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Abstract
When substitutions and bindings interact, there is a risk of undesired side effects if the substitution
is applied naïvely. The λ-calculus captures this phenomenon concretely, as β-reduction may require
the renaming of bound variables to avoid variable capture. In this paper we introduce α-paths as
an estimation for α-avoidance, roughly expressing that α-conversions are not required to prevent
variable capture. These paths provide a novel method to analyse and predict the potential need
for α in different calculi. In particular, we show how α-path characterises α-avoidance for several
sub-calculi of the λ-calculus like (i) developments, (ii) affine/linear λ-calculi, (iii) the weak λ-calculus,
(iv) µ-unfolding and (iv) finally the safe λ-calculus. Furthermore, we study the unavoidability
of α-conversions in untyped and simply-typed λ-calculi and prove undecidability of the need of
α-conversions for (leftmost–outermost reductions) in the untyped λ-calculus. To ease the work with
α-paths, we have implemented the method and the tool is publicly available.
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1 Introduction

Substitution is a fundamental concept in computer science. It is, for example, a core operation
for computation in the λ-calculus, applied by compilers to optimise programs and, in general,
key for reasoning with logical expressions. As is well-known, undesired side effects may arise
when substitution and bindings interact, if the substitution is naïvely applied. Here, we study
substitution and in particular the need for α-conversion in the context of the λ-calculus. We
emphasise, however, that the same idea could be applied in different fields.

In the λ-calculus, the contraction of a redex by means of naïve substitution may cause
variable capture where a variable originally occurring free ends up being bound in the resulting
term due to a name collision. Variable captures may lead to inconsistent results and invalidate
the confluence property. Such fallacies have occurred already quite early in the literature, for
example in work from the 1940s by Newman [29]. As discovered by Schroer, and as presented
by Rosser in his review [33], Newman’s proof that the projection axioms were satisfied for
the λI-calculus was erroneous. The purported proof contained an α-problem; cf. [30], [29,
Remark 6.14(ii)] and [13, Sect. 5.2].1

1 As far as we know this problem is the α-α-problem, that is, this is the first α-problem in the literature
on the λ-calculus.
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22:2 α-Avoidance

Since the specific variable names are actually irrelevant (cf. [12]), the result of an evaluation
should also not be influenced by the specific names. An option is to work with some kind of
unique representatives of α-equivalence classes of λ-term, e.g. with De Bruijn’s λ-terms with
nameless dummies [12] (see below for more). Though that certainly is a possibility, here we
stick to Church’s original proposal and work with explicit α-conversion steps, enabling to
state the main questions addressed in this paper: can α-conversion steps be avoided for a
λ-term M , by suitably α-converting it up front, say to a term M ′ such that no α-conversion
step needs to be invoked along any reduction from M ′. Such a characterisation should allow
for a more efficient reduction, based on naïve substitutions, that applies α-conversion (if at
all) only on the initial term. In the sequel, by “avoiding α” we mean that we can α-convert
a λ-term M to some λ-term M ′ so that subsequent α-conversions are not needed in any
computation from M ′.

Before proceeding let us relate the question addressed here to the so-called Variable
Convention [6] stating that variables may be assumed to be suitably renamed apart in a
given context. On the one hand, this convention has been widely adopted in the literature.
On the other hand, examples as in Figure 1, where renaming apart in the initial term does
not suffice, abound. From that perspective our investigation addresses the question in what
contexts exactly does the Variable Convention work?

In the examples presented in Figure 1, α cannot be avoided, no matter how the variables
are (re)named initially. Without the explicit α-conversion steps and substituting naïvely,
would lead to variable capture and give rise to the λ-terms λzz.z z and λcxy.c x x respectively,
which do not have the intended semantics. (Hence omitting the α-conversion steps would
break the Church–Rosser property.) Note that though the example on the left in Figure 1
cannot be (simply) typed, the example on the right can, showing that type regimes in general
do not guarantee that α can be avoided.

Contributions

As already indicated in Figure 1, α-conversion may be unavoidable in the (untyped)
λ-calculus. This motivates the question about the algorithmic feasibility of the problem.
We establish that (for leftmost–outermost reductions) the problem is undecidable.
We present a sound characterisation for α-avoidance via α-paths. A-paths give a novel
perspective on α; they can be utilised as a tool to predict for a given λ-term M the
potential need for α-conversion, i.e. the need for α-conversion in any step N →β L after
any β-reduction M →∗

β N . To that end, α-paths combine two known ideas.
Foremost, α-paths build on the notion of legal path, cf. [3], characterising the so-called
virtual redexes of a term M , where a virtual redex of M is a redex that can arise in any
term N along any reduction M →∗

β N . Legal paths arose from Girard’s geometry of
interaction; see [2] for various characterisations of them attesting to their canonicity. The
intuition for them employed here, is that a redex R in N is represented in the graph of N
by a single-edge-path from an application node to an abstraction node, and that pulling
that path back along the reduction M →∗

β N gives rise to a path in M , the legal path
representing the redex R in N as a virtual redex in M .
The intuition then is that α-conversion is potentially needed in M when there is a virtual
redex in M , that is, a redex in N , whose contraction needs α-conversion. Since also
the need for α-conversion can be characterised by means of paths, namely by so-called
binding-capturing chains [17, 7], we arrive at our notion of α-path, combining legal paths
with binding-capturing chains.
To ease work with α-paths, we have implemented the method; the tool is publicly available.



S. Frontull, G. Moser, and V. van Oostrom 22:3

(λx.x x) (λyz.y z)
→β (λyz.yz) (λyz.y z)
→β λz.(λyz.y z) z

→α λz.(λyz′.y z′) z

→β λzz′.z z′

(λfc.f (f c)) (λzxy.z y x)
→β λc.(λzxy.z y x) ((λzxy.z y x) c)
→β λc.(λzxy.z y x) (λxy.c y x)
→β λc.(λxy.(λxy.c y x) y x)
→α λc.(λxy.(λxy′.c y′ x) y x)
→β λcxy.(λy′.c y′ y) x

→β λcxy.c x y

A A

B

B

C

C

A...duplication B...redex creation C...open redex contraction

Figure 1 α is needed in the λ-calculus.

We exemplify the versatility of α-paths through various important sub-calculi of the
λ-calculus, listed below. The first three calculi arise from a careful analysis of the
canonical example illustrating why α-conversion is unavoidable in the λ-calculus, the λ-
term (λx.x x) (λyz.y z). As illustrated in Figure 1, its reduction to normal form comprises
first a duplicating step A (the subterm λyz.y z is duplicated), then a creating step B
(creating the redex (λyz.y z) z), and finally a non-closed step C (contracting an open
redex (λyz.y z) z, containing the free variable z bound outside). Somewhat surprisingly,
forbidding one of these three types of steps suffices for α-avoidance.

