
Fast Approximation of Search Trees on Trees with
Centroid Trees
Benjamin Aram Berendsohn # Ñ

Institut für Informatik, Freie Universität Berlin, Germany

Ishay Golinsky #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Haim Kaplan #Ñ

Blavatnik School of Computer Science, Tel Aviv University, Israel

László Kozma # Ñ

Institut für Informatik, Freie Universität Berlin, Germany

Abstract
Search trees on trees (STTs) generalize the fundamental binary search tree (BST) data structure: in
STTs the underlying search space is an arbitrary tree, whereas in BSTs it is a path. An optimal
BST of size n can be computed for a given distribution of queries in O(n2) time [Knuth, Acta Inf.
1971] and centroid BSTs provide a nearly-optimal alternative, computable in O(n) time [Mehlhorn,
SICOMP 1977].

By contrast, optimal STTs are not known to be computable in polynomial time, and the fastest
constant-approximation algorithm runs in O(n3) time [Berendsohn, Kozma, SODA 2022]. Centroid
trees can be defined for STTs analogously to BSTs, and they have been used in a wide range of
algorithmic applications. In the unweighted case (i.e., for a uniform distribution of queries), the
centroid tree can be computed in O(n) time [Brodal, Fagerberg, Pedersen, Östlin, ICALP 2001;
Della Giustina, Prezza, Venturini, SPIRE 2019]. These algorithms, however, do not readily extend
to the weighted case. Moreover, no approximation guarantees were previously known for centroid
trees in either the unweighted or weighted cases.

In this paper we revisit centroid trees in a general, weighted setting, and we settle both the
algorithmic complexity of constructing them, and the quality of their approximation. For constructing
a weighted centroid tree, we give an output-sensitive O(n log h) ⊆ O(n log n) time algorithm, where
h is the height of the resulting centroid tree. If the weights are of polynomial complexity, the running
time is O(n log log n). We show these bounds to be optimal, in a general decision tree model of
computation. For approximation, we prove that the cost of a centroid tree is at most twice the
optimum, and this guarantee is best possible, both in the weighted and unweighted cases. We also
give tight, fine-grained bounds on the approximation-ratio for bounded-degree trees and on the
approximation-ratio of more general α-centroid trees.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases centroid tree, search trees on trees, approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.19

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: arxiv.org/abs/2209.08024 [6]

Funding Benjamin Aram Berendsohn: DFG grant KO 6140/1-1.
Ishay Golinsky: ISF grant no. 1595/19 and the Blavatnik Research Foundation.
Haim Kaplan: ISF grant no. 1595/19 and the Blavatnik Research Foundation.
László Kozma: DFG grant KO 6140/1-1.

EA
T

C
S

© Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beab@zedat.fu-berlin.de
https://page.mi.fu-berlin.de/beab/
mailto:ishayg@mail.tau.ac.il
mailto:haimk@tau.ac.il
https://www.cs.tau.ac.il/~haimk/
https://orcid.org/0000-0001-9586-8002
mailto:laszlo.kozma@fu-berlin.de
https://page.mi.fu-berlin.de/lkozma/
https://orcid.org/0000-0002-3253-2373
https://doi.org/10.4230/LIPIcs.ICALP.2023.19
https://arxiv.org/abs/2209.08024
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fast Approximation of Search Trees on Trees with Centroid Trees

1 Introduction

Search trees on trees (STTs) are a far-reaching generalization of binary search trees (BSTs),
modeling the exploration of tree-shaped search spaces. Given an undirected tree T , an STT
on T is a tree rooted at an arbitrary vertex r of T , with subtrees built recursively on the
components resulting after removing r from T , see Figure 1 for an example. BSTs correspond
to the special case where the underlying tree T is a path.

STTs and, more generally, search trees on graphs arise in several different contexts
and have been studied under different names: tubings [14], vertex rankings [20, 8, 23],
ordered colorings [35], elimination trees [43, 49, 2, 9]. STTs have been crucial in many
algorithmic applications, e.g., in pattern matching and counting [24, 37, 27], cache-oblivious
data structures [4, 25], tree clustering [26], geometric visibility [30], planar point location [29],
distance oracles [16]. They arise in matrix factorization (e.g., see [22, § 12]), and have also
been related to the competitive ratio in certain online hitting set problems [23].

Similarly to the setting of BSTs, a natural goal is to find an STT in which the expected
depth of a vertex is as small as possible; we refer to such a tree as an optimal tree, noting
that it is not necessarily unique. This optimization task can be studied both for the uniform
probability distribution over the vertices, and for the more general case of an arbitrary
distribution given as input. We refer to the first as the unweighted and the second as the
weighted problem.

For BSTs, both the unweighted and the weighted problems are well-understood. In the
unweighted case, a simple balanced binary tree achieves the optimum. In the weighted
case, an optimal tree on n vertices can be found in time O(n2) by Knuth’s algorithm [36], a
textbook example of dynamic programming. No faster algorithm is known in general, although
Larmore’s algorithm [40] achieves better bounds under certain regularity assumptions on the
weights; for example, if the probability assigned to each vertex is Ω(1/n), then the optimum
can be found in time O(n1.591).

By contrast, the complexity of computing an optimal STT is far less understood. Even in
the unweighted case, no polynomial-time algorithm is known, and the problem is not known
to be NP-hard even with arbitrary weights. Recently, a PTAS was given for the weighted
problem [7], but its running time for obtaining a (1 + ε)-approximation of the optimal STT
is O(n1+2/ε), which is prohibitive for reasonably small values of ε. Note that the apparently
easier problem of minimizing the maximum depth of a vertex, i.e., computing the treedepth
of a tree, can be solved in linear time by Schäffer’s algorithm [50], and treedepth itself has
many algorithmic applications, e.g., see [47, § 6,7].

Centroid trees. Given the relatively high cost of computing optimal binary search trees,
research has turned already half a century ago to efficient approximations. Mehlhorn has
shown [44, 45] that a simple BST that can be computed in O(n) time closely approximates
the optimum. More precisely, both the optimum cost and the cost of the obtained tree are
in [H/log(3), H + 1], where H is the binary entropy of the input distribution.1 Alternatively,
the cost can be upper bounded by OPT+log (OPT)+log e, where OPT is the cost of the optimal
tree. Observe that this means that the approximation ratio gets arbitrarily close to 1 as OPT
goes to infinity.2

1 All logarithms in this paper are base 2.
2 Results for BSTs are sometimes presented in a more general form, where the input distribution also

accounts for unsuccessful searches, i.e., it may assign non-zero probabilities to the gaps between
neighboring vertices and outside the two extremes. Extending such a model to STTs is straightforward,
but perhaps less natural in the case of general trees, we therefore omit it for the sake of simplicity, and
consider only successful searches.

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:3

Figure 1 (Left.) Tree T . (Middle.) Centroid tree of T . (Right.) A different STT on T . Colors
indicate weights (probabilities), w(e) = w(h) = w(i) = 0.15, w(d) = w(j) = w(k) = 0.10, and all
other vertices have weight 0.05. Observe that the centroid tree is (in this example) unique.

