
Improved Approximation Algorithms by
Generalizing the Primal-Dual Method Beyond
Uncrossable Functions
Ishan Bansal #

Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Joseph Cheriyan #Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Logan Grout #

Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Sharat Ibrahimpur #Ñ

Department of Mathematics, London School of Economics and Political Science, UK

Abstract
We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail
pertaining to the design of approximation algorithms for problems in network design via the primal-
dual method (Combinatorica 15(3):435-454, 1995). Williamson et al. prove an approximation ratio
of two for connectivity augmentation problems where the connectivity requirements can be specified
by uncrossable functions. They state: “Extending our algorithm to handle non-uncrossable functions
remains a challenging open problem. The key feature of uncrossable functions is that there exists an
optimal dual solution which is laminar . . . A larger open issue is to explore further the power of the
primal-dual approach for obtaining approximation algorithms for other combinatorial optimization
problems.”

Our main result proves a 16-approximation ratio via the primal-dual method for a class of
functions that generalizes the notion of an uncrossable function. There exist instances that can be
handled by our methods where none of the optimal dual solutions have a laminar support.

We present applications of our main result to three network-design problems.
1. A 16-approximation algorithm for augmenting the family of small cuts of a graph G. The

previous best approximation ratio was O(log |V (G)|).
2. A 16 · ⌈k/umin⌉-approximation algorithm for the Cap-k-ECSS problem which is as follows: Given

an undirected graph G = (V, E) with edge costs c ∈ QE
≥0 and edge capacities u ∈ ZE

≥0, find a
minimum cost subset of the edges F ⊆ E such that the capacity across any cut in (V, F) is at least
k; umin (respectively, umax) denote the minimum (respectively, maximum) capacity of an edge in
E, and w.l.o.g. umax ≤ k. The previous best approximation ratio was min(O(log |V |), k, 2umax).

3. A 20-approximation algorithm for the model of (p, 2)-Flexible Graph Connectivity. The previous
best approximation ratio was O(log |V (G)|), where G denotes the input graph.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms, Edge-connectivity of graphs, f-Connectivity
problem, Flexible Graph Connectivity, Minimum cuts, Network design, Primal-dual method, Small
cuts

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.15

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2209.11209v2 [3]

Funding Ishan Bansal: Partially supported by Office of Naval Research (ONR) Grant N00014-21-1-
2575.
Joseph Cheriyan: Supported in part by NSERC, RGPIN-2019-04197.

EA
T

C
S

© Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ib332@cornell.edu
mailto:jcheriyan@uwaterloo.ca
https://www.math.uwaterloo.ca/~jcheriyan
mailto:lcg58@cornell.edu
mailto:s.ibrahimpur@lse.ac.uk
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
https://doi.org/10.4230/LIPIcs.ICALP.2023.15
https://arxiv.org/abs/2209.11209v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Generalizing the WGMV Primal-Dual Method

Sharat Ibrahimpur : Received funding from the following sources: NSERC grant 327620-09 and an
NSERC DAS Award, European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. ScaleOpt–757481), and Dutch Research
Council NWO Vidi Grant 016.Vidi.189.087.

Acknowledgements We thank the anonymous reviewers and the ICALP PC for their comments. We
are grateful to Cedric Koh and Madison Van Dyk for reading a preliminary version, and for their
detailed comments and feedback.

1 Introduction

The primal-dual method is a well-known algorithmic discovery of the past century. Kuhn
(1955) [25] presented a primal-dual algorithm for weighted bipartite matching, and Dantzig et
al. (1957) [9] presented a generalization for solving linear programs. Primal-dual methods for
problems in combinatorial optimization are based on linear programming (LP) relaxations;
the associated linear programs (LPs) are crucial for the design and analysis of these algorithms.
A key feature of the primal-dual method is that it does not require solving the underlying LPs,
which makes it attractive for both theoretical studies and real-world applications. Several
computational studies of some of the well-known primal-dual approximation algorithms have
been conducted, and the consensus is that these algorithms work well in practice, see [19,
Section 4.9], [16], [21], [27], [32].

Several decades after the pioneering work of Kuhn, Dantzig et al., the design of ap-
proximation algorithms for NP-hard problems emerged as an important area of research.
Agrawal, Klein and Ravi [2] designed and analyzed a primal-dual approximation algorithm
for the Steiner forest problem. Goemans and Williamson [18] generalized these algorithms to
constrained forest problems. Subsequently, Williamson, Goemans, Vazirani and Mihail [33]
(abbreviated WGMV) extended the methods of [18] to obtain a primal-dual 2-approximation
algorithm for the problem of augmenting the connectivity of a graph to satisfy requirements
specified by uncrossable functions. These functions are versatile tools for modeling several
network-design problems.

Network design encompasses a wide class of problems that find applications in sectors
like transportation, facility location, information security, and resource connectivity, to name
a few. Due to its wide scope and usefulness, the area has been studied for decades and
it has led to major algorithmic innovations. Most network-design problems are NP-Hard,
and oftentimes even APX-hard, so researchers in the area have focused on designing good
approximation algorithms, preferably with a small constant-factor approximation ratio. In
the context of network design, many of the O(1) approximation algorithms rely on a particular
property called uncrossability, see the books by Lau, Ravi & Singh [26], Vazirani [31], and
Williamson & Shmoys [34]. This property has been leveraged in various ways to obtain
O(1) approximation ratios for problems such as survivable network design [20], min-cost/min-
size k-edge connected spanning subgraph [15, 14], min-cost 2-node connected spanning
subgraph [11], (p, 1)-flexible graph connectivity [5], etc. The primal-dual method is one of
the most successful algorithmic paradigms that leverages these uncrossability properties.

On the other hand, when the uncrossability property does not hold, most known tech-
niques for designing O(1) approximation algorithms fail to work. Indeed, only logarithmic
approximation ratios are known for some of the problems where the uncrossability property
does not hold. These logarithmic approximation ratios are usually obtained via a reduction
to the set cover problem, for which a greedy strategy yields a logarithmic approximation.
WGMV [33] conclude their paper with the following remark:

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:3

Extending our algorithm to handle non-uncrossable functions remains a challenging
open problem. The key feature of uncrossable functions is that there exists an optimal
dual solution which is laminar . . . A larger open issue is to explore further the
power of the primal-dual approach for obtaining approximation algorithms for other
combinatorial optimization problems. Handling all non-uncrossable functions is ruled
out by the fact that there exist instances corresponding to non-uncrossable {0, 1}
functions whose relative duality gap is larger than any constant.

Our main contribution in this work is a novel analysis of the WGMV primal-dual
approximation algorithm applied to a class of functions that strictly contain the class
of uncrossable functions; we show that the algorithm still yields an O(1) approximation
guarantee for this larger class. This new class of functions captures some well-studied network
design problems. An application of our main result provides improved approximation ratios
for the capacitated k-edge connected subgraph problem, some instances of the flexible graph
connectivity problem, and the problem of augmenting all small cuts of a graph. A detailed
discussion of our results can be found in Section 1.1. For the benefit of the reader, in
Section 2.1 we give an overview of WGMV’s primal-dual algorithm and its analysis.

The primal-dual algorithm for solving network design problems follows the common
strategy of starting with a graph that has no edges and then iteratively buying (i.e., including)
a subset of edges into the infeasible solution until feasibility is attained. Within each iteration,
the algorithm’s goal is to buy a cheap edge-set that fixes some or all of the infeasibility of
the current solution. Let F denote the edge-set that has been bought until some step in the
algorithm. A set of nodes S is said to be violated if the number of F -edges in the cut of S is
less than the prespecified connectivity requirement of S. The algorithm deems an edge to be
useful if it is in the cut of a violated set S. Clearly, the family of violated sets is important
for the design and analysis of these algorithms, especially the inclusion-wise minimal violated
sets. A family F of sets is called uncrossable if the following holds:

A,B ∈ F =⇒ either A ∩B,A ∪B ∈ F or A \B,B \A ∈ F .

Informally speaking, the uncrossability property ensures that the the minimal sets within the
family can be considered independently. Formally, a minimal violated set A in an uncrossable
family F cannot cross another set S ∈ F ; otherwise, we get a contradiction since A,S ∈ F
implies that either A ∩ S or A \ S is in F . This key property is one of the levers used in the
design of O(1)-approximation algorithms for some network-design problems. Unfortunately,
there are important problems in network design where the family of violated sets does not
form an uncrossable family. For instance, see the instance described in Appendix B. This
leads us to define a new class of set families that contains all uncrossable families.

Call a family F pliable if the following holds:

A,B ∈ F =⇒ at least two of A ∩B,A ∪B,A \B,B \A are in F .