1. Developments [14] are reductions in which no created redexes are contracted. Stated
differently, in a development from M only residuals of redexes in M (no virtual redexes)
are contracted. Intuitively, α can then be avoided since all residuals of a given redex
are disjoint along a development.
Developments [14, 6] feature prominently in the λ-calculus since its inception. They
form the basis for the proof that β-reduction has the Church–Rosser property, more
precisely, that parallel β-reduction has the diamond property and satisfies the cube
law, using that all developments are finite (unlike arbitrary reductions).

2. The linear (affine) λ-calculus [21] forbids duplication. That is achieved formally by
restricting term-formation, requiring the variable x to occur free exactly (at most) once
in M in an abstraction term λx.M . Intuitively, α can then be avoided since variables
persist linearly along reductions.
Though the linear λ-calculus [21, 23, 27, 38] had been studied before, it rose to
prominence after the introduction of linear logic, via the connection between linear
λ-terms and MLL-proofnets, with abstractions and applications corresponding to pars
and tensors. Linearity affords nice properties, e.g. termination and simple typability.

3. The weak λ-calculus [39] forbids to contract open redexes. Intuitively, α is then avoided
since when substituting by closed terms only, there’s no risk of variable capture either.
Weak reduction [37, 31, 1, 39, 8, 5] forms the basis of functional programming languages
such as Haskell that evaluate to weak head normal form. Indeed, the fact that α-
conversion can then be avoided was stated as an explicit motivation in [31], and makes
that functional programs can be represented as orthogonal term rewrite systems and
weak reduction can be optimally implemented via Wadsworth’s graph reduction. (Weak
reduction is often paraphrased as “no reduction under a λ”, but that restriction is
undesirable as it breaks the Church–Rosser property.)

These three examples are mainly methodological, since the fact that α can be avoided for
them is well-known. We also present two important but less well-known examples.

4. The modal µ-calculus [25] has unfolding rules for least (µ) and greatest (ν) fixed-points
in its formulas. Intuitively, α can then be avoided for the same reason it can for
developments, namely that unfolding does not create new redexes [17, 7]. Here we show

FSCD 2023
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that this can be obtained via α-paths, under a standard embedding of modal µ-formulas
in the λ-calculus, representing unfolding using Turing’s fixed-point combinator.
Though the literature on the modal µ-calculus is rich, only recently issues related
to α-conversion seem to have been addressed [26]. The main point of this example
is to suggest that the technology developed here for avoiding α in the λ-calculus,
can be transferred to other calculi with binding, in mathematics, logic, programming
languages, linguistics, music theory, etc..

5. In the safe λ-calculus [10, 9, 11] the occurrences of (free) variables are restricted
according to the order of their type. Intuitively, this restriction on the order of the
types of the variables can be transferred to the variables, guaranteeing that α can be
avoided. (Note that as observed above, typing disciplines, say simple typing, in general
do not suffice to be able to avoid α.)
Analysing the safe λ-calculus as presented in [9, 11] using our tools, we found that the
claim that α could be avoided in it, was not entirely correct, provoking the further
analysis, and a proposal for slight amendations, presented below.

Related Work

In the classical literature on the λ-calculus the focus was not on α-conversion. However,
when the λ-calculus started being used as a tool, α-conversion had to be addressed. We
briefly discuss two important strands of research. One approach is to abstract α away and
to exclusively work with (representatives of) α-equivalence classes of λ-terms.2 De Bruijn’s
lambda notation with nameless dummies [12] is widely adopted in implementations. This
typically side-steps the issue but does not resolve it: the cost of α is now inextricably hidden
in the cost of β, and α-conversion disappears in the notation with nameless dummies only
to resurface in the form of reindexing. Moreover, any such representation runs the risk of
creating a gap between the theory in the literature and the representation.3 Another approach
is to bring α-conversion about in another way. The nominal approach [19] is a prominent
exponent of this, recasting the notion of a variable being bound via the dual notion of a
variable being free for, allowing to recast α-conversion via the classical notion of permutation.
We stress that α-conversion resurfaces in this setting, but unlike the modulo-approach now
in an explicit form as in our case, making it interesting to study our question for it (and
then compare both). We leave that to further research.

Finally, we mention that several other decision problems about α have been considered
by Statman, which were reported in [35]. This work is based on [18].

Outline

This paper is structured as follows. In the next section, we recall fundamental concepts
and notions. In Section 3, we motivate the definition of α-paths and provide a syntactic
proof that developments can avoid α by using of a restricted form of α-paths. The latter
are generalised in Section 4, where we establish the main contribution of this work, a sound
characterisation of α-avoidance via α-paths. Section 5 applies this characterisation to affine,
weak and the safe λ-calculus. Finally, we conclude in Section 6.

2 Higher-Order Abstract Syntax goes one (big) step further by working with simply typed αβη-equivalence
classes of terms.

3 The same holds for programming; everyone will have encountered inscrutable error-messages on De
Bruijn-indices representing variables.
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Table 1 Capture-avoiding and capture-permitting substitution.

M Jx := NK (capture-avoiding) [x := N ] (capture-permitting)
x N N

y y y

e1 e2 e1Jx := NK e2Jx := NK e1[x := N ] e2[x := N ]
λx.e λx.e λx.e

λy.e λy.eJx := NK if y ̸∈ FV (N) λy.e[x := N ]
λz.eJy := zKJx := NK else with z fresh for e and N .

2 Preliminaries

We assume acquaintance with the standard definitions of the λ-calculus, cf. [6], but recall
relevant concepts and notations. We use = to denote syntactic equality of λ-terms, and ≡α

for equality modulo α. We write FV (M) for the set of free variables in a λ-term M and
BV (M) for the set of bound variables. We distinguish between a capture-avoiding and a
capture-permitting substitution, cf. Table 1. The capture-avoiding substitution, denoted
as MJx := NK, deals with a potential variable capture, whereas the capture-permitting
substitution, denoted as M [x := N ], naïvely substitutes. If MJx := NK ≡α M [x := N ]
then we say that the substitution of N for x in M is α-free. The single-step β-reduction
contracting a redex (λx.M)N in some arbitrary context, is said to be α-free, if the applied
substitution is α-free.

▶ Definition 1. A reduction sequence starting from a λ-term M is said to be α-free, if each
β-reduction step is α-free. A λ-term M has α-free simulations, if there exists an α-equivalent
λ-term N such that every reduction sequence starting from N is α-free. In such case we say
that N avoids α. We say that we can avoid α in a calculus, if every term in this calculus has
α-free simulations.

The reduction sequence illustrated in Figure 1 is not α-free. The λ-term (λx.x x) (λyz.y z)
does not have α-free simulations, which shows that α cannot be avoided in the pure λ-calculus.
The λ-term (λfx.f (f x)) (λfx.f (f (f x))), denoting the exponentiation 32 via Church numer-
als, has α-free simulations as the α-equivalent λ-term (λfy.f (f y)) (λfx.f (f (f x))) avoids
α. (This can also be checked with our tool, see Listing 1 in Section 4 below).

