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Abstract
The notion of efficient explainability was recently introduced in the context of hard-real-time
scheduling: a claim that a real-time system is schedulable (i.e., that it will always meet all deadlines
during run-time) is defined to be efficiently explainable if there is a proof of such schedulability that
can be verified by a polynomial-time algorithm. We further explore this notion by (i) classifying
a variety of common schedulability analysis problems according to whether they are efficiently
explainable or not; and (ii) developing strategies for dealing with those determined to not be
efficiently schedulable, primarily by identifying practically meaningful sub-problems that are efficiently
explainable.
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1 Introduction

A workshop titled Explainability of Real-Time Systems and their Analysis (ERSA)
was held as part of the 2022 edition of the IEEE Real-Time Systems Symposium (RTSS),
with a goal “to understand the role, meaning, and value of explanation in critical systems –
in particular real-time systems.” In a paper [8] that we had presented at this workshop, we
introduced the notion of efficient explainability in the context of hard-real-time scheduling.
In this we drew inspiration from the remarkable success that cyclic-executive (CE) [4, 5]
based approaches to demonstrating timing correctness in safety-critical systems have enjoyed,
particularly with regard to achieving statutory certification. In such CE based approaches,
the system developer provides the certification authority (CA) with a lookup table that
explicitly enumerates which task will execute at each instant; the CA checks that repeated
execution of this lookup table assigns adequate computing to each task to allow all its timing
constraints to be met (provided, of course, that each task respects its worst-case execution
time bound). From this perspective, the lookup table may be thought of as a certificate
that “explains” the system-developer’s claim that the system is schedulable. We accordingly
defined a claim of schedulability to be efficiently explainable if there is a certificate of the
schedulability that can be verified in time polynomial in the representation of the system for
which schedulability is being claimed. We applied this notion to the schedulability analysis
of independent sporadic task systems upon preemptive uniprocessors, and made some simple
observations that may nevertheless be surprising (e.g., that for uniprocessor scheduling of

© Sanjoy Baruah and Pontus Ekberg;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baruah@wustl.edu
https://engineering.wustl.edu/faculty/Sanjoy-Baruah.html
https://orcid.org/0000-0002-4541-3445
mailto:pontus.ekberg@it.uu.se
https://www.katalog.uu.se/profile/?id=N9-1037
https://doi.org/10.4230/LIPIcs.ECRTS.2023.2
https://sites.google.com/view/ersa22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Towards Efficient Explainability of Schedulability Properties in Real-Time Systems

constrained-deadline sporadic task systems [27, 30], fixed-priority schedulability is efficiently
explainable but, under the widely-held assumption that NP ̸= coNP, EDF-schedulability is
not), and posed some open questions and possible directions for further research.

This Work: Motivation and Scope. We believe that the concept of efficient explainability
potentially has an important role to play in the verification of future safety-critical real-time
systems as such systems become ever more complex, and as they are increasingly coming to
be implemented upon resource-constrained platforms:

1. CAs may be unwilling to undertake inordinately long computational procedures in order
to verify the correctness of systems that are submitted for certification. This becomes
more challenging for modern systems given the increased complexity of these systems
and the correctness properties that they are expected to maintain in the ever-increasingly
complex environments within which they operate.

2. An additional motivation for efficient explainability comes from the increasing application
of the paradigm of edge computing in many safety-critical applications like autonomous
navigation. Due to size, weight and power (SWaP) constraints, devices on the edge
typically have limited computational capabilities; hence it is beyond their ken to undertake
complex computations that are computationally demanding. They may nevertheless
need to perform complex run-time operations such as admission control. One approach
to this would be to perform the actual admission control computation “in the cloud”
where more extensive computational capabilities are available. If such cloud computations
determine that the workload remains schedulable upon admitting the additional work,
then the specifications of the schedulable system including the newly-admitted work,
along with an efficiently-verifiable proof (the “efficient explanation”) of the schedulability,
are communicated to the computationally limited edge device. The edge device can then
verify the schedulability and admit the new work, without needing to trust the cloud
computation.

These motivating considerations have prompted us to study the concept of efficient explain-
ability further, with a view of better understanding its applicability to safety-critical system
design, implementation, and verification. In this paper we report on our investigations into
two aspects of efficient explainability:

1. We characterize several schedulability-analysis problems beyond those considered in [8]
as being efficiently explainable or not.

2. If some schedulability analysis problem is unlikely to allow efficiently-verifiable certificates
for all instances, there may be sub-problems of it that do. We investigate this idea in
depth, proposing several avenues to identifying efficiently explainable sub-problems, as
well as alternative notions of efficient explainability.

The specific contributions of our work include the following.

1. We extend the results of [8] to multiprocessors by characterizing the efficient explainability
(or absence thereof) of multiprocessor partitioned schedulability of recurrent task systems.

2. We obtain a series of results that identify efficiently explainable sub-problems of unipro-
cessor EDF-schedulability of sporadic task systems (a problem that was observed in [8] to
not be efficiently explainable). We also extend these results to partitioned EDF scheduling
upon multiprocessor platforms.
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3. We propose a novel concept, Fully Polynomial-Time Verification Approximation Scheme
(FPTVAS), that extends the notion of FPTAS’s, widely studied in the context of ap-
proximation algorithms [3, 34], from polynomial-time computation to polynomial-time
verification (i.e., from P to NP).

4. We introduce, and initiate a study of, a previously unconsidered complexity class –
pseudoNP: non-deterministic pseudo-polynomial time that helps generalize the concept of
efficient explainability. This generalization seems particularly relevant as the schedulability
problems for which efficient explanations are sought become computationally more
challenging.

Organization. The remainder of this manuscript is organized as follows. In Section 2 we
place this work within the larger context of verification of real-time systems, and briefly
review some concepts from real-time scheduling and complexity theory that will be used in
later sections of this document. Sections 3–6 contain our main technical contributions: after
briefly identifying some efficiently explainable multiprocessor schedulability analysis problems
in Section 3, we turn our attention, in Sections 4–6, to identifying efficiently explainable
sub-problems of uni- and multi-processor schedulability analysis problems that are unlikely
to be efficiently explainable. We conclude in Section 7 by reiterating the significance of the
research described in this paper, and proposing some directions for further research.

2 Context, and Background & Related Work

The web page1 for the ERSA workshop observes that “many software-intensive systems of
current and future application domains require (or will require) approval from a certification
authority.” It highlights limitations of current approaches to obtaining such approval,
particularly when applied to advanced application domains, and states, as motivation for the
workshop, that “it is worth exploring [· · ·] whether explainability can help.” We would like to
emphasize that there are a myriad of aspects to explainability as it pertains to such a use-case.
Let us consider, as an illustrative toy example, an effort at convincing a certification authority
(CA) of the correctness of the timing behavior of a particular system by appealing to the
well-known result in Liu and Layland’s seminal paper [27] that a periodic task system with
utilization ≤ ln 2 will meet all its deadlines when scheduled using rate-monotonic scheduling
(or in the terminology of explainability, that a periodic task system’s utilization being ≤ ln 2
constitutes an ‘explanation’ of its schedulability.)