The BST that achieves the above guarantees is built by recursively picking roots such as
to make the weights of the left and right subtrees “as equal as possible”. This is a special
case of a centroid tree, defined as follows. Given a tree T , a centroid of T is a vertex whose
removal from T results in components with weight at most half of the total weight of T .
A centroid tree is built by iteratively finding a centroid and recursing on the components
resulting after its removal. See Figure 1 for an example.

The fact that an (unweighted) centroid always exists was already shown in the 19-th
century by C. Jordan [34]. We sketch the easy, constructive argument that also shows the
existence of a weighted centroid: start at an arbitrary vertex of T and, as long as the current
vertex is not a centroid, move one edge in the direction of the component with largest weight.
It is not hard to see that the procedure succeeds, visiting each vertex at most once.

A straightforward implementation of the above procedure finds an unweighted centroid
tree in O(n log n) time. This running time has been improved to O(n) by carefully using
data structures [11, 28]. The run-time guarantees however, do not readily generalize from
the unweighted to the weighted setting. Intuitively, the difficulty lies in the fact that in the
weighted case, the removal of a centroid vertex may split the tree in a very unbalanced way,
leaving up to n − 1 vertices in one component. Thus, a naive recursive approach will take
Θ(n2) time in the worst case.

Most algorithmic applications of STTs, including those mentioned before, rely on centroid
trees. It is therefore surprising that nothing appears to be known about how well the centroid
tree approximates the optimal STT in either the unweighted or weighted cases. In this paper
we prove that the centroid tree is a 2-approximation of the optimal STT, and that the factor
2 is, in general, best possible, both in the unweighted and weighted settings. As our main
result, we also show a more precise bound on the approximation ratio of centroid trees, in
terms of the maximum degree of the underlying tree T .3

Before stating our results, we need a few definitions. Consider an undirected, unrooted
tree T given as input, together with a weight function w : V (T) → R≥0. For convenience,
for any subgraph H of T , we denote w(H) =

∑
x∈V (H) w(x). (To interpret the weights as

probabilities, we need the condition w(T) = 1. It is, however, often convenient to relax this
requirement and allow arbitrary non-negative weights, which is the approach we will take.)

3 In their recent paper on dynamic STTs, Bose, Cardinal, Iacono, Koumoutsos, and Langerman [10]
remark that the ratio between the costs of the centroid- and optimal trees may be unbounded. In light
of our results, this observation is erroneous. It is true, however, that a centroid tree built using the
uniform distribution may be far from the optimum w.r.t. a different distribution.

ICALP 2023

19:4 Fast Approximation of Search Trees on Trees with Centroid Trees

A search tree on T is a rooted tree T with vertex set V (T) whose root is an arbitrary
vertex r ∈ V (T). The children of r in T are the roots of search trees built on the connected
components of the forest T − r. A tree consisting of a single vertex admits only itself as
a search tree. It follows from the definition that for all x, the subtree Tx of T rooted at x

induces a connected subgraph T [V (Tx)] of T , and moreover, Tx is a search tree on T [V (Tx)].
The cost of a search tree T on T is costw(T) =

∑
x∈V (T) w(x) · depthT (x), where the

depth of the root is taken to be 1. The optimum cost OPT(T , w) is the minimum of costw(T)
over all search trees T of T .

A vertex v ∈ V (T) is a centroid if for all components H of T −v, we have w(H) ≤ w(T)/2.
A search tree T of T is a centroid tree if vertex x is a centroid of T [V (Tx)] for all x ∈ V (T).
In general, the centroid tree is not unique, and centroid trees of the same tree can have
different costs.4 We denote by cent(T , w) the maximum cost of a centroid tree of (T , w),
with weight function w.

We can now state our approximation guarantee for centroid trees.

▶ Theorem 1. Let T be a tree, w : V (T) → R≥0, and m = w(T). Then

cent(T , w) ≤ 2 · OPT(T , w) − m.

We show that this result is optimal, including in the additive term. Moreover, the constant
factor 2 cannot be improved even for unweighted instances.

▶ Theorem 2.
(i) For every ε > 0 there is a sequence of instances (Tn, wn) with wn(Tn) = 1, and for

every centroid tree Cn of (Tn, wn)

costwn
(Cn) ≥ 2 · OPT(Tn, wn) − 1 − ε.

(ii) There is a sequence of instances (Tn, wn), where wn is the uniform distribution on
V (Tn), and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn
(Cn)

OPT(Tn, wn) = 2.

In both cases lim
n→∞

OPT(Tn, wn) = ∞.

Note that the fact that limn→∞ OPT(Tn, wn) = ∞ in Theorem 2 establishes that the
asymptotic approximation ratio is 2. By this we mean that every bound of the form
cent ≤ c · OPT + o(OPT) must have c ≥ 2.

We next show a stronger guarantee when the underlying tree has bounded degree.

▶ Theorem 3. Let T be a tree, w : V (T) → R≥0, and let ∆ be the maximum degree of T .
Then

cent(T , w) ≤
(

2 − 1
2∆

)
· OPT(T , w).

We complement this result by two lower bounds. The first establishes the tightness of the
approximation ratio. The second shows a (slightly smaller) lower bound on the approximation
ratio for instances where OPT is unbounded.

4 Consider, for instance the two different centroid trees of a path on four vertices, with weights
(0.2, 0.3, 0.2, 0.3).

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:5

▶ Theorem 4. Let ∆ ≥ 3 be integer.
(i) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,

and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn
(Cn)

OPT(Tn, wn) = 2 − 1
2∆ .

(ii) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,
lim

n→∞
OPT(Tn, wn) = ∞, wn(Tn) = 1, and for every centroid tree Cn of (Tn, wn)

costwn(Cn) ≥
(

2 − 4
2∆

)
· OPT(Tn, wn) − 1.

We remark that Theorem 4(i) does not exclude the possiblity of a bound of the form
cent ≤ c ·OPT+o(OPT), where c < 2− 1

2∆ , as here OPT(Tn, wn) is bounded. Part (ii), however,
establishes that a bound of the form cent ≤ c · OPT + o(OPT) must have c ≥ 2 − 4

2∆ . We leave
open the problem of closing the gap in the asymptotic approximation ratio in terms of ∆.

Computing centroid trees. On the algorithmic side, we show that the weighted centroid tree
can be computed in O(n log n) time. Previously, the fastest known constant-approximation
algorithm [7] took O(n3) time (similarly achieving an approximation ratio of 2). The main
step of our algorithm, finding the weighted centroid of a tree, is achievable in O(log n) time,
assuming that the underlying tree is stored in a top tree data structure [1]. Iterating this
procedure in combination with known algorithms for constructing and splitting top trees
yields the algorithm that runs in O(n log n) time. As our main algorithmic result, we also
develop an improved, output-sensitive algorithm, with running time O(n log h), where h is
the height of the resulting centroid tree, yielding a running time O(n log log n) in the typical
case when the height is O(log n).

▶ Theorem 5. Let T be a tree on n vertices and w be a weight function. We can compute a
centroid tree of (T , w) in time O(n log h), where h is the height of the computed centroid tree.