The position in a λ-term is a finite sequence of 1s and 2s. The set of positions of a λ-term
M is denoted as Pos(M). We write M |p for the subterm at position p in M and M(p) for
the symbol at position p (the head-symbol of M |p), where M(p) ∈ {x,@, λx} for some x. In
the following we may write sp when we depict a specific symbol s of a λ-term M at position
p, s = M(p), whenever both the position and the symbol are of interest.

M |p :=


M if p = ϵ

N |p′ if M = λx.N and p = p′1
Ni|p′ if M = N1 N2 and p = p′i

A position p is a prefix of a position q, if q = pq′ for some position q′. We use the notation
p ⪯ q to denote that p is a prefix of q and p ≺ q to denote that p is a strict prefix of q (q′ is
non-empty). Two positions p, q are said to be parallel, denoted by p ∥ q, if p ⪯̸ q ∧ q ⪯̸ p. A
position p is said to be left of a position q, written as p ∥l q, if p = s · 1 · p′ and q = s · 2 · q′.
We define the trace relation ▶ to be the relation between positions in the source and in the
target of a β-step s →β t contracting a redex at position o (cf. [36, Section 8.6.1]):

FSCD 2023
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M
N

@p

λxp1

λy

@

x y

y

xp1s1t

yp2q

λyp1s

1

3

2

4

Figure 2 Substitution dynamics leading to variable capture.

(context) p ▶ p if o is not prefix of p,
(body) o11p ▶ op if p ̸= ϵ and p ̸= q,
(arg) o2p ▶ oqp for all positions q, such that o11q is bound by o1.

A redex in a term t at position q is called a residual of a redex in some origin s (s →β . . . →β t),
if p ▶ . . . ▶ q and s|p is a redex (cf. [15, Chapter 4, Section 4]).

A path σ = (p1, p2, . . . , pn) in a λ-term M is a sequence of positions in Pos(M). The
length |σ| of a path σ is the number of positions minus 1. An edge is a path of length 1.

The reversal of a path σ is denoted by (σ)r. Two paths σ = (p1, p2, . . . , pn) and
ψ = (q1, q2, . . . , qn) are said to be composable, if pn = q1. We write σ · ψ to denote the
composition of two (composable) paths σ, ψ resulting in (p1, p2, . . . , pn, q2, . . . , qn).

A path in M starting at position p and ending at position q is of type:
1) @–v, if M(p) = @ and M(q) = x for some x.
2) @–λ, if M(p) = @ and M(q) = λx for some x.
3) @–@, if M(p) = @ and M(q) = @.
4) v–v, if M(p) = x and M(q) = y for some x, y.
5) v–λ, if M(p) = x and M(q) = λy for some x, y.
To illustrate, let M = (λx.x x) (λyz.y z). σ = (ϵ, 2, 2112) is a @–v-path in M with |σ| = 2.
σ and (σ)r are composable and the path (ϵ, 2, 2112, 2, ϵ) resulting from their composition
σ · (σ)r is of type @–@.

3 Developments Are α-Avoiding

Recall that reductions of residuals, also known as developments, are finite. This was proved
already in 1936 by Church–Rosser for the λI-calculus [14] and then generalised to the full
λ-calculus by Schroer [34] and independently by Hindley [20]. It is well known that in finite
developments α-renaming can be avoided, cf. [24]. Intuitively, this is due to the fact that
in developments the residuals of a redex-pattern remain disjoint [22]. Thus, if all binders
are initially properly renamed apart, α can be avoided. To prepare the ground for our main
contribution – α-paths – we sketch a purely syntactic proof of this result in this section.

We start by giving an intuition for how a capturing-potential can be characterised by
paths. A naïve substitution leads to a variable capture whenever we

(i) naïvely contract a redex (λx.M) N where
(ii) some variable y occurring free in N

(iii) is moved into M , where some x is free in M

(iv) is in the scope of a λy.
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Each of these conditions can be represented via edges in the abstract syntax tree (AST),
as formalised below and illustrated in Figure 2 for the redex (λx.M)N . More precisely, we
have an a-edge (p2q, p), an r-edge (p, p1), a b-edge (p1, p1s1t) and a c-edge (p1s1t, p1s).

Let M be a λ-term. We conceive the AST of M as a graph and define four additional
types of edges for M :
1. (r-edge ) A redex-edge (p, p1) connects an @-node at position p to its left son at

position p1, if M(p1) = λx for some x.
2. (a-edge ) An application-edge (p2q, p) connects a variable x at position p2q to an

@-node at position p, if x is free in M |p2.
3. (b-edge ) A binding-edge (p, p1q) connects a λx at position p to a variable y at

position p1q, if x = y and y is free in M |p1.
4. (c-edge ) A capturing-edge (p1q, p) connects a variable y at position p1q to a λx

at position p to, if x ̸= y and y is free in M |p1.
We add the a-, r-, b- and c-edges as actual edges to the graph of M in the standard way.
We call such a graph the α-graph of a λ-term M , denoted as Gα(M). From the definition of
an r-edge, we immediately obtain that for any r-edge in Gα(M) with the source at position
p, M |p is a redex.

▶ Definition 2. Let M be a λ-term, a an a-edge, r an r-edge and b a b-edge in Gα(M) with
a, r and r, b composable. We call the v–v-path σarb = a · r · b an arb-path of M .

yp

a-edge

@ @

r-edge

λx λx

b-edge

xq

Let p be the position of the starting v-node y and q the position of the ending v-node of
an arb-path φ. Then we have q ∥l p.

The example term from Figure 3 illustrates an example where an outermost reduction
strategy needs α in the second reduction step. To characterise the need for α after the
contraction of one or multiple redexes, arbic-paths are introduced next.

▶ Definition 3. The set of arbic-paths of a λ-term M is inductively defined as follows.
(base case) Let σarb be an arb-path of M and c a c-edge in Gα(M) with σarb, c composable.
Then the v–λ–path σarb · c is an arbic-path of M .
(arb-composition) Let σarb be an arb-path and ψ an arbic-path of M with σarb, ψ com-
posable. Then the v–λ–path σarb · ψ is an arbic-path of M .

x

a-edge r-edge b-edge

(
a-edge r-edge b-edge

)∗

c-edge

λy

From Definition 3 we see that arbic-paths are non-empty sequences of arb-paths followed
by a c-edge (σ+

arb · c). As already remarked, an arb-path connects the occurrence of a variable
to the occurrence of another variable at its left. By consequence arbic-paths are acyclic and the
set of arbic-paths of a λ-term M is finite. The paths σ0 = 112 → 11 → 111 → 111111 → 11111
and σ1 = 2 → ϵ → 1 → σ0 are arbic-paths for the λ-term illustrated in Figure 3. Specialising
arbic-paths such that the names of the initial variable and of the final abstraction are equal,
we obtain a characterisation of the need for α in some reduction sequence.