1. The party seeking certification must demonstrate that the periodic task model proposed
in [27] adequately models the salient characteristics of the workload, and that the pre-
emptive uniprocessor model assumed in [27] adequately models the salient characteristics
of the implementation platform.

2. They must provide justification for the values they have assigned to the task WCET
parameters (by, for instance, showing that the values were obtained using tools [35] that
have been certified for this purpose), as well as the values assigned to the task period
parameters.2

1 https://sites.google.com/view/ersa22
2 Examples of WCET analysis tools are aiT (https://www.absint.com/ait/), Heptane (https://team.

inria.fr/pacap/software/heptane/) and OTAWA (http://www.tracesgroup.net/otawa/).
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3. The CA must accept the validity of the analysis presented in [27], that any rate-monotonic
scheduled system with utilization ≤ ln 2 will meet all deadlines.3

4. Finally, the party seeking certification must demonstrate to the CA that the system
utilization – i.e., the sum, over all the tasks in the system, of the ratio of their WCET
parameters to their period parameters – does not exceed ln 2. (Recall that this constitutes
the ‘explanation’ of the system’s schedulability, which the CA will presumably seek
to verify on their own – i.e., they will not simply take the word of the party seeking
certification that it is so.)

While each of these steps is crucial to achieving certification, the focus of this paper is on the
last step. (Although this step is quite trivial for our toy example above, we will see that it is
not always so.) Hence the work described in this paper should be looked upon as constituting
only one part of a certification process that necessarily includes a social dimension (Step
1, accepting the mapping from an actual system to an abstract model, inherently possesses
a social aspect in addition to technical ones, as do parts of Step 2); tool-development and
certification (Step 2); and formal verification of schedulability results (Step 3). Our long-term
vision for the non-social aspects of certification is that an automatically-verifiable proof of
system correctness in some formalism such as Coq [11] or Prosa [15] will be provided to the
CA. This will incorporate correctness proofs of the schedulability results (see, e.g., [13, 10]
for some examples of such proofs) upon which such correctness depends, and additionally
include a certificate that explains why these schedulability results imply the correctness of
the specific system being considered for certification (see [29] for a seminal work on creating
such certificates in Prosa). It is this last part – explaining why the formally-verified general
schedulability results imply correctness for the particular system – that we address: we want
to ensure that the certificate of correctness can be verified efficiently by the CA. In this work
we outline and study theoretical underpinnings to understand which schedulability problems
allow for efficient verifiability (or explainability, in the terminology adopted in this paper),
and how to deal with schedulability problems that are unlikely to allow this for all instances.

Efficient Explainability. A schedulability problem is here said to be efficiently explainable if
and only if for all schedulable task systems there is a certificate of this schedulability that can
be verified by an algorithm that has running time polynomial in the size of the representation
of the task system. This definition directly links efficient explainability to well-studied
concepts in computational complexity theory [31, 2]; in particular, the complexity class NP:
“NP is the class of languages that can be verified by a polynomial-time algorithm” [16, page
1064]. Hence, a schedulability problem is efficiently explainable if it belongs to NP, and
showing that a schedulability-analysis problem is unlikely to be in NP offers strong evidence
that it is not efficiently explainable. In Sections 5 and 6 we will also consider wider notions
of efficient explainability than simply equating it with NP.

How does one show that a schedulability-analysis problem is unlikely to be in NP? Here
one again makes use of well-established results from computational complexity theory: there
are several complexity classes (see Figure 1 for some) that are widely believed to be distinct
from NP in the sense that there are problems within these complexity classes that do not
also belong in NP. Recall that a problem is defined to be hard for a complexity class if it

3 We point out that this step is by no means trivial or automatic – examples abound of results that passed
peer-review and were published in technical forums, only to subsequently be discovered to be erroneous.
Hence it is understandable that a CA be sceptical of published results and seek further justification of
their correctness than merely having passed peer review.
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Figure 1 Complexity classes considered in this manuscript. Complexity theory researchers widely
believe that no region in this diagram is empty – each is populated with problems.

is, intuitively speaking, at least as computationally difficult to solve as every other problem
in that complexity class (or more precisely, every problem in the complexity class can be
reduced, in polynomial time, to this hard problem). Hence showing a schedulability-analysis
problem to be hard for any complexity class believed to be distinct from NP offers strong
evidence that it cannot also be in NP and is therefore not efficiently explainable.

Efficient Explainability: Prior Results. The following observations and results were obtained
in [8] by exploiting this equivalence between efficient explainability and membership in NP:

It is efficiently explainable whether or not a constrained-deadline synchronous periodic or
sporadic4 task system is FP-schedulable upon a preemptive uniprocessor.
In contrast, determining whether a constrained (or arbitrary) deadline synchronous
periodic or sporadic task system is EDF-schedulable or not upon a preemptive uniprocessor
platform is unlikely to be efficiently explainable.
Suppose one were given an FP-scheduled constrained-deadline synchronous periodic task
system in which each task is additionally characterized by a lower bound (a ‘best-case
execution time’) on its execution duration, and a lower bound is specified on the response
time – i.e., the duration between a job’s arrival and its completion – that is acceptable for
each task. Determining whether such a system will be scheduled to respect the specified
response time lower bounds is not likely to be efficiently explainable.

4 Recall that for a periodic task the period parameter denotes the exact duration between successive job
arrivals, whereas for a sporadic task it denotes the minimum duration between successive job arrivals.
In a synchronous periodic task system, the first task of each job arrives at time-instant zero.
In constrained-deadline task systems, the relative deadline parameter of each task is ≤ the task’s period
parameter; no such relationship need exist in arbitrary-deadline task systems. (Implicit-deadline task
systems have each task’s deadline parameter equal to its period parameter.)

ECRTS 2023



2:6 Towards Efficient Explainability of Schedulability Properties in Real-Time Systems

FPTAS’s. As stated in Section 1, one of our goals is to identify efficiently explainable
sub-problems of schedulability-analysis problems that are determined to not be efficiently
explainable. We will see that this goal essentially translates to one of obtaining sufficient
(rather than exact) schedulability tests. Speedup factors [24, 32, 25] are a commonly used
quantitative metric of the effectiveness of sufficient schedulability tests. The speedup factor
of a sufficient schedulability test A is defined to be the smallest real number δ ≥ 0 such that
if any task system Γ is schedulable upon a unit-speed processor, then A will determine that
Γ is schedulable upon a speed-(1 + δ) processor. Smaller speedup factors denote ‘better’
(i.e., closer to optimal in the worst case) sufficient tests. Thus, obtaining a good sufficient
schedulability test may be thought of as obtaining a good approximation algorithm that
minimizes the speedup factor. In the theory of approximation algorithms [3, 34], it is widely
accepted that an FPTAS (see, e.g., [16, p. 1107] for a textbook description) is the ‘best’ kind
of approximation algorithm: it allows for approximations that are arbitrarily close to the
optimal by appropriately assigning a value to a parameter δ. In the context of sufficient
schedulability tests, an FPTAS may be defined as follows:5

▶ Definition 1 (FPTAS). A fully polynomial-time approximation scheme (FPTAS) for a
schedulability analysis problem is an algorithm that, given as input any problem instance Γ
and a parameter δ > 0, returns “unschedulable” if Γ is unschedulable on a speed-1 processor,
and returns “schedulable” if Γ is schedulable on a speed-(1/(1 + δ)) processor. Its running
time is bounded by a polynomial in the two parameters |Γ| and

( 1
δ

)
.

