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Abstract
The ground state energy and the free energy of Quantum Local Hamiltonians are fundamental
quantities in quantum many-body physics, however, it is QMA-Hard to estimate them in general. In
this paper, we develop new techniques to find classical, additive error product-state approximations
for these quantities on certain families of Quantum k-Local Hamiltonians. Namely, those which are
either dense, have low threshold rank, or are defined on a sparse graph that excludes a fixed minor,
building on the methods and the systems studied by Brandão and Harrow, Gharibian and Kempe,
and Bansal, Bravyi and Terhal.

We present two main technical contributions. First, we discuss a connection between product-
state approximations of local Hamiltonians and combinatorial graph property testing. We develop a
series of weak Szemerédi regularity lemmas for k-local Hamiltonians, built on those of Frieze and
Kannan and others. We use them to develop constant time sampling algorithms, and to characterize
the “vertex sample complexity” of the Local Hamiltonian problem, in an analog to a classical
result by Alon, de la Vega, Kannan and Karpinski. Second, we build on the information-theoretic
product-state approximation techniques by Brandão and Harrow, extending their results to the
free energy and to an asymmetric graph setting. We leverage this structure to define families of
algorithms for the free energy at low temperatures, and new algorithms for certain sparse graph
families.
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1 Introduction

The mean-field approximation is a popular heuristic in quantum many-body physics, in which
product-states are used as an ansatz for generic quantum states. The low-energy states of
quantum systems may be highly entangled objects, and possibly exponentially more complex
than simple (unentangled) product states. This often makes computing properties of these
low-energy states classically intractable. From a complexity-theoretic point of view, the
mean-field approach casts these quantum problems that are in the complexity class QMA
[34], into problems in NP, since product-states have a polynomial-size description and can
act as classical, efficiently verifiable certificates. However, in the absence of a hardness-of-
approximation result for QMA [1, 6, 2, 29] and assuming QMA̸=NP, it is generally unknown
if the ground states of quantum systems can even have “good” approximations with succinct
classical descriptions, let alone if we can compute or approximate them efficiently.

In this work, we develop a series of classical algorithms to efficiently find mean-field
approximations for quantum systems described by local Hamiltonians, and we develop new
techniques to show that good mean-field approximations exist for fairly general classes of
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20:2 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

these systems. A local Hamiltonian corresponds to a sparse matrix H ∈ Cdn×dn which is
exponentially large in the number n of quantum particles (or qudits), and can be described
as a sum over “local” terms H =

∑
e∈E he defined by some hypergraph G = ([n], E). H

is said to be k-local if each hyperedge e ∈ E is a k-tuple of vertices in [n], and is said to
have “bounded” interaction strengths if the operator norm ∥he∥∞ is at most a constant
independent of n for each hyperedge in E1.

It is well known that the existence of product-state approximations to H is very sensitive
to the structure of the underlying interaction graph G. In a seminal result, Brandão and
Harrow [15] proved that so long as H has bounded interaction strengths, and is defined
on a graph G of high degree or small expansion, then there exists a product state which
approximates the ground state energy of H up to an additive error ϵ ·m (scaling with the
number of edges or “interactions” m of H). Their results can be interpreted as rigorous proofs
of accuracy of the mean-field approximation to the ground state energy of certain systems,
and they opened the door to classical approximation schemes to find these “good” mean-field
solutions efficiently. One of the main focuses of this work is to relax certain assumptions
on the structure of the interaction graphs G, to extend the scope of their algorithms and
existence statements.

The second main focus of this work is to study the structure and classical computation of
properties of quantum systems in thermal equilibrium. The Helmholtz Free Energy F (β)
of a Quantum Local Hamiltonian H at a given temperature β−1 arises as an approximate
counting analog to the ground state energy, as it reveals the degeneracy of the ground state
(the number of QMA witnesses), the density of states of the Hamiltonian, as well as the
existence of phase transitions. Quantitatively, F (β) can be described as the optimum of a
maximum entropy program:

F (β) ≡ min
ρ≥0, Trρ=1

f(ρ) = min
ρ≥0, Trρ=1

Tr[Hρ] − S(ρ)/β (1)

where the optimizer ρ ∝ e−βH of the program above is called the Gibbs state of H. The
computational complexity, and in particular the hardness of approximation of F (β) is similarly
not comprehensively understood. While QMA-Hard to estimate in general due to a reduction
to the “low temperature” limit, and exactly computable in polynomial time using a #P
oracle [19], it would seem there is much to uncover regarding the computational tradeoffs
between error and temperature [16].

1.1 Our Main Contributions
In this section we overview our main contributions, which we present formally and in more
detail in section 2.2.

Rigorous Mean-Field Approximations and Guarantees in NP

Our first contributions concern improvements and extensions to the existence statements by
Brandão and Harrow [15]. Their methods had roots in the information-theoretic techniques
by [39] and [10], developed in the context of approximating CSPs using the Lasserre Heirarchy.
Informally, we show how to use their self-decoupling arguments to construct mixed states
which are tensor products of single-particle mixed states, which approximate the Free Energy
up to an additive error. We view these results as rigorous proofs of accuracy for the mean-field

1 Please refer to section 2.1 for more background on local Hamiltonians and Schatten norms.
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approximation to the Free Energy of Quantum Local Hamiltonians, and they imply that
approximating the Free Energy of dense Hamiltonians up to an extensive error (scaling with
the number of edges) is in NP.

▶ Theorem 1. Fix k, d = O(1), and an inverse temperature β. Let H =
∑
e∈E he be a

k-Local Hamiltonian on n qudits of local dimension d, and m interactions each of strength
∥he∥∞ ≤ 1. Then, there exists a product state σβ such that

F ≤ f(σβ) = Tr[Hσβ ] − S(σβ)/β ≤ F +O(n
k−1

3 m2/3) (2)

That is, σβ is an O(n k−1
3 m2/3) additive error approximation to the Free Energy of H.

Note that when k = 2 (Hamiltonians on Graphs), the error becomes O(n1/3m2/3) =
O(m/D1/3), which recovers Brandão and Harrow’s [15] result in terms of the average degree
D = m/n of the graph.

We emphasize two important points about the result above. First and foremost, the
existence of approximations to F (β) in NP implies that we can now use classical approximation
schemes to search for optimal mean-field approximations to the free energy, and they will
also be good additive approximations to the “entangled value” of F (β). As we later discuss,
this enables us to import practically all the previous machinery of approximation schemes for
the ground state energy, to the Free Energy, developing novel algorithms for many quantum
systems and improving on recent results by Bravyi et al. [16].