One may ask whether the weighted centroid tree can be computed in linear time, similarly
to the unweighted centroid tree, or to the weighted centroid BST. We show that, assuming
a general decision tree model of computation, this is not possible, and the algorithm of
Theorem 5 is optimal for all n and h (up to a constant factor). Our lower bound on the
running time applies, informally, to any deterministic algorithm in which the input weights
affect program flow in the form of binary decisions, involving arbitrary computable functions.

More precisely, consider a tree T on n vertices. We say that a binary decision tree DT
solves T for a class of weight functions W mapping V (T) to R≥0, if the leaves of DT are
search trees on T , every branching of DT is of the form “f(w)>0?” for some computable
function f : W → {−1, +1}, and for every weight function w ∈ W, starting from the root of
DT and following branchings down the tree, we reach a leaf T of DT that is a valid centroid
tree for (T , w). The height of DT is then a lower bound on the worst-case running time.

▶ Theorem 6. Let h ≥ 3 and n ≥ h + 1 be integers. Then there is a tree T on at most
n vertices and a class W of weight functions on V (T) such that for every w ∈ W, every
centroid tree of (T , w) has height h, and every binary decision tree that solves T for W has
height Ω(n log h).

ICALP 2023

19:6 Fast Approximation of Search Trees on Trees with Centroid Trees

We can nonetheless improve the running time, when the weights are restricted in certain
(natural) ways. We define the spread σ of a weight function w as the ratio between the
total weight w(T), and the smallest non-zero weight of a vertex. As we show, O(n log h) ⊆
O(n log log (σ + n)) and therefore, when σ ∈ nO(1) (for instance, if the weights are integers
stored in RAM words), we obtain a running time of O(n log log n).

When many vertices have zero weight, we obtain further improvements, e.g., if only
O(n/ log n) of the weights are non-zero, we can compute a centroid tree in O(n) time, even
if the height h is large. The precise statement of these refined bounds and the discussion of
their optimality are available in the full version of this paper [6].

Approximate centroid trees. Finally, we consider the approximation guarantees of a
generalized form of centroid trees. Let us call a vertex v of a tree T an α-centroid, for
0 ≤ α ≤ 1, if w(H) ≤ α · w(T), for all components H of T − v. An α-centroid tree is an STT
in which every vertex x is an α-centroid of its subtree T [V (Tx)].

Observe that the standard centroid tree is a 1
2 -centroid tree, and all STTs are 1-centroid

trees. Also note that an α-centroid is a β-centroid for all β ≥ α and that the existence of
an α-centroid is not guaranteed for α < 1

2 (consider a single edge with the two endpoints
having the same weight). On the other hand, an α-centroid for α < 1

2 , if it exists, is unique,
and therefore the α-centroid tree is also unique. To see this, consider an α-centroid c that
splits T into components T1, . . . , Tk. If an alternative α-centroid c′ were in component Ti,
then its removal would yield a component containing all vertices in T − V (Ti), of weight at
least (1 − α) · w(T) > α · w(T).

Denote by centα(T , w) the maximum cost of an α-centroid tree of (T , w), or 0 if no
α-centroid tree exists. We refine our guarantee from Theorem 1 to approximate centroid
trees:

▶ Theorem 7. Let T be a tree, w : V (T) → R≥0, m = w(T). We have

(i) centα(T , w) ≤ 1
1 − α

· OPT(T , w) − α

1 − α
m, for α ∈ (0, 1),

(ii) centα(T , w) ≤ 1
2 − 3α · OPT(T , w) − 3α − 1

2 − 3αm, for α ∈
[

1
3 ,

1
2

]
.

Note that the second bound is a strengthening of the first when α < 1
2 . In particular, for

α ≤ 1
3 , it implies that an α-centroid tree is optimal, if it exists.

We show that the result is tight when α ≥ 1
2 by proving a matching lower bound.

▶ Theorem 8. For every α ∈ [1
2 , 1) there is a sequence of instances (Tn, wn) with

lim
n→∞

OPT(Tn, wn) = ∞, wn(Tn) = 1 and

centα(Tn, wn) ≥ 1
1 − α

· OPT(Tn, wn) − α

1 − α
.

Note that if α > 1
2 , we cannot prove such a lower bound for all α-centroid trees of (Tn, wn)

(as in Theorem 2), since a 1
2 -centroid tree exists and has stronger approximation guarantees

according to Theorem 1.
Finally, we argue that every optimal STT is a 2

3 -centroid tree. A special case of this
result (for BSTs) was shown by Hirschberg, Larmore, and Molodowitch [32], who also showed
that the ratio 2

3 is tight (in the special case of BSTs, and thus, also for STTs).

▶ Theorem 9. Let T be an optimal STT of (T , w). Then, T is a 2
3 -centroid tree of (T , w).

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:7

Structure of the paper. In this extended abstract we omit some of the proofs, discussions,
and technical details which are included in the full paper [6]. In Section 2 we state a number
of results needed in the proofs. The general upper and lower bounds on the approximation
ratio of centroid trees (Theorems 1 and 2) are proved in Section 3. These results can be seen
as a warm-up towards the fine-grained bounds on the approximation ratio of centroid trees
(Theorems 3 and 4), which we prove in Section 4. The algorithmic results (Theorem 5) are
discussed in Section 5, with the details of the output-sensitive algorithm, the lower bounds
(Theorem 6), and further extensions available in the full paper. Results on α-centroids
(Theorems 7, 8, and 9) are proved in the full paper. In Section 6 we conclude with open
questions.

Related work. Different models of searching in trees have also been considered, e.g., the
one where we query edges instead of vertices [3, 39, 46, 48], with connections to searching
in posets [42, 31]. In the edge-query setting, Cicalese, Jacobs, Laber and Molinaro [17, 18]
study the problem of minimizing the average search time of a vertex, and show this to be an
NP-hard problem [17]. They also show that an “edge-centroid” tree (in their terminology, a
greedy algorithm) gives a 1.62-approximation of the optimum [18].

STTs generalize BSTs, therefore it is natural to ask to what extent the theory developed
for BSTs can be extended to STTs. Defining a natural rotation operation on STTs, Bose,
Cardinal, Iacono, Koumoutsos, and Langerman [10] develop an O(log log n) competitive
dynamic STT, analogously to Tango BSTs [19]. In a similar spirit, Berendsohn and Kozma [7]
generalize Splay trees [51] to STTs. The rotation operation on STTs naturally leads to
the definition of tree associahedra, a combinatorial structure that extends the classical
associahedron defined over BSTs or other Catalan-structures. Properties of tree- and more
general graph associahedra have been studied in [14, 21, 15, 12, 13, 5].

Searching in trees and graphs has also been motivated with applications, including
file system synchronisation [3, 46], software testing [3, 46], asymmetric communication
protocols [38], VLSI layout [41], and assembly planning [33].