In the full version of our paper, we show that the WGMV primal-dual algorithm has a super-
constant approximation ratio for pliable families. Nevertheless, by enforcing an additional
property on the given pliable family, we can establish that the WGMV algorithm yields an
O(1) approximation. We call this additional assumption property (γ); see Section 1.1.1 for
the formal definition. From a structural standpoint, this property still allows a minimal
violated set to cross another violated set, but, crucially, it does not allow them to cross an
arbitrary number of violated sets in arbitrary ways. As we show later, the fact that disparate
network design problems can be captured by pliable families with property (γ) hints that
this property is “just right”.

ICALP 2023

15:4 Generalizing the WGMV Primal-Dual Method

The above connectivity augmentation problems can be understood in a general framework
called f -connectivity. In this problem, we are given an undirected graph G = (V,E)
on n vertices with nonnegative costs c ∈ QE

≥0 on the edges and a requirement function
f : 2V → {0, 1} on subsets of vertices. We are interested in finding an edge-set F ⊆ E with
minimum cost c(F) :=

∑
e∈F ce such that for all cuts δ(S), S ⊆ V , we have |δ(S)∩F | ≥ f(S).

This problem can be formulated as the following integer program where binary variables xe

model inclusion of edge e in F :

min
∑
e∈E

cexe (f -IP)

subject to: x(δ(S)) ≥ f(S) ∀ S ⊆ V

xe ∈ {0, 1} ∀ e ∈ E.

We remark that in its most-general form, f -connectivity is hard to approximate within
a logarithmic factor. This can be shown via a reduction from the hitting set problem.1
Thus, research on f -connectivity has focused on instances where f has some nice structural
properties.

▶ Definition 1 ([33]). A function f : 2V → {0, 1} satisfying f(V) = 0 is called uncrossable
if for any A,B ⊆ V with f(A) = f(B) = 1, we have f(A ∩ B) = f(A ∪ B) = 1 or
f(A \B) = f(B \A) = 1.

▶ Definition 2. A function f : 2V → {0, 1} satisfying f(V) = 0 is called pliable if for any
A,B ⊆ V with f(A) = f(B) = 1, we have f(A ∩B) + f(A ∪B) + f(A \B) + f(B \A) ≥ 2.

Note that the problem of augmenting an uncrossable (pliable) family can be seen as an
f -connectivity problem whose requirement function is an uncrossable (pliable) function.

1.1 Our Contributions
In this work, we introduce the class of pliable functions and study the approximation ratio of
WGMV’s algorithm on f -connectivity instances arising from pliable functions. To the best of
our knowledge, we are the first to investigate the f -connectivity problem beyond uncrossable
functions. As mentioned before, the algorithm of WGMV can perform poorly on an arbitrary
instance with a pliable function f . In the full version [3, Section 6], we present an instance
where the solution returned by the WGMV algorithm costs Ω(

√
n) times the optimal cost.

1.1.1 Pliable Functions and Property (γ)
As alluded to in the introduction, the analysis of WGMV relies on the property that for any
inclusion-wise minimal violated set C and any violated set S, either C is a subset of S or
C is disjoint from S ([33, Lemma 5.1(3)]). This property does not hold when we apply the
primal-dual method to augment a pliable function; see the instance described in Appendix B.
Nevertheless, we carve out a subclass of pliable functions – still containing all uncrossable
functions – for which the WGMV algorithm yields an O(1)-approximate solution. This
subclass is characterized by the following structural property that allows for minimal violated
sets to cross other violated sets, but in a limited way.

1 Given a ground-set X and a family S of subsets of X to hit, we define L := {ℓx : x ∈ X}, R := {rx :
x ∈ X}, and E := {ex = ℓxrx : x ∈ X}. We then take G = (L ⊔ R, E) to be a bipartite graph with a
perfect matching E and f to be the indicator function of the family {{ℓx : x ∈ A} : A ∈ S}.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:5

Property (γ) : For any edge-set F ⊆ E and for any violated sets (w.r.t. f and F)
C, S1, S2, with S1 ⊊ S2, the following conditional proposition holds:

(C is inclusion-wise minimal) and (C crosses both S1 and S2)
=⇒ S2 \ (S1 ∪ C) is either empty or violated.

▶ Theorem 3. Let G = (V,E) be an undirected graph with nonnegative costs c : E → Q≥0
on its edges, and let f : 2V → {0, 1} be a pliable function satisfying property (γ). Suppose
that there is a subroutine that, for any given F ⊆ E, computes all minimal violated sets w.r.t.
f and F . Then, in polynomial time and using a polynomial number of calls to the subroutine,
we can compute a 16-approximate solution to the given instance of the f -connectivity problem.

In the next three sections, we introduce the network-design applications where Theorem 3
gives new/improved approximation algorithms. In each of these applications, we setup an
f -connectivity problem where the function f is a pliable function with property (γ).

1.1.2 Application 1: Augmenting a Family of Small Cuts

Our first application is on finding a minimum-cost augmentation of a family of small cuts in
a graph. Formally, in an instance of the AugSmallCuts problem we are given an undirected
capacitated graph G = (V,E) with edge-capacities u ∈ QE

≥0, a set of links L ⊆
(

V
2
)

with
costs c ∈ QL

≥0, and a threshold λ̃ ∈ Q≥0. A subset F ⊆ L of links is said to augment a
node-set S if there exists a link e ∈ F with exactly one end-node in S. The objective is to
find a minimum-cost F ⊆ L that augments all non-empty S ⊊ V with u(δ(S) ∩ E) < λ̃.

We remark that some special cases of the AugSmallCuts problem have been studied
previously, and, to the best of our knowledge, there is no previous publication on the
general version of this problem. Let λ(G) denote the minimum capacity of a cut of G, thus,
λ(G) := min{u(δ(S) ∩ E) : ∅ ⊊ S ⊊ V }. Assuming u is integral and λ̃ = λ(G) + 1, we get
the well-known connectivity augmentation problem for which constant-factor approximation
algorithms are known [13, 23]. On the other hand, when λ̃ = ∞, a minimum-cost spanning
tree of (V,L), if one exists, gives an optimal solution to the problem.

Our main result here is an O(1)-approximation algorithm for the AugSmallCuts problem
that works for any choice of λ̃. The proof of the following theorem is given in Section 4.

▶ Theorem 4. There is a 16-approximation algorithm for the AugSmallCuts problem.

As an aside, we refer the reader to Benczur & Goemans [4] and the references therein for
results on the representations of the near-minimum cuts of graphs; they do not study the
problem of augmenting the near-minimum cuts.

In Appendix B, we give a small instance of the AugSmallCuts problem that illustrates
some of the technical challenges which arise while working with the f -connectivity problem
for a pliable function with property (γ). The instance described has bizarre properties that
do not arise when working with uncrossable functions. First, it has a minimal violated set
which crosses another violated set. Second, none of the optimal solutions to the dual LP of
the f -connectivity problem are supported on a laminar family. The latter was believed to
be a major hindrance to developing constant-factor approximation algorithms for general
network-design problems.

ICALP 2023

15:6 Generalizing the WGMV Primal-Dual Method

1.1.3 Application 2: Capacitated k-Edge-Connected Subgraph Problem

In the capacitated k-edge-connected subgraph problem (Cap-k-ECSS), we are given an
undirected graph G = (V,E) with edge costs c ∈ QE

≥0 and edge capacities u ∈ ZE
≥0. The goal

is to find a minimum-cost subset of the edges F ⊆ E such that the capacity across any cut
in (V, F) is at least k, i.e., u(δF (S)) ≥ k for all non-empty sets S ⊊ V . Let umax and umin,
respectively, denote the maximum capacity of an edge in E and the minimum capacity of an
edge in E. We may assume (w.l.o.g.) that umax ≤ k.

We mention that there are well-known 2-approximation algorithms for the special case
of the Cap-k-ECSS problem with umax = umin = 1, which is the problem of finding a
minimum-cost k-edge connected spanning subgraph. Khuller & Vishkin [24] presented a
combinatorial 2-approximation algorithm and Jain [20] matched this approximation guarantee
via the iterative rounding method.

Goemans et al. [17] gave a 2k-approximation algorithm for the general Cap-k-ECSS
problem. Chakrabarty et al. [6] gave a randomized O(log |V (G)|)-approximation algorithm;
note that this approximation guarantee is independent of k but does depend on the size of
the underlying graph. Recently, Boyd et al. [5] improved on these results by providing a
min(k, 2umax)-approximation algorithm. In this work, we give a (16·⌈k/umin⌉)-approximation
algorithm, which leads to improved approximation guarantees when both umin and umax
are sufficiently large. In particular, in the regime when k ≥ umax ≥ umin ≥ 32 and
umin · umax ≥ 16k.

▶ Theorem 5. There is a 16·⌈k/umin⌉-approximation algorithm for the Cap-k-ECSS problem.

The proof of Theorem 5 can be found in Section 5.

