(y) =
∑

α⊆[m]:|α|=k

Ĥv(α) · χα(y).

Let D, T, and U denote a 2k-wise independent distribution, a k-wise independent distribution,
and uniform distribution over {0, 1}n. Then,

ED,T [|EU [Hv(D + T ∧ U)]|] ≤ 2−k/2 ·
√∑

α

Ĥv(α)2

Proof. We verify the claim by direction calculation.

(ED,T [|EU [Hv(D + T ∧ U)]|])2

≤ ED,T

[
EU [Hv(D + T ∧ U)]2

]
= ED,T,U,U ′ [Hv(D + T ∧ U) · Hv(D + T ∧ U ′)]

=
∑
α,α′

Ĥv(α) · Ĥv(α′) · ED,T,U,U ′ [χα(D + T ∧ U) · χα′(D + T ∧ U ′)]

=
∑
α,α′

Ĥv(α) · Ĥv(α′) · ED[χα(D)χα′(D)] · ET,U,U ′ [χα(T ∧ U) · χα′(T ∧ U ′)]

=
∑

α

Ĥv(α)2 · ET,U,U ′ [χα(T ∧ U) · χα(T ∧ U ′)] +
∑

α̸=α′

|Ĥv(α)| · |Ĥv(α′)| · 0

(D is 2k-wise)

=
∑

α

Ĥv(α)2 · ET [1{α∩T =∅}]

= 2−k ·
∑

α

Ĥv(α)2. (T is k-wise independent, |α| = k)

◁

Finally, let us remark that we can also use δ-almost k-wise independent distributions
T, D to construct D + T ∧ U . Doing an analysis similar as we have done for Claim 18, one
can show that

|E[P (U)] − E[P (D + T ∧ U)]| ≤ s ·

(
√

γ + 2−k/2 + √
γ

(∑
α

|Ĥ(α)|
))

.

The argument is also similar to the one done in [8, Lemma 7.2]. We omit the detail here.
Note that, if we can prove a good upper bound of

∑
α |Ĥ(α)|, we can hope to construct

D, T using γ-almost k-wise independent distributions with larger γ. Recall the seed length
to sample a γ-almost distribution is O(log(1/γ) + k + log log(n)), which is smaller than the
seed length to sample a perfect k-wise independent distribution by a log(n) factor for large γ

(e.g., when γ ≈ 2−k).

4.2.1 PRG for Adaptive roBP
Given Lemma 17, we prove Theorem 7 now.

ICALP 2023

39:16 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Proof of Theorem 7. The proof is nearly identical to that of Corollary 11.
Let {D(i)}i∈[ℓ], {T (i)}i∈[ℓ] be ℓ independent copies of 2k-wise independent dsitributions

defined in Lemma 17 with k = log
(

n
ε

)
+ log log(n

ε) + 1.
We construct pseudorandom distributions G(0), G(1), . . . , G(ℓ) with ℓ = Θ(log(n/ε)). We

let G0 be the trivial PRG that outputs 1n ∈ {0, 1}n. Then we set

G(i+1) = D(i) + T (i) ∧ G(i).

Define a branching program B(i) as B(ℓ) = B and

B(i)(x) = B(i+1)(D(i) + T (i) ∧ x).

Note that B(i) is a random variable depending on D(i) and T (i). Since the restriction of
an adaptive roBP is still a roBP. For any realization of D(i) and T (i), Lemma 17 says that,∣∣∣E[B(i+1)(U)] − E[B(i)(U)]

∣∣∣ ≤ ε/2
log(n

ε) .