2 Preliminaries

Given a graph G, we denote by V (G) its set of vertices, by E(G) its set of edges, and by
C(G) its set of connected components. If v ∈ V (G), denote by NG(v) the set of neighbors of
v in G, and degG(v) = |NG(v)|. For S ⊆ V (G), denote by G[S] the subgraph of G induced
by S, and for brevity, G − v = G[V (G) − {v}], and G − S = G[V (G) − S].

The following observation is straightforward.

▶ Observation 10. Let T be a search tree on T , w : V (T) → R≥0, m = w(T) and
r = root(T). For each component H ∈ C(T − r), denote by TH the subtree of T rooted at
the unique child of r in H. Then

costw(T) = m +
∑

H∈C(T −r)

costw(TH) ≥ m +
∑

H∈C(T −r)

OPT(H, w).

Projection of a search tree. For a rooted tree T and a vertex v ∈ V (T), we denote by
PathT (v) the set of vertices on the path in T from root(T) to v, including both endpoints.
Our upper bounds require the following notion of projection of a search tree.

ICALP 2023

19:8 Fast Approximation of Search Trees on Trees with Centroid Trees

▶ Theorem 11. Let T be a search tree on T and H a connected subgraph of T . There is a
unique search tree T |H on H such that for every v ∈ V (H),

PathT |H(v) = PathT (v) ∩ V (H).

▶ Definition 12 (Projection). Let T be a search tree on T and H a connected subgraph of T .
We call T |H, whose existence is established by Theorem 11, the projection of T to H.

Tie-breaking. Our lower bounds require the following tie-breaking procedure.

▶ Lemma 13. Let T be a tree, w : V (T) → R≥0 a weight function and let C be a centroid
tree of (T , w). For every ε > 0 there exists a weight function w′ : V (T) → R≥0 such that C

is the unique centroid tree of (T , w′) and ∥w′ − w∥∞ < ε.

Centroid and median. A certain concept of a median vertex of a tree has been used
previously in the literature. If T is a tree with positive vertex weights and positive edge
weights, then the median of T is the vertex v minimizing the quantity

∑
u̸=v w(u) · d(u, v).

Here w(u) is the weight of the vertex u, and d(u, v) is the distance from u to v, i.e., the sum
of the edge weights on the path from u to v. We show that if all edge-weights are 1, then
medians are precisely centroids.

▶ Lemma 14. Let T be a graph and w be a weight function on V (T). For each u ∈ V (T),
define W (u) =

∑
v∈V (T) dT (u, v) · w(v), where dT (u, v) denotes the number of edges on the

path from u to v in T . Then c ∈ V (T) is a centroid of (T , w) if and only if W (c) is minimal.

Proofs to Theorem 11 and Lemmas 13 and 14 are available in the full paper [6].

3 Approximation guarantees for general trees

In this section we prove the general upper bound and lower bounds the approximation quality
of centroid trees. We start with the upper bound.

▶ Theorem 1. Let T be a tree, w : V (T) → R≥0, and m = w(T). Then

cent(T , w) ≤ 2 · OPT(T , w) − m.

We prove the following lemma.

▶ Lemma 15. Let c be a centroid of (T , w) and m = w(T). Then

OPT(T , w) ≥ m

2 + w(c)
2 +

∑
H∈C(T −c)

OPT(H, w). (1)

Proof. Let T be an arbitrary search tree on T . We will show that costw(T) is at least the
right hand side of Equation (1).

Denote r = root(T). If r = c, using Observation 10, we have

costw(T) ≥ m +
∑

H∈C(T −c)

OPT(H, w),

which implies the claim. Assume therefore that r ̸= c. Denote by H∗ the connected component
of T − c where r is. The contribution of vertices of H∗ to costw(T) is at least costw(T |H∗).
For H ∈ C(T − c), H ≠ H∗ and v ∈ V (H), we have PathT (v) ⊇ {r} ∪ PathT |H(v), therefore

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:9

the contribution of vertices of every H ≠ H∗ is at least w(H) + costw(T |H). Finally, the
contribution of c is at least 2w(c), since both c, r ∈ PathT (c). Summing the contributions of
all the vertices, we get

costw(T) ≥ 2w(c) + costw(T |H∗) +
∑

H≠H∗

(w(H) + costw(T |H))

≥ m − w(H∗) + w(c) +
∑
H

OPT(H, w)

≥ m

2 + w(c) +
∑
H

OPT(H, w),

where the last inequality follows from c being a centroid. ◀

Proof of Theorem 1. The proof is by induction on the number of vertices. When |V (T)| = 1
we have

2 · OPT(T , w) − m = 2m − m = m = cent(T , w), as required.

Assume |V (T)| > 1. Let C be a centroid tree on T and c = root(C). Using Observation 10
and the induction hypothesis we have:

costw(C) ≤ m +
∑

H∈C(T −c)

cent(H, w)

≤ m +
∑

H∈C(T −c)

(2 · OPT(H, w) − w(H))

= w(c) + 2 ·
∑

H∈C(T −c)

OPT(H, w),

therefore it is enough to show that

w(c) + 2 ·
∑

H∈C(T −c)

OPT(H, w) ≤ 2 · OPT(T , w) − m,

which is just a re-arrangement of Lemma 15. This concludes the proof. ◀

Next, we prove the lower bounds on the approximation quality of centroid trees, showing
the tightness of Theorem 1. We note that in the edge-query model of search trees a 2-
approximation was shown in [18] using techniques similar to those in the proof of Theorem 1.
In contrast to that result, however, our approximation guarantee is best possible.

▶ Theorem 2.
(i) For every ε > 0 there is a sequence of instances (Tn, wn) with wn(Tn) = 1, and for

every centroid tree Cn of (Tn, wn)

costwn
(Cn) ≥ 2 · OPT(Tn, wn) − 1 − ε.

(ii) There is a sequence of instances (Tn, wn), where wn is the uniform distribution on
V (Tn), and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn
(Cn)

OPT(Tn, wn) = 2.

In both cases lim
n→∞

OPT(Tn, wn) = ∞.

ICALP 2023

19:10 Fast Approximation of Search Trees on Trees with Centroid Trees

Figure 2 Illustration of the proof of Theorem 2(i). Vertex r is the root of Tn. (Left.) The
underlying tree Tn. (Middle.) The entroid tree Cn of Tn. (Right.) The search tree Tn.

As the proofs of both parts of Theorem 2 use the same construction with only slightly
different analyses, we prove here only part (i). The proof of part (ii) appears in the full
paper [6].

We proceed by constructing a sequence (Tn, wn) such that for some centroid tree Cn,

costwn
(Cn) ≥ 2 · OPT(Tn, wn) − 1.

Using Lemma 13, we can then add an arbitrarily small perturbation to wn to make Cn the
unique centroid tree. (Observe that for every search tree T , costw(T) is continuous in w,
therefore so is OPT(T , w).)

The sequence (Tn, wn) is constructed recursively as follows. For the sake of the construction
we view Tn as a rooted tree. The base case T0 is a tree with a single vertex v and w0(v) = 1.
For n > 0, take two copies (A, wA) and (B, wB) of (Tn−1, wn−1). Connect the roots of A
and B to a new vertex c. Finally, set root(Tn) = root(A) (see Figure 2). We define wn as
follows. (observe that wn(Tn) = 1, by induction on n.)

wn(v) =

0, v = c
1
2 wA(v), v ∈ V (A)
1
2 wB(v), v ∈ V (B).