1.1.4 Application 3: (p, 2)-Flexible Graph Connectivity

Adjiashvili, Hommelsheim and Mühlenthaler [1] introduced the model of Flexible Graph
Connectivity that we denote by FGC. Boyd, Cheriyan, Haddadan and Ibrahimpur [5]
introduced a generalization of FGC. Let p ≥ 1 and q ≥ 0 be integers. In an instance
of the (p, q)-Flexible Graph Connectivity problem, denoted (p, q)-FGC, we are given an
undirected graph G = (V,E), a partition of E into a set of safe edges S and a set of unsafe
edges U, and nonnegative edge-costs c ∈ QE

≥0. A subset F ⊆ E of edges is feasible for the
(p, q)-FGC problem if for any set F ′ consisting of at most q unsafe edges, the subgraph
(V, F \ F ′) is p-edge connected. The objective is to find a feasible solution F that minimizes
c(F) =

∑
e∈F ce.

Boyd et al. [5] presented a 4-approximation algorithm for (p, 1)-FGC based on the
WGMV primal-dual method, and they gave an O(q logn)-approximation algorithm for
general (p, q)-FGC and a (q + 1)-approximation for (1, q)-FGC. Concurrently with our work,
Chekuri and Jain [8] obtained O(p)-approximation algorithms for (p, 2)-FGC, (p, 3)-FGC
and (2p, 4)-FGC; in particular, they present a (2p+ 4)-approximation ratio for (p, 2)-FGC.
Chekuri and Jain have several other results for network design in non-uniform fault models;
[7] have results on the flexible graph connectivity problem that arises from the classical
survivable network design problem, which they call (p, q)-Flex-SNDP.

Our main result here is an O(1)-approximation algorithm for the (p, 2)-FGC problem.

▶ Theorem 6. There is a 20-approximation algorithm for the (p, 2)-FGC problem. Moreover,
for even p, the approximation ratio is 6.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:7

Note that in comparison to [8], Theorem 6 yields a better approximation ratio when
p > 8 or p ∈ {2, 4, 6, 8}. For p = 1, the approximation ratio of 3 from [5] is better than the
guarantees given by [8] and Theorem 6. The proof of Theorem 6 can be found in Section 6.

1.2 Related work
Goemans & Williamson [18] introduced the notion of proper functions with the motivation of
designing approximation algorithms for problems in network design. They formulated several
of these problems as the f -connectivity problem where f is a proper function. A symmetric
function f : 2V → Z>0 with f(V) = 0 is said to be proper if f(A ∪ B) ≤ max(f(A), f(B))
for any pair of disjoint sets A,B ⊆ V .

Jain [20] designed the iterative rounding framework for the setting when f is weakly
supermodular and presented a 2-approximation algorithm. A function f is said to be weakly
supermodular if f(A) + f(B) ≤ max(f(A ∩ B) + f(A ∪ B), f(A \ B) + f(B \ A)) for any
A,B ⊆ V . One can show that proper functions are weakly supermodular. We mention that
there are examples of uncrossable functions that are not weakly supermodular, see [5].

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent
with [10, 30], and readers are referred to those texts for further information.

For a positive integer k, we use [k] to denote the set {1, . . . , k}. For a ground-set V and
a subset S of V , the complement of S (w.r.t. V) is denoted V \ S. Sets A,B ⊆ V are said to
cross, denoted A ▷◁ B, if each of the four sets A∩B, V \ (A∪B), A \B, B \A is non-empty;
on the other hand, if A,B do not cross, then either A ∪B = V , or A,B are disjoint, or one
of A,B is a subset of the other one. A family of sets L ⊆ 2V is said to be laminar if for any
two sets A,B ∈ L either A and B are disjoint or one of them is a subset of the other one.

We may use abbreviations for some standard terms, e.g., we may use “(p, q)-FGC” as
an abbreviation for “the (p, q)-FGC problem”. In some of our discussions, we may use the
informal phrasing “we apply the primal-dual method to augment a pliable function” instead
of the phrasing “we apply the primal-dual method to an f -connectivity problem where the
function f is a pliable function”.

Graphs, Subgraphs, and Related Notions
Let G = (V,E) be an undirected multi-graph (possibly containing parallel edges but no
loops) with non-negative costs c ∈ RE

≥0 on the edges. We take G to be the input graph,
and we use n to denote |V (G)|. For a set of edges F ⊆ E(G), c(F) :=

∑
e∈F c(e), and for

a subgraph G′ of G, c(G′) := c(E(G′)). For any instance G, we use opt(G) to denote the
minimum cost of a feasible subgraph (i.e., a subgraph that satisfies the requirements of the
problem). When there is no danger of ambiguity, we use opt rather than opt(G).

Let G = (V,E) be any multi-graph, let A,B ⊆ V be two disjoint node-sets, and let
F ⊆ V be an edge-set. We denote the multi-set of edges of G with exactly one end-node
in each of A and B by E(A,B), thus, E(A,B) := {e = uv : u ∈ A, v ∈ B}. Moreover, we
use δE(A) or δ(A) to denote E(A, V \A). By a p-cut we mean a cut of size p. We use G[A]
to denote the subgraph of G induced by A, G − A to denote the subgraph of G induced
by V \ A, and G − F to denote the graph (V, E \ F). We may use relaxed notation for
singleton sets, e.g., we may use G − v instead of G − {v}, etc. A multi-graph G is called
k-edge connected if |V (G)| ≥ 2 and for every F ⊆ E(G) of size < k, G− F is connected.

ICALP 2023

15:8 Generalizing the WGMV Primal-Dual Method

We use the following observations.

▶ Fact 7. Let A,B ⊆ V be a pair of crossing sets. For any edge-set F ⊆
(

V
2
)

and any
S ∈ {A ∩B,A ∪B,A \B,B \A}, we have δF (S) ⊆ δF (A) ∪ δF (B).

Proof. By examining cases, we can show that e ∈ δF (S) =⇒ e ∈ δF (A) or e ∈ δF (B). ◀

For any function f : 2V → {0, 1} and any edge-set F ⊆ E, we say that S ⊆ V is violated
w.r.t. f , F if |δF (S)| < f(S), i.e., if f(S) = 1 and there are no F -edges in the cut δ(S). We
drop f and F when they are clear from the context. The next observation states that the
violated sets w.r.t. any pliable function f and any “augmenting” edge-set F form a pliable
family.

▶ Fact 8. Let f : 2V → {0, 1} be a pliable function and F ⊆ E be an edge-set. Define the
function f ′ : 2V → {0, 1} such that f ′(S) = 1 if and only if both f(S) = 1 and δF (S) = ∅
hold. Then, f ′ is also pliable.

Proof. Consider A,B ⊊ V such that f ′(A) = 1 = f ′(B). Clearly, f(A) = 1 = f(B).
Moreover, for any S ∈ {A ∩ B,A ∪ B,A \ B,B \ A}, we have δF (S) = ∅, by Fact 7. Since
f is pliable, there are at least two distinct sets S1, S2 ∈ {A ∩B,A ∪B,A \B,B \A} with
f -value one. Then, we have f ′(S1) = 1 = f ′(S2) (since δF (S1) = ∅ = δF (S2)). Hence, f ′ is
pliable. ◀

2.1 The WGMV Primal-Dual Algorithm for Uncrossable Functions
In this section, we give a brief description of the primal-dual algorithm of Williamson et
al. [33] that achieves approximation ratio 2 for an f -connectivity problem where the function
f is an uncrossable function.

▶ Theorem 9 (Lemma 2.1 in [33]). Let f : 2V → {0, 1} be an uncrossable function. Suppose
we have a subroutine that for any given F ⊆ E, computes all minimal violated sets w.r.t. f ,
F . Then, in polynomial time and using a polynomial number of calls to the subroutine, we
can compute a 2-approximate solution to the given instance of the f -connectivity problem.

The algorithm and its analysis are based on the following LP relaxation of (f -IP) (stated
on the left) and its dual. Define S := {S ⊆ V : f(S) = 1}.

Primal LP

min
∑
e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

Dual LP

max
∑
S∈S

yS

subject to:
∑

S∈S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S

The algorithm starts with an infeasible primal solution F = ∅, which corresponds to
x = χF = 0 ∈ {0, 1}E , and a feasible dual solution y = 0. At any time, we say that
S ∈ S is violated if δF (S) = ∅, i.e., the primal-covering constraint for S is not satisfied.
We call inclusion-wise minimal violated sets as active sets. An edge e ∈ E is said to be
tight if

∑
S∈S:e∈δ(S) yS = ce, i.e., the dual-packing constraint for e is tight. Throughout the

algorithm, the following conditions are maintained: (i) integrality of the primal solution;
(ii) feasibility of the dual solution; (iii) yS is never decreased for any S; and (iv) yS may only
be increased for S ∈ S that are active.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:9

The algorithm has two stages. In the first stage, the algorithm iteratively improves primal
feasibility by including tight edges in F that are incident to active sets. If no such edge exists,
then the algorithm uniformly increases yS for all active sets S until a new edge becomes
tight. The first stage ends when x = χF becomes feasible. In the second stage, called reverse
delete, the algorithm removes redundant edges from F . Initially F ′ = F . The algorithm
examines edges picked in the first stage in reverse order, and discards edges from F ′ as long
as feasibility is maintained. Note that F ′ is feasible if the subroutine in the hypothesis of
Theorem 9 does not find any (minimal) violated sets.