▶ Definition 4 (arbic α-path). Let M be a λ-term and ψ an arbic-path of M . If ψ starts
with a variable x and ends with a λ-node λy where x = y, then ψ is called an arbic α-path.

FSCD 2023
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@ϵ

λz1

@11

λx111

@1111

λy11111

x111111

x11112

z112

y2

leftmost–outermost reduction
(λz.(λx.(λy.x) x) z) y

→β (λx.(λy.x) x) y

→β (λy′.y) x

→β y

leftmost–innermost reduction
(λz.(λx.(λy.x) x) z) y

→β (λz.(λx.x) z) y

→β (λz.z) y

→β y

Figure 3 Leftmost–outermost needs α.

The path σ1 as defined above is an arbic α-path for the λ-term illustrated in Figure 3.
Now, essentially by construction, we can see that if there is no arbic α-path in Gα((λx.M)N)
starting at a free variable in N and ending in M , then MJx := NK ≡α M [x := N ]. We
emphasise, that we only claim α-equivalence and not syntactic equivalence (=) of MJx := NK
and M [x := N ]. To clarify, let (λx.M)N be a redex with M = λy.y and N = y. Then
MJx := NK = λz.z and M [x := N ] = λy.y. We have MJx := NK ≡α M [x := N ], but
MJx := NK ̸= M [x := N ]. Hence, α-equivalence is the strongest property that we can
conclude.4

▶ Lemma 5. Let s →β t. If Gα(s) contains no arbic α-path, then Gα(t), where the set of
r-edges is restricted to those denoting residuals, also does not.

Proof. We write ⟨Gα(t)⟩ for the sub-graph of Gα(t), where the set of r-edges is restricted
to those denoting residuals of s. Since there are no arbic α-paths in Gα(s), the β-step can
be performed by means of capture-permitting substitution (no variable capture). We have
s = C[(λx.M)N ] and t ≡α C[M [x := N ]] for some context C, body M and argument N ,
with (λx.M)N being the contracted redex at position o. We prove the lemma by relating
the edges in ⟨Gα(t)⟩ to edges and paths in Gα(s) and making a distinction according to the
components as they appear in the source and the target. As done in [17], we use primed
variables (p′, q′) to range over positions in the target term t, indicating the positions they
trace back to in the source term s, by unpriming (p, q).

Consider an a- or a c-edge from p′ to q′ in ⟨Gα(t)⟩ where p′ denotes the position of a
variable y and q′ the position of an application (in the case of an a-edge) or an abstraction
(in the case of a c-edge). We have q′ ≺ p′ and the variable y at t(p′) occurs free in t|q′ . We
distinguish the following cases:

p′, q′ in the same component: we have the same edge from p to q in Gα(s).
q′ in the context and p′ in the body: then x ̸= y (otherwise the y would have been
replaced by N) and we have the same edge in Gα(s) with 11 inserted at o.
q′ in the context and p′ in the argument: there is no variable capture so s(p) must occur
free in s|q. Therefore, we have the same edge from p to q in Gα(s).
q′ in the body and p′ in the argument: the origin of the a-edge/c-edge is an arb-path
from p to qq1, for some q1, followed by an a-edge/c-edge from qq1 to q in Gα(s).

4 We stick to the standard definition of substitution MJx := NK, which renames even if the variable x to
be replaced does not occur in the body M [6]. We note that, if we were to adapt the substitution so that
it is not applied when the argument is erased (x ̸∈ FV (M)), then we could claim syntactic equivalence.
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@ϵ

x11 @12
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naïve →β

context

body

argument

@ϵ

x11 λz12
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context

body

argument

Figure 4 A b-edge that traces back to an arbic α-path.

Given a b-edge from q′ to p′ in ⟨Gα(t)⟩. p′ denotes the position of the bound variable y, q′

the position of the binder λy. We have q′ ≺ p′ and distinguish following cases:
p′, q′ in the same component: then we have a b-edge from q to p in Gα(s).
q′ in the context and p′ in the body: we have x ̸= y and a b-edge in Gα(s) with 11
inserted at o.
q′ in the context and p′ in the argument: there is no variable capture so s(p) must occur
free in s|q. Therefore, we have a b-edge from q to p in Gα(s).
q′ in the body and p′ in the argument: such a b-edge would map back to an arbic α-path
from p to q in Gα(s), which is excluded by the assumption (Figure 4 illustrates an
example).

For the r-edges (p′, p′1) in ⟨Gα(t)⟩ we make the following case distinction:
p′ and q′ are in the same component: then we have an r-edge from p to q in Gα(s).
in all other cases: such an r-edge would denote a created redex in t. We have no such
r-edge in ⟨Gα(t)⟩.

We have seen that a r-edges and b-edges in ⟨Gα(t)⟩ map back to an edge of the same type
in Gα(s). a-edges and c-edges map back to a path of shape σ∗

arb · e, where e denotes an
edge of the same type and σarb an arb-path in Gα(s). An arbic α-path in Gα(t) has the
following shape (a′

1, r
′
1, b

′
1, . . . , a

′
n, r

′
n, b

′
n, c

′), where xi denotes an x-edge (pi, qi). If we replace
the edges in this path by the edges and paths they map back to, we get a path of the shape
(σ∗

arb1
· a1, r1, b1, . . . , σ

∗
arbn

· an, rn, bn, σ
∗
arb · c), which would be an arbic α-path in Gα(s). ◀

Based on the lemma, we obtain the characterisation of α-freeness via arbic α-paths. Let
M be a λ-term. If M contains no arbic α-path, then every development from M is α-free.
Arbic α-paths can also witness to the capture-potential for the term shown in Figure 3, where
α is needed in the second reduction step. Note that with these arbic α-paths we do not yet
characterise variable captures that result from the contraction of created redexes. This we
will take up in Section 4 below, where we make use of legal paths, cf. [3].

In sum, α-paths allow us to reprove the well-known result that in finite developments
α-conversions potentially only need to be performed on the initial term (and are thus cheap).

▶ Theorem 6. In finite developments α can be avoided.

FSCD 2023
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(a) Base case. (b) @-composition. (c) λ-composition.

Figure 5 Well-balanced paths [3].

Proof. Let M be a λ-term. By the above, if M contains no arbic α-path, then every
development from M is α-free. Thus, it remains to observe that for every λ-term M there
exists a λ-term N where M ≡α N , such that N does not contain any arbic α-paths. The
latter follows as all binders in M can trivially be renamed apart. ◀

This result is not new, as noted above, but illustrates how α-paths give a new perspective
on this problem and therefore offer a different way to reason about α.

4 α-Paths – A Sound Characterisation For α

In this section, we generalise arbic α-paths so that the thus obtained α-paths reflect the
conditions that necessitate the application of α. For that we also have to characterise the
need for α that may arise for created redexes. A (sub)term, which is not a redex yet, but
might become one along reduction, is called a virtual redex, which in turn is characterised
by legal paths, cf. [3].