The second point of emphasis is that the result above holds at all temperatures β−1. In
this fashion, we are able to bypass the “low temperature bottleneck” of many approximation
schemes for the Free Energy which constrain approaches in previous work, such as the
polynomial interpolation method [11, 27] or Markov Chain Monte Carlo methods. We present
a comprehensive comparison with previous work and the scope of our techniques for thermal
systems in section 2.3.

Hamiltonian Regularity Lemmas and Approximation Algorithms

From an algorithmic point of view, our main contribution is a connection between product
state approximations and graph property testing. We discuss quantum analogs of the
weak Szemerédi regularity lemmas for dense graphs, hyper-graphs and low-threshold rank
graphs [22, 3, 23], developed in the context of additive approximation schemes for Max-Cut
and Max-kCSPs. At their heart lies a powerful combinatorial characterization of these
systems, Szemerédi’s celebrated regularity lemma [42], which states that dense graphs can
be approximately decomposed into unions of complete bipartite graphs. We develop natural,
constructive generalizations of these results for Quantum Local Hamiltonians, by combining
our new product state approximations with multi-coloured versions of known weak regularity
results, leading to improved approximation algorithms and novel structural characterizations
of local Hamiltonians. Our central result in this vein is an additive error approximation
scheme for dense k-Local Hamiltonians, which runs in constant time:

▶ Theorem 2. Fix d, k = O(1), ϵ > 0, and let H =
∑
e he be a k-Local Hamiltonian on n

qudits of local dimension d and bounded strength interactions ∥he∥∞ ≤ 1. Then, there exists
a randomized algorithm which runs in time 2poly(1/ϵ), and with probability .99 returns an
estimate for the ground state energy of H accurate up to an additive error of ϵ · nk.

We report our sampling algorithms, including that in theorem 2, in the probe model of
computation introduced by Goldreich et al. [26]. In a nutshell, the time complexity measured
above corresponds to the number of queries to a description of H, see section 2.1 for more
details.

ICALP 2023



20:4 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

Our simplest algorithm is remarkably clean to describe, and is based on the “Vertex
Sample Complexity’ result for Max-kCSPs by Alon et al. [3]: Given a Hamiltonian H, sample
a uniformly random subset of qudits Q ⊂ [n] of certain constant size |Q| = q = poly(1/ϵ),
and let HQ be the dq × dq matrix corresponding to the restriction to the interactions of H
contained entirely in Q. Then, exactly diagonalize the (constant-sized) dq × dq matrix HQ,
and output its lowest eigenvalue multiplied by (n/q)k. For small constant d, k, ϵ > 0, it is
clear that this approach requires just a constant number of queries to H. The challenge, of
course, lies in proving that this estimate corresponds to a ϵ · nk additive error estimate to
the true ground state energy of the original Hamiltonian H.

In the body, we show how these ideas can be used to develop improvements in runtime
from npoly(1/ϵ) to poly(n, 1/ϵ) + 2poly(1/ϵ) or just 2poly(1/ϵ) for a wide range of problems on
Quantum Local Hamiltonians, such as approximation schemes for the ground state energy,
the Free Energy, and for Hamiltonians defined on low threshold rank graphs.

2 Technical Overview

2.1 Background and Notation
Linear Algebra and Matrix Norms. Given an w × w matrix A we refer to ∥A∥p as the
Schatten p-norm of A (the Lp norm of the singular values of A), and we refer to |A|p as the
Lp norm of the w2-dimensional vectorization of A. The graph decompositions are phrased in
terms of the cut norm ∥A∥C introduced by [22], defined by

A+ = max
S1,S2⊆[w]

∑
i∈S1,j∈S2

Aij and ∥A∥C = max(A+, (−A)+) (3)

where we have ∥A∥C ≤ ∥A∥∞→1 = supx̸=0
|Ax|1
|x|∞

≤ 4 · ∥A∥C .

Asymptotic Notation. For any function f(n) we refer to the asymptotic notation Õ(f(n)) =
O(f(n)polylog(f(n))) ≤ c1 · f(n) logc2 f(n) for a choice of real positive constants c1, c2.

Local Hamiltonians. We denote a k-Local Hamiltonian on n qudits of local dimension
d via a dn × dn Hermitian matrix, which can be expressed as a sum of local interactions
H =

∑
e∈E he. By “local”, we simply mean that each summand he = He ⊗ IV \e acts

non-trivially only on k particles at a time, as indicated by each k-tuple e = (u1 · · ·uk) in
a set of hyper-edges E. In this manner, we can specify any Local Hamiltonian “instance”
simply by specifying the dk × dk submatrices of each local term. If d, k = O(1), then the
input has a polynomial-sized description in n. For notational convenience, we often omit the
trivial support IV \e. The ground state energy and the ground state of H are its minimum
eigenvalue and corresponding eigenvector, and the variational minimum energy of H is the
minimum energy of H among all product states minρ=⊗ρu

Tr[H ⊗u ρu] with ρu ∈ Cd×d and
ρu ≥ 0,Tru[ρu] = 1.

Interaction Graphs. We refer to the “Interaction Graph” G = ([n], E) of a 2-Local Hamilto-
nian H as the graph with undirected edges e = (u, v) ∈ E whenever the particles u, v
interact non-trivially in H. That is, whenever the spectral norm is non-zero ∥He∥∞ ≠ 0. By
expressing each d2 × d2 Hermitian matrix Hu,v =

∑
i,j∈[d2] H

i,j
u,v · σiu ⊗ σjv in an orthogonal

basis decomposition, and grouping all the interactions with the same basis i, j, we refer to
the i, j “Pauli Graph” as the subgraph of G induced on all the directed edges e = (u, v) with
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non-zero Hi,j
u,v = d−2Tr[Hu,vσ

i
u ⊗ σjv], with weighted adjacency matrix J ij = {Hi,j

u,v}u,v∈[n].
We note that the matrices J ij are degenerate, since J ij = (Jji)T , but we often brush over
this issue via a handshaking argument. If we are given a density matrix ρ = ⊗ρu which is
a product of single qudit density matrices with a basis decomposition ρu = d−1 ∑

i α
i
u · σi,

then the energy of ρ, Tr[Hρ] is a polynomial over the real variables α:∑
(u,v)∈E

Tr[Hu,vρu⊗ρv] = d−2
∑

(u,v)∈E

∑
i,j∈[d2]

