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Abstract

The rigid timing requirement of real-time applications biases the analysis to focus on the worst-case
performances. Such a focus cannot provide enough information to optimize the system’s typical
resource and energy consumption. In this work, we study the real-time scheduling of parallel
tasks on a multi-speed heterogeneous platform while minimizing their typical-case CPU energy
consumption. Dynamic power management (DPM) policy is integrated to determine the minimum
number of cores required for each task while guaranteeing worst-case execution requirements (under
all circumstances). A Hungarian Algorithm-based task partitioning technique is proposed for
clustered multi-core platforms, where all cores within the same cluster run at the same speed at
any time, while different clusters may run at different speeds. To our knowledge, this is the first
work aiming to minimize typical-case CPU energy consumption (while ensuring the worst-case
timing correctness for all tasks under any execution condition) through DPM for parallel tasks in
a clustered platform. We demonstrate the effectiveness of the proposed approach with existing
power management techniques using experimental results and simulations. The experimental results
conducted on the Intel Xeon 2680 v3 12-core platform show around 7%-30% additional energy
savings.
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1 Introduction

Multi-core processors are increasingly appearing as an enabling platform for embedded systems
(e.g., mobile phones, tablets, drones, computerized numerical controls, etc.). The parallel task
model can exploit the multi-core platform’s capability as they support intra-task parallelism,
where a task can execute on multiple cores simultaneously. Many computation-intensive
systems (e.g., self-driving cars) that demand stringent timing requirements often evolve in the
form of parallel tasks. Many recent studies on real-time scheduling and analysis have focused
on the directed acyclic graph (DAG) model of parallel tasks [8, 9, 16, 37, 38, 53, 55]. The
DAG model is a general workload model for representing intra-task parallelism, where nodes
represent threads of execution and edges represent their dependencies. Several real-world
applications use the DAG model [29].

Energy efficiency is essential for embedded systems, as they rely on a time-limited energy
sources (i.e., batteries, energy harvesting devices). Modern generation processors minimize
power consumption through dynamic voltage and frequency scaling (DVFS) that adjusts the
voltage and frequency at runtime. To date, some works considered the energy-aware real-time
scheduling of parallel tasks [10,11,54]. These works adopted the federated scheduling [38]
or task decomposition framework [55] with the DVFS policy for minimizing system energy
consumption in the per-core or per-node (of a DAG task) speed modulation settings. Such
speed tuning is inefficient as it increases the hardware cost [31]. Also, there is an ongoing trend
of considering the cluster-based platform (e.g., big.LITTLE [48]), which groups processors
into multiple islands, each execute at the same speed. Such a cluster-based platform balances
energy efficiency and cost [43]. To date, few efforts have been made to study the energy-aware
real-time scheduling of parallel tasks in a clustered platform [11,25].

All these works assumed that hard real-time constraints must be satisfied to guarantee
the system’s correctness. For a hard real-time task, missing a deadline is considered a
system failure and may result in catastrophic consequences. Hence, most schedulability
analyses considered that a task could execute up to its worst-case execution time (WCET).
WCET-based schedulability test is often very pessimistic [42], and the task execution pattern
varies significantly across different job releases, rarely executing up to its WCET [58]. Thus,
designing a system that relies primarily on WCET may lead to resource over-provisioning in
typical cases [46]. Moreover, modern embedded systems pose strict energy constraints and
demand leveraging richer system models to optimize energy consumption under typical-case
instead of worst-case. To address this issue, this paper requires system designers to provide at
least two execution time estimates for a task: a WCET and a typical-case execution budget
(no more than the WCET). The first will give worst-case guarantees, while the latter is used
for energy minimization. Although a dual-execution-estimation setting may appear similar
to the mixed-criticality (MC) framework [59], this work focuses on a different problem. In
an MC setup, a common platform integrates different tasks with varying levels of criticality.
A criticality level is assigned to each task with multiple execution time thresholds. Under
such settings, existing works studied energy minimizing [12,13,34,47,60]. However, these
works assume that all the tasks execute up to their WCET at the respective criticality levels.
Meanwhile, our approach proposes optimizing energy consumption under the typical-case
execution time instead of WCET. Our approach also ensures that all tasks must receive
full-service guarantees under all circumstances.

The energy-aware scheduling of real-time tasks is challenging due to the complicated
dependencies among frequency, energy consumption, and execution time [24]. Existing works
focused mostly on the DVFS policy [10, 11, 25, 26, 54] with a significant limitation: it is
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not effective in reducing static power consumption, which may elevate to 50% or more of
the overall power consumption [33]. Besides, existing energy minimization approaches are
applied to WCET and thus will only lead to better power/energy behaviors in the worst
case (rare event) instead of the typical/average scenarios. Given both typical and worst-case
execution time estimates, we propose an energy-aware technique that minimizes the typical
energy consumption while guaranteeing (worst-case) timing correctness for all tasks.

Challenges. Handling the dual execution estimation is challenging for the following reasons.
First, schedulers are unaware of each task’s exact behavior before run-time. Such non-
clairvoyance of execution length typically leads to NP-Hard problems. Second, all tasks
receive full-service assurances under any circumstances. Third, some recent works have
studied the energy-aware scheduling of the MC task model [12,13,34,47], but thy did not
consider intra-task parallelism.

Motivated by these facts, we study the real-time scheduling of DAG tasks in a clustered
platform to minimize their CPU energy consumption, one of the significant contributors to the
overall system power consumption. The scheduling problem aims to achieve both worst-case
real-time guarantees and typical-case energy efficiency. In a clustered platform, all cores in the
same cluster execute at the same speed. However, different clusters can operate at different
speeds [48]. We adopt the DPM policy to reduce static power consumption. DPM policy
reduces static power consumption by utilizing idle intervals. If the idle interval is at least
equal to a certain threshold (known as the break-even time [18]), the processor is switched to
a low-power sleep mode, thus reducing its static power consumption. Our approach finds the
minimum but a sufficient number of low-speed cores for each task, leaving many high-speed
cores idle for a long duration. If the low-speed cores are insufficient to schedule all the tasks,
we assign additional high-speed cores. Therefore, the proposed approach can lead to high
energy savings resulting from the power-down of CPU components such as cores, caches, and
translation look-aside buffer.

The key objective of the proposed method is to conserve energy during the actual execution
of a DAG task when its nodes do not execute until their WCET. Several factors, including
pipelines, branch predictors, and caches, impact the WCET estimation of the nodes in the
DAG task, thereby impacting the task’s makespan estimation. In addition, hardware features
often introduce pessimism to the WCET estimation, implying the difference between WCET
estimation and actual execution time increases considerably. In such cases, the proposed
approach will significantly increase energy savings by allocating resources only when needed.
Specifically, we make the following key contributions:

We utilize DPM to propose an energy-aware federated scheduling strategy of parallel
DAG tasks on dual-speed platforms. Given both typical and worst-case execution time
estimations, our energy-aware approach determines the required (minimum) number of
low-speed processors to minimize the typical CPU energy consumption while guaranteeing
worst-case timing correctness for all tasks.
Under multi-speed cluster-based settings, we propose an energy-efficient task-cluster
partitioning technique without violating the schedulability guarantees.
We perform the experimental study under randomly generated task sets. We report the
schedulability ratio of our approach, and demonstrate a minimum of 29.23% less power
consumption against state-of-the-art approach [39].
We present onboard experiments conducted on Intel Xeon 2680 v3 multi-core (12-core)
platform and report up to 30% energy savings compared to the existing approach.