Legal Paths

In the following, to keep this paper self-contained, we briefly recall the formal definition of
legal paths as established in [3]. For motivation and underlying intuitions, we kindly refer
the reader to [3] and to [4], where the legal paths have been introduced. Legal paths start
at an @-node and connect via a path the @-node with all the subterms with which it can
interact in some reduction sequence. Legal paths ending at a λ-node therefore characterise a
virtual redex. Legal paths are defined via the well-balanced paths.

The set of well-balanced paths (abbreviated as wbp) of a term M is inductively defined
on Gα(M) as described in the following and illustrated in Figure 5.

(base case) The path (p, p1) with M(p) = @ is a wbp.
(@-composition) let ψ,φ be two composable wbps of type @–@ and @–λ, respectively. Then
ψ · φ · u is a wbp, where u = (p, p1) with p the position of the final abstraction of φ.
(λ-composition) Let φ = (p, . . . , pn) a wbp of type @–λ and ψ = σa · (σb)r with σa a wbp
of type @–v ending at position q and σb = (pn, q) a b-edge in Gα(M). Then ψ · (φ)r · u,
where u = (p, p2), is a wbp.

Legal paths impose a legality constraint on the well-balanced paths, restricting the call
and return paths of cycles. Next, we recall the definition of a cycle. Let φ be a wbp. A
subpath ψ of φ is an elementary @-cycle of ψ (over an @-node) when (i) it starts and ends
with the argument edge of the @-node and (ii) is internal to the argument N of the application
corresponding to the @-node (i.e., does not traverse any variable that occurs free in N). The
set of @-cycles of φ (over an @-node) and of the v-cycles of φ (over the occurrence v of a
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variable) is defined inductively, as follows: (i) every elementary @-cycle of ζ is an @-cycle; (ii)
v-cycle: every cyclic subpath of ζ of the form (v)r · (ϕ)r · ψ · ϕ · v, where ϕ = (p2, . . . , qn) is a
wbp, ψ is an @-cycle and v = (p1, p2) a b-edge, is an v-cycle; (iii) @-cycle: every subpath ψ

of ζ that starts and ends with the argument edge of a given @-node, and that is composed of
subpaths internal to the argument N of @- and v-cycles over free variables of N is an @-cycle
(over the @-node). As stated by the following proposition @-cycles are always surrounded by
two wbps of type @–λ, cf. [3].

▶ Proposition 7 ([3, Corollary 6.2.26]). Let ψ be an @-cycle of ϕ over an @-node. The wbp
ϕ can be uniquely decomposed as: ϕ = ζ1 λ (ζ2)r @ ψ @ ζ3 λ ζ4,5 where ζ2 (call-path) and ζ3
(return-path) are wbps of type @–λ.

Considering the statement of the proposition, the last label of ζ1 and the first label of
ζ4 are called discriminants. Finally, the legality constraint ensures that the call- and the
return-path of such cycles coincide.

▶ Definition 8 ([3, Definition 6.2.27]). A wbp is a legal path if the call and return paths of
any @-cycle are one the reverse of the other and their discriminants are equal.

▶ Proposition 9 ([3, Section 6.2.5]). For all (virtual) redexes of a λ-term M there is a legal
path of type @–λ in M .

It follows that for any (created) redex along a reduction sequence starting from a λ-term
M , we have a legal path in M characterising the redex. This path also encodes the reduction
sequence that leads to its creation, if it is not already a redex in M .

Characterisation of α-avoidance via α-paths

In Section 3, we have seen how arbic α-paths characterise the need for α for developments
with no redex creation. The α-paths presented in this section are an extension of them and
allow to characterise the need for α in λ-calculi with redex creation. α-paths are defined on
the so-called albic-paths that rely on legal paths.6 First, we define alb-paths.

▶ Definition 10. Let M be λ-term, a an a-edge, l a legal path and b a b-edge in Gα(M)
with a, l and l, b composable and b, a not composable. We call the v–v-path σalb = a · l · b an
alb-path of M .

Second, essentially iterating alb-paths, we obtain the definition of albic-paths. Note that
each arbic-path is also an albic-path, as each r-edge constitutes a legal path.

▶ Definition 11. The set of albic-paths of M is inductively defined:
(base case) let σalb be an alb-path and c a c-edge with σalb, c composable; Then the
v–λ–path σalb · c is an albic-path.
(alb-composition) let σalb be an alb-path and ψ an albic-path with σalb, ψ composable.
Then the v–λ–path σalb · ψ is an albic-path.

x

a-edge l-path b-edge

(
a-edge l-path b-edge

)∗ . . .

c-edge

λy

5 We use the λ- and @-symbol to point out the start- and end-nodes of the different wbps.
6 We call them albic, or (alb)ic, because they consist of i (with i ≥ 1) sequences of alb-paths and a final

c-edge.

FSCD 2023
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@ϵ

λx1

@11

x111 x112

λy2

λx21

@211

y2111 z2112

(λx.x x) (λyx.y z)
→β (λyx.y z) (λyx.y z)
→β λx.(λyx.y z) z

→β λx.(λx.z z)

(λx.x x) (λyx.y z) is α-free

Figure 6 α-paths overapproximate the need for α.

Finally, based on Definitions 10 and 11 we can define α-paths.

▶ Definition 12 (α-path). Let ψ be an albic-path of λ-term M . If ψ starts at a variable x
and ends at a λ-node λy, where x = y, then the v–λ–path ψ is called an α-path.

Inductively, we can conclude that the absence of α-paths implies α-avoidance.

▶ Lemma 13 (α-free). Suppose that there is no α-path in Gα((λx.M)N) starting at a free
variable in N and ending in M . Then MJx := NK ≡α M [x := N ].

Proof. If there is no α-path, then by Definition 12 there is no albic α-path hence also no
arbic α-path, as observed above. From this we conclude MJx := NK ≡α M [x := N ] by using
the observation below Definition 4. ◀

Further, α-path freeness is preserved by β-reduction.

▶ Lemma 14 (β-invariance). →β preserves α-path-freeness.

Proof. The proof proceeds the same way as the proof of Lemma 5. We restrict ourselves
to the most interesting parts here. Again, we use primed variables (p′, q′) to range over
positions in the target term t, indicating the positions they trace back to in the source
term s, by unpriming (p, q). Let s →β t. r-edges and b-edges in ⟨Gα(t)⟩ map back to
an edge of the same type in Gα(s). a-edges and c-edges map back to a path of shape
σ∗

alb · e, where e denotes an edge of the same type and σalb an alb-path in Gα(s). An α-path
in t has the following shape (a′

1, l
′
1, b

′
1, . . . , a

′
n, l

′
n, b

′
n, c

′), where xi denotes an x-edge/legal
path from pi to qi. If we replace a-edges and c-edges by the path the map back to we get
(σ∗

alb1
· a1, l1, b1, . . . , σ

∗
albn

· an, ln, bn, σ
∗
alb · c), where σ∗

albi
· xi in s connects the same positions

as the corresponding x-edge in t. It follows that if we have an α-path in t, then we have an
α-path in s. ◀

▶ Theorem 15. Let M be a λ-term. If M contains no α-path, then M avoids α.