Hi,j
u,vα

i
u·αjv = (2d2)−1

∑
i,j∈[d2]

∑
u̸=v∈[n]

J ijuvα
i
u·αjv (4)

Model of Computation. We report our sampling algorithms in the probe model of computa-
tion introduced by [26] in the context of graph property testing. That is, we assume we can
sample a uniformly random vertex or hyper-edge in O(1) time (or “probes”). Formally, fixed a
k-Local Hamiltonian “instance” H =

∑
e∈E He ⊗ IV \e, for any k-tuple of vertices/hyper-edge

e = (u1 · · ·uk), ui ∈ [n], we assume we can query the (constant-sized) dk × dk sub-matrix
He in O(1) time. We emphasize that since our goal is often a sublinear time algorithm, we
always enforce that our algorithms output estimates for the energy (or free energy), and
implicit descriptions of product states. If requested, these implicit descriptions can always
be expanded into n-qudit product states in an additional poly(n, 1/ϵ) time.

2.2 Our Results
Approximation Guarantees in NP

The first of our results are rigorous proofs of accuracy of the mean-field approximation on
Quantum k-Local Hamiltonians. We argue the existence of product states, or products
of single-particle mixed states, which provide additive error approximations to the ground
state energy and the free energy of these systems. We build on the information-theoretic
techniques by Brandão and Harrow [15], presenting an extension to the free energy and
modestly refining their techniques on generic (hyper-) graphs.

▶ Theorem 3. Fix k, d = O(1). Let H =
∑
e∈E he be a k-Local Hamiltonian on n qudits

of local dimension d, and m interactions each of strength ∥he∥∞ ≤ 1. Then, there exists a
product state |ψ⟩ = ⊗u∈[n]|ψu⟩, |ψu⟩ ∈ Cd such that

⟨ψ|H|ψ⟩ ≤ min
ϕ

⟨ϕ|H|ϕ⟩ +O(n
k−1

3 m2/3) (5)

In the body, we prove more general versions of the theorem above sensitive to the matrix
of interaction strengths of H. Theorem 3 matches the previous results in [15] whenever
the Hamiltonian is defined on D-regular or dense graphs m = Ω(nk), and generalizes their
statements to just depend on the number of edges m. In the setting of Theorem 3, whenever
m = Ω(nk−1/ϵ3), approximating the ground state energy of H up to additive error ϵ ·m is in
the complexity class NP, as the product state has a polynomial size description and acts as a
classical witness. While these optimal product states may still be NP-Hard to find in the
worst case, there are many examples where one can approximate these solutions efficiently.

To extend both these information-theoretic ideas and algorithmic applications to the
free energy, we need further insights on the structure of these product state approximations.
We discuss2 how the “entanglement-breaking” procedure of [15], not only approximately

2 In section B of the full version.
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20:6 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

preserves the energy, but in fact also increases the entropy as well. When applied to the
Gibbs state, we show one can carefully extract a tensor product of single particle mixed-states
which is a good approximation to the free energy. We formalize this statement in Theorem 4,

▶ Theorem 4. Fix k, d = O(1), and an inverse temperature β. Let H =
∑
e∈E he be a

k-Local Hamiltonian on n qudits of local dimension d, and m interactions each of strength
∥he∥∞ ≤ 1. Then, there exists a product state σβ = ⊗u∈[n]σu, σu ∈ Cd×d such that

f(σβ) = Tr[Hσβ ] − S(σβ)/β ≤ F +O(n
k−1

3 m2/3) (6)

We emphasize that the statement above implies a product state approximation exists at
all temperatures β−1 (and recovers the ground state approximation at T = 0), and moreover
uses very little of the underlying graph structure apart from the average dense condition.

Hamiltonian Weak Regularity Lemmas

We develop an approach to designing approximations algorithms for Local Hamiltonians
based on weak Szemerédi regularity lemmas, which are approximate decompositions to graphs,
matrices, and tensors [42, 22, 3, 23].

The idea behind this construction lies in a powerful tool in extremal combinatorics.
In his celebrated regularity lemma, Szemerédi [42] proved that any dense graph can be
approximated by a union of a constant number of complete bipartite graphs. However, the
number of partitions grew very fast with the intended quality of approximation. Frieze and
Kannan [22] developed a constructive decomposition under a weaker notion of approximation,
what they refered to as a “weak” regularity lemma. Concretely, they prove that any real
n× n matrix with bounded entries can be decomposed into a sum of O(1/ϵ2) cut matrices
(complete bipartite graphs), up to an error ϵ · n2 in the cut norm. Moreover, [22] proved
that one can in fact construct such a “cut decomposition” implicitly in time polynomial in
1/ϵ, which enabled them to devise constant time sampling-based approximation schemes for
many problems on dense graphs.

We define a natural adaptation of their results to a quantum setting, by constructing an
approximate decomposition HD of a Local Hamiltonian H which is a sum over complete,
bipartite, sub-Hamiltonians. The structure of HD can be understood as a “multi-colored”
matrix cut decomposition, as essentially we apply the cut decomposition by [22] to each term
in a basis decomposition of H. For concreteness, let H =

∑
u,v hu,v be a 2-Local Hamiltonian

on qubits, and let us consider re-writing its Pauli basis decomposition below. We suppress
the identity terms ⊗IV \{u,v} on the qubits that each interaction acts trivially on.