The analysis of the 2-approximation ratio is based on showing that a relaxed form of the
complementary slackness conditions hold on “average”. Let F ′ and y be the primal and dual
solutions returned by the algorithm. By the design of the algorithm,

∑
S∈S:e∈δ(S) yS = ce

holds for any edge e ∈ F ′. Thus, the cost of F ′ can be written as
∑

e∈F ′
∑

S∈S:e∈δ(S) yS =∑
S∈S yS · |δF ′(S)|. Observe that the approximation ratio follows from showing that the

algorithm always maintains the following inequality:∑
S∈S

yS · |δF ′(S)| ≤ 2
∑
S∈S

yS . (1)

Consider any iteration and recall that the dual variables corresponding to active sets
were uniformly increased by an ε > 0 amount, until some edge became tight. Let C denote
the collection of active sets during this iteration. During this iteration, the left-hand side of
(1) increases by ε ·

∑
S∈C |δF ′(S)| and the right-hand side increases by 2 · ε · |C|. Thus, (1) is

maintained if one can show that the average F ′-degree of active sets in any iteration is ≤ 2,
and this forms the crux of the WGMV analysis.

We refer the reader to [19] for a detailed discussion of the primal-dual method for network
design problems.

3 Extending the WGMV Primal-Dual Method to Pliable functions

In this section, we prove our main result, Theorem 3: we show that the primal-dual algorithm
outlined in Section 2.1 is a 16-approximation algorithm for the f -connectivity problem where
f is a pliable function with property (γ). Our analysis follows the same high-level plan as
that of Williamson et al. [33] which was outlined in Section 2.1. We will show that, in any
iteration of the first stage of the primal-dual algorithm,

∑
C∈C |δF ′(C)| ≤ 16|C|, where C

is the collection of active sets in that iteration, and F ′ is the set of edges output by the
algorithm at termination, after the reverse delete stage.

For the remainder of this proof we assume that the iteration, and thus C, is fixed. We
define H := ∪C∈CδF ′(C). (Informally speaking, H is the subset of F ′ that is relevant for
the analysis of our fixed iteration.) Additionally, to ease notation when discussing a laminar
family of sets, we say that two sets A,B overlap if A \B,A∩B and B \A are all non-empty.
(Clearly, if A,B cross, then A,B overlap; if A ∪ B = V , then A,B do not cross but A,B
could overlap.)

We begin with a lemma which can be proved by the same arguments as in the proof of
[33, Lemma 5.1].

▶ Lemma 10. For any edge e ∈ H := ∪C∈CδF ′(C), there exists a witness set Se ⊆ V with:
(i) f(Se) = 1 and Se is violated in the current iteration, and
(ii) δF ′(Se) = {e}.

Our proof of the following key lemma is presented in Appendix A.

ICALP 2023

15:10 Generalizing the WGMV Primal-Dual Method

▶ Lemma 11. There exists a laminar family of witness sets.

▶ Lemma 12. The active sets in C are pair-wise disjoint.

Proof. Suppose that two sets C1, C2 ∈ C intersect. Then due to property (i) of pliable
functions, one of the sets C1 ∩ C2, C1 \ C2, or C2 \ C1 is violated; thus, a proper subset of
either C1 or C2 is violated. This is a contradiction because C1 and C2 are minimal violated
sets and no proper subset of C1 (respectively, C2) is violated. ◀

Let L be the laminar family of witness sets together with the node-set V . Let T be a
rooted tree that represents L; for each set S ∈ L, there is a node vS in T, and the node vV

is taken to be the root of T. The edges of T are oriented away from the root; thus, T has an
oriented edge (vQ, vS) iff Q is the smallest set of L that properly contains the set S of L.
Let ψ be a mapping from C to L that maps each active set C to the smallest set S ∈ L that
contains it. If a node vS of T has some active set mapped to its associated set S, then we
call vS active and we assign the color red to vS . Moreover, we assign the color green to each
of the non-active nodes of T that are incident to three or more edges of T; thus, node vS of
T is green iff degT(vS) ≥ 3 and vS is not active. Finally, we assign the color black to each of
the remaining nodes of T; thus, node vS of T is black iff degT(vS) ≤ 2 and vS is not active.

Let the number of red, green and black nodes of T be denoted by nR, nG and nB,
respectively. Clearly, nR +nG +nB = |T| = |F ′| + 1. Let nL denote the number of leaf nodes
of T.

▶ Lemma 13. The following are true:
(i) Each leaf node of T is red.
(ii) We have nG ≤ nL ≤ nR.

Proof. The first claim follows by repeating the argument in [33, Lemma 5.3]. Next, by (i),
we have nL ≤ nR. Moreover, we have nG ≤ nL because the number of leaves in any tree is
at least the number of nodes that are incident to three or more edges of the tree. ◀

Observe that each black node of T is incident to two edges of T; thus, every black non-root
node of T has a unique child.

Let us sketch our plan for proving Theorem 3. Clearly, the theorem would follow from
the inequality

∑
C∈C |δF ′(C)| ≤ O(1) · |C|; thus, we need to prove an upper bound of O(|C|)

on the number of “incidences” between the edges of F ′ and the cuts δ(C) of the active sets
C ∈ C. We start by assigning a token to T corresponding to each “incidence”. In more detail,
for each edge e ∈ F ′ and cut δ(C) such that C ∈ C and e ∈ δ(C) we assign one token to
the node vSe

of T that represents the witness set Se of the edge e. Thus, the total number
of tokens assigned to T is

∑
C∈C |δF ′(C)|; moreover, after the initial assignment, it can be

seen that each node of T has ≤ 2 tokens (see Lemma 14 below). Then we redistribute the
tokens according to a simple rule such that (after redistributing) each of the red/green nodes
has ≤ 8 tokens and each of the black nodes has no tokens. Lemma 15 (below) proves this
key claim by applying property (γ). The key claim implies that the total number of tokens
assigned to T is ≤ 8nR + 8nG ≤ 16nR ≤ 16|C| (by Lemma 13). This concludes our sketch.

We apply the following two-phase scheme to assign tokens to the nodes of T.
In the first phase, for C ∈ C and e ∈ δF ′(C), we assign a new token to the node vSe

corresponding to the witness set Se for the edge e. At the end of the first phase, observe
that the root vV of T has no tokens (since the set V cannot be a witness set).

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:11

In the second phase, we apply a root-to-leaves scan of T (starting from the root vV).
Whenever we scan a black node, then we move all the tokens at that node to its unique
child node. (There are no changes to the token distribution when we scan a red node or
a green node.)

▶ Lemma 14. At the end of the first phase, each node of T has ≤ 2 tokens.

Proof. Consider a non-root node vSe
of T. This node corresponds to a witness set Se ∈ L

and e is the unique edge of F ′ in δ(Se). The edge e is in ≤ 2 of the cuts δ(C), C ∈ C, because
the active sets are pairwise disjoint (in other words, the number of “incidences” for e is ≤ 2).
No other edge of F ′ can assign tokens to vSe

during the first phase. ◀

▶ Lemma 15. We have that:
(i) Any oriented path of T \ {vV } with four nodes has at least one non-black node.
(ii) Hence, after token redistribution, each red or green node of T has ≤ 8 tokens and each

black node of T has zero tokens.

Proof. For the sake of contradiction, assume that there exists an oriented path of T that
has four black nodes and that is not incident to the root vV ; let vS4 → vS3 → vS2 → vS1 be
such an oriented path. Thus, S1 ⊊ S2 ⊊ S3 ⊊ S4 are witness sets of L. For i ∈ {1, 2, 3, 4},
let Si be the witness set of edge ei = {ai, bi} ∈ F ′; note that ei has exactly one end-node in
Si, call it ai. Clearly, for i ∈ {1, 2, 3}, both nodes ai, bi are in Si+1 (since ei+1 is the unique
edge of F ′ in δ(Si+1)).

Let C ∈ C be an active set such that e1 ∈ δ(C).

▷ Claim 16. C is not a subset of S1.

For the sake of contradiction, suppose that C is a subset of S1. Since e1 has (exactly) one
end-node in C and b1 ̸∈ S1, we have a1 ∈ C. Let W be the smallest set in L that contains
C. Then W ⊆ S1, and, possibly, W = S1. Thus, we have a1 ∈ W and b1 ̸∈ W , hence,
e1 ∈ δ(W). Then we must have W = S1 (since e1 is in exactly one of the cuts δ(S), S ∈ L).
Then the mapping ψ from C to L maps C to W = S1, hence, vS1 is colored red. This is a
contradiction.