ECRTS 2023
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2 Related Work

There have been works studying the energy-efficient real-time scheduling of sequential tasks
in both uni- and multi-processor platforms (few to mention [15,17,19,35,47,50,51]; refer to [4]
for a comprehensive survey). However, all these works considered the sequential task model.
In contrast, a parallel task can make use of multiple cores simultaneously and complete the
same amount of work in a shorter time via exploiting the internal parallelism. Hence, the
scheduling strategy and analysis of parallel task is significantly different from the sequential
task. The state-of-the-art parallel real-time scheduling primarily emphasizes scheduling
analysis and does not account for energy awareness [1, 5, 8, 9, 23,55,56].

To date, a few works studied the energy-aware scheduling of parallel tasks. Li et al. [40]
studied a non-recurrent task model with a fixed number of parallel threads. Paolillo et al. [52]
studied the energy-aware scheduling of the gang task model. Zhu et al. [61,62] proposed a
slack stealing based scheduling approach considering the inter-dependent sequential tasks.
Energy-aware scheduling of DAG tasks was proposed by Bhuiyan et al. [10] and Guo et
al. [26]. Both of them have considered a simplified model (i.e., the number of cores cannot
be pre-fixed). They have considered table-driven scheduling. Hence, the entire schedule
until the hyper-period needed to be created in advance. Some recent efforts have been
made to study the energy-efficient scheduling of parallel (and sequential) tasks in a clustered
platform [11,20,25,41,45]. However, our work’s focus differs from existing ones. We study
the energy-efficient scheduling of parallel tasks on a clustered platform while minimizing their
typical-case CPU energy consumption while guaranteeing worst-case execution requirements.

Meanwhile, extensive research has investigated the real-time scheduling of the MC task
model considering both the sequential and parallel task model (e.g., [1, 5, 7, 12–14,22, 27, 39]).
Regarding the task model, the work in [1] is most near to us. However, our paper’s
contributions differ significantly from [1] regarding problem statement, challenges, solution
techniques, and evaluation. For MC DAG tasks, [1] did not consider energy-aware scheduling.
In contrast, our paper adopts the DPM policy to minimize power consumption. Incorporating
the DPM policy into the existing analysis is not trivial because (i) DPM policy utilizes the
processor’s idle slot that is unknown apriori; (ii) We have considered the clustered platform.
Hence, we cannot turn off some processors in a cluster while others are running.

3 System Model and Background Concepts

In this work, we consider a set of sporadic parallel DAG tasks denoted by τ = {τ1, τ2, · · · , τn}.
Each DAG contains a set of nodes, where a node represents some sequential computation.
The precedence constraint between two nodes is represented by a directed edge. A node
can only execute if all of its predecessors have finished execution. For each task τi ∈ τ , we
consider the following two parameters: (i) total work, which is the sum of the number of clock
cycles (i.e., total computation work) performed by all nodes in τi; and (2) the critical-path
length, which is defined as the number of clock cycles of the longest directed path of the
DAG (i.e., the path with the largest computation work).

Each task τi ∈ τ is characterized by a 5-tuple (CN
i , CO

i , LN
i , LO

i , Ti). Here, CN
i denotes

the typical-case execution time of the task (referred to as lo-criticality execution time1),
while CO

i denotes the overload execution time (referred to as hi-criticality execution time).

1 Although the terms lo- and hi-criticality may lead to the assumption that we are considering tasks
with different criticality levels [59]. In this work, the term criticality is used to distinguish whether a
job exceeds its typical workload and whether a job’s execution modes are still exhibiting the typical (or
overload) workload estimates.
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Similarly, LN
i (LO

i ) denotes the typical (overload) critical-path length estimates, referred to
as lo(hi)-criticality critical-path length estimates. Note that the typical workload estimates
(i.e., CN

i and LN
i ) are obtained using a less pessimistic yet practical tool and are expected

to occur during regular operations. In contrast, a more pessimistic tool (by considering all
possible scenarios, including the worst-case ones) is used to obtain CO

i and LO
i . Thus, the

overload workload estimates may exceed the typical ones in several orders of magnitudes.
However, executing up to its overload workload is rare for a task. We assume that under
any condition, a task’s total work and critical-path length will never exceed CO

i and LO
i ,

respectively. The period of task τi is denoted by Ti. We assume that each task τi has an
implicit deadline, i.e., the relative deadline Di is equal to Ti. For τi to be scheduled during an
overload scenario, the condition Ti ≥ LO

i must be satisfied, where LO
i denotes the minimum

time required to complete task τi even when an infinite number of cores are available. The
typical (overload) utilization of task τi is defined as the ratio of its typical (overload) total
work and its period. Let, uN

i = CN
i

Ti
and uO

i = CO
i

Ti
denote the typical and overload utilization,

respectively.

▶ Example 1. Consider two DAG tasks τ1 and τ2, where τ1 = (12, 24, 4.08, 8.16, 21.6) and
τ2 = (12, 36, 3.36, 12.24, 33.12). The typical total work of τ1 is 12 and the overload total work
is 24. The typical and overload critical-path lengths of τ1 are 4.08 and 8.16, respectively.
Because τ1 has a period of 21.6, its typical utilization uN

1 = 12
21.6 = 0.56 and its overload

utilization uO
1 = 24

21.6 = 1.11. Similarly, the typical utilization uN
2 and overload utilization

uO
2 of task uN

2 are uN
2 = 12

33.12 = 0.36 and uO
2 = 36

33.12 = 1.087, respectively.

System behavior. In this work, we consider a task’s two different execution (typical and
overload) requirement. At runtime, the scheduler does not know the exact behavior of each
job of a task, e.g., the exact workload or critical-path length of the job. Thus, it is expected
that the job of a task starts execution using its typical execution budget. If a job’s total work
or the critical-path length exceed this task’s typical total work or critical-path length, this
job execute according to its hi-criticality execution budget and critical-path length estimate.
Note that the precise timing of when a task may require the use of its overload execution
budget is unpredictable. However, once a job (of any task) finishes executing its overload
execution budget, the next job (of the same task) starts running according to its typical
execution requirement.