2.1 Some relevant results from real-time scheduling theory
Fixed-Priority scheduling. Response-time analysis (RTA) [23, 26] is the standard technique
for determining whether a constrained-deadline synchronous periodic task system is schedu-
lable or not under fixed-priority (FP) scheduling. RTA is based on the observation [23] that
if a constrained-deadline task system is schedulable under FP, then the maximum possible
duration between the release of a job of τi and the instant this job completes execution
(called the worst-case response time of task τi) is equal to the smallest positive value of Ri

that satisfies the following recurrence (here hp(τi) denotes all jobs in the task system that
have scheduling priority greater than τi’s scheduling priority):

Ri = Ci +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
× Cj (1)

As observed in [8], it is well known that FP-schedulability is in NP and must therefore be
efficiently explainable: the certificate for FP-schedulability for a given task system Γ is a
value for Ri for each τi ∈ Γ that satisfies Expression 1 and is ≤ Di’s. Such a certificate
comprises |Γ| numbers, and so is polynomial (in fact linear) in the representation of the
task system Γ. It is straightforward to observe that each claimed Ri can be verified to be a
solution to Equation 1 in linear time.

5 It should be noted here that we are abusing the notion of an FPTAS slightly, to be consistent with prior
work in real-time scheduling. In Definition 1 we are assuming that processor speed is the quantity to
be approximated, even though the usual definition of FPTAS’s allow any other approximation metric.
Other metrics relevant for scheduling are, for example, makespan or maximum tardiness. We are also
not quite treating the FPTAS in Definition 1 as an approximation algorithm (since the algorithm should
output only “schedulable” or “unschedulable”), but without much further work we can use binary search
to turn such an algorithm into an algorithm for approximating the minimum processor speed needed to
schedule the task system.
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Earliest-Deadline-First scheduling. In earliest-deadline-first (EDF) scheduling, at each
instance the currently active (i.e., needing execution) job with the earliest deadline is
executed. It is unlikely that EDF-schedulability is efficiently explainable since it has been
shown [18, 20, 19] to be coNP-hard. If it was possible to create polynomial-time verifiable
certificates for all EDF-schedulable task systems, attesting their EDF-schedulability, then by
definition the EDF-schedulability problem would be in NP. This would immediately imply
that NP = coNP, which goes against the expectations of most researchers in complexity
theory. It is interesting to note that even though uniprocessor FP-schedulability (which is
NP-complete [22]) and uniprocessor EDF-schedulability (which is coNP-complete [18]) in some
sense are qualitatively equally hard to solve (they are both complete at the first level of the
polynomial hierarchy), their verification problems are indeed of very different hardness.

Processor-demand analysis (PDA) [7] is the standard technique for determining whether
a synchronous periodic task system is schedulable or not under EDF scheduling. PDA is
centered upon the concept of the demand bound function (dbf): for any sporadic task τi and
any interval-duration t ≥ 0, dbfi(t) denotes the maximum possible cumulative execution
requirement by jobs of task τi that both arrive in, and have deadlines within, any interval of
duration t. The following formula for computing dbfi(t) was derived in [7]:

dbfi(t) = max
(⌊

t−Di

Ti

⌋
+ 1, 0

)
× Ci (2)

It was also shown in [7] that a necessary and sufficient condition for task system Γ to be
EDF-schedulable is that the following condition holds for all t ≥ 0:∑

τi∈Γ
dbfi(t) ≤ t (3)

Processor Demand Analysis, PDA, is essentially a means of determining whether Expression 3
holds for all t. It was proved in [7] that Condition 3 need only be checked for values of t

that are of the form t = (k × Ti + Di) for some non-negative integer k and some τi ∈ Γ;
furthermore, only such values that are no larger than the hyper-period HP(Γ) (the least
common multiple of all the Ti parameters) need be tested. The set of all such values of t for
which it needs to be checked that Condition 3 is satisfied in order to verify EDF-schedulability
is called the testing set for the sporadic task system Γ and often denoted T (Γ). It is known [7]
that the cardinality |T (Γ)| of the testing set T (Γ) may in general be exponential in the
representation of Γ. However, it has been shown [6, Theorem 3.1] that a smaller testing
set, of pseudo-polynomial cardinality (i.e., polynomial in the size of the representation of Γ
and its largest numerical parameter), can be identified for bounded-utilization task systems.
Those are the task systems Γ satisfying the additional condition that

∑
τi∈Γ Ci/Ti ≤ c for

some pre-defined constant c < 1.

3 Efficiently Explainable Schedulability

We start out identifying some important efficiently explainable schedulability-analysis prob-
lems. As mentioned in Section 2.1 above, fixed-priority (FP) schedulability of constrained-
deadline sporadic task systems upon preemptive uniprocessor platforms was observed to be
efficiently explainable in [8]; this result is easily generalized to show that FP schedulability
of constrained-deadline sporadic task systems upon multiprocessor platforms under the
partitioned paradigm6 is also efficiently explainable:

6 Throughout this paper, when discussing partitioned scheduling, we refer to strict temporal partitioning
where tasks on one partition execute independently of tasks on another partition. Semi-partitioned
approaches or cases where tasks share locks across partitions may require additional care for verifiability.

ECRTS 2023
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▶ Theorem 2. Partitioned multiprocessor fixed-priority schedulability of constrained-deadline
sporadic task systems is efficiently explainable.

Proof. In Section 2.1 we have briefly described the procedure for constructing efficiently-
verifiable certificates of uniprocessor FP-schedulability of constrained deadline task systems.
This procedure is easily generalized to establish the efficient explainability of partitioned
FP-schedulability for constrained-deadline systems upon multiprocessors as well: an efficiently-
verifiable certificate of the partitioned fixed-priority schedulability for a constrained-deadline
sporadic task system Γ upon an m-processor platform comprises
1. The actual partitioning of Γ into the m sets of tasks assigned to the m processors; and
2. For each of the m partitions, a certificate of its uniprocessor fixed-priority schedulability

that is constructed using the procedure that we had described in Section 2.1.
It is evident that such a certificate can be verified by a polynomial-time algorithm, and
hence establishes that FP-schedulability under the partitioned paradigm of multiprocessor
scheduling is efficiently explainable.