H =
∑

(u,v)∈E

hu,v =
∑

(u,v)∈E

∑
i,j∈{I,X,Y,Z}

hi,ju,vσ
i
u ⊗ σjv =

∑
i,j∈{I,X,Y,Z}

∑
u<v

hi,ju,vσ
i
u ⊗ σjv (7)

We associate each pair of indices i, j ∈ {I,X, Y, Z} to a color, and consider the n×n real
valued weighted adjacency matrix J ij = {hi,ju,v}u,v∈[n] of the i, j “Pauli Graph”. By applying
the cut decomposition by [22] to each of these 16 matrices J ij , we construct an approximate
decomposition of H into roughly 16 ·O(1/ϵ2) complete bipartite sub-Hamiltonians. In this
context, a “complete bipartite sub-Hamiltonian” is defined by two Pauli matrices, (say, X,Y ),
two subsets S, T ⊂ [n] (which, for now, we assume to be disjoint), and an interaction strength
α ∈ R, and can be expressed as α

∑
u∈S,v∈T Xu ⊗ Yv.
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In the body we argue that the approximation guarantees in the cut norm are precisely
what we need to ensure that for any product state σ = ⊗uσu, the energy of σ under H or
HD are close: Tr[Hσ] ≈ Tr[HDσ]. By further combining this product state regularity with
our asymmetric product state approximations, we prove a stronger property on the spectra
of HD:

▶ Lemma 5 (Informal). Fix d, k = O(1) and a constant ϵ > 0, and let H =
∑
e he be a

k-Local Hamiltonian on n qudits of local dimension d and m interactions of strength bounded
by ∥he∥∞ ≤ 1. Then, there exists a decomposition HD =

∑s
i D

(i) of H into s = O(1/ϵ2)
complete bipartite sub-Hamiltonians such that

∥H −HD∥∞ ≤ ϵ · nk/2m1/2 (8)

Additive Error Approximation Schemes

Leveraging the structure of the Hamiltonian regularity (lemma 5) in combination with the
product state approximation toolkit enables us to devise a series of approximation schemes
for Quantum Local Hamiltonians. We follow the ideas of [22, 3, 23] in establishing LP
relaxations to Max Cut and other Max CSPs, and we develop an SDP relaxation scheme for
finding the minimal energy product state of a Local Hamiltonian. These ideas enable us to
devise an efficient additive error approximation scheme for dense Hamiltonians,

▶ Theorem 6 (Theorem 2, restatement). Fix d, k = O(1) and ϵ > 0. Let H =
∑
e he be a

k-Local Hamiltonian on n qudits of local dimension d, and m interactions of bounded strength
∥he∥∞ ≤ 1. There exists a randomized algorithm which runs in time 2Õ(1/ϵ2k−2) in the probe
model of computation, and with probability .99 computes an estimate for the ground state
energy of H accurate up to an additive error of ϵ · nk/2√

m.

We note that nk/2√
m ≥ m, and thus in polynomial or sublinear time this approx-

imation scheme only provides a non-trivial guarantee when the hyper-graph is dense,
m = Ω(nk/ logc n) for some small positive constant c. However, it provides an improvement
over the nO(1/ϵ2) time algorithms by [24] and [15] in this additive error regime. On the other
hand, a simple explicit variant of this result provides a sub-exponential time approximation
algorithm whenever m = ω(nk−1 logn):

▶ Theorem 7. In the context of Theorem 2, there exists a randomized algorithm which runs
in time Õ(nk) · 2Õ(nk/ϵ2m) and with high probability computes an estimate for the ground
state energy of H accurate up to an additive error of ϵ ·m.

Concretely, the key idea behind these relaxations is that for any product state σ = ⊗uσu,
the energy of σ on the cut decomposition HD is a simple function of the average magnetization
of a small number of subsets of the n qudits. To illustrate how this enables a relaxation scheme,
consider a single complete bipartite sub-Hamiltonian, such as HS,T =

∑
u∈S,v∈T Xu ⊗ Yv.

The energy of σ on HS,T is

Tr[HS,Tσ] =
∑

u∈S,v∈T
Tru,v[Xuσu ⊗ Yvσv

]
=

( ∑
u∈S

Tr[Xuσu]
)

·
( ∑
v∈T

Tr[Yvσv]
)
, (9)

simply the product of the average X direction magnetization of S ⊂ [n] with the average Y
magnetization of T . If we fix a “guess” r, c ∈ [−n, n], one can introduce affine constraints
on the single particle density matrices σu, constraining their average magnetizations to lie
within a ±γ · n range of the guess r, c:

ICALP 2023



20:8 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

r − γ · n ≤
∑
u∈S

Tr[Xuσu] ≤ r + γ · n, (10)

c− γ · n ≤
∑
v∈T

Tr[Yvσv] ≤ c+ γ · n. (11)

Then, we are guaranteed that any product state σ which is feasible for the constraints
above must have energy in a range around the guess: |Tr[HS,Tσ] − r · c| ≤ (2 · γ + γ2) ·n2. In
this manner, one can discretize over the space of “guesses” (r, c) and define an overlapping
set of convex constraints on the description of the product states σ, such that every product
state is feasible for at least one set of constraints. Approximating the ground state energy
among product states ultimately reduces to checking the feasibility of a constant number
of SDPs, one for each guess of r, c, and outputting whichever gives us the smallest energy
estimate.

Using the techniques by [23], we can extend these insights to the setting of symmetric
2-Local Hamiltonians defined on graphs of low threshold rank. They proved that the weak
regularity results of [22] could be extended to low-threshold rank graphs, by constructing
a cut decomposition of a low rank approximation to the normalized adjacency matrix of
these graphs. While in the appendix we formalize approximation algorithms for generic
symmetric Hamiltonians (on low threshold rank graphs), perhaps the most faithful extension
of this result to the quantum setting would be its application to approximating the Quantum
Max Cut [25, 37, 36, 38]. Given an undirected graph G = (V,E), the “Quantum Max-Cut”
corresponds to the maximum eigenvalue of the Hamiltonian

H = 1
2

∑
e∈E

(
Iu ⊗ Iv −Xu ⊗Xv − Yu ⊗ Yv − Zu ⊗ Zv

)
⊗ IV \{u,v} (12)

If A is the adjacency matrix of G and D the diagonal matrix of degrees, the δ-SOS
threshold rank tδ(A) of A is the number of eigenvalues of the normalized adjacency matrix
D−1/2AD−1/2 which are outside of the range [−δ, δ]. We prove

▶ Theorem 8. Fix ϵ, δ > 0. Let G = (V,E) be a graph on n vertices and m edges with
adjacency matrix A and threshold rank t ≡ tϵ/2(A). Then, there exists an algorithm which
finds an ϵ ·m+O(n1/3m2/3) additive error approximation to the Quantum Max Cut of G in
time poly(n, 1/ϵ, t) + 2Õ(t/ϵ2).

For instance, sparse D-regular random graphs have Θ(D−1/2)-SOS threshold rank 1.
In this manner, for any constant ϵ and if D = Ω(1/ϵ3), then one can compute an ϵ · m
approximation to the Quantum Max Cut of a D-regular random graph in polynomial time.