Power/Energy model. In this work, we consider the following power model to represent
the CPU power consumption by a processor [10, 26, 34, 47, 50, 51]. Let s denotes the main
frequency (speed) of a processor, and the power consumption P (s) can be expressed as:

P (s) = Psta + Pdyn(s) = β + αsγ (1)

Here, Psta and Pdyn(s) denote the static/leakage consumption and dynamic power con-
sumption, respectively. If a processor is not entirely turned off, Psta (represented as β) is
introduced in the system due to leakage current, and the frequency-dependent switching
activities introduce Pdyn(s) (represented as αsγ). For modeling the dynamic power consump-
tion Pdyn(s), α depends on the effective switching capacitance and α > 0 [50]; γ is a fixed
parameter determined by the hardware and it ranges between [2,3]. Pagani et al. [50] have
shown that this model is highly realistic by comparing the power consumption (estimated
by this model) with the actual power consumption results from [32]. Table 1 illustrates the

ECRTS 2023
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Table 1 Comparison of the CPU power consumption Pequ considering the power model in Eq (1)
and experimental data Pexp from [32]. The error rate is defined as 100 × (Pequ − Pexp)/Pexp.

Frequency Pexp Pequ Error rate
0.24 GHz 0.54 W 0.52 W -3.7%
0.46 GHz 0.70 W 0.67 W -4.28%
0.68 GHz 1.04 W 1.05 W 0.96%
0.84 GHz 1.5 W 1.54 W 2.67%
0.92 GHz 1.96 W 1.88 W -4.07%
1.02 GHz 2.30 W 2.35 W 2.17%

detailed comparison. Given a fixed amount of workload C executing on a speed-s processor,
we can calculate the total energy consumption E(C, s) as the integral of power throughout
C/s, where E(C, s) = (β + αsγ) × C

s = βC
s + αCsγ−1.

We aim to reduce static energy consumption by employing the DPM approach, which
utilizes the processor’s idle time. If the idle interval in a processor is greater or equal to a
certain threshold (i.e., break-even time [18]), the processor enters a low-power sleep mode.
In this work, we try to allocate low-speed cores to all tasks, leaving the high-speed cores idle.
The high-speed cores are used when some jobs enter hi-criticality mode due to exceeding
their typical workload estimates. In this case, additional resources (i.e., some high-speed
cores) are needed to complete the overload workload. Because tasks rarely exceed their
typical workload estimates, the high-speed cores typically idle for a long duration. Thus,
these idle cores can enter the low-power sleep mode, reducing static energy consumption.

Platform model. We are examining a homogeneous multi-core architecture called the
Intel Xeon 2680 V3, where each core can have a designated clock frequency and a set of
customized fine-tuned cores. In contrast to the initially clustered platforms such as the
Odroid XU4 ARM’s big.LITTLE architecture [48], which forces a fixed number of cores
in each cluster to be synchronized at the same speed. This feature of the Xeon Processor
facilitates the identification of the appropriate number of cores in each cluster. It gives a
final general solution where clusters are initialized with a constant speed that can be fixed to
a corresponding speed optimized through DAG Task features. In this case study, we halve
the platforms cores referring to ξ clusters (each with n cores), and all cores in the same
cluster execute at the same speed. However, different clusters can operate at different speeds.
The maximum speed is sL (sH) for the lo(hi)speed clusters, where sL ≤ sH . In a clustered
architecture, we assume that any core can be put to sleep (i.e., processor clock turned off)
and only an entire cluster can be put to deep sleep (processor and L2 clock turned off) [3].

Virtual Deadline. The concept of the virtual deadline was first proposed in [6], considering
MC scheduler. High-criticality task is assigned a virtual deadline which is less than the
actual deadline (and thus a higher priority). This ensures the hi-criticality jobs get sufficient
slack for their overload workload to complete after a mode switch.

Federated Scheduling Algorithm. In real-time systems, multiprocessor algorithms are
implemented considering either the global or partitioned approach. In the partitioned
approach, a task to processor mapping is performed before run-time for each task. During
run-time, no job migration is allowed, and all the jobs generated by a task execute only on
its mapped processor. Considering the parallel DAG task models, Li et al. [37] proposed
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Table 2 Major notations used throughout the paper.

Symbol Description
W

or
kl

oa
d

τi The ith task
CN

i (CO
i ) typical (overload) execution budget of task τi

LN
i (LO

i ) typical (overload) critical-path length estimates of task τi

uN
i (uO

i ) typical (overload) utilization of τi

Ti(Di) period (relative deadline) of task τi

D′
i virtual deadline of task τi

P
la

tf
or

m

Ki ith cluster
Mi number of sub-cluster in ith cluster
Kn

m nth sub-cluster inside mth cluster
sL(sH) execution speed of the low (high) speed cores

Sk Speed of kth cluster
mL

i (mH
i ) number of low(high) speed cores allocated to task τi

E
Kn

m
i energy consumption by a sub-cluster Kn

m when executing a task τi

the federated scheduling approach, which is considered a reasonable extension of partitioned
scheduling for parallel tasks. A federated scheduling algorithm classifies a task as a heavy
task if its utilization is greater than or equal to 1; otherwise, the task is classified as a light
task. Each heavy task receives a set of cores dedicated to this task. All the remaining cores
(i.e., the cores left after each heavy task receives its portion) are given to all light tasks.
A multiprocessor scheduling algorithm (e.g., partitioned earliest deadline first [44] or rate
monotonic schedulers [2]) is used to schedule all these light tasks sequentially. In contrast to
heavy tasks, light tasks can share cores.

Given a task set τ , a federated scheduler works as follows. The task set τ is divided into
disjoint sets, i.e., τheavy and τlight. Here, τheavy contains all the heavy tasks (utilization is
at least 1), and τlight contains all the light tasks (utilization is less than 1). A heavy task

τi ∈ τheavy, receives mi cores. Here, mi =
⌈

Ci−Li

Ti−Li

⌉
(refer to [37]), where, Ci is the WCET

of τi, Li is the critical path length, and Di(= Ti) the deadline. Then, the remaining mlight

cores, where mlight = m −
∑

τi∈τheavy
mi, can be used by all the light tasks. The light tasks

are forced to execute sequentially and scheduled by a multiprocessor scheduling algorithm.
After a valid task to core allocation, runtime scheduling is performed as follows:

For a high-utilization task τi ∈ τheavy, any greedy or work-conserving parallel scheduler
is used to schedule τi on mi cores.
Any multiprocessor scheduling algorithm is used to schedule all light tasks on the remaining
mlight cores if the algorithm’s schedulability test is passed.

4 Energy-aware Federated Scheduling for the Dual-Speed Platform

This section discusses our energy-aware federated scheduling strategy for platforms with
dual-speed cores. Considering that the platform supports cores with two speeds, i.e., low- and
high-speeds, we aim to minimize the CPU energy consumption under typical scenarios while
guaranteeing that all tasks receive enough execution budget even under overload scenarios.
Our approach relies on the DPM approach to reduce energy consumption and tries to allocate
only the low-speed cores to all tasks, leaving the high-speed cores idle in most cases, leading
to reduced dynamic power consumption. Besides, all these high-speed idle cores can enter
the low-power sleep mode, which further minimizes the static energy consumption.