▷ Claim 17. C crosses each of the sets S2, S3, S4.

First, observe that e1 has (exactly) one end-node in C and has both end-nodes in S2.
Hence, both S2 ∩ C and S2 \ C are non-empty. Next, using Claim 16, we can prove that
C is not a subset of S2.

(
Otherwise, S2 would be the smallest set in L that contains C,

hence, vS2 would be colored red.
)

Repeating the same argument, we can prove that C is not
a subset of S3, and, moreover, C is not a subset of S4. Finally, note that V \ (C ∪ S4) is
non-empty.

(
Otherwise, at least one of C \S4 or C ∩S4 would be violated, since f is a pliable

function, and that would contradict the fact that C is a minimal violated set.
)

Observe that
S2 crosses C because all four sets S2 ∩C, S2 \C, C \S2, V \ (S2 ∪C) are non-empty (in more
detail, we have |{a1, b1} ∩ (S2 ∩ C)| = 1, |{a1, b1} ∩ (S2 \ C)| = 1, C ̸⊆ S2 =⇒ C \ S2 ̸= ∅,
V \ (C ∪ S2) ⊇ V \ (C ∪ S4) ̸= ∅). Similarly, it can be seen that S3 crosses C, and S4 crosses
C.

▷ Claim 18. Either S3 \ (C ∪ S2) is non-empty or S4 \ (C ∪ S3) is non-empty.

For the sake of contradiction, suppose that both sets S3 \ (C ∪ S2), S4 \ (C ∪ S3) are
empty. Then C ⊇ S4 \ S3 and C ⊇ S3 \ S2. Consequently, both end-nodes of e3 are in C

(since a3 ∈ S3 \ S2 and b3 ∈ S4 \ S3). This leads to a contradiction, since e3 ∈ F ′ is incident
to an active set in C, call it C3 (i.e., e3 ∈ δ(C3)), hence, one of the end-nodes of e3 is in both
C and C3, whereas the active sets are pairwise disjoint.

ICALP 2023

15:12 Generalizing the WGMV Primal-Dual Method

To conclude the proof of the lemma, suppose that S4 \(C∪S3) is non-empty (by Claim 18);
the other case, namely, S3 \ (C ∪ S2) ̸= ∅, can be handled by the same arguments. Then, by
property (γ), S4 \ (C ∪ S3) is a violated set, therefore, it contains a minimal violated set,
call it C̃. Clearly, the mapping ψ from C to L maps the active set C̃ to a set S

C̃
. Either

S
C̃

= S4 or else S
C̃

is a subset of of S4 \ S3. Both cases give contradictions; in the first case,
S4 is colored red, and in the second case, vS4 has ≥ 2 children in T so that S4 is colored
either green or red. Thus, we have proved the first part of the lemma.

The second part of the lemma follows by Lemma 13 and the sketch given below Lemma 13.
In more detail, at the start of the second phase, each node of T has ≤ 2 tokens, by Lemma 14.
In the second phase, we redistribute the tokens such that each (non-root) black node ends up
with no tokens, and each red/green node vS receives ≤ 6 redistributed tokens because there
are ≤ 3 black ancestor nodes of vS that could send their tokens to vS (by the first part of the
lemma). Hence, each non-root non-black node has ≤ 8 tokens, after token redistribution. ◀

4 O(1)-Approximation Algorithm for Augmenting Small Cuts

In this section, we give a 16-approximation algorithm for the AugSmallCuts problem, thereby
proving Theorem 4. Our algorithm for AugSmallCuts is based on a reduction to an instance of
the f -connectivity problem on the graph H = (V,L) for a pliable function f with property (γ).

Recall the AugSmallCuts problem: we are given an undirected graph G = (V,E) with
edge-capacities u ∈ QE

≥0, a set of links L ⊆
(

V
2
)

with costs c ∈ QL
≥0, and a threshold λ̃ ∈ Q≥0.

A subset F ⊆ L of links is said to augment a node-set S if there exists a link e ∈ F with
exactly one end-node in S. The objective is to find a minimum-cost F ⊆ L that augments
all non-empty S ⊊ V with u(δE(S)) < λ̃.

Proof of Theorem 4. Define f : 2V → {0, 1} such that f(S) = 1 if and only if S /∈ {∅, V } and
u(δE(S)) < λ̃. We apply Theorem 3 for the f -connectivity problem on the graph H = (V,L)
with edge-costs c ∈ QL

≥0 to obtain a 16-approximate solution F ⊆ L. By our choice of f ,
there is a one-to-one cost-preserving correspondence between feasible augmentations for
AugSmallCuts and feasible solutions to the f -connectivity problem. Thus, it remains to
argue that the assumptions of Theorem 3 hold.

First, we show that f is pliable. Note that f is symmetric and f(V) = 0. Consider sets
A,B ⊆ V with f(A) = f(B) = 1. By submodularity and symmetry of cuts in undirected
graphs, we have: max{u(δ(A ∪B)) + u(δ(A ∩B)), u(δ(A \B)) + u(δ(B \A))} ≤ u(δ(A)) +
u(δ(B)). Since the right hand side is strictly less than 2λ̃, we have f(A ∩B) + f(A ∪B) ≥ 1
and f(A \B) + f(B \A) ≥ 1, hence, f is pliable.

Second, we argue that f satisfies property (γ). Fix some edge-set F ⊆ L, and define
f ′ : 2V → {0, 1} such that f ′(S) = 1 if and only if f(S) = 1 and δF (S) = ∅. By Fact 8,
f ′ is also pliable. Consider sets C, S1, S2 ⊆ V , S1 ⊊ S2, that are violated w.r.t. f , F , i.e.,
f ′(C) = f ′(S1) = f ′(S2) = 1. Further, suppose that C is minimally violated, and C crosses
both S1 and S2. Suppose that S2 \ (S1 ∪C) is non-empty (the other case is trivial). To show
that S2 \ (S1 ∪C) is violated w.r.t. f, F , we have to show that (i) δF (S2 \ (S1 ∪C)) is empty
and (ii) u(δE(S2 \ (S1 ∪ C))) < λ̃. Observe that S2 crosses (S1 ∪ C). To show (i), we apply
Fact 7 twice; first, we show that δF (S1 ∪ C) is empty (since δF (C), δF (S1) are empty), and
then we show that δF (S2 \ (S1 ∪C)) is empty (since δF (S2) is empty). To show (ii), observe
that the multiset

δE(S2 \ (S1 ∪ C)) ∪ δE(C \ S2) is a (multi-)subset of δE(S2) ∪ δE(C ∪ S1).

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:13

(Note that for disjoint sets A1, A2, A3 ⊊ V , δ(A1) ∪ δ(A2) is a (multi-)subset of δ(A1 ∪A3) ∪
δ(A2 ∪A3).) Moreover, we claim that u(δE(C ∪ S1)) < λ̃ and u(δE(C \ S2)) ≥ λ̃. The two
claims immediately imply (ii) (since u(δE(S2)) < λ̃).

Next, we prove the two claims. Note that the sets C ∩ S1, C \ S1, S1 \C, V \ (C ∪ S1) are
non-empty, and note that f ′(C∩S1) = 0 = f ′(C \S1) since C is a minimal violated set. Since
f ′ is pliable and f ′(C) = 1 = f ′(S1), we have f ′(C ∪ S1) = 1. By Fact 7, δF (C ∪ S1) = ∅,
hence, f(C ∪ S1) = 1; equivalently, u(δE(C ∪ S1)) < λ̃. Since C is a minimal violated set,
f ′(C \ S2) = 0. Moreover, δF (C \ S2) = ∅, by Fact 7. Hence, f(C \ S2) = 0; equivalently,
u(δE(C \ S2)) ≥ λ̃.

Last, we describe a polynomial-time subroutine that for any F ⊆ L gives the collection of
all minimal violated sets w.r.t. f , F . Assign a capacity of λ̃ to all edges in F , and consider
the graph G′ = (V,E′) where E′ := E ∪ F . Then, the family of minimal violated sets is
given by {∅ ⊊ S ⊊ V : u(δE′(S)) < λ̃, u(δE′(A)) ≥ λ̃ ∀ ∅ ⊊ A ⊊ S}. We use the notion
of solid sets to find all such minimally violated sets; see Naor, Gusfield, and Martel [29]
and see Frank’s book [12]. A solid set of an undirected graph H = (V,E′′) with capacities
w ∈ RE′′

≥0 on its edges is a non-empty node-set Z ⊊ V such that w(δE′′(X)) > w(δE′′(Z)) for
all non-empty X ⊊ Z. Note that the family of minimal violated sets of interest to us is a
sub-family of the family of solid sets of G′. The family of all solid sets of a graph can be
listed in polynomial time, see [29] and [12, Chapter 7.3]. Hence, we can find all minimal
violated sets w.r.t. f , F in polynomial time, by examining the list of solid sets to check
(1) whether there is a solid set S that is violated, and (2) whether every proper subset of S
that is a solid set is not violated. This completes the proof of the theorem. ◀

5 O(k/umin)-Approximation Algorithm for the Capacitated
k-Edge-Connected Subgraph Problem

In this section, we give a 16 · ⌈k/umin⌉-approximation algorithm for the Cap-k-ECSS problem,
thereby proving Theorem 5. Our algorithm is based on repeated applications of Theorem 4.

