
Isospeed : Improving (min,+) Convolution by
Exploiting (min,+)/(max,+) Isomorphism (Artifact)
Raffaele Zippo #Ñ

Dipartimento di Ingegneria dell’Informazione, University of Firenze, Italy
Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
Distributed Computer Systems Lab (DISCO), TU Kaiserslautern, Germany

Paul Nikolaus # Ñ

Distributed Computer Systems Lab (DISCO), TU Kaiserslautern, Germany

Giovanni Stea # Ñ

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy

Abstract
(min,+) convolution is the key operation in (min,+)
algebra, a theory often used to compute perform-
ance bounds in real-time systems. As already ob-
served in many works, its algorithm can be com-
putationally expensive, due to the fact that: i) its
complexity is superquadratic with respect to the
size of the operands; ii) operands must be exten-
ded before starting its computation, and iii) said
extension is tied to the least common multiple of

the operand periods.
In this paper, we leverage the isomorphism

between (min,+) and (max,+) algebras to devise a
new algorithm for (min,+) convolution, in which the
need for operand extension is minimized. This al-
gorithm is considerably faster than the ones known
so far, and it allows us to abate the computation
times of (min,+) convolution by orders of mag-
nitude.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Networks →
Network performance analysis; Mathematics of computing → Mathematical software performance
Keywords and phrases Deterministic Network Calculus, min-plus algebra, max-plus algebra, performance,
algorithms
Digital Object Identifier 10.4230/DARTS.9.1.3
Funding This work was supported in part by the Italian Ministry of Education and Research (MIUR) in
the framework of the FoReLab project (Departments of Excellence).
Acknowledgements This work is inspired by the results [2] – we wish to thank Steffen Bondorf for
pointing out this paper to us, as well as Raul-Paul Epure for suggestions with respect to some proofs.

Related Article Raffaele Zippo, Paul Nikolaus, and Giovanni Stea, “Isospeed: Improving (min,+)
Convolution by Exploiting (min,+)/(max,+) Isomorphism”, in 35th Euromicro Conference on Real-Time
Systems (ECRTS 2023), LIPIcs, Vol. 262, pp. 12:1–12:24, 2023.
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12

Related Conference 35th Euromicro Conference on Real-Time Systems (ECRTS 2023), July 11–14,
2023, Vienna, Austria

1 Artifact

This document introduces the artifact related to [3], i.e., the code implementation of the al-
gorithm described therein and the benchmarks used to show their improvement. This artifact
is provided, with an MIT license, as a GitHub repository at https://github.com/rzippo/
ecrts-2023-artifact, and is composed of

the source code of the Nancy library [4], extended with the (min,+) isospeed algorithm
discussed in the paper
a benchmark program that runs the experiments whose results are discussed in the paper
a parser program that makes TikZ figures from the results produced by the benchmarks

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Raffaele Zippo, Paul Nikolaus, and Giovanni Stea;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 1, Artifact No. 3, pp. 3:1–3:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:raffaele.zippo@ing.unipi.it
https://rzippo.github.io/
https://orcid.org/0000-0001-9111-7471
mailto:nikolaus@cs.uni-kl.de
https://disco.cs.uni-kl.de/index.php/people/former-members/paul-nikolaus
https://orcid.org/0000-0001-5277-0267
mailto:giovanni.stea@unipi.it
http://docenti.ing.unipi.it/g.stea/
https://orcid.org/0000-0001-5310-6763
https://doi.org/10.4230/DARTS.9.1.3
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12
https://github.com/rzippo/ecrts-2023-artifact
https://github.com/rzippo/ecrts-2023-artifact
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de
https://www.dagstuhl.de

3:2 Isospeed: Improving Convolution by Isomorphism (Artifact)

The algorithmic implementation provided here is the same used to generate the results
discussed in the paper. This will slightly differ from what we will soon publish on https:
//github.com/rzippo/nancy – we found some useful tweaks in the past two months.

2 Experiments and claims

We present in [3] a new method for (min,+) convolution called isospeed, which leverages the
isomorphism between (min,+) and (max,+) algebras to reduce the computation times of said
operation, under very general hypotheses on the operands. Our expriments compare our isospeed
algorithm against two baselines:

the direct algorithm, i.e., the standard algorithm for (min,+) convolution found in [1];
the inverse algorithm, i.e., the algorithm that uses pseudoinversion of the operands, a (max,+)
convolution, and pseudoinversion of the results. This algorithm is described in [2].

These experiments measure the runtime of (min,+) convolution of randomly generated operands,
using the three algorithms (isospeed, direct, and inverse). They show that isospeed is (almost
always) as fast as, and often much faster than, the best between the direct algorithm and the
inverse one. There are few cases when isospeed is not as fast as the best baselines. These are due
to different causes:

a particular (min,+) convolution is computationally inexpensive (i.e., in the order of mil-
liseconds), and unoptimizable (i.e., either the direct or the inverse algorithms cannot be
optimized further). In this case, there is little to do, and checking the isospeed requirements
only adds a modicum of overhead;
the heuristic that selects the fastest between the direct and inverse by-sequence convolution
(by counting horizontal segments and discontinuities) fails to identify the correct choice. This
happens mostly when operands are staircase curves, hence have an equal number of horizontal
segments and discontinuities.

We ran our experiments on a cloud Virtual Machine (Intel Xeon Processors (CascadeLake)
cores @2.2 GHz, 32 GB of DRAM, Ubuntu 22.04), using randomly generated parameters for the
shapes discussed above. We run all algorithms in serial mode (rather than parallel, which is the
default in Nancy). To make the comparison more challenging, horizontal filtering is included in
the baseline algorithms as well, since it does not depend on the results of this paper, whereas
vertical filtering – which is a consequence of isomorphism – is used only in the isospeed algorithm.
Moreover, we include the cost of testing operand properties in the isospeed and inverse algorithms
(there is nothing to test for the direct one). We measured the time to compute the convolution
using the three methods.