ECRTS 2023
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Towards this goal, Subsection 4.1 determines the required minimum number of low-speed
cores mL

i for each task τi ∈ τ to complete the overload workload. If there are not enough
low-speed cores to serve all the tasks under overload scenarios, we compensate for this
shortage by assigning additional high-speed cores to some of the tasks when their jobs exceed
typical workloads; on the other hand, the numbers of low-speed cores allocated to these tasks
are reduced under typical scenarios. Because tasks rarely exhibit overload behavior, the
high-speed cores typically are not used, which is beneficial for reducing energy consumption.
Subsection 4.2 presents a greedy approach (Algorithm 1) that checks if there are enough
low-speed cores to serve all the tasks under overload scenarios. If not, Algorithm 1 allocates
additional high-speed cores under overload scenarios to some tasks that provide the maximum
relative core saving ratio under typical scenarios. Note that, in this approach, we assume
that the processor speeds are given.

4.1 Determining the Number of Cores for Each Task
In this subsection, we determine the number of cores required for each task τi ∈ τ to meet
its deadline. Our analysis considers the following assumption.

Assumption. This section assumes that the platform consists of two types of cores, i.e.,
low-speed cores and high-speed cores. The execution speed of any task τi on the low-speed
and high-speed cores are respectively denoted by sL and sH .2 The execution speed of a core
denotes the (minimum) amount of computation that can be completed per time unit. This
section assumes that the total workload and the processor speed have a linear relationship [13].
Hence, for any task τi, we can translate the total workload to the execution time on s-speed
cores as Cχ

i /s, where χ = {N, O}. Similarly, for any task τi, we can translate the critical
path to the execution time on s-speed cores as Lχ

i /s. Now, we classify a task τi ∈ τ into the
following three categories:
Category 0: CO

i ≤ sLDi. Task τi in this category with WCET CO
i /sL and deadline Di

is a light (or low utilization) task even on low-speed cores. We enforce these tasks to
execute sequentially and use any traditional multiprocessor scheduling (e.g., partitioned
EDF) approach to schedule them on the low-speed cores.

Category 1: CO
i > sLDi and CN

i /sL > CO
i /sH − LO

i /sH . For tasks in this category,
we allocate mL

i low-speed cores for both lo- and hi–criticality modes. According to
Lemma 1 in [1], any task τi (where τi belongs to Category 1) has a maximum makespan of
(CO

i − LO
i )/m + LO

i , where m is the number of unit-speed cores allocated to τi. Therefore,
to meet deadline Di on cores with speed sL, the lower bound on mL

i can be calculated as
follows:

CO
i

sL − LO
i

sL

mL
i

+ LO
i

sL
≤ Di =⇒ CO

i − LO
i

sL × mL
i

≤ sL × Di − LO
i

sL

=⇒ CO
i − LO

i

sL × Di − LO
i

≤ mL
i

Hence, we allocate mL
i low-speed cores to τi belonging to Category 1, where mL

i =⌈
CO

i −LO
i

sL×Di−LO
i

⌉
. Here, we assume that mL

i ≥ 0, meaning that the critical-path length of
each DAG on the low-speed cores is shorter than its corresponding deadline, and it is

2 This section assumes that all the low (or high) speed cores execute at the same speed, which is
independent of the executing tasks. Hence, for any task τi, τj ∈ τ , their execution speeds are the same,
if they are allocated in the same cluster. Such a restriction appears commonly in existing systems [48],
where all processors within the same cluster/island execute at the same speed during run time.
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feasible to assign each task τi to a low-speed core. One could relax this constraint and
include tasks that are assigned to high-speed cores; however, the energy-saving techniques
proposed in this paper are no longer applicable in this situation. In this work, we focus
on minimizing energy consumption while ensuring that all tasks meet their deadlines
using low-speed cores. Hence, handling any infeasible task to schedule on low-speed cores
falls beyond the scope of this paper.

Category 2: CO
i /(sL × Di) > 1 and CN

i /sL ≤ CO
i /sH − LO

i /sH . For any task τi that
belongs to Category 2, we try to allocate

⌈
CO

i −LO
i

sL×Di−LO
i

⌉
low-speed cores to it in both

modes, if there is sufficient number of low-speed cores available. Otherwise, we allocate
fewer low-speed cores and set a virtual deadline D′

i for the lo-criticality mode. The
virtual deadline D′

i is set as D′
i = CN

i

mL
i

×sL , so that task τi can finish its nominal workload
by D′

i if no core idles. In summary, we set mL
i as follows:

mL
i =



⌈
CO

i − LO
i

sL × Di − LO
i

⌉
; If available lo-speed cores

are sufficient. CN
i /sL

(Di − LO
i

sH − CO
i

−CN
i

−LO
i

mH
i

×sH )

 ; Otherwise.

(2)

Here, mH
i and sH denote the number of high-speed cores (allocated to task τi) and

their speed, respectively, for the case where not enough low-speed cores available. See
Theorem 1 for the derivation of mL

i .

For task τi with fewer low-speed cores available and assigned to it, we assign it mH
i

high-speed cores and consider the actual deadline Di during the hi-criticality mode. In order
to meet the deadline, the computing power in the high-criticality mode must be equal to or
greater than the computing power in the low-criticality mode, meaning that, meaning that, so
mH

i ×sH ≥ mL
i ×sL. Additionally, task τi needs to finish the remaining work and critical-path

length within Di − D′
i time units. The worst case scenario happens when there is no progress

on the critical-path length LO
i , which leaves a remaining work of CO

i − mL
i × D′

i × sL. This
is the worst-case scenario because more processor times are idling due to the critical-path
length given the relation between mH

i and mL
i , where mH

i ≥ mL
i × sL/sH . Therefore, to

meet the deadline, mH
i can be calculated as follows:

mH
i = max

{
mL

i × sL

sH
,

⌈ (CO
i −mL

i ×D′
i×sL−LO

i )
sH

(Di − D′
i) − LO

i

sH

⌉}

= max
{

mL
i × sL

sH
,

⌈
CO

i − mL
i × D′

i × sL − LO
i

(Di − D′
i) × sH − LO

i

⌉}
Refer to [1] for the formal proof.

▶ Theorem 1. If there is not enough low-speed cores for task τi, mL
i can be reduced to

mL
i =

 CN
i /sL

(Di−
LO

i
sH −

CO
i

−CN
i

−LO
i

mH
i

×sH
)

 by assigning mH
i high-speed cores to τi during the hi-criticality

mode, where mH
i ≥ CO

i −mL
i ×D′

i×sL−LO
i

(Di−D′
i
)×sH −LO

i

.
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Proof. For any task τi, when there are not enough low-speed cores, we assign additional
high-speed cores to τi to update mL

i . Since D′
i = CN

i

mL
i

×sL , we have

mH
i ≥ CO

i − mL
i × D′

i × sL − LO
i

(Di − D′
i) × sH − LO

i

=⇒(Di − D′
i) × sH − LO

i ≥ CO
i − mL

i × D′
i × sL − LO

i

mH
i

=⇒Di × sH − CN
i × sH

mL
i × sL

− LO
i ≥ CO

i − CN
i − LO

i

mH
i

=⇒mL
i ≥ CN

i × sH

(Di × sH − LO
i − CO

i
−CN

i
−LO

i

mH
i

) × sL
= CN

i /sL

(Di − LO
i

sH − CO
i

−CN
i

−LO
i

mH
i

×sH )

which holds since mL
i =

 CN
i /sL

(Di−
LO

i
sH −

CO
i

−CN
i

−LO
i

mH
i

×sH
)

. ◀

4.2 When Low-Speed Cores Are Not Sufficient
Section 4.1 determines the number of low-speed cores (mL

i ) required for each task, τi ∈ τ , to
meet its deadline. If there are a finite number of low-speed cores, some tasks may not receive
enough low-speed cores. In this section, we present Algorithm 1 that first tries to allocate the
desired number (mL

i ) of low-speed cores to each task τi. If there are not enough low-speed
cores, Algorithm 1 assigns additional high-speed cores to compensate for this shortage. In
this approach, we assume that the processor speeds are given.