Recall the capacitated k-edge-connected subgraph problem (Cap-k-ECSS): we are given
an undirected graph G = (V,E) with edge costs c ∈ QE

≥0 and edge capacities u ∈ ZE
≥0. The

goal is to find a minimum-cost subset of the edges F ⊆ E such that the capacity across any
cut in (V, F) is at least k, i.e., u(δF (S)) ≥ k for all non-empty sets S ⊊ V .

Proof of Theorem 5. The algorithm is as follows: Initialize F := ∅. While the minimum
capacity of a cut δ(S), ∅ ̸= S ⊊ V, in (V, F) is less than k, run the approximation algorithm
from Theorem 4 with input G = (V, F) and L = E \F , to augment all cuts δ(S), ∅ ≠ S ⊊ V,

with u(δ(S)) < k and obtain a valid augmentation F ′ ⊆ L. Update F by adding F ′, that is,
F := F ∪ F ′. On exiting the while loop, output the set of edges F .

At any step of the algorithm, let λ denote the minimum capacity of a cut in (V, F), i.e.,
λ := min{u(δF (S)) : ∅ ⊊ S ⊊ V }.

The above algorithm outputs a feasible solution since, upon exiting the while loop, λ is
at least k. Let F ∗ ⊆ E be an optimal solution to the Cap-k-ECSS instance. Notice that
F ∗ \F is a feasible choice for F ′ during any iteration of the while loop. Hence, by Theorem 4,
c(F ′) ≤ 16 · c(F ∗). We claim that the above algorithm requires at most ⌈ k

umin
⌉ iterations of

the while loop. This holds because each iteration of the while loop (except possibly the last
iteration) raises λ by at least umin. (At the start of the last iteration, k − λ could be less
than umin, and, at the end of the last iteration, λ could be equal to k). Hence, at the end of
the algorithm, c(F) ≤ 16 · ⌈ k

umin
⌉c(F ∗). This completes the proof. ◀

ICALP 2023

15:14 Generalizing the WGMV Primal-Dual Method

We remark that our new result (Theorem 4) is critical for the bound of ⌈ k
umin

⌉ on the
number of iterations of this algorithm. Earlier methods only allowed augmentations of
minimum cuts, so such methods may require as many as Ω(k) iterations. (In more detail, the
earlier methods would augment the cuts of (V, F) of capacity λ but would not augment the
cuts of capacity ≥ λ+ 1; thus, cuts of capacity λ+ 1 could survive the augmentation step.)

6 O(1)-Approximation Algorithm for (p, 2)-FGC

In this section, we present a 20-approximation algorithm for (p, 2)-FGC, by applying our
results from Section 3.

Recall (from Section 1) that the algorithmic goal in (p, 2)-FGC is to find a minimum-cost
edge-set F such that for any pair of unsafe edges e, f ∈ F ∩ U, the subgraph (V, F \ {e, f})
is p-edge connected.

Our algorithm works in two stages. First, we compute a feasible edge-set F1 for (p, 1)-FGC
on the same input graph, by applying the 4-approximation algorithm of [5]. We then augment
the subgraph (V, F1) using additional edges. Since F1 is a feasible edge-set for (p, 1)-FGC,
any cut δ(S), ∅ ⊊ S ⊊ V , in the subgraph (V, F1) either (i) has at least p safe edges or
(ii) has at least p+ 1 edges (see below for a detailed argument). Thus the cuts that need to
be augmented have exactly p+ 1 edges and contain at least two unsafe edges. Let us call
such cuts deficient. Augmenting all deficient cuts by at least one (safe or unsafe) edge will
ensure that we have a feasible solution to (p, 2)-FGC.

The following example shows that when p is odd, then the function f in the f -connectivity
problem associated with (p, 2)-FGC may not be an uncrossable function. In other words,
the indicator function f : 2V → {0, 1} of the sets S such that δ(S) is a deficient cut could
violate the definition of an uncrossable function.

▶ Example 19. We construct the graph G by starting with a 4-cycle v1, v2, v3, v4, v1 and
then replacing each edge of the 4-cycle by a pair of parallel edges; thus, we have a 4-regular
graph with 8 edges; we designate the following four edges as unsafe (and the other four
edges are safe): both copies of edge {v1, v4}, one copy of edge {v1, v2}, and one copy of edge
{v3, v4}. Clearly, G is a feasible instance of (3, 1)-FGC. On the other hand, G is infeasible
for (3, 2)-FGC, and the cuts δ({v1, v2}) and δ({v2, v3}) are deficient. Note that the function
f : {v1, v2, v3, v4} → {0, 1} that has f({v1, v2}) = f({v2, v3}) = f({v1}) = f({v4}) = 1 and
f(S) = 0 for all other S ⊆ V is not uncrossable (observe that the cuts δ(v2) and δ(v3) are
not deficient). Moreover, observe that the minimal violated set C = {v2, v3} crosses the
violated set S = {v1, v2}.

Proof of Theorem 6. In the following, we use F to denote the set of edges picked by the
algorithm at any step of the execution; we mention that our correctness arguments are valid
despite this ambiguous notation; moreover, we use δ(S) rather than δF (S) to refer to a cut
of the subgraph (V, F), where ∅ ≠ S ⊆ V .

Since F is a feasible edge-set for (p, 1)-FGC, any cut δ(S) (where ∅ ̸= S ⊆ V) either
(i) has at least p safe edges or (ii) has at least p + 1 edges. Consider a node-set S that
violates the requirements of the (p, 2)-FGC problem. We have ∅ ≠ S ⊊ V and there exist two
unsafe edges e, f ∈ δ(S) such that |δF (S) \ {e, f}| ≤ p− 1. Since F is feasible for (p, 1)-FGC,
we have |δ(S) \ {e}| ≥ p and |δ(S) \ {f}| ≥ p. Thus, |δF (S)| = p+ 1. In other words, the
node-sets S that need to be augmented have exactly p + 1 edges in δ(S), at least two of
which are unsafe edges. Augmenting all such violated sets by at least one (safe or unsafe)
edge will result in a feasible solution to (p, 2)-FGC. Let f : 2V → {0, 1} be the indicator
function of these violated sets. Observe that f is symmetric, that is, f(S) = f(V \S) for any

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:15

S ⊆ V ; this additional property of f is useful for our arguments. We claim that f is a pliable
function that satisfies property (γ), hence, we obtain an O(1)-approximation algorithm for
(p, 2)-FGC, via the primal-dual method and Theorem 3.

Our proof of the following key lemma is presented in [3, Section 5].

▶ Lemma 20. f is a pliable function that satisfies property (γ). Moreover, for even p, f is
an uncrossable function.

Lastly, we show that there is a polynomial-time subroutine for computing the minimal
violated sets. Consider the graph (V, F). Note that size of a minimum cut of (V, F) is at
least p since F is a feasible edge-set for (p, 1)-FGC. The violated sets are subsets S ⊆ V such
that δ(S) contains exactly p+ 1 edges, at least two of which are unsafe edges. Clearly, all the
violated sets are contained in the family of sets S such that δ(S) is a 2-approximate min-cut
of (V, F); in other words, {S ⊊ V : p ≤ |δ(S)| ≤ 2p} contains all the violated sets. It is well
known that the family of 2-approximate min-cuts in a graph can be listed in polynomial
time, see [22, 28]. Hence, we can find all violated sets and all minimally violated sets in
polynomial time.

Thus, we have a 20-approximation algorithm for (p, 2)-FGC via the primal-dual algorithm
of [33] based on our results in Section 3. Furthermore, for even p, the approximation ratio
is 6(= 4 + 2) since the additive approximation-loss for the augmenting step is 2 when f is
uncrossable (see Theorem 9). This completes the proof of Theorem 6. ◀

References
1 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible Graph Connectivity.

Mathematical Programming, 192:409–441, 2022. doi:10.1007/s10107-021-01664-9.
2 Ajit Agrawal, Philip Klein, and R Ravi. When Trees Collide: An Approximation Algorithm for

the Generalized Steiner Problem on Networks. SIAM Journal on Computing, 24(3):440–456,
1995. doi:10.1137/S0097539792236237.

3 Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved Approximation
Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions. CoRR,
abs/2209.11209v2, 2022. arXiv:2209.11209.

4 András A. Benczúr and Michel X. Goemans. Deformable Polygon Representation and Near-
Mincuts. In Building Bridges. Bolyai Society Mathematical Studies, pages 103–135. Springer,
2008. doi:10.1007/978-3-540-85221-6_3.