We point out that nothing in this proof requires that the processors be identical to
one another; hence the result of this theorem holds for the more general heterogeneous
multiprocessor platforms. ◀

As stated in Section 2.1, preemptive uniprocessor EDF-schedulability analysis for sporadic
task systems is not likely to be efficiently explainable, in contrast to FP scheduling. Since
partitioned multiprocessor EDF scheduling is a generalization of uniprocessor EDF scheduling,
it therefore follows that partitioned multiprocessor EDF-schedulability analysis problem is
also unlikely to be efficiently explainable. However, for the special case of implicit-deadline
task systems (for which the corresponding uniprocessor problem is efficiently explainable –
simply determine whether system utilization does not exceed the processor capacity), efficient
explainability is easily established:

▶ Theorem 3. Partitioned multiprocessor EDF schedulability of implicit-deadline sporadic
task systems is efficiently explainable.

Proof. An efficiently-verifiable certificate of the partitioned EDF schedulability for an implicit-
deadline sporadic task system Γ upon an m-processor platform comprises the actual parti-
tioning of Γ into the m sets of tasks assigned to the m processors. Given such a certificate,
it can be verified in polynomial time that the sum of the utilizations of the tasks assigned to
each processor does not exceed the capacity of that processor. ◀

Perhaps somewhat surprisingly, most other common real-time schedulability analysis problems
are unlikely to have polynomial-time verifiable certificates for explaining schedulability; this
motivates our efforts, reported in Sections 4–6, to investigate other avenues to dealing with
such problems.

4 Identifying Efficiently Explainable Sub-Problems

In this section we consider one approach to achieving efficient explainability of problems
that are not in NP (and hence not efficiently explainable): to identify relevant sub-problems
that are in NP. We exemplify this approach with the EDF-schedulability problem. As stated
in Section 2.1, the uniprocessor EDF-schedulability problem of three-parameter7 sporadic

7 That is, a task specified by a triple of its task parameters: τi = (Ci, Di, Ti).
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(or periodic) tasks is coNP-complete, from which it follows that it cannot be in NP unless
NP = coNP and the polynomial hierarchy collapses to its first level. Barring the unlikely event
of such a collapse, we cannot produce polynomially-sized explanations of EDF schedulability
for all schedulable task systems that can be verified by a third party in polynomial time.

We set out to identify sub-problems of the uniprocessor EDF-schedulability problem
for sporadic (or synchronous periodic) task systems that are in NP, and therefore efficiently
explainable. We do so by identifying subsets of the language of EDF-schedulable task sets
that are in NP (or indeed, even in P). Since the union of a finite set of languages in NP is
itself a language in NP, we can try to cover as much as possible of the EDF-schedulable task
sets with different subsets in NP, and in the end take the union of any such subsets. Any
EDF-schedulable task set that is in this union of smaller languages does have a polynomially-
sized certificate that can be verified by a third party in polynomial time.

Before proceeding we should make some important points.

It is not possible to completely cover the coNP-complete language of EDF-schedulability
by a finite set of subset languages that are each in NP (assuming NP ̸= coNP) – there will
remain an infinite set of EDF-schedulable task sets that are not covered.
In this work we do not attempt to maximize the covering, but instead focus on identifying
a few rather ‘natural’ subsets that are in NP. The covering presented here could most
certainly be expanded – this is a direction of future work.
We are here interested in the efficient explainability of the identified subsets – that it
is possible to efficiently verify a certificate of a solution – but for now are not much
concerned by the efficiency of finding those solutions (and certificates) in the first place.
As a result, some subsets may in practice be more difficult computational problems to
solve than the original EDF-schedulability problem, but they will be easier to verify.

4.1 Efficiently explainable subsets of uniprocessor EDF-schedulability
Here we will list efficiently explainable subsets (forming languages in NP) to the EDF-
schedulability problem. The relationships between these subsets are shown in Figure 2. The
most natural such subsets are those for which the EDF-schedulability problem itself is easy to
solve. The following two subsets of EDF-schedulability are known to be in P.

[I] – Implicit deadlines. From Liu and Layland [27] we know that a task set Γ is EDF-
schedulable if it has implicit deadlines and

∑
τi∈Γ Ci/Ti ≤ 1. Both conditions are trivial

to check in polynomial time, and so EDF-schedulable task sets with implicit deadlines
form a language in P (and therefore in NP).

[II] – Harmonic periods and constrained deadlines. Similarly, Bonifaci et al. [12] have
given a polynomial-time algorithm for determining if a task set with constrained deadlines
and harmonic periods is EDF-schedulable. Hence such task sets also form a language in
P (and therefore in NP).

Another approach to identifying efficiently explainable subsets is by exploiting the optimality
of EDF upon preemptive uniprocessors. From this optimality we trivially get that for any
uniprocessor scheduling algorithm A, the set of all of A-schedulable task systems is a subset
of the set of EDF-schedulable task systems. For which A is A-schedulability in NP? An
obvious candidate is Fixed-Priority (FP).

[III] – FP-schedulable with constrained deadlines. As explained in Section 2.1, the task
systems that are FP-schedulable form a language in NP, and this language must be a subset
of EDF-schedulability. We should use the optimal deadline-monotonic (DM) priority

ECRTS 2023
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Figure 2 The relationships between the different languages of uniprocessor schedulability consid-
ered in this work. While the outer language of EDF-schedulability is coNP-complete, the marked
subsets are all languages in NP. The union of any collection of these subsets is also in NP and therefore
admits polynomial-time verifiable certificates. The two languages demarcated by dashed lines – the
Albers & Slomka FPTAS and EDF-schedulability by q-PDA – are of a different sort than the others
in that they are parameterized approximations; they will be described later in Section 5.

ordering to make the subset as large as possible. It is not known if FP-schedulability for
task sets with arbitrary deadlines is in NP, but we can certainly truncate any Di > Ti to
Di = Ti as preprocessing if we wish.

We note that Davis et al. [17] have shown that the considered subset of FP-schedulable
task sets with constrained deadlines (and DM priorities) itself contains as a strict subset
the set of all task sets with constrained deadlines that are EDF-schedulable on a speed-Ω
processor, where Ω ≈ 0.56714 is the unique constant such that ΩeΩ = 1. This gives
us a bound on how much processor capacity we can lose in the worst case by proving
EDF-schedulability by means of FP-schedulability.8

Are there more uniprocessor scheduling algorithms A for which A-schedulability is in NP?
There are very many, and the key to seeing this is to recognize that A does not need to be
any kind of “practically reasonable” scheduling algorithm, since we do not intend to actually
execute A during runtime – we are simply exploiting the fact that, since EDF is optimal,

8 As a curiosity and an aside, this also means we have the marvelous situation that a coNP-complete lan-
guage (EDF-schedulability on a speed-1 processor) contains an NP-complete language (FP-schedulability
on a speed-1 processor) that in turn contains a coNP-complete language (EDF-schedulability on a
speed-Ω processor). Indeed, we can make the infinite chain of strict subsets

(EDF, speed-1) ⊃ (FP, speed-1) ⊃ (EDF, speed-Ω) ⊃ (FP, speed-Ω) ⊃ (EDF, speed-Ω2) ⊃ · · ·

which alternate forever between being coNP- and NP-complete!