Let Cn denote the search tree on Tn obtained by setting c as the root and recursing.
Observe that Cn is a centroid tree of (Tn, wn).

▶ Lemma 16. The following hold
(a) costwn

(Cn) = n + 1,
(b) limn→∞ OPT(Tn, wn) = ∞.

Proof. Let cn = costwn(Cn). Clearly, c0 = 1. Assume n > 0. Let CA and CB be search
trees on A and B respectively, each a copy of Cn−1. By construction of Cn we have

cn = 1 + 1
2costwA(CA) + 1

2costwB (CB) = 1 + cn−1,

and (a) follows by induction.
Using (a) and Theorem 1, part (b) follows:

OPT(Tn, wn) ≥ cn + 1
2 = n

2 + 1 → ∞. ◀

Next, in order to bound OPT(Tn, wn) from above, we construct a sequence of search trees
Tn on Tn. For n = 0, tree T0 is a single vertex. Assume n > 0. Let A, B, and c be as in the
definition of Tn. Let TA and TB be search trees over A and B respectively, each a copy of
Tn−1. Denote rA = root(A) and rB = root(B). Tree Tn is obtained by adding an edge from
rA to rB and an edge from rB to c, and setting root(Tn) = rA.

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:11

▶ Lemma 17. costwn
(Tn) = n

2 + 1.

Proof. Denote tn = costwn
(Tn). Clearly t0 = 1. Assume n > 0. The contribution of vertices

of A to tn is exactly 1
2 costwA(TA) = tn−1

2 . Since r is an ancestor of all vertices in B, the
contribution of these vertices to tn is exactly 1

2 (1 + costwB (TB)) = 1+tn−1
2 . Summing the

contribution of all vertices, we get tn = tn−1 + 1
2 and the claim follows. ◀

Proof of Theorem 2(i). By Lemma 17, OPT(Tn, wn) ≤ n
2 + 1. Together with Lemma 16, the

claim follows. ◀

4 Approximation guarantees for trees with bounded degrees

In this section we show the upper and lower bounds on the approximation quality of centroid
trees when the underlying tree T has bounded degree. We start with the upper bound.

▶ Theorem 3. Let T be a tree, w : V (T) → R≥0, and let ∆ be the maximum degree of T .
Then

cent(T , w) ≤
(

2 − 1
2∆

)
· OPT(T , w).

For simplicity, in what follows we omit the weight function w from notations.

▶ Lemma 18. Let C be a centroid tree of T such that cost(C) = cent(T). Let P =
(v0, v1, . . . , vp) be any path in C. Then

cent(T) ≤
(

2 − 1
2p

)
m +

∑
H∈C(T −P)

cent(H).

Proof. By induction on p. For p = 0 we have

cent(T) = m +
∑

H∈C(T −v0)

cent(H), as required.

Assume now p > 0. Denote by T̃ the connected component of T − v0 where v1 is.
Denote P̃ = (v1, . . . , vp), and m̃ = w(T̃). Observe that m̃ ≤ m/2 and that C(T − P) =
C(T̃ − P̃) ·∪ (C(T − v0) − {T̃ }). By the induction hypothesis we have

cent(T̃) ≤
(

2 − 1
2p−1

)
m̃ +

∑
H∈C(T̃ −P̃)

cent(H), therefore

cent(T) = m + cent(T̃) +
∑

H∈C(T −v0)
H≠T̃

cent(H)

≤ m +
(

2 − 1
2p−1

)
m̃ +

∑
H∈C(T̃ −P̃)

cent(H) +
∑

H∈C(T −v0)
H ̸=T̃

cent(H)

≤ m +
(

2 − 1
2p−1

)
m

2 +
∑

H∈C(T −P)

cent(H)

=
(

2 − 1
2p

)
m +

∑
H∈C(T −P)

cent(H), as required. ◀

ICALP 2023

19:12 Fast Approximation of Search Trees on Trees with Centroid Trees

Proof of Theorem 3. The proof is by induction on |V (T)|. Let T be any search tree on T .
We will show that cent(T) ≤

(
2 − 1

2∆

)
cost(T).

Denote r = root(T). Let C be a centroid tree on T with cost(C) = cent(T). Denote
by v0, v1, . . . , vd = r the vertices along the path to r in C. Denote Ti = T [V (Cvi)]. Observe
that r ∈ V (Td) ⊆ · · · ⊆ V (T0) = V (T). For i < d, denote by Ki the connected component
of T − r where vi is. Denote by si the unique child of r in T such that si ∈ V (Ki), i.e.,
V (Tsi

) = V (Ki). Finally, denote by p the minimal i for which one of the following holds:
1. vi = r, i.e., i = d,
2. si ∈ V (Ti+1), or
3. there exists j < i such that Kj = Ki, i.e., sj = si.
Note that from the third condition above it follows that p ≤ ∆. Denote P = (v0, . . . , vp).
We will prove the following.

▷ Claim 19.

cost(T) ≥ m +
∑

H∈C(T −P)

cost(T |H).

Assume for now that Claim 19 holds. Using Lemma 18, the fact that p ≤ ∆, the induction
hypothesis and Claim 19, we have

cent(T) ≤
(

2 − 1
2p

)
m +

∑
H∈C(T −P)

cent(H)

≤
(

2 − 1
2∆

)
m +

∑
H∈C(T −P)

(
2 − 1

2∆

)
cost(T |H)

≤
(

2 − 1
2∆

)
cost(T). ◀

Proof of Claim 19. The proof breaks into cases according to the defining condition of p.
Case 1. Assume vp = r. For every H ∈ C(T − P) and v ∈ V (H) we have PathT (v) ⊇

{r} ·∪ PathT |H(v). The contribution of such v to cost(T) is therefore at least w(v)(1 +
|PathT |H(v)|). The contribution of each vi to cost(T) is at least w(vi). Summing the
contribution of all vertices yields the required result. See Figure 3.

Figure 3 Illustration of the proof of Claim 19. Connected components of T − P are represented
by light gray circles. (Left.) Case 1. (Right.) Case 2. Vertices in T − Tp have r as ancestor. Vertices
in Tp − Tp+1 have both r and sp as ancestors.

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:13

Figure 4 Case 3 in the proof of Claim 19. (Left.) Sub-case where vp is in the path in T between
r and vj . (Right.) Complementary sub-case. Connected components of T − P are represented by
light gray circles. In both sub-cases, vertices in Tp − Tp+1 have both r and sp as ancestors.