5 Sylvia C. Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation
algorithms for flexible graph connectivity. Mathematical Programming, 2023. doi:10.1007/
s10107-023-01961-5.

6 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Ap-
proximability of Capacitated Network Design. Algorithmica, 72(2):493–514, 2015. doi:
10.1007/s00453-013-9862-4.

7 Chandra Chekuri and Rhea Jain. Approximating Flexible Graph Connectivity via Räcke Tree
based Rounding. CoRR, abs/2211.08324, 2022. doi:10.48550/arXiv.2211.08324.

8 Chandra Chekuri and Rhea Jain. Augmentation based Approximation Algorithms for Flexible
Network Design. CoRR, abs/2209.12273, 2022. doi:10.48550/arXiv.2209.12273.

9 George B. Dantzig, Lester R. Ford Jr., and Delbert R. Fulkerson. A Primal-Dual Algorithm
for Linear Programs. In Linear Inequalities and Related Systems, volume 38 of Annals
of Mathematics Studies, pages 171–182. Princeton University Press, 1957. doi:10.1515/
9781400881987-008.

10 Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2017. doi:
10.1007/978-3-662-53622-3.

11 Lisa Fleischer, Kamal Jain, and David P. Williamson. Iterative rounding 2-approximation
algorithms for minimum-cost vertex connectivity problems. Journal of Computer and System
Sciences, 72(5):838–867, 2006. doi:10.1016/j.jcss.2005.05.006.

ICALP 2023

https://doi.org/10.1007/s10107-021-01664-9
https://doi.org/10.1137/S0097539792236237
https://arxiv.org/abs/2209.11209
https://doi.org/10.1007/978-3-540-85221-6_3
https://doi.org/10.1007/s10107-023-01961-5
https://doi.org/10.1007/s10107-023-01961-5
https://doi.org/10.1007/s00453-013-9862-4
https://doi.org/10.1007/s00453-013-9862-4
https://doi.org/10.48550/arXiv.2211.08324
https://doi.org/10.48550/arXiv.2209.12273
https://doi.org/10.1515/9781400881987-008
https://doi.org/10.1515/9781400881987-008
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.jcss.2005.05.006

15:16 Generalizing the WGMV Primal-Dual Method

12 András Frank. Connections in Combinatorial Optimization, volume 38 of Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, 2011.

13 Greg N. Frederickson and Joseph F. JáJá. Approximation Algorithms for Several Graph
Augmentation Problems. SIAM Journal on Computing, 10(2):270–283, 1981. doi:10.1137/
0210019.

14 Harold N. Gabow and Suzanne Gallagher. Iterated Rounding Algorithms for the Smallest
k-Edge Connected Spanning Subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.
doi:10.1137/080732572.

15 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the Smallest k-Edge Connected Spanning Subgraph by LP-Rounding. Networks, 53(4):345–357,
2009. doi:10.1002/net.20289.

16 Harold N. Gabow, Michel X. Goemans, and David P. Williamson. An efficient approximation
algorithm for the survivable network design problem. Mathematical Programming, 82:13–40,
1998. doi:10.1007/BF01585864.

17 Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva Tardos,
and David P. Williamson. Improved Approximation Algorithms for Network Design Problems.
In Proceedings of the 5th Symposium on Discrete Algorithms, pages 223–232, 1994.

18 Michel X. Goemans and David P. Williamson. A General Approximation Technique for
Constrained Forest Problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi:
10.1137/S0097539793242618.

19 Michel X. Goemans and David P. Williamson. The Primal-Dual Method for Approximation
Algorithms and Its Application to Network Design Problems. In Approximation Algorithms
for NP-Hard Problems, chapter 4, pages 144–191. PWS Publishing Company, 1996. URL:
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf.

20 Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

21 David S. Johnson, Maria Minkoff, and Steven Phillips. The Prize Collecting Steiner Tree
Problem: Theory and Practice. In David B. Shmoys, editor, Proceedings of the 11th Symposium
on Discrete Algorithms, pages 760–769, 2000. URL: https://dl.acm.org/doi/10.5555/
338219.338637.

22 David R. Karger and Clifford Stein. A New Approach to the Minimum Cut Problem. Journal
of the ACM, 43(4):601–640, 1996. doi:10.1145/234533.234534.

23 Samir Khuller and Ramakrishna Thurimella. Approximation Algorithms for Graph Augmen-
tation. Journal of Algorithms, 14(2):214–225, 1993. doi:10.1006/jagm.1993.1010.

24 Samir Khuller and Uzi Vishkin. Biconnectivity Approximations and Graph Carvings. Journal
of the ACM, 41(2):214–235, 1994. doi:10.1145/174652.174654.

25 Harold W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955. doi:10.1002/nav.3800020109.

26 Lap Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2011. doi:10.1017/
CBO9780511977152.

27 Milena Mihail, David Shallcross, Nate Dean, and Marco Mostrel. A Commercial Application of
Survivable Network Design: ITP/INPLANS CCS Network Topology Analyzer. In Proceedings
of the 7th Symposium on Discrete Algorithms, pages 279–287, 1996. URL: https://dl.acm.
org/doi/10.5555/313852.314074.

28 Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing All Small Cuts
in an Undirected Network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997.
doi:10.1137/S0895480194271323.

29 Dalit Naor, Dan Gusfield, and Charles Martel. A Fast Algorithm for Optimally Increasing
the Edge Connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997. doi:10.1137/
S0097539792234226.

https://doi.org/10.1137/0210019
https://doi.org/10.1137/0210019
https://doi.org/10.1137/080732572
https://doi.org/10.1002/net.20289
https://doi.org/10.1007/BF01585864
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf
https://doi.org/10.1007/s004930170004
https://dl.acm.org/doi/10.5555/338219.338637
https://dl.acm.org/doi/10.5555/338219.338637
https://doi.org/10.1145/234533.234534
https://doi.org/10.1006/jagm.1993.1010
https://doi.org/10.1145/174652.174654
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1017/CBO9780511977152
https://doi.org/10.1017/CBO9780511977152
https://dl.acm.org/doi/10.5555/313852.314074
https://dl.acm.org/doi/10.5555/313852.314074
https://doi.org/10.1137/S0895480194271323
https://doi.org/10.1137/S0097539792234226
https://doi.org/10.1137/S0097539792234226

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:17

30 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

31 Vijay V. Vazirani. Approximation Algorithms. Springer, 2003. doi:10.1007/
978-3-662-04565-7.

32 David P. Williamson and Michel X. Goemans. Computational Experience with an Approx-
imation Algorithm on Large-Scale Euclidean Matching Instances. INFORMS Journal on
Computing, 8(1):29–40, 1996. doi:10.1287/ijoc.8.1.29.

33 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A Primal-
Dual Approximation Algorithm for Generalized Steiner Network Problems. Combinatorica,
15(3):435–454, 1995. doi:10.1007/BF01299747.

34 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

A Missing Proofs from Section 3

This section has several lemmas and proofs from Section 3 that are used to prove our main
result, Theorem 3.

▶ Lemma 21. Suppose S1 is a witness for edge e1 and S2 is a witness for edge e2 such that
S1 overlaps S2. Then there exist S′

1 and S′
2 satisfying the following properties:

(i) S′
1 is a valid witness for edge e1, S′

2 is a valid witness for edge e2, and S′
1 does not

overlap S′
2.

(ii) S′
1, S

′
2 ∈ {S1, S2, S1 ∪ S2, S1 ∩ S2, S1 \ S2, S2 \ S1}.

(iii) either S′
1 = S1 or S′

2 = S2.

Proof. We perform an exhaustive case analysis to check that the lemma is true. Note that
at least two of the four sets S1 ∪ S2, S1 ∩ S2, S1 \ S2, S2 \ S1 must be violated in the current
iteration. We consider the following cases.
1. If S1 ∪ S2 and S1 ∩ S2 are violated or S1 \ S2 and S2 \ S1 are violated, then the proof of

Lemma 5.2 in [33] can be applied.
2. If S1 ∪ S2 and S1 \ S2 are violated, then consider where the end-nodes of the edges e1

and e2 lie. If e1 ∈ E(S1 \ S2, V \ (S1 ∪ S2)) and e2 ∈ E(S1 \ S2, S1 ∩ S2), then we can set
S′

1 = S1 ∪ S2 and S′
2 = S2. The other possibilities for e1 and e2 are handled similarly.

3. If S1 ∩ S2 and S1 \ S2 are violated, again consider where the end-nodes of the edges e1
and e2 lie. If e1 ∈ E(S1 \ S2, V \ (S1 ∪ S2)) and e2 ∈ E(S1 \ S2, S1 ∩ S2), then we can set
S′

1 = S1 ∩ S2 and S′
2 = S2. The other possibilities for e1 and e2 are handled similarly.