S. Baruah and P. Ekberg 2:11

A-schedulability necessarily implies EDF-schedulability. Thus we just want to efficiently
verify EDF-schedulability by means of verifying A-schedulability instead, but EDF, which
has very efficient implementations, will be the run-time scheduling algorithm that is used.
Fluid schedulers are among the scheduling algorithm that are easy to reason about, although
they may be difficult to implement. Next, we consider a scheduler that schedules some tasks
fluidly.

[IV] – FP+fluid-schedulability. A fluid scheduler assigns a constant fraction fi of the pro-
cessor to task τi, such that τi is served continuously at this rate. Clearly, τi will meet all
of its deadlines if it scheduled fluidly with a rate fi = δi, where δi = Ci/min(Di, Ti) is
the density of the task.

However, we do not need to schedule all tasks in the task set fluidly. We define the
FP+fluid scheduler to be the scheduler that (optimally) partitions the task set Γ into
two disjoint subsets Γfluid and Γfp, and then schedules each task τi ∈ Γfluid fluidly with
rate δi, and schedules the tasks τi ∈ Γfp with an FP-scheduler (and DM priorities). The
tasks in Γfluid run on a reserved processor fraction of speed ∆, where ∆ =

∑
τi∈Γfluid

δi,
and the tasks in Γfp run on the “remaining” processor fraction of speed 1−∆.

To see that FP+fluid-schedulability is in NP, consider that all tasks will meet their
deadlines if both ∆ ≤ 1 and the tasks in Γfp are FP-schedulable on a processor of
speed 1−∆. A certificate of FP+fluid-schedulability can then simply consist of (1) the
partitioning of Γ into Γfluid and Γfp, and (2) fixed-points to the response-time equation of
the tasks in Γfp, where each Ci has been multiplied by 1/(1−∆). Given such a certificate
we could easily verify in polynomial time that indeed Γ = Γfluid ∪ Γfp, that ∆ ≤ 1, and
that the given fixed-points are actual fixed-points (≤ Di) to the response-time equation
for each task τi ∈ Γfp on a speed-(1−∆) processor.

FP+fluid-schedulability is of course a superset of plain FP-schedulability (since we can
set Γfluid = ∅ and Γfp = Γ) and a superset of plain fluid scheduling (since we can set
Γfluid = Γ and Γfp = ∅). To see that FP+fluid-schedulability is in fact a strict superset of
the union of both, we can consider the following simple task set:

Γ = {τ1 = (2, 4, 4), τ2 = (3, 6, 8), τ3 = (1, 9, 10)}

It can be readily checked that this task set is not fluid-schedulable (the total density > 1)
and is also not FP-schedulable (τ2 will miss a deadline under DM-priority ordering). It is
however FP+fluid-schedulable with Γfluid = {τ1} and Γfp = {τ2, τ3}.

FP+fluid-schedulability is an example of a subset of EDF-schedulability that seems
potentially harder to solve in practice than just solving EDF-schedulability. For example,
it is well-known that EDF-schedulability can be solved in pseudo-polynomial time for
bounded-utilization task sets [7], but it is not obvious that FP+fluid-schedulability can
be so solved if we want to find the best possible partitioning of Γ into Γfluid and Γfp.
However, this is not our main concern, and being in NP it is qualitatively easier to verify
the solutions of FP+fluid-schedulability.

Task splitting is another common scheduling technique that we can exploit to come up with
suitable scheduling algorithms A. Task splitting is known to often improve schedulability
(see for example [14], where this technique is referred to as period transformation), but it
normally comes with the drawback of some extra runtime overheads, especially if tasks are
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split into many much smaller pieces. This is not a concern in this context as we again do not
intend to ever run the resulting scheduling algorithm A, we merely want to find A such that
A-schedulability is in NP.

[V] – FP+split-schedulability. We consider here the simple splitting technique where a
constrained-deadline task τi = (Ci, Di, Ti) can be split into the smaller task

τ ′
i =

(
Ci

ki
,

Ti

ki
− (Ti −Di),

Ti

ki

)
,

for ki ∈ N+, with which every job of τi is served as ki jobs of τ ′
i . It can be readily

confirmed that if the ki jobs of τ ′
i all meet their deadlines, then so does the original job

that they serve. Note that splitting a task τi with Di < Ti may result in it receiving a
negative relative deadline, in which case the split task is clearly unschedulable.

FP+split-schedulability is in NP since we can provide as a certificate the ki’s and fixed-
points to the response-time equation for the split tasks τ ′

i . The solution is then verified
in polynomial time by reproducing the split tasks using the ki’s (some tasks may have
ki = 1, and remain unsplit) and verifying that the provided fixed-points are indeed valid
fixed-points to the response-time equation that are each ≤ Ti

ki
− (Ti −Di).

Now that we have FP+fluid and FP+split, nothing is stopping us from combining the power
of both, if indeed verification time and not solution time is our main concern, because
combining them will not take us out of NP.

[VI] – FP+fluid+split-schedulability. The FP+fluid+split scheduler simply partitions the
task set Γ into Γfluid and Γfp, and then schedules the tasks in Γfluid fluidly and then allows
the tasks in Γfp to be split into smaller tasks before they are scheduled by an FP scheduler
on the remaining processor fraction. Polynomial-time verifiable certificates are easily
constructed similarly to how they are constructed for FP+fluid and FP+split.