Algorithm 1 starts by checking whether a task τi is a Category-0 task (i.e., CO
i /(sL×Di) ≤

1). If yes, we use traditional multiprocessor scheduling (e.g., partitioned EDF) for sequential
tasks with WCET CO

i /sL and deadline Di on the minimum number of low-speed cores
(Lines 3-4). If a task τi belongs to Category-1, i.e., CN

i /sL > CO
i /sH − LO

i /sH , we allocate
mL

i =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
low-speed cores and meet its deadline Di (Lines 5-6). Let, τ̃ denotes the

set of unscheduled tasks, which is updated continuously (Line 4 and Line 6). After allocating
the required number of low-speed cores to all Category-0 and Category-1 tasks, we calculate
the remaining low-speed cores, m̃L (Line 9).

For any task τi ∈ τ̃ , we set mL
i as

⌈
CO

i −LO
i

Di×sL−LO
i

⌉
and mH

i (i.e., number of high-speed
cores allocated to τi) to 0 (Lines 9-11). If all the tasks in τ̃ receive the required number of
low-speed cores, then the algorithm terminates (Lines 12-13). Else, we update the required
number of high-speed cores allocated to task τi and denote it as mH

i (Line 16), and also
update mL

i (Line 17). We calculate the relative core saving ratio (Line 15) and pick the task
(say τi) that has the highest relative core saving ratio (Line 16). If there are sufficient cores
for τi, we remove τi from τ̃ , and update m̃L (Line 18). If τ̃ is empty, then the algorithm
terminates successfully (Line 20). Else, repeat the same process to reduce the number of
low-speed cores allocated to a task τi (Line 22). At any point, if cores are unavailable
for task τi, then the task set is not schedulable and the algorithm returns failure. Upon
successful completion, this algorithm greedily reduces the number of allocated low-speed
cores by assigning (available) additional high-speed cores. If there are total K tasks in τ ,
the time complexity to calculate core allocation is O(K).

▶ Example 2. Let us consider a platform with four low-speed cores of speed 0.75, and four
high-speed cores of speed 1.0, two DAG tasks τ1 and τ2, where τ1 = (12, 24, 4.08, 8.16, 20) and
τ2 = (12, 36, 3.36, 12.24, 33.12). Here, the low-speed and high-speed are normalized w.r.t. to
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Algorithm 1 greedyAlloc(τ).

1 Input: The set of DAG tasks τ .
2 Output: Allocation of low(high)-speed cores to each task.
3 Unscheduled tasks, τ̃ = τ ; m̃L = Available lo-speed cores
4 for (each τi ∈ τ) do
5 if (CO

i /(sL × Di) ≤ 1) then
6 use traditional multiprocessor scheduling for sequential tasks; τ̃ = τ̃ − τi;
7 else if (CN

i /sL > CO
i /sH − LO

i /sH) then
8 mL

i =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
; τ̃ = τ − τi;

9 m̃L = m̃L −
∑

τi∈(τ−τ̃) mL
i , and ∀im

H
i = 0;

10 for (each τi ∈ τ̃) do
11 mL

i =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
, and m̃L = m̃L − mL

i ;

12 if m̃L ≥ 0 then
13 ∀τi ∈ τ allocate mL

i and mH
i cores and RETURN SUCCESS ;

14 else
15 for (each τi ∈ τ̃) do
16 mH

i == 0?mH
i =

⌈
mL

i × sL/sH
⌉

: (mH
i = mH

i + 1);

17 Update mL
i as m̄L

i , where m̄L
i =

⌈
(CN

i /sL)/(Di − LO
i

sH − CO
i −CN

i −LO
i

m̄H
i

×sH )
⌉

;

coreSavingi = (mL
i − m̄L

i )/(m̄H
i − mH

i ); ▷ Relative core saving ratio of τi

18 maxCoreSaving = ∀τi∈τ̃ max(coreSavingi);
19 if (There are enough cores for τi ) then
20 τ̃ = τ̃ − τi and m̃L = m̃L + (mL

i − m̄L
i ) ▷ Update τ̃ and m̃L

21 if τ̃ = NIL then
22 RETURN SUCCESS ;
23 else
24 Go to Line-9;

25 else
26 RETURN FAILURE ;

maximum speed supported by this platform. Here, τ1 is a category-1 task ( 12
0.75 > 24

1.0 − 8.16
1.0 ),

and τ2 is a category-2 task ( 12
0.75 < 36

1.0 − 12.24
1.0 ). For task τ1, we calculate the required

number of low-speed cores mL
1 as mL

1 =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
=

⌈
24−8.16

20×0.75−8.16

⌉
= 3 (Line 9).

Task τ2 belongs to τ̃ , and we calculate the required number of low-speed cores mL
2 as

mL
2 =

⌈
CO

i −LO
i

Di×sL−LO
i

⌉
=

⌈
36−12.24

33.12×0.75−12.24

⌉
= 2 (Line 15). As there are not enough low-speed

cores available for τ2, two additional high-speed cores are allocated to τ2 (Line 21). Now, τ2
is removed from τ̃ (Line 27). Both τ1 and τ2 receive the required number of cores and hence
the algorithm terminates (Line 29).

5 Energy-aware Federated Scheduling for Multi-Speed Clustered
Platform

We now describe how to allocate the low (or high) speed cores to each task. We extend
the analysis presented in Sec. 4.1 to fit a multi-speed clustered platform, where different
clusters offer different speeds. Hence, the energy consumption by different clusters (while
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executing the same task) may vary significantly. For such a multi-speed clustered platform,
we propose a task to cluster Hungarian assignment algorithm [36] to minimize the CPU
energy consumption while satisfying the real-time schedulability guarantee.

5.1 Task to Cluster Assignment Approach
In this subsection, we discuss our approach to allocate all Category-1 (tasks with CN

i /sL >

CO
i /sH − LO

i /sH) and Category-2 (tasks with CN
i /sL < CO

i /sH − LO
i /sH) DAG tasks into

clusters, such that CPU energy consumption is reduced without violating the real-time
guarantee. We assume that a task can not be allocated to multiple clusters.