Case 2. Assume sp ∈ V (Tp+1). Denote by C1 the set of connected components of T − P

that are not contained in Tp. Denote C2 = C(T − P) − C1 (see Figure 3). For every
H ∈ C1, if v ∈ V (H), then PathT (v) ⊇ {r} ·∪ PathT |H(v). Therefore the contribution of
vertices in V (T − Tp) to cost(T) is at least

m − w(Tp) +
∑

H∈C1

cost(T |H). (2)

For vertices v ∈ V (Tp − Tp+1) we have {r, sp} ⊆ PathT (v). Therefore, using the fact that
w(Tp − Tp+1) ≥ w(Tp)

2 , the contribution of vertices in V (Tp) to cost(T) is at least

2 · w(Tp − Tp+1) +
∑

H∈C2

cost(T |H) ≥ w(Tp) +
∑

H∈C2

cost(T |H). (3)

Summing Equation (2) and Equation (3) yields the required result.
Case 3. Assume that there is a j < p such that Kp = Kj . Since p is minimal, we further

assume that Case 2 did not occur for indices smaller that p. In particular, sp = sj /∈ V (Tp).
As in Case 2, the contribution of vertices in T −Tp to cost(T) is at least as in Equation (2).
We have r /∈ V (Tp −Tp+1) and vp ∈ V (Tp −Tp+1)∩V (Kp) ̸= ∅, therefore, since Tp −Tp+1 is
connected, V (Tp −Tp+1) ⊆ V (Kp) (see Figure 4). It follows that vertices in Tp −Tp+1 have
both r and sp as ancestors. Since w(Tp − Tp+1) ≥ w(Tp)

2 , the contribution of vertices in Tp

is at least as in Equation (3). As in Case 2, the result follows by summing Equation (2)
and Equation (3). ◁

We now proceed to the lower bounds.

▶ Theorem 4. Let ∆ ≥ 3 be integer.
(i) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,

and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn(Cn)
OPT(Tn, wn) = 2 − 1

2∆ .

(ii) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,
lim

n→∞
OPT(Tn, wn) = ∞, wn(Tn) = 1, and for every centroid tree Cn of (Tn, wn)

costwn
(Cn) ≥

(
2 − 4

2∆

)
· OPT(Tn, wn) − 1.

ICALP 2023

19:14 Fast Approximation of Search Trees on Trees with Centroid Trees

Figure 5 Illustration of Theorem 4(i). (Left.) The underlying tree Tn. (Middle.) The centroid
tree Cn. (Right.) The search tree Tn.

Part (i). As in the proof of Theorem 2, it will suffice to prove Theorem 4(i) for some
centroid tree Cn. Using Lemma 13, we can then add arbitrarily small perturbation to wn,
making Cn the unique centroid tree.

The sequence (Tn, wn) of Theorem 4(i) is constructed recursively as follows. For the sake
of the construction we regard Tn as a rooted tree. T0 is simply a single vertex v (which is
the root) and w0(v) = 1. For n > 0, Tn is constructed from ∆ copies of Tn−1 and ∆ + 1
additional vertices, v1, . . . , v∆+1, as shown in Figure 5 (left). The i’th copy of Tn−1 gets the
weight function wn−1/2i. We set wn(vi) = 0 for 1 ≤ i ≤ ∆ and wn(v∆+1) = 1/2∆. Finally,
we set root(Tn) = v1. By induction, Tn has maximal degree ∆ and wn is a distribution on
V (Tn).

Let Cn be a search tree on Tn defined recursively as follows. Connect the vertices
v1, . . . , v∆+1 to form a path and set v1 as the root of Cn. Continue recursively on each
connected component of T − {v1, . . . , v∆+1}. (See Figure 5 (middle).) Observe that Cn is a
centroid tree of (Tn, wn).

▶ Lemma 20. For all n,

costwn(Cn) = 2∆+1 − 1 − (2∆+1 − 2)
(

1 − 1
2∆

)n

. (4)

Proof. Denote cn = costwn
(Cn). Clearly c0 = 1 as required. Let n > 0. For each i, the

subtree of all the descendants of vi in Cn has weight 1/2i−1. Therefore

cn =
∆+1∑
i=1

1
2i−1 +

∆∑
i=1

1
2i

cn−1 = 2 − 1
2∆ +

(
1 − 1

2∆

)
cn−1.

It is straightforward to verify that the right hand side of Equation (4) is the solution to the
recursive formula above. ◀

In order to upper bound OPT(Tn, wn) we construct recursively a search tree Tn on Tn.
For n > 0, Tn is constructed by setting v∆+1 as root and attaching to it ∆ copies of Tn−1.
The vertices v1, . . . , v∆ are finally attached as leaves of Tn, each at its unique valid place.
See Figure 5 (right).

▶ Lemma 21. For all n,

costwn
(Tn) = 2∆ − 2∆

(
1 − 1

2∆

)n+1
. (5)

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:15

Figure 6 An illustration of Theorem 4(ii). (Left.) The underlying tree Tn. (Middle.) The centroid
tree Cn. (Right.) The search tree Tn.

Proof. Denote tn = costwn
(Tn). We have t0 = 1. For n > 0, tn obeys the recursive relation

tn = 1 +
∆∑

i=1

1
2i

tn−1 = 1 +
(

1 − 1
2∆

)
tn−1,

of which the right hand side of Equation (5) is the solution. ◀

Proof of Theorem 4(i). Using Lemma 20 and Lemma 21,

costwn
(Cn)

OPT(Tn, wn) ≥ costwn
(Cn)

costwn
(Tn) → 2 − 1

2∆ . ◀

Observe that, as discussed in Section 1, OPT(Tn, wn)/wn(Tn) is bounded.

Part (ii). To prove Theorem 4(ii), we repeat the recursive construction of Theorem 4(i)
with a slight modification. As before, T0 is a tree with a single vertex. For n > 0,
(Tn, wn) is constructed from ∆ weighted copies of (Tn−1, wn−1) and ∆ − 1 additional vertices,
v1, . . . , v∆−1, each with weight 0, as shown in Figure 6 (left). We set root(Tn) = v1.

As before, the search tree Cn is defined by connecting the vertices v1, . . . , v∆−1 to a path,
setting v1 as root and recursing on the remaining connected component. Observe that Cn

is a centroid tree of (Tn, wn). (See Figure 6 (middle).) The search tree Tn is defined by
setting v∆−1 as root, attaching to it ∆ copies of Tn−1, then adding the vertices v1, . . . , v∆−2
as leaves, each at its unique valid place. See Figure 6 (right).

▶ Lemma 22. For all n,
(a) costwn

(Cn) =
(
2 − 4

2∆

)
· n + 1,

(b) costwn
(Tn) = n + 1.

The proof follows an analysis similar to that of Lemma 20 and Lemma 21.

Proof. Denote cn = costwn(Cn) and tn = costwn(Tn). Clearly c0 = t0 = 1. For n > 0 we
have

cn =
∆−1∑
i=1

1
2i−1 +

∆−2∑
i=1

1
2i

cn−1 + 2 1
2∆−1 cn−1 = 2 − 4

2∆ + cn−1, and

tn =
∆−2∑
i=1

1
2i

(tn−1 + 1) + 2 1
2∆−1 (tn−1 + 1) = 1 + tn−1,

and the lemma follows by induction. ◀

ICALP 2023

19:16 Fast Approximation of Search Trees on Trees with Centroid Trees

Proof of Theorem 4(ii). The fact that limn→∞ OPT(Tn, wn) = ∞ follows from Lemma 22
and Theorem 3 (or Theorem 1). Using Lemma 22 again, we have

costwn
(Cn) ≥

(
2 − 4

2∆

)
OPT(Tn, wn) − 1 + 4

2∆ .