We note that FP+fluid-schedulability [IV] and FP+split-schedulability [V] both contain
as subsets the plain FP-schedulability for constrained deadlines [III] as well as EDF-
schedulability with implicit deadlines [I]. As we will see below, neither contain the other
though, they each cover different parts of the original EDF-schedulability problem. The
following is a simple task set that can be readily checked to be unschedulable by FP+fluid,
but schedulable by FP+split (by splitting τ1 into τ ′

1 = (1, 1, 2)):

Γ = {τ1 = (2, 3, 4), τ2 = (3, 6, 6)}

In the other direction, the following example can be checked to be unschedulable by
FP+split (no task can be split and keep a non-negative relative deadline), but to be
schedulable by FP+fluid (by setting Γfluid = {τ3} and Γfp = {τ1, τ2}):

Γ = {τ1 = (1, 2, 9), τ2 = (7, 9, 100), τ3 = (1 + ϵ, 10, 100)}

Now that we have seen that FP+fluid-schedulability and FP+split-schedulability cover dif-
ferent parts of the EDF-schedulability language, we note that FP+fluid+split-schedulable
is in fact more than just the union of these two. This is demonstrated by the following
example, which is unschedulable by both FP+fluid and FP+split, but is schedulable by
FP+fluid+split:

Γ = {τ1 = (3, 6, 8), τ2 = (7, 12, 100), τ3 = (1/2 + ϵ, 13, 100)}
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It is readily confirmed that none of the eight possible choices for which subset of tasks
to schedule fluidly would cause Γ to be FP+fluid-schedulable, and none of the possible
task splittings (only τ1 can be split and keep a positive deadline) would cause Γ to
be FP+split-schedulable. However, by splitting τ1 into τ ′

1 = (3/2, 2, 4) and by setting
Γfluid = {τ3} and Γfp = {τ ′

1, τ2}, the task system is indeed FP+fluid+split-schedulable
(for small enough ϵ).

The above list of sub-problems in NP to uniprocessor EDF-schedulability is by no means
comprehensive. It is always possible to come up with additional artificial sub-problems in
NP (for example by hard-coding schedulable task systems), and quite likely there are several
more “natural” sub-problems other than the ones presented here as well.

We note that while the above is presented for three-parameter sporadic or synchronous
periodic tasks, we can trivially use exactly the same sub-problems for asynchronous periodic
tasks as well, by simply ignoring the release offsets of all tasks. This is because the
synchronous arrival sequence is the worst-case for uniprocessor EDF [7], so if we can show
EDF-schedulability for the corresponding synchronous task system (for example using one of
the explainable sub-problems above), then we immediately show it also for the asynchronous
task system.

4.2 Efficiently explainable subsets of partitioned EDF-schedulability

Similarly to the FP-schedulability case in Section 3, as soon as we have efficient explainability
of a uniprocessor schedulability problem, then we automatically get efficient explainability
of the corresponding partitioned multiprocessor schedulability problem. This is the case
even though the partitioned multiprocessor variant may be much harder to solve than the
uniprocessor variant. For instance, while the EDF-schedulability problem is “only” coNP-
complete on uniprocessors, it is both NP- and coNP-hard on partitioned multiprocessors,
thus unlikely to be even in coNP. Indeed, the partitioned EDF-schedulability problem for
asynchronous task systems is ΣP

2-complete [21], and is a much harder problem than for
uniprocessors. Even so, partitioned EDF-schedulability is no less explainable than the
uniprocessor variant. A certificate of partitioned EDF-schedulability can simply consist
of the partitioning Γ1, . . . , Γm of Γ upon the m processors, together with a certificate of
uniprocessor EDF-schedulability for each of the m partitions. This certificate is verified by
checking that indeed Γ = Γ1 ∪ · · · ∪ Γm, and by verifying the per-partition certificates. Note
that the per-partition certificates do not have to be of the same type, they could for example
be certificates from different sub-problems listed earlier in this section.

5 A Scheme for Efficient Explainability

In Section 4 we explored two approaches to identifying efficiently explainable sub-problems
of the EDF-schedulability analysis problem: (i) restricting the problem instances (in [I]
and [II]); and (ii) instead testing schedulability for some other scheduler that is dominated
by EDF (in [III]–[VI]). Here we propose a third approach: directly designing a sufficient
schedulability test for EDF-schedulability analysis. For this the sufficient test should define
a language in NP, in the sense that for all task systems that pass the test, we can create
polynomial-time verifiable certificates of this fact.
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t
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Figure 3 The left plot depicts dbfi(t) for a task τi with Ci = 1, Di = 2, and Ti = 3. The center
plot depicts dbfi(t) with k = 3, and the right plot, dbfi(t, Si) for Si = {1, 2, 5}. Note that dbfi(t)
(dbfi(t, Si), respectively) is discontinuous only at the first k steps (only around the steps in Si,
resp.), and is piecewise linear with slope ≤ Ci/Ti everywhere else.

As stated in Section 2.1, processor-demand analysis (PDA) is the standard test for
EDF-schedulability. PDA checks that Eq. 3 (reproduced below):∑

τi∈Γ
dbfi(t) ≤ t

holds for all values of t ∈ T (Γ), where T (Γ) is the potentially exponentially-sized testing
set. A sufficient EDF-schedulability test is easily obtained by replacing each task’s demand
bound function (the dbfi(t) terms in Eq. 3) with an approximation dbfi(t), such that
dbfi(t) ≤ dbfi(t) for all t. It is evident (see Eq. 2) that dbfi(t) is a step function with a
zeroth step over interval [0, Di), a first step over interval [Di, Ti + Di) and so on – see the
left plot in Fig. 3. Albers and Slomka [1] proposed the following approximation to dbfi(t)
(depicted in the center plot in Fig. 3): letting k denote any positive integer constant, their
approximation retains steps zero through k while the remainder is over-approximated by a
straight line with slope equal to the task’s utilization:

dbfi(t) =
{

dbfi(t), for t < Di + kTi

(Ti −Di + t)× Ci

Ti
, for t ≥ Di + kTi

(4)

We note that dbfi(t) is discontinuous only at points t = ℓ Ti + Di for some τi ∈ Γ and ℓ ∈
{0, 1, . . . , k}. It therefore follows that the left-hand side of the approximated version of Eq. 3,
i.e.,

∑
τi∈Γ dbfi(t), is discontinuous at no more than ((k + 1)× |Γ|) points, and is piecewise

linear with slope at most
∑

τi∈Γ Ci/Ti elsewhere. Assuming
∑

τi∈Γ Ci/Ti ≤ 1, we therefore
only need to evaluate the approximated version of Eq. 3 at the ≤ ((k + 1)× |Γ|) points of
discontinuity; for constant k, this yields a polynomial-time sufficient EDF-schedulability test.
It was also shown in [1] that any Γ that is deemed to not be EDF-schedulable by this sufficient
test is guaranteed to actually not be EDF-schedulable upon a speed-(k/(k + 1)) processor.
Since k may take on any value, the Albers and Slomka polynomial-time sufficient test [1]
is therefore an FPTAS (see Definition 1) for EDF schedulability analysis; as mentioned in
Section 2, FPTAS’s are considered to be the ‘best’ kind of approximation algorithm (that
runs in polynomial time).

A scheme for efficient explainability. We can directly use the Albers and Slomka FPTAS [1]
to design a scheme for efficient explainability, in the following manner. Suppose that we
wish to explain, with a speedup factor9 equal to (1 + δ), that some task system Γ is EDF-
schedulable – we can do so by simply using the Albers and Slomka [1] over-approximation

9 I.e., if we fail to explain the EDF-schedulability of Γ then Γ is in fact guaranteed to not be EDF-
schedulable upon a speed-(1/(1 + δ)) processor.
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of the demand bound function with k ← ⌈1/δ⌉. Since the running time of the Albers and
Slomka [1] test is polynomial in |Γ| and k, i.e., polynomial in |Γ| and (1/δ), it follows that
this does indeed constitute a scheme for efficient explainability of EDF schedulability.