From a standard Chernoff bound, with probability at least 1 − ε/2, T (1) ∧ T (2) ∧ · · · ∧ T (ℓ) =
0000 . . . 0. Conditioning on this event, B(0) does not depend on its input, implying that∣∣E[B(0)(U)] − Ex∼G(0) [B(0)]

∣∣ ≤ ε/2 since B(0).
On the other hand, by definition, we know EB(0),x∼G(0) [B(0)(x)] = Ex∼G(ℓ) [B(x)]. Hence

a hybrid argument proves that

|Ex∼G(ℓ) [B(x)] − E[B(U)]| =
∣∣∣Ex∼G(0) [B(0)(x)] − E[B(0)(U)]

∣∣∣+
∣∣∣E[B(0)(U)] − E[B(ℓ)(U)]

∣∣∣
≤ ε/2 +

ℓ∑
i=1

∣∣∣E[B(i−1)(U)] − E[B(i)(U)]
∣∣∣

≤ ε,

completing the proof. ◀

References
1 AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron Sidford,

and Salil P. Vadhan. High-precision estimation of random walks in small space. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1295–1306. IEEE, 2020.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

3 Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. Hitting sets
for regular branching programs. In Shachar Lovett, editor, 37th Computational Complexity
Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
3:1–3:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

4 Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan. Pseudorandomness for
read-once formulas. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 240–
246. IEEE Computer Society, 2011.

5 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM J. Comput., 43(3):973–986, 2014.

6 Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching
programs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 30–39. IEEE Computer Society,
2010.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:17

7 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudor-
andomness for unordered branching programs through local monotonicity. In STOC, pages
363–375. ACM, 2018.

8 Michael A Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 946–955. IEEE, 2018.

9 Anat Ganor and Ran Raz. Space pseudorandom generators by communication complexity
lower bounds. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, volume 28 of
LIPIcs, pages 692–703. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

10 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better
pseudorandom generators from milder pseudorandom restrictions. In Proc. 53rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 120–129. IEEE, 2012.

11 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM J. Comput., 47(2):493–523, 2018.

12 William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for unbounded-
width permutation branching programs. In James R. Lee, editor, 12th Innovations in Theoret-
ical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume
185 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

13 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

14 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrinkage.
In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
111–119. IEEE, 2012.

15 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proc. 26th Annual ACM Symposium on Theory of Computing (STOC), pages
356–364, 1994.

16 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In Proc. 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 220–229, 1997.

17 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

18 Chin Ho Lee, Edward Pyne, and Salil P. Vadhan. Fourier growth of regular branching
programs. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022,
September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference),
volume 245 of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

19 Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudorandom
generators for read-once polynomials. Theory of Computing, 16:1–50, 2020.

20 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 626–637. ACM, 2019.

21 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM Journal of Computing, 22(4):838–856, 1993.

22 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

23 Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

ICALP 2023

39:18 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

24 Edward Pyne and Salil P. Vadhan. Limitations of the impagliazzo-nisan-wigderson pseudoran-
dom generator against permutation branching programs. In Chi-Yeh Chen, Wing-Kai Hon,
Ling-Ju Hung, and Chia-Wei Lee, editors, Computing and Combinatorics – 27th International
Conference, COCOON 2021, Tainan, Taiwan, October 24-26, 2021, Proceedings, volume 13025
of Lecture Notes in Computer Science, pages 3–12. Springer, 2021.

25 Edward Pyne and Salil P. Vadhan. Pseudodistributions that beat all pseudorandom generators
(extended abstract). In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of
LIPIcs, pages 33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

26 Omer Reingold, Thomas Steinke, and Salil P. Vadhan. Pseudorandomness for regular branch-
ing programs via fourier analysis. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus
Jansen, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques – 16th International Workshop, APPROX 2013,
and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013.
Proceedings, volume 8096 of Lecture Notes in Computer Science, pages 655–670. Springer,
2013.

27 Michael E. Saks and Shiyu Zhou. BP hspace(s) subseteq dspace(s3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

28 Thomas Steinke, Salil P. Vadhan, and Andrew Wan. Pseudorandomness and fourier-growth
bounds for width-3 branching programs. Theory Comput., 13(1):1–50, 2017.