A series of works [30, 31, 32] showed that the matrix weak regularity lemma [22] could be
used to approximate the free energy of Ising Models, and to give interesting structural results
on the quality of the mean-field approximation and the “vertex sample complexity” of these
systems. They observed that the maximum entropy program subject to the linear relaxation
constraints described above, reveals properties of the Gibbs distribution and enables an
additive error approximation to the free energy at all temperatures. By combining these ideas
with the Hamiltonian regularity Lemma 5 and Theorem 4 on product state approximations
to the free energy, we develop a series of additive error approximation schemes for the free
energy of Quantum Local Hamiltonians. The first of which is a constant time approximation
scheme, which provides an additive error guarantee in a low temperature regime.
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▶ Theorem 9. Fix k, d = O(1), and ϵ, δ > ω(n−1/(2k−2)) and an inverse temperature β > 0,
and let H be a k-Local Hamiltonian on n qudits of local dimension d and m bounded strength
interactions. Then, there exists an algorithm that runs in time 2Õ(ϵ2−2k) ·O(δ−2) in the probe
model of computation, that returns an estimate to the free energy accurate up to an additive
error of ϵnk/2m1/2 + δn/β and is correct with probability .99.

We emphasize that the free energy is a convex program regularized by temperature,
and thereby our approximation schemes often incur a tradeoff between combinatorial errors
and thermal (temperature dependent) errors. In the low temperature regime, whenever
β = Ω(n1−k/2m−1/2), the algorithm above recovers the behavior of the ground state energy
approximation scheme, and is largely temperature independent. However, as the temperature
increases and surpasses the threshold, the leading source of error becomes the thermal error
δn/β. In our second algorithm, we show that an explicit approach significantly improves this
thermal error dependence, at the cost of a polynomial runtime.

▶ Theorem 10. Fix k, d = O(1), and ϵ, δ > 0 and an inverse temperature β > 0, and
let H be a k-Local Hamiltonian on n qudits of local dimension d and m bounded strength
interactions. Then, there exists an algorithm that runs in time 2Õ(ϵ−2) · Õ(nk log 1/δ), that
returns an estimate to the free energy accurate up to an additive error of ϵnk/2m1/2 + δn/β

and is correct with high probability.

The Vertex Sample Complexity

The Regularity Lemma Lemma 20 enables us to derive an insightful structural statement
for Local Hamiltonians. Namely, the definition of a “vertex sample complexity” for Local
Hamiltonians of bounded interaction strengths, in an analogy to the vertex sample complexity
of Max-kCSPs of [3] and [4]. They showed that the restriction of any Max-kCSP to a uniformly
random sample of poly(1/ϵ) variables, sufficed to estimate the maximum number of satisfiable
clauses up to an additive error of ϵ ·nk. We develop a generalization of this result to Quantum
Local Hamiltonians, by combining the Hamiltonian regularity lemma with some extensions
to the proof techniques by [3] to SDPs.

▶ Theorem 11. Fix d, k = O(1) and ϵ > 0, and let H be a k-local Hamiltonian on n qudits
of local dimension d and m bounded interaction strengths. Let Q ⊂ [n] be a uniformly random
sample of q = Ω(ϵ−6 log 1/ϵ) of those qudits, and let HQ be the sum of interactions with
support contained entirely in Q. Then, with probability 0.99,∣∣∣∣ min

ρ
Tr[Hρ] − nk

qk
min
ρQ

Tr[HQρQ]
∣∣∣∣ ≤ ϵ · nk (13)

We rely crucially on the guarantee of product state approximations to Quantum Local
Hamiltonians in this regime of additive error. Indeed, one of the directions of the statement
above is quite intuitive for both classical and quantum systems: If the ground state energy
of H is low, then the ground state energy of the restriction HQ can’t be much higher than
the estimate. This is since the reduced density matrix ρQ = TrV \Q[ψ] of the ground state
ψ of H, probably also has low energy Tr[HQρQ] ≈ q2

n2 · Tr[Hψ], and the true ground state
energy of HQ can only be lower than that.

In the converse, however, lies an interesting “semi-classical” characterization of this
additive error regime. Note that if the ground state energy of H is “high”, then in particular
there doesn’t exist any product states with low energy on H. Using the proof techniques
in [3], we show this implies the existence of a certain succinctly describable classical certificate
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to this product-state “infeasibility”, which we sample from to prove the absence of product
states with low energy on HQ. Here is where we require the product state approximations of
Theorem 3: for sufficiently large Q, the absence of low energy product states for HQ must
imply a high ground state energy for HQ. In this sense, the ground state energy of HQ can’t
be much lower than its estimate either.

As a straightforward corollary to this structural result, now we can easily devise an
algorithm which provides an additive error guarantee by exactly diagonalizing the Hamiltonian
HQ on q = Õ(ϵ−6) vertices in time 2Õ(1/ϵ6). However, we can in fact do slightly better,
simply by applying the additive error, product state approximation algorithm by [24] to the
subsample:

▶ Corollary 12. Fix d, k = O(1) and ϵ > 0, and let H be a k-Local Hamiltonian on n

qudits of local dimension d and m bounded interaction strengths. There exists a randomized
algorithm which runs in time 2Õ(ϵ−2), and with probability .99 outputs an estimate to the
ground state energy accurate up to an additive error of ϵ · nk.

Aside from the improved dependence on k in the exponent, this result may seem to only
subtly differ from that in Theorem 2. However, we emphasize that Theorem 2 requires
an exponential number in 1/ϵ of samples of vertices, whereas Theorem 11 guarantees a
polynomial number suffices.

Approximation Schemes on Graphs that exclude a Fixed Minor

Finally, we develop novel singly-exponential time algorithms for sparse, 2-Local Hamiltonians
defined on graphs that exclude a fixed minor. Formally, the family of h-minor free graphs
are all the graphs G that can not produce another (smaller) graph h, by deleting edges
and vertices and by contracting edges [41]. Planar graphs, and bounded genus graphs
(such as toriods) are among the interesting special cases of these classes. Our approach
builds on previous work by [9] and [15] on planar graphs, using more general combinatorial
decompositions [21] and improving on their “quantum-to-classical” mappings. We show how
such 2-Local Hamiltonians can be approximately understood as classical Max k-CSPs defined
on the high degree vertices in the graph, and develop a dynamic programming algorithm to
solve it using a simple hyper-dimensional version of a tree decomposition. Our first result for
these systems is a classical algorithm to approximate the ground state energy in time singly
exponential in poly(1/ϵ),

▶ Theorem 13. Fix ϵ > 0. Let H be a 2-Local Hamiltonian defined on n qubits and m = Θ(n)
bounded strength interactions of norm < 1, configured on an h-minor free graph G = (V,E)
where the minor is constant size |h| = O(1). Then, we can approximate the ground state
energy of H up to additive error ϵ · n, in time poly(n) + n · 2poly(1/ϵ).