An improved scheme for efficient explainability. The scheme described in the previous
paragraph is obtained by direct application of the FPTAS from [1]. But we can in fact
improve on this for the purposes of efficient explainability: There is no particular reason why
it is the first k steps of dbfi that must be exact (not over-approximated), nor why the dbfi

of each task τi must be exact for the same number of steps (the same value of k).
Let us examine these ideas a bit further. Observe that in the function dbfi the interval

of the ℓth step, ℓ ≥ 1, is given by

stepi(ℓ) =
[
(ℓ− 1)Ti + Di, ℓ Ti + Di

)
. (5)

For any Si ⊂ N+, let us define dbfi(t,Si) to be the approximation to dbfi(t) that agrees with
dbfi(t) over the intervals of the steps in Si, and is a linear over-approximation elsewhere:

dbfi(t,Si) =


0, if t < Di

dbfi(t), if t ∈ stepi(ℓ) for some ℓ ∈ Si

(Ti −Di + t) Ci

Ti
, otherwise

(6)

The approximation dbfi(t,Si) is illustrated in the right-most plot of Fig. 3. For any Si, we
have dbfi(t) ≤ dbfi(t,Si) for all t. By picking some set of steps Si for each task τi and then
replacing dbfi(t) by dbfi(t,Si) in Eq. 3 we therefore get a sufficient EDF-schedulability test.

As with the Albers and Slomka [1] approximation, we note that dbfi(t,Si) is discontinuous
only at points t = ℓTi +Di where ℓ ∈ Si∪{0}, and is piecewise linear with slope at most Ci/Ti

elsewhere. It follows that
∑

τi∈Γ dbfi(t,Si) is discontinuous at most at
∑

τi∈Γ(|Si|+1) points,
and is piecewise linear with slope at most

∑
τi∈Γ Ci/Ti elsewhere. Assuming

∑
τi∈Γ Ci/Ti ≤ 1,

we therefore only need to evaluate the approximated version of Eq. 3 at the points of
discontinuity (that are less HP(Γ)). If

∑
τi∈Γ(|Si|+ 1) is bounded by a polynomial in the

size of the task system, then we can check all points in the testing set in polynomial time.

For a fixed polynomial q, we let q-PDA be the subset of all task systems Γ for which there
exists sets Si ⊂ N+ for each τi ∈ Γ, such that

∑
τi∈Γ dbfi(t,Si) ≤ t for all 0 ≤ t ≤ HP(Γ)

and
∑

τi∈Γ(|Si|+ 1) ≤ q(|Γ|). By the reasoning above, q-PDA is in NP since a task set Γ can
be verified to be in q-PDA in polynomial time if given the sets Si as a certificate.

While it may require significant effort to find the sets Si, the q-PDA has the potential to
allow much more efficient verification of solutions than the Albers and Slomka FPTAS. In
fact, using q-PDA we may exponentially decrease the discontinous points that need to be
checked in Eq. 3. The following simple example demonstrates this.

▶ Example 4. Consider the task set Γ = {τ1 = (1, 1, 2), τ2 = (α/2, α, 2α)}, where α is some
large even number. It can be readily confirmed that Γ is EDF-schedulable. However, using
the approximation in Eq. 4 with k < α/2 we get

∑
τi∈Γ dbfi(α) = α + 1/2, and therefore

we need k ≥ α/2 to establish that Γ is schedulable with the Albers and Slomka FPTAS,
for a total of at least α discontinuous points to check. However, using q-PDA and the
approximation in Eq. 6 with S1 = {α/2} and S2 = {1}, we can establish that Γ is schedulable
by only checking 4 discontinuous points. In other words, Γ is in q-PDA with q(n) = 2n. ⌟
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How much of EDF-schedulability that is covered by q-PDA depends very much on ’q,
which makes it a type of parameterized approximation. This motivates the following
definition, which extends the concept of FPTAS’s for schedulability tests that was introduced
(Definition 1) in Section 2.

▶ Definition 5 (FPTVAS). A fully polynomial-time verification approximation scheme
(FPTVAS) for a schedulability analysis problem is an algorithm that, given as input an instance
Γ, a parameter δ > 0, and a certificate, returns “unschedulable” if Γ is unschedulable
on a speed-1 processor, and returns “schedulable” if Γ is schedulable on a speed-(1/(1 + δ))
processor. Its running time is bounded by a polynomial in the two parameters |Γ| and

( 1
δ

)
.

While our definition of FPTAS’s for schedulability analysis problems (Definition 1) is
essentially an instantiation of the preëxisting concept of FPTAS’s from approximation
theory [3, 34], the notion of FPTVAS’s in Definition 5 above is, to our knowledge, novel –
we are not aware of prior work in complexity theory that lifts the concept of FPTAS’s from
polynomial-time computation (i.e., the complexity class P) to polynomial-time verification
(the class NP).

5.1 Extension to Multiprocessors
In contrast to uniprocessor EDF schedulability where an FPTAS is known to exist [1],
no FPTAS is known for multiprocessor partitioned EDF schedulability – indeed, a lower
bound of 1.5026 was recently obtained [28] on the speedup factor of the state-of-the-art
partitioned EDF scheduling heuristic [9]. We cannot therefore simply use a preëxisting
FPTAS to obtain an approximation scheme for efficient explainability of partitioned multi-
processor EDF schedulability. We can, however, extend the FPTVAS for uniprocessor EDF
schedulability obtained above in the following manner to obtain an FPTVAS for partitioned
EDF-schedulability of sporadic / synchronous periodic task systems. Suppose task system Γ
is EDF-schedulable upon being partitioned upon an m-processor platform. For any fixed
polynomial function q, the certificate of its schedulability would consist of
1. The partitioning Γ1, Γ2, . . . , Γm of Γ amongst the m processors; and
2. For each partition Γj , 1 ≤ j ≤ m, a certificate of its uniprocessor EDF schedulability. Such

a certificate would comprise the sets Si for each τi ∈ Γj , together satisfying the constraints
that

∑
τi∈Γj

dbfi(t,Si) ≤ t for all 0 ≤ t ≤ HP(Γj) and
∑

τi∈Γj
(|Si|+ 1) ≤ q(|Γj |).

As in the uniprocessor case, this FPTVAS immediately implies an approximation scheme for
efficient explainability of partitioned multiprocessor EDF schedulability.