This completes the proof of the lemma. ◀

▶ Lemma 22. Suppose a set A1 overlaps a set A2 and a third set A3 does not overlap A1
nor A2. Then A3 does not overlap any of the sets A1 ∪A2, A1 ∩A2, A1 \A2, A2 \A1.

Proof. Note that since A3 does not overlap A1 (or A2), they are either disjoint or one
contains the other. We consider the following cases.
1. Suppose A3 ∩ A1 = ∅. Then A2 ̸⊆ A3 since A1 ∩ A2 ̸= ∅. If A3 ∩ A2 = ∅, then

A3 ⊆ V \ A1 ∪ A2 and we are done. Finally if A3 ⊆ A2, then A3 ⊆ A2 \ A1 and we are
done.

2. Suppose A1 ⊆ A3. Then A3 ∩A2 ≠ ∅ since A1 ∩A2 ̸= ∅. Also, A3 ̸⊆ A2 since A1 ̸⊆ A2.
If A2 ⊆ A3, then A1 ∪A2 ⊆ A3 and we are done.

3. Suppose A3 ⊆ A1. Then A2 ̸⊆ A3 since A2 \A1 ̸= ∅. If A3 ⊆ A2, then A3 ⊆ A1 ∩A2 and
we are done. Finally if A3 ∩A2 = ∅, then A3 ⊆ A1 \A2 and we are done. ◀

ICALP 2023

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1287/ijoc.8.1.29
https://doi.org/10.1007/BF01299747

15:18 Generalizing the WGMV Primal-Dual Method

▶ Lemma 11. There exists a laminar family of witness sets.

Proof. We show that any witness family can be uncrossed and made laminar. We prove this
by induction on the size of the witness family ℓ.

Base Case: Suppose ℓ = 2, then one application of Lemma 21 is sufficient.

Inductive Hypothesis: If S1, . . . , Sℓ are witness sets for edges e1, . . . , eℓ respectively with
ℓ ≤ k, then, by repeatedly applying Lemma 21, one can construct witness sets S′

1, . . . , S
′
ℓ

for the edges e1, . . . , eℓ respectively such that S′
1, . . . , S

′
ℓ is a laminar family.

Inductive Step: Consider k + 1 witness sets S1, . . . , Sk+1. By the inductive hypothesis, we
can uncross all the witness sets S1, . . . , Sk to obtain witness sets S′

1, . . . , S
′
k that form a

laminar family. We now consider the following cases.
1. If Sk+1 does not overlap some S′

i, say S′
1, then we can apply the inductive hypothesis

to the k sets S′
2, . . . , S

′
k, Sk+1 and we obtain a laminar family of witness sets, none of

which overlap S′
1 either (by Lemma 22) and so we are done.

2. Suppose Sk+1 overlaps all the sets S′
1, . . . , S

′
k and for some S′

i, say S′
1, applying

Lemma 21 to the pair S′
1, Sk+1 gives S′

1, S
′
k+1. Then S′

1 does not overlap any of the
witness sets S′

2, . . . , S
′
k+1, hence, applying the inductive hypothesis to these k sets gives

us a laminar family of witness sets S′′

2 , . . . , S
′′

k . By Lemma 22, S′
1 does not overlap any

of the sets S′′

2 , . . . , S
′′

k and so we are done.
3. Suppose Sk+1 overlaps all the sets S′

1, . . . , S
′
k and, for every S′

i, applying Lemma 21 to
the pair S′

i, Sk+1 gives S′′
i , Sk+1. Then after doing this for every S′

i, we end up with
the witness family S′′

1 , . . . , S
′′

k , Sk+1 with the property that Sk+1 does not overlap any
of the other sets. Applying the inductive hypothesis to the k sets S′′

1 , . . . , S
′′

k gives us
a laminar family of witness sets S′′′

1 , . . . , S
′′′

k . By Lemma 22, Sk+1 does not overlap
any of the sets S′′′

1 , . . . , S
′′′

k and so we are done. ◀

B Optimal Dual Solutions with Non-Laminar Supports

In this section, we describe an instance of the AugSmallCuts problem where none of the
optimal dual solutions (to the dual LP given in (2.1), Section 2) have a laminar support.
Recall that the connectivity requirement function f for the AugSmallCuts problem is pliable
and satisfies property (γ), as seen in the proof of Theorem 4.

Consider the graph G = (V,E) (shown in Figure 1 below using solid edges) which is a
cycle on 4 nodes 1, 2, 3, 4, in that order. Edge-capacities are given by u12 = 3, u23 = 4, u34 =
2, u41 = 1. The link-set (shown using dashed edges) is L = {12, 23, 34, 41}, a disjoint copy of
E. Link-costs are given by c12 = c23 = c34 = 1 and c41 = 2.

Consider the AugSmallCuts instance that arises when we choose λ̃ = 6. The family of
small cuts (with capacity strictly less than λ̃) is given by

⋃
S∈A{S, V \ S}, where

A = {{1}, {1, 2}, {2, 3}, {1, 2, 3}}.

The associated pliable function f satisfies f(S) = 1 if and only if S ∈ A or V \ S ∈ A holds.
Observe that f is not uncrossable since f({1, 2}) = 1 = f({2, 3}), but f({1, 2} ∩ {2, 3}) =
f({2}) = 0 and f({2, 3} \ {1, 2}) = f({3}) = 0. Also note that the minimal violated set
{2, 3} (w.r.t. F = ∅) crosses the violated set {1, 2}.

It can be seen that there are three inclusion-wise minimal link-sets that are feasible for
the above instance and these are given by

C := {{12, 23, 34}, {12, 41}, {34, 41}}.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:19

Figure 1 An instance of the AugSmallCuts problem where none of the optimal dual solutions
have a laminar support.

Since each F ∈ C has cost 3, the optimal value for the instance is 3. Next, since L contains
at least two links from every nontrivial cut, the vector x ∈ [0, 1]L with xe = 1

2 , ∀e ∈ L is
a feasible augmentation for the fractional version of the instance, i.e., x is feasible for the
primal LP given in (2.1), Section 2. Therefore, the optimal value of the primal LP is at
most 5

2 .
Now, consider the dual LP, which is explicitly stated below. The dual packing-constraints

are listed according to the following ordering of the links: 12, 23, 34, 41. For notational
convenience, we use the shorthand y1 to denote the dual variable y{1} corresponding to the
set {1}. We use similar shorthand to refer to the dual variables of the other sets; thus, y234
refers to the dual variable y{2,3,4}, etc.

max (y1 + y234) + (y12 + y34) + (y23 + y14) + (y123 + y4)
subject to: (y1 + y234) + (y23 + y14) ≤ 1

(y12 + y34) ≤ 1
(y23 + y14) + (y123 + y4) ≤ 1

(y1 + y234) + (y12 + y34) + (y123 + y4) ≤ 2
y ≥ 0.

Observe that adding all packing constraints gives 2 ·
∑

S∈A(yS + yV \S) ≤ 5, hence, the
optimal value of the dual LP is at most 5/2. Moreover, a feasible dual solution with objective
5/2 must satisfy the following conditions:

y1 + y234 = y23 + y14 = y123 + y4 = 1
2 and y12 + y34 = 1.

Clearly, there is at least one solution to the above set of equations, hence, by LP duality, the
optimal value of both the primal LP and the dual LP is 5/2.

Furthermore, any optimal dual solution y∗ satisfies max(y∗
S , y

∗
V \S) > 0 for all S ∈ A (by

the above set of equations). We conclude by arguing that for any optimal dual solution y∗, its
support S(y∗) = {S ⊆ V : y∗

S > 0} is non-laminar, because some two sets A,B ∈ S(y∗) cross.
Since the relation A crosses B is closed under taking set-complements (w.r.t. the ground-set V),
we may assume w.l.o.g. that the support contains each set in A = {{1}, {1, 2}, {2, 3}, {1, 2, 3}}.
The support of y∗ is not laminar because {1, 2} and {2, 3} cross.

ICALP 2023

	1 Introduction
	1.1 Our Contributions
	1.1.1 Pliable Functions and Property (γ)
	1.1.2 Application 1: Augmenting a Family of Small Cuts
	1.1.3 Application 2: Capacitated k-Edge-Connected Subgraph Problem
	1.1.4 Application 3: (p,2)-Flexible Graph Connectivity

	1.2 Related work

	2 Preliminaries
	2.1 The WGMV Primal-Dual Algorithm for Uncrossable Functions

	3 Extending the WGMV Primal-Dual Method to Pliable functions
	4 O(1)-Approximation Algorithm for Augmenting Small Cuts
	5 O(k/u_min)-Approximation Algorithm for the Capacitated k-Edge-Connected Subgraph Problem
	6 O(1)-Approximation Algorithm for (p,2)-FGC
	A Missing Proofs from Section 3
	B Optimal Dual Solutions with Non-Laminar Supports