29 Yoav Tzur. Notions of weak pseudorandomness and gf (2n)-polynomials. Master’s thesis,
Weizmann Institute of Science, 2009.

30 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science.
Now Publishers, 2012.

A Fourier Growth of Constant-Width Adaptive roBP

In this appendix, we show that the Fourier growth of width-w adaptive roBP is upper
bounded by that of width-2w oblivious roBP. As a corollary, we can use almost k-wise
independent primitives in the construction of Forbes-Kelley PRG, which saves the seed length
from O(log3(n/ε)) to Õ(w log2(n/ε)) when w is small.

A.1 Reducing Adaptive roBP to Oblivious roBP
We start by proving the following lemma.

▶ Lemma 19. Suppose B : {0, 1}n → {0, 1} is computed by a width-w adaptive roBP. Then
there is a width-2w oblivious roBP B′ : {0, 1}n2 → {0, 1} such that the following inequality
holds for every L ≥ 1,∑

α⊆[n]:|α|=L

|B̂(α)| ≤
∑

α⊆[n2]:|α|=L

|B̂′(α)|.

Proof. For an input x ∈ {0, 1}n2 to B′, we partition the bits into chunks of length n. Namely,

x = ((x1
1, . . . , xn

1), (x1
2, . . . , xn

2), . . . , (x1
n, . . . , xn

n)).

For each i ∈ [n], we will think of (xi
j)j∈[n] as n duplicate bits that equal to the i-th input bit

to the original program B. Namely, consider a mapping σ : {0, 1}n → {0, 1}n2 as

σ(z) = ((z1, z2, . . . , zn), . . . , (z1, z2, . . . , zn)).

L. Chen, X. Lyu, A. Tal, and H. Wu 39:19

Constructing the oblivious program. We construct a width-2w oblivious roBP B′ such
that B(x) = B′(σ(x)). To illustrate, in the following, we use x = (x1, . . . , xn) to denote
the input of B, and z = (z1

1 , . . . , zn
n) to denote the input of B′. Note that if z = σ(x), then

zj
i = xj for every i, j,

We describe the construction now. Note that B′ involves n2 + 1 layers and n2 transitions.
For each i ∈ [n], We use the ((i − 1)n + 1)-th to the (in)-th transitions of B′ to implement
the i-th transition of B.

Recall that the (i − 1)-th (resp. i-th) layer of B contains states Vi−1 (resp. Vi). Write
Vi−1 = {v1, . . . , vw} and Vi = {u1, . . . , uw}. We construct V i−1 = {v′

1, . . . , v′
w, u′

1, . . . , u′
w}.

Identify v′
1, . . . , v′

w with v1, . . . , vw, and u′
1, . . . , u′

w with u1, . . . , uw. Recall that each vertex
vj reads one input bit xposvj

from x.

We make n + 1 copies of V i−1, denoted by V
0
i−1, . . . , V

n

i−1. Next, we build a sub-program
from V

0
i−1 to V

n

i−1, using inputs z1
i , . . . , zn

i . For each t ∈ [n], we add edges from V
t−1
i−1 to

V
t

i−1. We let all states of V
t−1
i−1 read the variable zt

i (which is supposed to be xt if σ(x) = z).
For every vj such that posvj

= t, suppose vj has two out edges to uj0 , uj1 with label 0 and 1.
We add two edges from v′

j (in V
t−1
i−1) to u′

j0
and u′

j,1 (in V
t

i−1) with label 0 and 1. For every vj

where posvj
̸= t and every uj , the state reads the input and simply ignores it. (operationally,

this means we add two edges from the current state to the corresponding state in the next
layer.)

Now we have n sub-programs: for each i ∈ [n], we have a subprogram from V
0
i−1 to

V
n

i−1. For each i ∈ [n], observe that both the “u”-states of V
n

i−1 and the “v”-states of V
0
i

are identified with states in Vi. We naturally glue each pair of corresponding states together.
We also glue “v”-states of V

n

i−1 and “u”-states of V
0
i arbitrarily. This way, we construct a

larger branching program of length n2 (from V
0
1 to V

n

n) and width 2w. It is straightforward
to verify that B(x) = B′(σ(x)).