6 Explainability Beyond Polynomial-time

There are many examples in real-time scheduling theory where not only polynomial-time
algorithms are considered to be efficient, but also pseudo-polynomial time algorithms. (E.g.,
both response-time analysis [23] for FP-schedulability and the processor-demand approach [7]
for EDF-schedulability of bounded-utilization systems are widely used schedulability analysis
algorithms that have pseudo-polynomial running times.) The fundamental reason for why
pseudo-polynomial time algorithms are often considered as being efficient in real-time
scheduling is simply that the numerical parameters that appear in scheduling problems tend
to have some direct physical meaning. For example, the parameters Ci, Di and Ti of a
sporadic task are supposed to represent physical time in some given unit, and we would
therefore not expect to be given input instances with numerical parameters that are too
large to be meaningful on a human timescale. Whether a pseudo-polynomial time algorithm
is to be considered efficient certainly depends on what we expect the inputs to look like.
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If we do accept pseudo-polynomial time as acceptably efficient in the context of solving
problems, should we also accept pseudo-polynomial time as acceptably efficient for verifying
solutions? We see no particular reason to not do so, if the problem is such that numerical
values tend to be reasonably small. This motivates the following definition.

▶ Definition 6 (pseudoNP). We can consider pseudoP as the complexity class of problems
that can be solved by a pseudo-polynomial time algorithm. Equivalently, pseudoP contains
the problems that would be in P if numbers were written in unary. Analogously, we define
pseudoNP as the class of problems that would be in NP if numbers were written in unary. The
class pseudoNP then contains the problems for which there exist pseudo-polynomially sized
certificates that can be verified in pseudo-polynomial time.

The classes pseudoP and pseudoNP do not fit so neatly into the hierarchy of complexity
classes shown in Figure 1. We can see that pseudoP of course contains P, but must also be
contained in EXP since the value of a (naturally represented) numerical parameter is at most
exponential in the total length of the input, and therefore any polynomial in the value of the
largest number cannot be larger than exponential in the input length. Further, any problem
in EXP can be (artificially) transformed to allow a pseudo-polynomial time algorithm by
padding input instances with large numbers. Hence, pseudoP intersects with all the classes
up to EXP in Figure 1, but only completely contains P. By similar arguments, pseudoNP
contains NP, is contained in NEXP and intersects with all other classes in Figure 1, including
NEXP. The class pseudoNP captures an interesting property of problems, which to the authors’
knowledge is not well-studied.

What problems can be found in pseudoNP that are neither in pseudoP nor in NP?
Partitioned EDF-schedulability is again a good example. We know that uniprocessor EDF-
schedulability of three-parameter sporadic (or synchronous periodic) tasks can be solved
in pseudo-polynomial time if the utilization of task systems is bounded by some constant
c < 1 (say, c = 0.99). [7] On the other hand, we know that partitioned EDF-schedulability is
both NP- and coNP-hard, even with utilization bounded by any c > 0 [21], and thus is not
in NP (unless NP = coNP). It is not difficult to see that this is the case even if we enforce a
per-partition utilization bound of c. Also, the partitioned problem is NP-hard in the strong
sense (as it generalizes Bin-Packing) and is therefore not in pseudoP (unless P = NP).
However, the partitioned EDF-schedulability problem with a per-partition utilization bound
of c < 1 is in pseudoNP. A certificate for this problem can simply consist of the partitioning,
and the verifier can check that each partition has a utilization of at most c, and then directly
verify the schedulability of each partition in pseudo-polynomial time using the standard PDA
test [7].

An example of a problem that is not in pseudoNP is the uniprocessor EDF-schedulability
problem for unbounded-utilization task systems. Since this problem is coNP-complete in the
strong sense [20], it is (by definition) coNP-complete also if numbers are written in unary.
Since the unary version is coNP-complete, it cannot be in NP (unless NP = coNP), and therefore
the uniprocessor EDF-schedulability problem for unbounded-utilization task systems is not
in pseudoNP.

7 Discussion

1. We have classified several multiprocessor schedulability analysis problems as efficiently
explainable or not.

2. Using uniprocessor EDF schedulability analysis as a concrete example problem, we have
developed multiple distinct methods for identifying efficient explainable sub-problems of
problems that are not efficiently explainable. (We have also applied these methods to
partitioned multiprocessor EDF schedulability analysis.)
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3. We have extended the notion of FPTAS’s, which are widely studied for approximation
algorithms, from approximately solving a problem to verifying an approximate solution
– this yields the novel concept of FPTVAS’s (Definition 5), and extends the idea of
approximation schemes to schemes for efficient explainablity.

4. We have extended the concept of pseudo-polynomial time algorithms, which are in-
creasingly coming to be accepted as being ‘efficient enough’ for pre-run-time analysis
(such as schedulability analysis), from efficient determination of schedulability to ef-
ficient explanation of schedulability, by defining the novel complexity class pseudoNP
(Definition 6).

Our contributions in all these aspects are by no means complete or comprehensive – a large
amount of work remains to be done in both classifying the explainability or non-explainability
of other important schedulability-analysis problems, and in identifying efficiently-explainable
sub-problems for those determined to not be efficiently explainable. Additionally, our
explorations of the concepts of FPTVAS’s (Definition 5) and pseudoNP (Definition 6) are
quite basic – we believe both these concepts are potentially very meaningful and so merit
considerable additional investigation.

We reiterate that we believe the use of formal, machine-verifiable proofs (such as those in
Maida et al. [29]) is a promising way forward if we wish to use advanced techniques and recent
developments in real-time systems research to explain schedulability to a certification authority
(CA). Rather than trying to convince the CA that, say, an analysis for FP+fluid+split is sound
and can be used to indirectly prove EDF-schedulability, such details can all be contained
in the formal proof. The CA needs only to trust the proof assistant itself (e.g., Coq) and
agree with the model of the system and basic definitions. The stated goal of the certification
step (e.g., that the system is EDF-schedulable) is then guaranteed by the proof produced by
the proof assistant, and can be trusted without even knowing the particular proof strategy
employed. With this work we want to put forward the idea that techniques for enabling
efficient explainability, as outlined in brief in this paper, could guide the creation of such
machine-verifiable proofs that may indeed be verified efficiently, even as systems grow in size
and complexity.

Finally, a discussion on verifiability of solutions to computational problems would not
be complete without mentioning interactive proof systems. IP is the complexity class of
problems where a verifier with only polynomial computational resources can be convinced
(to an arbitrary degree of certainty) by an all-powerful prover that a valid solution exists to
a given problem instance. In contrast to the static certificates –the explanations– considered
in this paper, interactive proof systems work by letting the verifier and prover interactively
exchange messages with each other, where the verifier challenges the explanations of the
prover by asking specially-crafted (and randomized) questions. IP was shown to equal PSPACE
(see Figure 1) in a landmark result [33], meaning that very many practical problems have
such interactive proof systems. While interactive proof systems come with their own set of
significant challenges, requiring interactive communication and accepting a small probability
of incorrectly verified solutions, we believe that they have a place in explainability of real-time
systems as well, and represent an interesting direction for future work.
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