We build on these ideas by combining them with our information-theoretic techniques
for the free energy of quantum systems, to construct novel algorithms for the free energy of
these classes of sparse graphs at low temperatures as well.

▶ Theorem 14. Fix ϵ > 0 and an inverse temperature β. Let H be a 2-Local Hamiltonian on
n qubits and m = Θ(n) bounded strength interactions of norm < 1, configured on an h-minor
free graph G = (V,E) where the minor is constant size |h| = O(1). Then, we can approximate
the the free energy F (β) of H up to additive error ϵ·n, in time poly(n)+n·max(2, β−1)poly(1/ϵ),
respectively.
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2.3 Related Work
Classical Approximation Schemes for QMA Complete Problems

While the systematic study of approximation algorithms to QMA-Complete problems is still
emerging, there are a number of works we would like to highlight on the topic. [9] developed
classical approximation schemes for ground state energies of classical and Quantum 2-Local
Hamiltonians configured on planar graphs (of bounded degree, in the quantum case). They
leveraged Baker’s technique [8] and structural properties of planar graphs to approximately
decompose the Hamiltonian into non-interacting partitions, which then could be analyzed by
exact diagonalization, or dynamic programming. [24] were among the first to construct an
approximation algorithm for the k-Local Hamiltonian Problem. They argued that product
states can provide a d−k+1-relative factor approximations to the ground state energy of
k-Local Hamiltonians defined on qudits, similarly to how Max Cut admits a 1/2 multiplicative
approximation. They then developed an approximation algorithm for the variational problem
of finding the minimal energy product state of a given Local Hamiltonian H. It constructs a
product state that provides an (extensive) ϵ · nk additive approximation to the ground state
energy, in runtime nO(ϵ−2 log 1/ϵ). Their approach was based on an adaptation of a classical
technique, the “exhaustive sampling method” by [7] to the quantum setting, developed in
the context of approximating Max Cut on dense graphs.

Later, [15] developed information-theoretic techniques to argue the existence of product
state approximations to the the ground state energy. More precisely, they show that so long
as H is everywhere dense (Ω(nk−1) minimum degree), has bounded expansion, or is clustered
into regions of sub-volume law entanglement entropy, there exist product states that provide
additive error approximations to the minimum energy. Leveraging their information-theoretic
statements, they turned the algorithm of [24] into a PTAS for the ground state energy, albeit
only meaningful when the number of interactions m = Ω(nk). Additionally, they devise
approximation schemes for Quantum Hamiltonians defined on generic planar graphs (not
just those of bounded degree), solving an open problem posed by [9]. Their key insight was
what we refer to as a “high-low degree” technique, in which one could consider a product
state over all vertices of degree larger than some tunable cutoff ∆, and a generic (entangled)
quantum state over the hilbert space of the low-degree particles, while incurring only a small
error to the ground state energy. It is worthwhile to raise however, that the runtime of the
resulting algorithm is triply-exponential in 1/ϵ, where the algorithm returns an ϵ · n additive
approximation.

More recently, in the context of relative error approximation schemes, [28] showed that
one can find a product state within a relative error of l of the ground state of a traceless
k-Local Hamiltonian of bounded norm, where l is the maximum degree of the underlying
hyper-graph. [18] devised a O(logn) multiplicative approximation scheme to the ground
state energy of 2-Local traceless Hamiltonians by rounding the solutions of SDPs to product
states.

Classical Approximation Schemes for the Free Energy of Quantum Systems

Our results also contribute to a rich literature of classical techniques for thermal quantum
systems. Perhaps the most well known of these techniques are the Quantum Monte Carlo
methods, which approximate the quantum partition function of a quantum system to that of
a classical spin system, which in turn is approximated via Markov chain Monte Carlo methods.
Despite the enormous practical success of these techniques, rigorous proofs of convergence
have only been presented in certain restricted systems [17, 13, 20], and they generically
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are efficient only in the high temperature limit. Another high-temperature technique is
the polynomial interpolation method [11, 27], based on a Taylor expansion of the partition
function in the high temperature limit. Although both of these approaches are only provably
efficient either on restricted classes of systems (such as substochastic Hamiltonians) and/or
in the high temperature limit (typically β is a constant, or at most O(logn)), they provide
quite strong notions of approximation. In fact, they generally provide (1 + ϵ) multiplicative
approximations to the partition function (which translates to an ϵ additive approximation
to the free energy), while in this paper we only attempt extensive, additive, ϵ · m error
approximations to the free energy.

By approaching the problem via this weaker notion of error, it is possible to devise
approximation schemes in a much wider range of temperatures. A recent result by [16]
presented an algorithm that estimates the free energy of dense Local Hamiltonians, also
building on the information-theoretic techniques by [15]. Their approach is based on a
quantum generalization to a classical correlation rounding approach by [40], and their
algorithm finds a ϵ · n2 additive approximation to the free energy of 2-Local Hamiltonians, in
runtime nO(ϵ−2).

Comparison to Previous Work

To conclude our introduction we summarize our algorithmic improvements in constrast to
previous known constructions for the quantum systems studied. In table 1 below we label
the Hamiltonians, and runtime and accuracy guarantees of the additive error approximation
schemes in previous work for the systems we consider. In table 2, we present our results for
these same systems.

For simplicity, unless otherwise stated we concern ourselves with Quantum Local Hamilto-
nians of bounded interaction strengths ∥He∥∞ ≤ 1 on n qubits and m interactions. In both
tables, we refer to a “low threshold rank” Hamiltonian as having constant ϵ-SOS threshold
rank of its interaction graph. With the exception of the recent work by [16], all the results
in table 1 concern ground state energy approximation schemes.

Table 1 A summary of previous algorithms for related Quantum Systems.