Let, Z denotes the total number of available low-speed clusters, where each cluster is
denoted as {K1, K2, · · · KZ}. We assume that each of these processors in the Kth cluster
(where 1 ≤ K ≤ Z) execute at speed Sk. This assumption is motivated by Theorem 4
in [26], which asserted that executing a task with a consistent speed reduces the energy
consumption significantly. In Section 4.1, we have shown the steps to determine the minimum
number of processors to τi such that τi finishes execution within its deadline. That analysis
assumes only two speed settings, i.e., low and high speed. Note that, different cluster
offers different speed settings. Hence, for the same task, the required number of exclusively
allocated processors may vary in different clusters. From now on, we assume these exclusively
allocated processors form a sub-cluster inside the cluster. Let us assume that we know
the number of available sub-clusters inside each cluster and each sub-cluster’s size 3. Let
us denote a sub-cluster as Kn

m which denotes the nth sub-cluster inside mth cluster, and
Kn

m ∈ {K1
1, K2

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}.

Algorithm 2 createTable(τheavy, K).

1 Input: The set of heavy DAGs τheavy and the set of sub-clusters
K = {K1

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}.

2 Output: A table E storing the energy consumption value.
3 E[size(τheavy)][size(K)]; /*Store energy consumption*/;
4 for x = 1 to size(τheavy) do
5 for y = 1 to size(K) do
6 if the considered sub-cluster satisfy the minimum allocation requirement then
7 Calculate Ey

x ; /* Energy consumed by task x in sub-cluster y */
8 E[x][y] = Ey

x ;
9 else

10 E[x][y] = ∞; /* Set to a very large value */;

Let a task τi is allocated to the Kth cluster, and it needs mK
i cores. We conclude that,

there exists an Kn
K ∈ KK such that mK

i fits to Kn
K . Now, we calculate the energy consumed

by task τi (when executing in a sub-cluster Kn
K), which is denoted as E

Kn
K

i . We repeat this
step for all task τi ∈ τ , and for all sub-cluster ∈ {K1

1, K2
1, · · · , Kx

1 , · · · , K1
Z , · · · , Ky

Z}. Refer
to Section 3 for details regarding energy consumption.

Algorithm 2 starts by creating a table E, which stores the energy consumption by a DAG
task when allocated to a sub-cluster (Line 3). Then, it traverses each heavy DAG task τi and
each sub-cluster ∈ {K1

1, K2
1, · · · , Kx

1 , · · · , K1
Z , · · · , Ky

Z} (Lines 4-5). Then it checks whether

3 The number and size of sub-clusters (inside any KK) depend on which task is allocated to KK . We
handle the task-cluster allocation in Section 5.1.
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the DAG task can be allocated to a sub-cluster (Line 7), i.e., the number of cores available
in this sub-cluster satisfies the minimum processor required (refer to Subsection 4.1 and 4.2)
for this DAG task. If it satisfies the constraints, we store the energy consumed by this DAG
task (when allocated to this sub-cluster) at Table E (Line 8). Else, we put an arbitrarily
large value to E (Line 10). We do this to ensure that the scheduler will never assign a DAG
task τi to any sub-cluster that does not have enough cores to execute τi.

Determining the number of sub-cluster and number of cores inside each sub-cluster. So
far, we have discussed how to create the energy consumption table and find the task to
sub-cluster allocation using the information presented in this table. However, we did not
mention the total number of available sub-cluster inside each cluster and the number of
cores in each sub-cluster. Recall that the cluster speed influences the minimum number of
cores required (i.e., the sub-cluster size) for any task τi. As we do not know the task-cluster
mapping, we are unaware of the available sub-clusters inside any cluster. As a preliminary
approach, we divide any cluster KK into MK sub-cluster, where:

MK =


⌊ M

mK

⌋
+ 1, if M(mod mK) ̸= 0

M

mK
, Otherwise

(3)

Here, M is the number of cores inside any cluster KK ∈ K. We calculate mK as mK =
max{mK

i }, for all tasks τi ∈ τ . Here, mK
i is calculated using the analysis provided in

Subsection 4.1. Each of these MK sub-clusters contains mK cores, if M(mod mK) = 0. Else,
the first MK − 1 sub-clusters contain mK cores, and the remaining sub-cluster contains
M − (MK − 1) × mK cores. Note that partitioning a cluster with respect to the task that
needs the maximum number of cores (in this cluster) may seem pessimistic. This is because
any other task that is also allocated in KK may not need mK cores. To tackle this pessimism,
we will update the sub-cluster number and their size (in Algorithm 3) until all the tasks are
scheduled, or the algorithm returns failure.

Task to Cluster Assignment. Now we know the energy consumption at all possible combin-
ations of the DAG task to the sub-cluster mapping. We use this information to determine the
processor allocation that provides the minimum energy consumption. At each sub-cluster,
we assign a task that is not allocated to any other sub-cluster previously – we can pick a
single entry from each row and column in the energy consumption table. The pseudo-code
for this approach is presented in Algorithm 3.

We determine the optimum assignment that minimizes the total energy consumption
using the Hungarian algorithm [36] (Line 10). The algorithm takes the energy consumption
table as input and returns an ordered collection of a task to sub-cluster allocation. The
allocation provides the lowest combined energy consumption. The Hungarian algorithm has
two significant advantages: it produces an optimal solution if the elements are non-negative
(as in our case), and it has a polynomial complexity (i.e., affordable even for a large number
of tasks). Note that the Hungarian algorithm works only when the input is an N × N

square matrix. In our case, the energy consumption table may not be square in size. Hence,
Algorithm 3 adds extra dummy rows in the table (to make it square in size) if the number
of tasks is less than the number of sub-clusters, and fills them with arbitrary large values
(Lines 6–9). Recall that we partition a cluster with respect to the task that needs the
maximum number of cores (in this cluster), and it minimizes the number of sub-clusters in
each cluster. Hence, some tasks may not get any sub-cluster, while some sub-clusters may
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Algorithm 3 taskToClusterAllocation(τheavy, K).

1 Input: The set of Category-1 heavy DAGs τheavy and the set of sub-clusters
K = {K1

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}.

2 Output: Processor to task allocation.
3 Set ∞ to 106 /* An arbitrary large value */;
4 createTable(τheavy, K) /* The number of sub-clusters (in any cluster) is calculated using

Equation (3) */
5 j = size(τheavy); k = size(K);
6 if j < k then
7 for x = j + 1 to k do
8 for y = 1 to k do
9 E[x][y] = ∞; /*Dummy row makes E square */

10 Solve E using the Hungarian algorithm [36].
11 for i = 1 to n do
12 if τi is allocated in any sub-cluster in Ky

x ∈ K then
13 τheavy = τheavy − τi /* Update task set */;
14 if (size(Ky

x) − mx
i ) > 0 then

15 /* yth sub-cluster of Kx has idle cores */;
16 size(Ky

x) = size(Ky
x) − mx

i ;

17 if 0 < size(τheavy) < j then
18 Repeat taskToClusterAllocation(τ, K);
19 else if size(τheavy) == 0 then
20 return the optimal processor to task allocation and allocate the remaining light DAGs to

remaining cores of each sub-cluster;
21 else
22 Return FAILURE;

remain underutilized. To tackle this issue, we continuously check for the tasks that get an
allocation and remove them from the task set τ (Line 13). If any sub-cluster is underutilized
(i.e., a task receives more cores than required), we update the sub-cluster size (Lines 14–16).
We repeat Algorithm 3 if some tasks are removed from the task set, i.e., some update in the
task set takes place, but some tasks are still unassigned to any cluster (Lines 17–18). When
all tasks are allocated to some sub-cluster (i.e., size(τ) becomes 0). Algorithm 3 concludes
by returning the task to sub-cluster allocation that results in minimum energy consumption
(Lines 19–20). Else, i.e., no task receives any cores as there are not sufficient cores, the
algorithm stops and returns failure (Line 22).