Proof. Assume M contains no α-path. Due to Lemma 14, α-path freeness is preserved by
β-reduction. Then it follows by Lemma 13 that capture-permitting substitutions can be
employed in place of capture-avoiding ones. Thus M avoids α. ◀

Not every α-path is problematic in the sense that it characterises a variable capture.
An α-path may predict name collisions that will never occur if the starting variable gets
substituted before the characterised redex will be contracted. This is the case for the term
depicted in Figure 6. The α-path 112 → 11 → 111 → 1 → ϵ → 2 → 2111 → 21 is harmless, as
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λy2
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(a) Gα((λx.x x) (λyz.y z)).

@ϵ

λx1

@11

x111 λy112

@1121

x11211 y11212

λf2

λz21

@211

f2111 z2112

(b) Gα((λx.x (λy.x y)) (λfz.f z)).

Figure 7 Unremovable α-paths.

the variable x112 gets substituted by the argument λyx.y z before the redex characterised by
the legal path 11 → 111 → 1 → ϵ → 2 gets contracted. Thus, α-paths overapproximate the
need of α. This overapproximation is sufficiently accurate to still allow interesting statements
about different calculi, since α-avoidance is mainly about unremovable α-paths.

An α-path is called unremovable, if it starts at a variable occurrence at position p1q and
ends at its binder at position p (p ≺ p1q). In Theorem 6 we employed that we can get rid of
arbic α-paths by naming all binders appropriately. This is possible because the starting and
the ending position of these paths are always parallel. For unremovable α-paths this is not
always the case, as illustrated by the λ-terms in Figures 7a and 7b. Note that Figure 7b
illustrates that an unremovable α-path does not necessarily have to contain legal paths from
a position p to a position q with q ≺ p.

▶ Lemma 16. For every λ-term M containing no unremovable α-paths, there exists a λ-term
N where M ≡α N , such that N does not contain any α-paths.

Undecidability

Arbitrary λ-terms may have an unbounded set of legal paths, all of them characterising
a different virtual redex. For such terms, making a prediction about the need for α via
α-paths is not feasible. This problem is even undecidable for leftmost–outermost reductions,
as established by our next result.

▶ Theorem 17. α-avoidance is undecidable for the leftmost–outermost reduction strategy.

Proof. In proof, we employ a reduction from Post’s correspondence problem (PCP short),
whose undecidability is well-known [32]. Recall that PCP asks whether for an arbitrary finite
set of string pairs ⟨s1, s

′
1⟩, ⟨s2, s

′
2⟩, . . . , ⟨sn, s

′
n⟩ over the alphabet {a, b}, there exists indices

ij ∈ {1, 2, . . . , n} such that

si1si2 . . . sik
= s′

i1
s′

i2
. . . s′

ik
k ⩾ 1 .

It is not difficult to define λ-terms for (i) strings aa, bb, namely AA := λabx.a (a x) and
BB := λabx.b (b x), respectively; (ii) conditionals (denoted as ITE); (iii) pairs (PAIRS) and
(iv) in particular PCP (PCP), such that the λ-term PCP takes an (encoding) of list of pairs

FSCD 2023



22:14 α-Avoidance
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(a) A self-capturing chain in µ.M .
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(b) An α-path in t(µ.M).

Figure 8 A self-capturing chain in µ is an α-path in Λµ.

as input and recursively combines them, until a solution is produced (if it exists at all). As
the leftmost–outermost strategy is normalising for the λ-calculus, this solution can be found
by this strategy. Now, consider the following program

(ITE (PCP PAIRS)AABB) (λxyz.(x z) y) ,

ITE, PCP, PAIRS, AA and BB are defined as above. As ITE (PCP PAIRS)AABB is
typable, α can be avoided in its reduction, cf. Section 5.3 or [31, Section 11.3.2]. If the
problem has a solution, it will reduce to the λ-term AA (λxyz.(x z) y), where α is unavoidable.
Otherwise, it will reduce to the λ-term BB (λxyz.(x z) y), from which we get with one β-step
to λbx.b (b x). Moreover, as mentioned the reduction sequence to these terms is α-free. Thus,
if we further reduce these terms to normal form, then we need α iff the PCP problem has a
solution. Thus, we conclude the theorem. ◀

As already mentioned, α-paths characterise α-avoidance for seemingly unrelated calculi
like (i) developments, (ii) affine λ-calculus, (iii) weak λ-calculus and (iv) safe λ-calculus. In
Section 3 we have already seen this for developments and in the next section we illustrate this
characterisation of the affine and the weak λ-calculus as well as the safe λ-calculus [11, 9].

In the sequel, we clarify the ancestry of α-paths wrt. the concept of chains in the µ-
calculus, cf. [17]. Further, we briefly detail our tool Alpha that can be used to compute and
illustrate α-paths.

Interpretation of µ in the λ-calculus

We show that α-paths are a strict generalisation of the chains considered for the µ-calculus
in [17]. We do this by considering the sub-calculus Λµ of the λ-calculus obtained by the
t-image of µ-terms defined as t(x) = x, t(M N) = t(M) t(N), t(µx.M) := AA (λx.t(M)) for
A = λaf.f (a a f). As suggested in [17], this translation allows simulating µ-terms in the
λ-calculus, provided that we adopt the leftmost–outermost reduction strategy.

t(µx.M) := AA (λx.t(M)) →β (λf.f (AAf)) (λx.t(M)) →β (λx.t(M)) (AA (λx.t(M)))
→β t(M)Jx := AA (λx.t(M))K = t(M)Jx := t(µx.M)K
= t(MJx := µx.MK) .
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Figure 9 α-avoidance tool web-interface.

In Λµ we can use α-paths to characterise α. We sketch the argument that an α-path in
t(M) for some µ-term M correspond a self-capturing chain in M . Note that, as reducing
Turing’s fixed point combinator AA itself does not cause any capturing problems, we do not
introduce ”new α-problems”. Thus, we only need to characterise the paths that correspond
to reductions at the root of a reduct of AA (λx.M) to characterise the need for α in Λµ.
For that, we observe that a pair of connected binding and capturing links in µ correspond
to an alb-path in Λµ and a self-capturing chain to an α-path. Figure 8 illustrates this
correspondence.

Implementation

Based on the notion of α-paths, we have implemented a tool, dubbed Alpha, to (partially)
decide whether or not α-conversion can be avoided. The tool is publicly available and can
either be accessed via the command-line or its web interface. The web interface also visualises
the computed α-paths.