Result System/Context Accuracy Runtime

[24] k-local Hamiltonians ϵ · nk nÕ(ϵ−2)

[15] Low Threshold Rank
ϵ ·

∑
e∈E

∥He∥∞ nO(ϵ−1)
Hamiltonians

[16] Free Energy of
ϵ · n2 + δ · n/β nÕ(ϵ−2) · O(log 1/δ)2-local Hamiltonians

[9] Planar Graphs ϵ ·
∑

e∈E
∥He∥∞ nO(1) · 22poly(∆,ϵ−1)

of bounded degree ∆

[15] Planar Graphs ϵ ·
∑

e∈E
∥He∥∞ nO(1) · 222poly(ϵ−1)

We remark∗ that the runtime results for k-local Hamiltonians are reported in the probe
model [26], and thus may seem apriori incomparable to more standard model runtimes.
However, we emphasize that we can easily convert between models by suitably pre-processing
the input Hamiltonian and underlying Graph. For instance, if we are allowed query access to
the input Hamiltonian in time O(1), and arithmetic operations on entries of H take time O(1),
but sampling a random element of [n] takes time O(logn), then the algorithm of theorem 11
outputs an estimate to the ground state energy in total time O(poly(1/ϵ) · logn+ 2poly(1/ϵ)) -
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Table 2 The main algorithms in this work.

System Context Accuracy Runtime∗

k-local Hamiltonians G.S. Energy ϵ · nk 2poly(ϵ−1)

Free Energy ϵ · nk + δ · n/β 2poly(ϵ−1) · O(δ−2)
Low Threshold Rank Maximum

ϵ · m + O(n1/3m2/3) (n/ϵ)O(1) + 2Õ(1/ϵ2)
Quantum Max Cut Eigenvalue

h-Minor Free Graphs G.S. Energy
ϵ · n nO(1) + n · 2poly(∆,ϵ−1)

of bounded degree ∆ Free Energy

h-Minor Free Graphs G.S. Energy
ϵ · n

nO(1) + n · 2poly(ϵ−1)

Free Energy nO(1) + n · max(2, β−1)poly(ϵ−1)

as we only require a poly(1/ϵ) number of sampled vertices. On the other hand, if don’t have
query access to the description of H, simply spending initial O(d2k(n + m)) = O(n + m)
preprocessing time to read out the description of H is sufficient to reduce the setting to the
previous one, assuming d, k = O(1).

3 Discussion

We conclude this work by raising some open problems. The first of which is a curious
gap between the quality of the mean field approximation to classical and Quantum Local
Hamiltonians. To contrast our results to those in the classical setting, [14, 12, 30, 32]
studied the quality of the mean-field approximation to classical spin glass models with
generic interaction matrices. The work of [32] culminated in the result that the mean-field
approximation is within an additive error of O(n2/3m1/3) of the free energy, a strictly better
dependence on the number of interactions than our upper bound, O(n1/3m2/3). As both
these results have roots in the information-theoretic techniques by [39], it seems intriguing
to ask whether there is some deeper structure. A possible direction would be to combine
the regularity insights with the correlation rounding techniques, as in [32]. However, there
remain certain technical obstacles to approaching the free energy of quantum systems with
the regularity lemma, namely analyzing the matrix exponential of the cut decomposition HD.

Another interesting problem is to improve the weak regularity results for “low threshold
rank” Hamiltonians (Such as theorem 8 and section G of the full version). While we are
able to devise approximation schemes based on graph regularity for a range of Hamiltonians
whose interaction graphs have low threshold rank, we are unable to provide an actual
construction of an approximate Hamiltonian H ′. It would also be interesting to see whether
the coarsest partition technique could be lifted to be applied to more general low threshold
rank Hamiltonians, as opposed to relying on the high degree of symmetry of the Quantum
Max Cut.

Finally, while the focus of this paper is on product-state approximations, the author
considers it to be an outstanding open problem whether one can devise entangled ansatz’s
for classical approximations schemes to quantum problems. For examples, see [33, 5, 35],
who devised low-depth quantum circuits which perform slightly better than the best product
state on certain Hamiltonians.
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4 Organization

In the appendix, we present a proof of the Hamiltonian regularity lemma 20, and, for
readability, defer to the full version (https://arxiv.org/abs/2210.08680) our information-
theoretic statements and algorithms.
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A The Hamiltonian Regularity Lemma

Let us begin by reviewing the cut decomposition of [22]. The key intuition behind their
result is the notion that dense graphs can be roughly viewed as a sum of complete bipartite
sub-graphs between subsets of vertices in the graph. Each of these bipartite sub-graphs is
essentially a “cut” in the graph, hence the name.

▶ Definition 15. Given two sets S, T ⊂ [n] and a number d ∈ R, the n × n cut matrix
D =CUT(S, T, d) is defined by Du,v = d · δu∈Sδv∈T .

▶ Definition 16. A “cut decomposition” expresses a real matrix J as the sum

J =
s∑

k=0
D(k) +W (14)

where each D(k) is a cut matrix defined on sets Rk, Lk ⊂ [n], and of weight dk. Such a
decomposition is said to have width s, coefficient length (

∑
d2
k)1/2, and error ∥W∥∞→1.

The main result of [22] is precisely an algorithm to efficiently find such a decomposition:

▶ Theorem 17 ([22]). Let J be an arbitrary real matrix and fix a constant ϵ > 0. Then
there exists a cut decomposition of width O(ϵ−2), coefficient length O(∥J∥F /n), error at most
ϵn∥J∥F , and such that ∥W∥F ≤ ∥J∥F . Moreover, with probability 1 − δ said decomposition
can be found implicitly in time 2Õ(ϵ−2)/δ2, and explicitly in time Õ(n2/ϵ4) + 2Õ(ϵ−2)/δ2.

▶ Remark 18. The key point of the cut decomposition is that the number of cuts only depends
on the quality of the approximation, not the size of the graph.

Perhaps the main tool we introduce in this work is a generalization of this result to
the quantum setting. We exploit the fact that quantum density matrices and quantum
Hamiltonians can be expressed in a Pauli basis, to reduce the problem of decomposing
Hamiltonians into that of a “multi-colored” cut decomposition. For simplicity, here we
discuss the case of 2-Local Hamiltonians, on qudits of local dimension d = 2d′ which is a
power of 2, and defer further generalizations to the appendix.