Using Lemma 13, for each n we can add small enough perturbation to wn such that Cn is
the unique centroid tree and the claimed bound holds. ◀

5 Computing centroid trees

In this section, we show how to compute centroid trees using the top tree framework of
Alstrup, Holm, de Lichtenberg, and Thorup [1]. Top trees are a data structure used to
maintain dynamic forests under insertion and deletion of edges. Most importantly, they
expose a simple interface that allows the user to maintain information in the trees of the
forest. For this, the user only needs to implement a small number of internal operations.

Alstrup et al. in particular show how to maintain the median of trees in O(log n) per
operation, see Section 2 for the definition of the median. As mentioned before, if all
edge-weights are 1, then medians are precisely centroids (see Lemma 14).

▶ Theorem 23 ([1, Theorem 3.6]). We can maintain a forest with positive vertex weights on
n vertices under the following operations:

Add an edge between two given vertices u, v that are not in the same connected component;
Remove an existing edge;
Change the weight of a vertex;
Retrieve a pointer to the tree containing a given vertex;
Find the centroid of a given tree in the forest.

Each operation requires O(log n) time. A forest without edges and with n arbitrarily weighted
vertices can be initialized in O(n) time.

Note that Theorem 23 only admits positive vertex weights, whereas we allowed zero-weight
vertices. We show how to handle this problem in the full paper [6].

We now show how to use Theorem 23 to construct a centroid tree in O(n log n) time.

▶ Theorem 24. Given a tree T on n vertices and a positive weight function w, we can
compute a centroid tree of (T , w) in O(n log n) time.

Proof. First build a top tree on T by adding the edges one-by-one, in O(n log n) time. Then,
find the centroid c, and remove each incident edge. Then, recurse on each newly created tree
(except for the one containing only c). The algorithm finds each vertex precisely once and
removes each edge precisely once, for a total running time of O(n log n). ◀

Output-sensitive algorithm. We improve the algorithm given above to run in time
O(n log h), where n is the number of vertices in T and h is the height of the computed
centroid tree.

The main idea of the algorithm is inspired by the linear-time algorithm for unweighted
centroids by Della Giustina, Prezza, and Venturini [28], with a number of further technical
challenges. Instead of building a top tree on the whole tree T , we first split T into connected
subgraphs of size roughly h, and build a top tree on each component. Contracting each
component into a single vertex yields super-vertices in a super-tree. Each search for a centroid
consists of a global search and a local search: We first find the super-vertex containing the

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:17

centroid, then we find the centroid within that super-vertex. After finding the centroid,
we remove it, which may split up the super-vertex into multiple super-vertices with a top
tree each, and also may split the super-tree into a super-forest. Finally, we recurse on each
component of the super-forest.

It can be seen that the total number of top tree operations needed is O(n). Since the top
trees each contain only h vertices, a top tree operation takes O(log h) time, for a total of
O(n log h). Detailed description and analysis of the algorithm, as well as the matching lower
bound, appear in the full paper [6].

6 Conclusions

We showed that the average search time in a centroid tree is larger by at most a factor of 2
than the smallest possible average search time in an STT and that this bound is tight. We
also showed that centroid trees can be computed in O(n log h) time where h is the height of
the centroid tree. Perhaps the most intriguing question is to determine whether the problem
of computing an optimal STT is in P. A secondary goal would be to achieve an approximation
ratio better than 2 in near linear time. (The running time of the STT’s of Berendsohn
and Kozma [7] degrade as O(n2k+1) for a

(
1 + 1

k

)
-approximation.) As for centroid trees, a

remaining question is whether they can be computed in O(n) time whenever the spread of
the weight function is σ ∈ O(n).

A special case in which high quality approximation can be efficiently found is when an
α-centroid tree exists for α < 1

2 . This case can be recognized and handled in near linear
time using our algorithm. (Observe that an α-centroid tree for α < 1

2 is also the unique
1
2 -centroid tree.) Theorem 7(ii) gives strong approximation guarantees for this case, yielding
the optimum when α ≤ 1

3 . It is an interesting question whether the bounds can be improved
for α in the range

(1
3 , 1

2
)
, i.e., whether Theorem 7(ii) is tight.

A small gap remains in the exact approximation ratio of centroid trees when T has
maximum degree ∆ and OPT is unbounded, i.e., between the upper bound (2 − 1

2∆) of
Theorem 3 and the lower bound (2 − 4

2∆) of Theorem 4(ii).

References
1 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining

information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264,
October 2005. doi:10.1145/1103963.1103966.

2 Bengt Aspvall and Pinar Heggernes. Finding minimum height elimination trees for interval
graphs in polynomial time. BIT, 34:484–509, 1994.

3 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput.,
28(6):2090–2102, 1999. doi:10.1137/S009753979731858X.

4 Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious string
b-trees. In ACM SIGMOD-SIGACT-SIGART, pages 233–242, 2006.

5 Benjamin Aram Berendsohn. The diameter of caterpillar associahedra. In Artur Czumaj and
Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT
2022, June 27-29, 2022, Tórshavn, Faroe Islands, volume 227 of LIPIcs, pages 14:1–14:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SWAT.2022.14.

6 Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma. Fast approx-
imation of search trees on trees with centroid trees, 2022. arXiv:2209.08024.

7 Benjamin Aram Berendsohn and László Kozma. Splay trees on trees. In SODA, pages
1875–1900, 2022.

ICALP 2023

https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1137/S009753979731858X
https://doi.org/10.4230/LIPIcs.SWAT.2022.14
https://arxiv.org/abs/2209.08024

19:18 Fast Approximation of Search Trees on Trees with Centroid Trees

8 Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter Kratsch, Haiko
Müller, and Zsolt Tuza. Rankings of graphs. SIAM Journal on Discrete Mathematics,
11(1):168–181, 1998.

9 H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–255,
1995. doi:10.1006/jagm.1995.1009.

10 Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, and Stefan Langerman.
Competitive online search trees on trees. In SODA, pages 1878–1891, 2020.

11 Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. The
complexity of constructing evolutionary trees using experiments. In ICALP, pages 140–151.
Springer, 2001.

12 Jean Cardinal, Stefan Langerman, and Pablo Pérez-Lantero. On the diameter of tree associ-
ahedra. Electron. J. Comb., 25(4):P4.18, 2018. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v25i4p18, doi:10.37236/7762.

13 Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Bounds on the diameter of
graph associahedra. In Proceedings of the XI Latin and American Algorithms, Graphs and
Optimization Symposium (LAGOS), volume 195 of Procedia Computer Science, pages 239–247.
Elsevier, 2021.

14 Michael Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. Topology
and its Applications, 153(12):2155–2168, 2006.

15 Cesar Ceballos, Thibault Manneville, Vincent Pilaud, and Lionel Pournin. Diameters and
geodesic properties of generalizations of the associahedron. In Proceedings of the 27th Inter-
national Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), pages
345–356, 2015.