Depending on whether α-paths can be found or not (up to a variable depth), the tool
gives one of the following results:
1) alpha free, if no α-paths were found and the calculation is terminated;
2) alpha can be avoided, if α-paths were found (but no unremovable α-paths); in this

case, the tools prints an α-equivalent term for which the calculation is α-free;
3) alpha is unavoidable, if unremovable α-paths have been found;
or returns maybe, if no α-paths have been found, but the computation has not been terminated
(the maximum depth has been reached). Recall that the problem is undecidable, cf. Section 4.7
Listing 1 shows an exemplary output of the command line tool.

Listing 1 Church encoding of 32.
$ dune exec bin/main.exe "(/f␣x.f␣(f␣x))␣(/f␣x.f␣(f␣(f␣x)))"
alpha can be avoided:
(/f x.f (f x)) (/f p_12.f (f (f p_12 )))

The web interface displays the α-graph and the computed α-paths. Figure 9 shows a
screenshot of the tool illustrating this for (λx.x x) (λyz.y z).

7 The command line tool and the link to the web interface can be found at https://tcs-informatik.
uibk.ac.at/tools/alpha/.

FSCD 2023

https://tcs-informatik.uibk.ac.at/tools/alpha/
https://tcs-informatik.uibk.ac.at/tools/alpha/


22:16 α-Avoidance

5 α-Avoidance In Affine, Safe And Weak λ-Calculi

In this section, we show how α-paths can be applied to analyse the need for α in restricted
λ-calculi.

5.1 The affine λ-calculus
The affine λ-calculus [21, 23, 27, 38], forbids duplication by restricting term-formation,
requiring the variable x to occur free at most once in M in an abstraction term λx.M . This
calculus is strongly normalising; we recall the central definition.

▶ Definition 18. The set ΛAF F of affine λ-terms is a subset of Λ and inductively defined as
follows:

(var) x ∈ ΛAF F , for all variables x;
(app) M,N ∈ ΛAF F =⇒ M N ∈ ΛAF F , if FV (M) ∩ FV (N) = ∅;
(abs) M ∈ ΛAF F =⇒ λx.M ∈ ΛAF F .

Since the size of terms steadily decreases with each reduction step and variables persist
linearly along reductions, it follows that this calculus is strongly normalising. This allows a
precise analysis for the need of α.

▶ Lemma 19. Let M ∈ ΛAF F , M →β N and q ≺ p for some positions p, q in M . If p ▶ p′

and q ▶ q′, then q′ ≺ p′.

Proof. Since we have no duplication, each symbol has at most one copy in N . We distinguish
the following cases where we have p ≺ q, with p ▶ p′ and q ▶ q′:
1. p, q both in the context: Then as p′ = p and q′ = q so by assumption we have p′ ≺ q′.
2. p = o11s1 and q = o11s2 both in the body: Then from p ≺ q we know that s1 ≺ s2 and

we have os1 = p′ ≺ q′ = os2.
3. p = o2s1 and q = o2s2 both in the argument: Then from p ≺ q we know that s1 ≺ s2

and we have ots1 = p′ ≺ q′ = ots2.
4. p is in the context and q = o11s in the body. Then p′ = p and q′ = os and since p ≺ q we

also have p′ ≺ q′.
5. p is in the context and q = o2s in the argument. Then p′ = p and q′ = oqs. Since we

know that p ≺ o (because it is in the context), we also have p′ ≺ q′.
The other cases can be omitted because they violate the assumption that p ≺ q. ◀

Since each β-step preserves the property proven in Lemma 19, we cannot have a reduct
of M where for the copy of p (the position of a variable), p′, and the copy q (the position of
an abstraction), q′, we have p′ ∥ q′, if for the origins we have q ≺ p. This would temporarily
be needed to form a redex whose contraction causes a variable capture. Moreover, as argued
above we could map back such a setting to an (unremovable) α-path in M . We conclude
that no such path can exist in M .

▶ Lemma 20. Let M be an arbitrary term in ΛAF F . There are no unremovable α-paths
in M .

In sum, we obtain the following, well-known result.

▶ Theorem 21. In the affine λ-calculus α can be avoided.

Proof. Due to Lemma 20 it only remains to prove that for every affine λ-term M there
exists an affine λ-term N such that M ≡α N and N avoids α. This, however, follows from
Lemma 19 in conjunction with Lemma 16. ◀
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(var) x : A ⊢s x : A
(const) ⊢s f : A

f : A ∈ Ξ (wk)
Γ ⊢s M : A

∆ ⊢s M : A
Γ ⊂ ∆ (δ)

Γ ⊢s M : A

Γ ⊢asa M : A

(appasa)
Γ ⊢asa M : A → B Γ ⊢s N : A

Γ ⊢asa M N : B
(app)

Γ ⊢asa M : A → B Γ ⊢s N : A

Γ ⊢s M N : B
ord B ≤ ord Γ

(abs)
Γ, x1 : A1, . . . , xn : An ⊢asa M : B

Γ ⊢s λxA1
1 . . . xAn

n .M : (A1, . . . , An, B)
ord (A1, . . . , An, B) ≤ ord Γ

Figure 10 The safe λ-calculus [9].

5.2 The safe λ-calculus
In the safe λ-calculus, a variable capture can never occur by definition, thus α is not needed.
This calculus was first introduced in [28] and then further developed and formalised in [11].
The fundamental concept allowing α-free computations is known as the safety restriction. In
the standard form this syntactic restriction restricts the free occurrences of variables according
to their type-theoretic order. It was initially introduced for higher-order grammars, cf. [16].
The safe λ-calculus is the result of the transposal of the safety condition for higher-order
grammars to the simply-typed calculus à la Church.

In this section, we show that α cannot be avoided in the safe λ-calculus as presented
in [11] and [9] by giving a counterexample and clarify why we need to stick to a more
restricted version of the safe λ-calculus (as presented in [10]) if we aim for α-free reductions.
More precisely, we show how α-paths can be used to reason that α is not needed in the safe
λ-calculus and that the absence of α-paths implies the safe variable typing convention.

Simple types over the atomic type o are defined as usual, cf. [6], A1 → · · · → An → o is
abbreviated as (A1, . . . , An, o) and (o) as o. The order of a type is given by (i) ord o := 0
and (ii) ord (A → B) := max(1 + ordA, ordB). The order of a typed term or symbol is
defined to be the order of its type. The lowest order in a set of type assignments Γ is denoted
by ord Γ (0 if Γ empty). A set of type assignments Γ is order-consistent if all the types
assigned to a given variable are of the same order.

▶ Example 22. Let Γ = {x : o, y : (o, o)}, then Γ is order-consistent and ord Γ = 0.
Conversely, the set {x : ((o, o), o), x : (o, o)} is not order-consistent and ord Γ = 1.

▶ Definition 23. A term M of type A is said to be safe, if FV (M) ⊢s M : A is a valid
statement in the inference system of the safe λ-calculus depicted in Figure 10.