Algorithm 3 performs a task to cluster allocation considering the Category-1 DAG tasks
and low-speed clusters. We use a slightly modified version of Algorithm 3 to allocate
Category-2 tasks to the remaining low-speed cores. When all Category-1 tasks receive the
required number of low-speed cores, we use Algorithm 3 again to allocate the remaining
low-speed cores to the Category-2 DAG tasks. This time the input to Algorithm 3 is the
set of Category-2 DAG tasks and the set of sub-clusters K = {K1

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}

which has some low-speed cores unused. If the available low-speed cores are insufficient to
accommodate all the Category-2 tasks, we call Algorithm 3 again with a modified input
parameter (i.e., set of Category-2 DAG tasks that do not receive enough low-speed cores and
set of sub-clusters containing high-speed cores) to allocate additional high-speed cores.
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(a) Schedulability ratio for different sL values.
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(b) Power consumption for different sL values.

Figure 1 Schedulability ratio and power consumption for different sL values.
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Figure 2 Power consumption comparison between our approach and MCFS_Li [39]. In this
simulation, we set the value of sL to 0.55.

6 Evaluation

This section demonstrates the algorithm’s performance through evaluation conducted on a
randomly generated task set. We report the schedulability ratio and the power consumption
of our approach for different speed settings of a low-speed cluster. In this setup, the low-speed
is normalized w.r.t. to the maximum speed supported by this platform, ranging from 0.45 to
0.6. We use the following parameters to generate the random task-set:

ζ: number of task set, ranged between [200-1000].
ζG: number of tasks per task set, ranged between [5-10].
Di := xCO

i : relative deadline of a task, x = [0.9 − 1.0].
[Zdown, Zup]: the range of the ratio of normal and overload execution budget. We set
1 ≤ Zup

Zdown
≤ 8.

sL: speed of the low-speed cluster, ranging [0.45-0.6].

The reference approach. To date, no work has investigated the same problem studied
in this paper, i.e., minimize CPU power consumption for the DAG tasks by adopting the
DPM policy in a clustered platform. Hence, we do not have a direct baseline to compare.
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We consider a reference approach (for performance comparison) based on the DAG tasks
scheduling [39], denoted as MCFS_Li. Similar to us, the reference approach has characterized
a DAG task using its typical (and overload) execution requirement and the critical path
length. The approach in [39] also proposed a core assignment to each DAGs. However, unlike
us, [39] did not consider a multi-speed clustered platform. Hence, we assume that all the
cores execute at the maximum speed (i.e., sH) possible for the reference approach.

In Figure 1a, we vary the sL values for a different size task set and report the schedulability
ratio. As expected, the schedulability ratio is directly proportional to sL, but not strongly
correlated with with task-set size. Figure 1b shows the system power consumption for
different sL values over the different sizes of task sets. We see that energy consumption
increases with a higher sL value. In Figure 2, we compare our approach with an existing
approach [39], denoted as MCFS_Li. We set the value of sL to 0.55, and our approach
leads to a power-saving of at least 29.23% compared to MCFS_Li (Figure 2). While
guaranteeing real-time correctness, our approach utilizes the low-speed core as much as
possible (Subsection 4.1 and 4.2), which leads to an energy-saving.

All these experiments in this work involve varying the number of randomly generated
task sets. The aim is to investigate whether our proposed method’s results are sensitive
to changes in the number of tasks. However, our findings show no significant correlation
between power consumption, schedulability ratio, and the number of tasks. This observation
concludes that the proposed method is robust to different task set sizes.

7 Proof-of-Concept on Real-Time Platform Experiments

This section evaluates the proposed approach on a 12-core Intel Xeon 2680 v3 platform. The
proposed method applies to ARM big.LITTLE architectures and modern Intel processors.
However, the choice of the Xeon 2680 Processor stems from its well-studied power and
energy consumption behavior [28], the ease of in-kernel status monitoring while having the
per-core speed adjustment, per-core sleep, energy monitoring, and tracking the per-core
temperature. The energy consumption behavior of modern Intel processors shows a significant
deviation from energy models obtained on older Intel platforms due to latencies in changing a
core’s energy state, uncore frequencies, and out-of-order throttling at lower frequencies [57] –
furthermore, documentation for turning off an entire cluster in ARM big.LITTLE architecture
is sparse, and ARM does not provide public libraries for energy management.

On the platform, 11 of the 12 cores are isolated from kernel processes, user processes,
and interrupts using isolcpus option in the kernel bios. Among these eleven cores, six cores
represent Low-speed cores, and five cores represent High-speed cores. For a High-speed core,
the minimum and maximum frequencies are normalized in the frequency range between 1.2
GHz and 2.5 GHz, respectively, with a minimum transition time of 20µs. The minimum
frequency of a Low-speed core is 1.2 GHz while the maximum frequency is a parameter of
the evaluation. Additionally, each core can be independently turned off using DPM.

We conducted experiments on an Ubuntu 20.04 operating system, utilizing the default
Completely Fair scheduler (CFS) introduced in Linux kernel version 2.6.23 [49]. The CFS
scheduler is designed to allocate CPU times fairly among all runnable tasks on the system,
making it ideal for our experiments. As a non-real-time scheduler, it provides a fair CPU
time allocation among all runnable tasks on the system. We utilized the CFS scheduler by
not specifying a scheduler type through the sudo cset set command. Our implementation
of the proposed task-to-cluster allocation algorithm was written in Python. It periodically
executed each benchmark task on the isolated 11 cores using the cset command-line option
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Figure 3 Change in energy consumption dependency with response time.

with a nice default value. In addition, our program modified kernel parameters, turned off
appropriate clusters and monitored power consumption information from the allocated cluster.
We used several average-case power management governors from the Linux Kernel to ensure a
fair comparison, including schedutil, performance, powersave, conservative, and ondemand as
baselines. Hyper-threading was turned off on all cores by adjusting the scaling_max_freq
parameter in the Linux kernel. We fixed the frequency of each core using the cpufrequtils
tool. Finally, we turned off Turbo mode to avoid unwanted frequency adjustments in each
core.