Let H =
∑
He be 2-local Hamiltonian defined on n qudits, and define Plog d =

{I, X, Y, Z}⊗ log d be the set of Pauli operators acting on a single qudit. Any operator
hu,v acting on the Hilbert space of 2 qudits can be decomposed into basis of Plog d ⊗ Plog d:

Huv =
∑

i,j∈[d2]

hijuvσ
u
i ⊗ σvj (15)

Where the hijuv are all real coefficients. Group the coefficients of the interactions defined on
the same Pauli matrices i, j into an interaction matrix J ij = {hijuv}u,v, i.e., a matrix for each of
d4 “colors”. We note that this essentially defines O(d4) different weighted adjacency matrices.
Now, let us apply the regularity lemma of [22] on each of the colored interaction/adjacency
matrices J ij above. By construction, for each pair (i, j) one can express

J ij =
s∑

k=1
Dijk +W ij ≡ Dij +W ij (16)

Where Dijk = CUT (Rijk, Lijk, dijk) are the s cut matrices of the interaction i, j ∈ [d2],
defined on partitions {Rijk, Lijk} of the vertex set of the graph, and real constants dijk, for
k ∈ [s]. We can thereby define the cut decomposition HD of the Hamiltonian H to be the
edges of the Dijk crossing any such cut:
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The Hamiltonian Cut Decomposition: HD = 1
2

∑
i,j∈[d2]
k∈[s]

∑
u∈Rijk

v ̸=u,v∈Lijk

Dijk
uv σ

u
i ⊗σvj ⊗IV \{u,v} (17)

where we appropriately order the tensor product such that u < v and add a factor of 1/2 via
a handshaking argument. More importantly, we filter out the diagonal entries Dijk

uu , since
the cuts S, T returned by the cut decomposition in Theorem 17 need not be disjoint, and
Local Hamiltonians can’t have “self-edges” in a basis decomposition. While unfortunately we
no longer can interpret the interaction graph of HD as an exact sum of complete bipartite
sub-Hamiltonians, fortunately, we will later recover this interpretation in an approximate
sense.

We dedicate the rest of this section to proving two interesting properties of HD. First,
we argue that the energy of any product state ρ = ⊗u∈V ρu is close, whether in H or HD,
arising from the combinatorial structure of the decomposition. Then, we leverage our product
state approximation toolkit, to argue that HD is in fact close to H in the spectral norm
∥H −HD∥∞.

▶ Theorem 19. Let H =
∑
u,vHu,v be a 2-Local Hamiltonian defined on qudits of local

dimension d = 2d′ = O(1), let Juv = ∥Huv∥∞ be the matrix of interaction strengths, and let
HD be the Hamiltonian cut decomposition of H of width s = O(ϵ−2). Then, for all product
states ρ = ⊗u∈V ρu,

|Tr[(H −HD)ρ]| ≤ ϵn∥J∥F (18)

Moreover, with probability 1 − δ said decomposition can be found implicitly in time
2Õ(ϵ−2)/δ2, and explicitly in time Õ(n2/ϵ4) + 2Õ(ϵ−2)/δ2

Proof. By restricting our attention to product states, we are able to essentially decouple the
“colors” (different Pauli terms) in the Cut Decomposition.∣∣Tr[(H − HD)ρ]

∣∣ =
∣∣∣∣ ∑

u<v

∑
i,j

(hij
uv − Dij

uv)Tr[σi
u ⊗ σj

vρ]
∣∣∣∣ = (19)

=
∣∣∣∣1
2

∑
i,j

∑
u̸=v

W ij
uvTr[σi

uρu]Tr[σj
vρv]

∣∣∣∣ ≤
∑
i,j

∣∣∣∣ ∑
u̸=v

W ij
uvTr[σi

uρu]Tr[σj
vρv]

∣∣∣∣ = (20)

=
∑
i,j

∣∣∣∣ ∑
v

( ∑
u:u̸=v

W ij
uvTr[σi

uρu]
)

Tr[σj
vρv]

∣∣∣∣ ≤
∑
i,j

∑
v

∣∣∣∣ ∑
u

W ij
uvTr[σi

uρu]
∣∣∣∣ +

∑
i,j

∑
v

|W ij
vv| ≤

(21)

≤
∑

ij

(
∥W ij∥∞→1 + n · max

v
|W ij

vv|
)

, (22)

where we re-introduced the diagonal terms to obtain the ∞ → 1 norm. From Theorem
17 we can pick a width s = O(d8ϵ−2) = O(ϵ−2) s.t. ∥W ij∥∞→1 ≤ ϵn∥J ij∥F /d4. Finally,
the original interation graph has no diagonal elements (J ijvv = 0), and thus the Cauchy-
Schwartz inequality tells us the diagonal entries of Dij are bounded: |W ij

vv| = |J ijvv −Dij
vv| ≤∑

k |dijk| ≤ s1/2 · (
∑

(dijk)2)1/2 ≤ s1/2 · ∥J ij∥F /n. The observation ∥J ij∥F ≤ ∥J∥F and
assuming ϵ−2 = o(n) concludes the proof. ◀

By combining the product state cut decomposition above with our results on product
state approximations in theorem 3 and in section B of the full version, we can extend our
results to entangled states as well.
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▶ Lemma 20 (The Hamiltonian Weak Regularity Lemma). In the context of Theorem 19,
∥H −HD∥ ≤ ϵ · n∥J∥F .

Proof. By Schatten norm duality, there exists a normalized state ψ∗ s.t.

∥H −HD∥∞ = max
ψ

|Tr[(H −HD)ψ]| = |Tr[(H −HD)ψ∗]| (23)

We now apply the product state approximation Theorem 3 on the state ψ∗ and Hamiltonian
H ′ = H −HD, to argue there exists a separable state σ s.t.

|Tr[(H −HD)(ψ∗ − σ)]| ≤ ϵn∥J∥F /2 (24)

where we observe that if J ′ is the matrix of interaction strengths of H ′ = H − HD, then
∥J ′∥1 ≤ n∥J ′∥F (Cauchy-Schwartz) and ∥J ′∥F ≤

∑
i,j∈[d2] ∥W ij∥F ≤ O(d4∥J∥F ) by means

of a triangle inequality and the guarantees on W in Theorem 17. Since σ is separable, we
can appropriately pick the width s = O(ϵ−2) in Theorem 19 to guarantee

|Tr[(H −HD)σ]| ≤ ϵn∥J∥F /2 (25)

and thereby via the triangle inequality:

∥H −HD∥∞ ≤ |Tr[(H −HD)(ψ∗ − σ)]| + |Tr[(H −HD)σ]| ≤ ϵn∥J∥F (26)

◀

Using the existing technology of matrix regularity lemmas, in the full version we present
extensions to the result above for Local Hamiltonians defined on hyper-graphs and for graphs
of low threshold rank.
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