Note that, since we measure runtime, the raw results are expected to vary, as they depend
on the hardware setup. The comparison between different methods, instead, should match the
observations in [3].

3 To reproduce the results

3.1 Requirements

Compiling and running this code requires .NET 6.0 (https://dotnet.microsoft.com/en-us/
download), as well as network connectivity to download the other dependencies during compilation.

https://github.com/rzippo/nancy
https://github.com/rzippo/nancy
https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download

R. Zippo, P. Nikolaus, and G. Stea 3:3

Table 1 The .tikz files produced, and their corresponding figure in [3].

TikZ file Figure
IsoConvolutionHorizontalStaircaseBenchmarks-minp-iso.tikz Figure 6a
IsoConvolutionHorizontalStaircaseBenchmarks-maxp-iso.tikz Figure 6b
IsoConvolutionHorizontalStaircaseBenchmarks-best-iso.tikz Figure 6c
IsoConvolutionVerticalStaircaseBenchmarks-minp-iso.tikz Figure 7a
IsoConvolutionVerticalStaircaseBenchmarks-maxp-iso.tikz Figure 7b
IsoConvolutionVerticalStaircaseBenchmarks-best-iso.tikz Figure 7c

IsoConvolutionBalancedStaircaseBenchmarks-minp-iso.tikz Figure 8a
IsoConvolutionBalancedStaircaseBenchmarks-maxp-iso.tikz Figure 8b
IsoConvolutionBalancedStaircaseBenchmarks-best-iso.tikz Figure 8c

IsoConvolutionHorizontalKTradeoffStaircaseBenchmarks-minp-iso.tikz Figure 9a
IsoConvolutionHorizontalKTradeoffStaircaseBenchmarks-maxp-iso.tikz Figure 9b
IsoConvolutionHorizontalKTradeoffStaircaseBenchmarks-best-iso.tikz Figure 9c

3.2 Run the experiment

dotnet build -c Release
dotnet run -c Release --project ./ isospeed - convolution - benchmarks /

isospeed - convolution - benchmarks . csproj -- --filter "*"

3.3 Gather the results
The benchmark results can be then found in BenchmarkDotNet.Artifacts/results, in .md, .html,
and .csv formats.

The Method column will report whether direct, inverse or isospeed was used. The Pair column
will contain (as C# code) the parameters of the operands. The Mean column will contain the
runtime of a single (min,+) convolution.

Grouping these results by Pair and comparing the runtime for each method, one should observe
similar runtime improvements as shown in the paper.

3.4 Automated plots
To produce the plots in the paper, we used the C# program isospeed-bench-to-tikz, that parses
the .csv files and generates TikZ plots with our desired layout.

dotnet run -c Release --project ./ isospeed -bench -to -tikz/isospeed -bench -
to -tikz. csproj

The program will leave the .tikz files produced in BenchmarkDotNet.Artifacts/results. Table 1
shows the tikz files produced and the corresponding figures in [3].

4 Expected runtime and tweaks

The parameters of this benchmark suite are found in the Globals static class, in Program.cs
starting at line 142. This suite runs for about 24 hours on our hardware configuration.

For a smaller functional test, one may reduce the number of test run (TEST_COUNT) or (heurist-
ically) reduce the size of the computation (RNG_MAX, LARGE_EXTENSION_LCM_THRESHOLD).

DARTS

3:4 Isospeed: Improving Convolution by Isomorphism (Artifact)

5 Documentation

The documentation of the Nancy library [4] can be found at https://nancy.unipi.it, which
includes tutorials and example of use. Note that the above will be about the public version of the
library – which we will soon update with the algorithms discussed here.

6 License

The artifact is available under license MIT.

7 MD5 sum of the artifact

97e476a410907eaa75027f18af97f806

8 Size of the artifact

592 KB

References
1 Anne Bouillard, Marc Boyer, and Euriell Le Cor-

ronc. Deterministic Network Calculus: From The-
ory to Practical Implementation. Wiley, Hoboken,
NJ, 2018.

2 Victor Pollex, Henrik Lipskoch, Frank Slomka, and
Steffen Kollmann. Runtime Improved Computation
of Path Latencies with the Real-Time Calculus. In
Proceedings of the 1st International Workshop on
Worst-Case Traversal Time, pages 58–65, 2011.

3 Raffaele Zippo, Paul Nikolaus, and Giovanni
Stea. Isospeed: Improving (min,+) Convolution

by Exploiting (min,+)/(max,+) Isomorphism. In
35th Euromicro Conference on Real-Time Systems
(ECRTS 2023), volume 262 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–
12:24. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik, 2023. doi:10.4230/LIPIcs.ECRTS.2023.
12.

4 Raffaele Zippo and Giovanni Stea. Nancy: An
efficient parallel Network Calculus library. Soft-
wareX, 19:101178, 2022. doi:10.1016/j.softx.
2022.101178.

https://nancy.unipi.it
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12
https://doi.org/10.1016/j.softx.2022.101178
https://doi.org/10.1016/j.softx.2022.101178

	1 Artifact
	2 Experiments and claims
	3 To reproduce the results
	3.1 Requirements
	3.2 Run the experiment
	3.3 Gather the results
	3.4 Automated plots

	4 Expected runtime and tweaks
	5 Documentation
	6 License
	7 MD5 sum of the artifact
	8 Size of the artifact