The Barcelona OpenMP tasksuit (BOTS) [21] benchmark is used to evaluate the energy
consumption of the proposed approach. Each of the 43 tasks within the BOTS benchmark
follows the DAG task model discussed in Section 3. Nodes within a benchmark task are
created using a task directive, while edges between nodes are generated using depend or
taskwait directives. Nodes within a DAG task are scheduled using a greedy algorithm,
as proposed in [37]. While intel p-state and c-state configurations transfer resource and
power control to the hardware, we turned off this configuration for our application. We
used advanced configuration and power interface (ACPI), which gives software access to
touch voltage and frequency for speed adjustment and provides the baselines and userspace
configuration. The ACPI-Freq is portable to other platforms.

To extract performance results, the perf Linux profiler and a hardware energy counter
tool called reduced average power limit (RAPL) are used to monitor energy consumption
during the execution of each DAG task [30]. Since the Linux profiler does not provide
tool with the capability to profile multiple DAGs simultaneously, this evaluation focuses on
evaluating single DAG tasks. This simplification is due to the limitation on profiling ring
buffers and a socket hardware profiling register.

The paper proposes an approach for energy minimization while ensuring the schedulability
of DAG tasks. Although other factors may affect the energy consumption in DAG benchmarks,
including context switches, branch misses, and the number of instructions, these effects
are out of the scope of this research. The correlation between response time and energy
consumption is shown in Fig. 3, as we used the different numbers of cores. The results on Intel
Xeon 2680 and core i7 show as we increased the number of cores, the energy consumption
decreased on average on all the targeted benchmarks due to increasing the level of parallelism.
When allocating only one core, the time to process increases, and the number of inactive
cores adds much more waste on energy consumption.

This paper aims to determine the schedulability condition at runtime. To achieve this, we
estimate DAG tasks’ workload execution and critical path when executed at normal speed
and allocate the number of cores accordingly. We assume the critical path can be determined
when all cores are assigned to a DAG benchmark. Due to the absence of execution time
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Figure 4 The response time of one DAG makespan is based on the critical path definition,
workload execution time, and the virtual deadline.
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Figure 5 The light dash color refers to an increase in the number of high-speed cores due to the
satisfaction of Category 2 in resource allocation.

tools for DAG tasks, the execution budget is obtained by running the DAG on a single core.
From 20 corresponding iterations, the average value represents the typical condition, and the
maximum value represents the overload condition. The results of this configuration for one
task are shown in Fig. 4, and we obtain deadline constraints using Graham’s bound. The
virtual deadline is estimated using the following expression V D < L + (C − L)/m.

This paper defines different categories and allocates high-speed and low-speed cores based
on core speeds and virtual deadlines. As explained in Section 4, there are three categories,
and Category 2 involves meeting the condition CN

i /sL < CO
i /sH − LO

i /sH . This means that
we may need to increase the speed of low-speed cores, decrease the speed of high-speed cores,
or add high-speed cores to meet the required deadline. In theory, speed refers to the amount
of computation in a given unit of time, while in experiments, it refers to the frequency of
operation that determines the amount of computation that can occur in a given unit of time.
Experiments utilize DVFS-enabled processors to control frequency within a predetermined
range of frequencies. While the speed can theoretically range from 0 to 1, in practice, it is
limited to the frequency range supported by the platform, as shown in Figure 5.

Based on Figure 5, the DAG tasks are assigned two low-speed and one high-speed core set.
Six cores were assigned to low speed and five to high speed. In the experiments conducted
for this paper, multiple clusters were used to test different scenarios where the number of
low-speed and high-speed cores exceeded the schedulability requirements. Figure 5 shows an
example where task 10 is allocated six low-speed cores with a speed of 0.1 and high-speed
cores with a speed of 0.7 while maintaining schedulability. Similarly, this schedulability
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Figure 6 The federated energy-aware scheduling algorithm gives better results in terms of energy
consumption and execution time compared to all the available Linux governors. Here task 18 is 30%
better energy-efficient compared with the Linux governors.
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Figure 7 Evaluation on schedulability and aggregated energy consumption.

can be achieved by increasing the number of high-speed cores or by increasing both the
number and speed. To test energy efficiency under these conditions, we developed a clustering
algorithm. Thus, cluster allocation is needed to get the optimal spot in energy minimization.
We changed the speed of low-speed and high-speed cores to test the proposed method. We
would fix the speed of high-speed cores to 0.7 of maximum speed in the Intel Xeon processor
and observe the extra allocation of high-speed cores to heavy tasks in Fig. 5 as the speed of
low-speed cores increases.

After setting the high and low-speed cores for each task and running the tasks in the
directed acyclic graph (DAG) to create an energy matrix, we can accurately estimate the
required low and high-speed cores. The results obtained with the proposed Federated
scheduler were compared to state-of-the-art Linux governors, and it was found that the
energy consumption was 30% less than the best result obtained from the governors, while
the overall results were not worse than state-of-the-art. The advantage of this algorithm is
that it takes schedulability conditions into account, unlike the Linux governors, which cannot
do so.
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The task to cluster allocation happens according to Algorithm 3, i.e., an energy value
would be assigned to each table element according to the defined number of low(high)-speed
cores and core’s speed. We will allocate the low-speed cores based on the specified task
categories. We would evaluate the conditions above requirements to fill the table. The
element in the search table showing the optimal energy value would get the configuration
needed for each task. The schedulability results in Fig. 7a for the table with 192 elements
show we have at least one element in the search table, which follows the virtual deadline and
schedulability conditions which means 100% schedulability all the time. While in Fig 6, we
see some times 30% improvement in energy consumption on some tasks, the results show
similar values in most of the evaluated tasks regarding all the times schedulability is met. The
proposed algorithm represents results in Fig. 7b indicate an approximately 7% improvement
in energy consumption when aggregating over all the tasks.

8 Conclusion and Future Work

The traditional workload model for real-time embedded systems focuses on worst-case
behaviors to provide worst-case guarantees. However, modern embedded systems possess
more energy constraints and require a richer system model to optimize energy consumption
under typical scenarios instead of worst-case scenarios. In this work, we propose the
energy-aware scheduling framework for DAGs in a clustered platform to minimize the typical-
case energy while guaranteeing worst-case temporal correctness. Specifically, we propose
determining the minimum number of low-speed cores required to schedule each DAG task
under a dual-speed platform. If there are not enough low-speed cores, our algorithm assigns
additional high-speed cores to a DAG, providing maximum energy-saving benefits. For multi-
speed platform, we further propose a task to cluster partitioning approach to reduce the
typical energy consumption without violating the worst-case real-time scheduling guarantee.
We evaluate our algorithm via extensive simulations on randomly generated task set and
report the energy consumption and the schedulability ratio. We also have implemented our
algorithm on an Intel Xeon 2680 v3 platform and report that our approach reduces energy
consumption by up to 30% w.r.t. the compared baseline.

Our current workload characterization assumes two thresholds: a typical execution length
and a WCET. It would be interesting to study the situation when more detailed information
can be provided, e.g., in the form of multiple thresholds, even with probability information.
We also plan to investigate the impact of other components, e.g., cache misses, context
switches, bus accesses, I/O usage, on the total power consumption. In the future, we plan to
extend the evaluation to ARM big.LITTLE architecture and 12th generation Intel Core i7
clustered mobile platform with four High-speed and eight Low-speed cores.
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