16 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. An
almost optimal edit distance oracle. In Nikhil Bansal, Emanuela Merelli, and James Worrell,
editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
48:1–48:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ICALP.2021.48.

17 Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, and Marco Molinaro. On the complexity
of searching in trees and partially ordered structures. Theor. Comput. Sci., 412(50):6879–6896,
2011. doi:10.1016/j.tcs.2011.08.042.

18 Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, and Marco Molinaro. Improved approx-
imation algorithms for the average-case tree searching problem. Algorithmica, 68(4):1045–1074,
2014. doi:10.1007/s00453-012-9715-6.

19 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu. Dynamic optimality -
almost. SIAM J. Comput., 37(1):240–251, 2007. doi:10.1137/S0097539705447347.

20 Jitender S Deogun, Ton Kloks, Dieter Kratsch, and Haiko Müller. On vertex ranking for
permutation and other graphs. In STACS 1994, pages 747–758. Springer, 1994.

21 Satyan L. Devadoss. A realization of graph associahedra. Discrete Mathematics, 309(1):271–276,
2009.

22 Iain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods for sparse matrices.
Oxford University Press, 2017.

23 Guy Even and Shakhar Smorodinsky. Hitting sets online and unique-max coloring. Discret.
Appl. Math., 178:71–82, 2014. doi:10.1016/j.dam.2014.06.019.

24 Paolo Ferragina. On the weak prefix-search problem. Theor. Comput. Sci., 483:75–84, 2013.
doi:10.1016/j.tcs.2012.06.011.

25 Paolo Ferragina and Rossano Venturini. Compressed cache-oblivious string b-tree. ACM
Trans. Algorithms, 12(4):52:1–52:17, 2016. doi:10.1145/2903141.

26 Greg N. Frederickson and Donald B Johnson. Finding kth paths and p-centers by generating
and searching good data structures. Journal of Algorithms, 4(1):61–80, 1983.

https://doi.org/10.1006/jagm.1995.1009
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p18
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p18
https://doi.org/10.37236/7762
https://doi.org/10.4230/LIPIcs.ICALP.2021.48
https://doi.org/10.4230/LIPIcs.ICALP.2021.48
https://doi.org/10.1016/j.tcs.2011.08.042
https://doi.org/10.1007/s00453-012-9715-6
https://doi.org/10.1137/S0097539705447347
https://doi.org/10.1016/j.dam.2014.06.019
https://doi.org/10.1016/j.tcs.2012.06.011
https://doi.org/10.1145/2903141

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:19

27 Travis Gagie, Danny Hermelin, Gad M Landau, and Oren Weimann. Binary jumbled pattern
matching on trees and tree-like structures. Algorithmica, 73(3):571–588, 2015.

28 Davide Della Giustina, Nicola Prezza, and Rossano Venturini. A new linear-time algorithm
for centroid decomposition. In Proceedings of the 26th International Symposium on String
Processing and Information Retrieval (SPIRE), volume 11811 of Lecture Notes in Computer
Science, pages 274–282. Springer, 2019.

29 Michael T. Goodrich and Roberto Tamassia. Dynamic trees and dynamic point location.
SIAM J. Comput., 28(2):612–636, 1998. doi:10.1137/S0097539793254376.

30 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987. doi:10.1007/BF01840360.

31 Brent Heeringa, Marius Catalin Iordan, and Louis Theran. Searching in dynamic tree-like
partial orders. In WADS 2011, volume 6844 of Lecture Notes in Computer Science, pages
512–523. Springer, 2011. doi:10.1007/978-3-642-22300-6_43.

32 D.S. Hirschberg, L.L. Larmore, and M. Molodowitch. Subtree weight ratios for optimal binary
search trees. Technical Report TR 86-02, ICS Department, University of California, Irvine,
1986.

33 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. Optimal node ranking of
trees. Inf. Process. Lett., 28(5):225–229, 1988. doi:10.1016/0020-0190(88)90194-9.

34 Camille Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathem-
atik, 70:185–190, 1869.

35 Meir Katchalski, William McCuaig, and Suzanne Seager. Ordered colourings. Discrete
Mathematics, 142(1-3):141–154, 1995.

36 Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, 1971. doi:
10.1007/BF00264289.

37 Tomasz Kociumaka, Jakub Pachocki, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
Efficient counting of square substrings in a tree. Theoretical Computer Science, 544:60–73,
2014.

38 Eduardo Laber and Marco Molinaro. An approximation algorithm for binary searching in
trees. Algorithmica, 59(4):601–620, 2011. doi:10.1007/s00453-009-9325-0.

39 Eduardo Laber and Loana Nogueira. Fast searching in trees. Electronic Notes in Discrete
Mathematics, 7:90–93, 2001. doi:10.1016/S1571-0653(04)00232-X.

40 Lawrence L. Larmore. A subquadratic algorithm for constructing approximately optimal
binary search trees. J. Algorithms, 8(4):579–591, 1987. doi:10.1016/0196-6774(87)90052-6.

41 Charles E. Leiserson. Area-efficient graph layouts (for VLSI). In STOC 1980, pages 270–281.
IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.13.

42 Nathan Linial and Michael E. Saks. Every poset has a central element. J. Comb. Theory, Ser.
A, 40(2):195–210, 1985. doi:10.1016/0097-3165(85)90087-1.

43 Joseph W.H. Liu. The role of elimination trees in sparse factorization. SIAM journal on
matrix analysis and applications, 11(1):134–172, 1990.

44 Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5(4):287–295, 1975.
45 Kurt Mehlhorn. A best possible bound for the weighted path length of binary search trees.

SIAM Journal on Computing, pages 235–239, 1977.
46 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching strategy

in linear time. In SODA 2008, pages 1096–1105. SIAM, 2008. URL: http://dl.acm.org/
citation.cfm?id=1347082.1347202.

47 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

48 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In FOCS 2006, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.

ICALP 2023

https://doi.org/10.1137/S0097539793254376
https://doi.org/10.1007/BF01840360
https://doi.org/10.1007/978-3-642-22300-6_43
https://doi.org/10.1016/0020-0190(88)90194-9
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/s00453-009-9325-0
https://doi.org/10.1016/S1571-0653(04)00232-X
https://doi.org/10.1016/0196-6774(87)90052-6
https://doi.org/10.1109/SFCS.1980.13
https://doi.org/10.1016/0097-3165(85)90087-1
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1109/FOCS.2006.32

19:20 Fast Approximation of Search Trees on Trees with Centroid Trees

49 Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors
of graphs. SIAM journal on matrix analysis and applications, 11(3):430–452, 1990.

50 Alejandro A. Schäffer. Optimal node ranking of trees in linear time. Information Processing
Letters, 33(2):91–96, 1989.

51 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, July 1985. doi:10.1145/3828.3835.

https://doi.org/10.1145/3828.3835

	1 Introduction
	2 Preliminaries
	3 Approximation guarantees for general trees
	4 Approximation guarantees for trees with bounded degrees
	5 Computing centroid trees
	6 Conclusions