Calculating Fourier weights. Now we verify that B′ satisfies the lemma statement. Consider
the Fourier spectrum of B′:

B′(z) =
∑

α⊆[n2]

B̂′(α)χα(z).

We claim that, for every α ⊆ [n2] such that there exists {k1n + i, k2n + i} ⊆ α for some
k1 ̸= k2 and i, it must be the case that |B̂′(α)| = 0. Indeed, we have

B̂′(α) = Ez∼Un2 [χα(z) · B′(z)]. (5)

We observe that

B′(z) =
∑

π:accepting computation path
1[B′ on input z follows π].

Let zi
k1

, zi
k2

be the two variables associated with indices {k1n + i, k2n + i}. By the promise
that B is read-once, in any computation path π of B′, it cannot be the case that both zi

k1

and zi
k2

are used (i.e., at least one of them is ignored in the path). It follows that each path
contributes zero to (5). Consequently, B̂′(α) = 0.

Next, we have

B(x) = B′(σ(x)) =
∑

α⊆[n2]

B̂′(α)χα(σ(x)).

ICALP 2023

39:20 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

As we have shown, B̂′(α) is non-zero only when α does not contain two variables zi
k1

, zi
k2

in
the same group k. For every such α, χα(σ(x)) = χΠ(α)(x) where Π denotes the projection
of α onto [n]. Namely, Π(α)i = 1 if and only if αkn+i = 1 for some k ∈ [n]. It follows that
|α| = |Π(α)|. Finally, applying the triangle inequality gives∑

β⊆[n]:|β|=L

|B̂(β)| ≤
∑

α⊆[n2]:|α|=L

|B̂′(α)|,

as desired. ◀

A.2 Fourier Growth and Pseudorandomness
Chattopadhyay, Hatami, Reingold and Tal [7] proved the following Fourier growth bound for
width-w oblivious roBP.

▶ Theorem 20 ([7]). Suppose B : {0, 1}n → {0, 1} is computed by a width-w oblivious roBP.
Then, for every k ≥ 1, it holds that∑

α:|α|=k

|B̂(α)| ≤ O(log(nw))wk.

As a direct corollary from Lemma 19 and Theorem 20, we obtain the following Fourier
growth bound for width-w adaptive roBP.

▶ Corollary 21. Suppose B : {0, 1}n → {0, 1} is computed by a width-w adaptive roBP. Then,
for every k ≥ 1, it holds that∑

α:|α|=k

|B̂(α)| ≤ O(log(nw))2wk.

Similarly as done by Forbes and Kelley [8], one can use the Fourier growth bound to
improve the seed length for small-width adaptive roBP, and obtain the following corollary.

▶ Corollary 22 (Restating Theorem 8). For every n, w ≥ 1 and ε > 0, there is an
explicit ε-PRG G : {0, 1}s → {0, 1}n fooling width-w adaptive roBPs with seed length
s = Õ(w log2(n/ε))).

	1 Introduction
	1.1 Our Results
	1.1.1 Unordered and Unbounded-width roBPs
	1.1.2 Adaptive roBPs

	2 Preliminaries
	3 PRGs for Unbounded-width Branching Programs
	3.1 Fourier Decomposition of Regular BPs
	3.2 Bounding the Error
	3.3 Applications

	4 PRGs for Adaptive Branching Programs
	4.1 Decomposition of roBPs
	4.1.1 Fourier Decomposition for Adaptive BP

	4.2 Forbes-Kelley PRG fools Adaptive roBP
	4.2.1 PRG for Adaptive roBP

	A Fourier Growth of Constant-Width Adaptive roBP
	A.1 Reducing Adaptive roBP to Oblivious roBP
	A.2 Fourier Growth and Pseudorandomness