We can abstract multiple variables at once, λx1 . . . xn.M , provided that they are pairwise
distinct (abs-rule). In particular, λ.x and λxo.λxo.x are valid λ-terms of the safe λ-calculus,
λxoxo.x is not. The conditions on the types in the app- and abs-rule ensure that the variables
occurring free in some term M have order at least the order M (safety condition). The
subscript asa stands for almost safe (application). Almost safe applications can be turned
into a safe term via further applications or further abstractions. For example, (λxoyo.x) z
(with z of type o) is an almost safe application but not safe. However, in (λxoyo.x) z f (with
f, z of type o) it is a subterm of a safe application.

In the safe λ-calculus, consecutive redexes are contracted simultaneously, as the standard
β-reduction does not preserve safety [9, Section 3.1.2]. This requires a notion of simultaneous
substitution. The definitions of simultaneous capture-permitting and simultaneous capture-
avoiding substitution are given in Table 2.
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Table 2 Simultaneous capture-avoiding and simultaneous capture-permitting substitution.

M MJN/xK (sim. capture-avoiding) M [N/x] (sim. capture-permitting)
xi Ni Ni

y y y

e1 e2 e1JN/xK e2JN/xK e1[N/x] e2[N/x]
(λy.e)JN/xK λy.eJN ′/x′K where x′ = x − y λy.e[N ′/x′] where x′ = x − y

if y ∩ FV (t) = ∅ for all t ∈ N ′, else
λz.eJz/yKJN/xK where zi fresh for e, N

▶ Definition 24 (safe redex [9, Definition 3.21]). An untyped safe redex is an untyped almost
safe application (a succession of several standard redexes) of the form (λx1 . . . xn.M)N1 . . . Nl

for some l, n ≥ 1 where λx1 . . . xn.M is safe and each Ni, for 1 ≤ i ≤ n, is safe.

▶ Definition 25 (safe redex contraction). The relation βs is defined on the set of safe redexes
as follows:

βs = {(λx1 . . . xn.M)N1 . . . Nl 7→ (λxl+1 . . . xn.M)[N1 . . . Nl/x1 . . . xl] | n > l}
∪ {(λx1 . . . xn.M)N1 . . . Nl 7→ M [N1 . . . Nn/x1 . . . xn]Nn+1 . . . Nl | n ≤ l}

where λ.M = M and M [N/x] denotes the simultaneous capture-permitting substitution.

Note that simultaneous capture-permitting substitution cannot be applied serially because
it may require α. The statement M [x1 := N1][x2 := N2] = M [x := y, y := z] is not true in
general, as x2 may be free in N1, e.g. x[x := y][y := z] = z and x[x := y, y := z] = y.

▶ Definition 26. The safe β-reduction, written as →βs , is the compatible closure of the
relation βs with respect to the formation rules of the safe λ-calculus.

In addition to the inference rules, the safe variable typing convention is adopted, which
restricts the naming of variables according to their type.

▶ Definition 27 (safe variable typing convention [9]). A type-annotated term M is order-
consistent just if the set of type-assignments induced by the type annotations in M is. In any
definition, theorem or proof involving countably many terms, it is assumed that the set of
terms involved is order-consistent.

According the safe variable typing convention, variables of distinct order must have distinct
names. This is crucial for α-avoidance in the safe λ-calculus.8 However, if we consider the
term M = λyo.(λxoyo.x) y we see that although this term is safe (⊢s λy

o.(λxoyo.x) y : (o, o))
and (λxoyo.x) y is a safe redex, it cannot be contracted by means of capture-permitting
substitution, because this would lead to a variable capture. This invalidates a central property
of this calculus, according to which a variable capture can never happen, and leads to the
fact that we may compute different normal forms for α-equivalent terms.9

8 {y : (((o, o), o), o), z : ((o, o), o)} ⊢s (λx((o,o),o)y(o,o)zo.x) (λq(o,o).y z) : ((o, o), o, ((o, o), o)) is a counter-
example to [9, Lemma 3.17].

9 Compare to the errata published at https://github.com/blumu/dphil.thesis/blob/erratum/
Current/thesis-erratum/dphilerratum.pdf.

https://github.com/blumu/dphil.thesis/blob/erratum/Current/thesis-erratum/dphilerratum.pdf
https://github.com/blumu/dphil.thesis/blob/erratum/Current/thesis-erratum/dphilerratum.pdf
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(var)
{x : A} ⊢sα x : A (const)

⊢sα f : A f : A ∈ Ξ (wk)
Γ′ ⊢sα M : A
Γ ⊢sα M : A Γ′ ⊂ Γ

(app)
Γ ⊢sα M : (A1, . . . , An, B) Γ≥m ⊢sα N1 : A1 . . . Γ≥m ⊢sα Nj : Bj

Γ ⊢sα M N1 . . . Nj : B m = ordB

(abs)
Γ≥m ∪ {x1 : A1, . . . , xn : An} ⊢sα M : B

Γ ⊢sα λx1 . . . xn.M : (A1, . . . , An, B) m = ord (A1, . . . , An, B)

Figure 11 An α-avoiding safe λ-calculus.

A more restrictive set of rules is needed to resolve this issue. These rules are depicted
in Figure 11.10 In this system we dropped the ”almost safety” and allow to type only
applications that provide enough arguments to abstractions. More precisely, if an argument
of order k is provided, the arguments of all abstracted variables of order k and higher must
be provided. In this way, we avoid free variables ending up in the scope of abstractions of the
same order during reduction. This avoids potential variable capture, since it can be assumed
that free variables are always of a higher order than the abstractions they enter the scope of.
Therefore, according to the safe variable typing convention, they are named differently.11

▶ Example 28. The simply-typed term (λf (o,o,o)yo.f y) (λxoyo.x) is derivable in the safe
λ-calculus from Figure 10, but not in the system from Figure 11 because of the unsafe
application f y. Indeed, this term reduces in one step to λyo.(λxoyo.x) y where α is required
to further reduce it.

In the following Lemma 29 we show that the safe λ-calculus of Figure 11 avoids α by
reasoning with α-paths. This can be done by interpreting safe λ-terms as ordinary terms.

▶ Theorem 29. In the safe λ-calculus no variable capture can occur, provided that the safe
variable typing convention is adopted.

Proof. Suppose we have an α-path in a safe λ-term M with Γ ⊢sα M : A. Then this path
would start at a variable y occurring free in the argument N of some application, which is
connected via a legal path to an abstraction λx binding a variable x in the scope of a λy, as
illustrated below. In such case, by definition of safe terms, we know that λx.M and N are
both safe. Moreover, we know that ord y ≥ N and ordN = ord x. We can therefore have
the following two cases: (i) ord y > ord x or (ii) ord y = ord x. In any case, as the subterm
λy.M ′ would be unsafe in isolation, we conclude that the λy and the λx must be jointly
abstracted. By definition of safe β-reduction, we know that compound abstractions of same
order are contracted simultaneously. Therefore, we cannot have a variable capture. ◀

5.3 The weak λ-calculus
The weak λ-calculus [39] forbids to contract open redexes, i.e. redexes that involve free
variables that are bound outside. Thus, if the name of the free variables and the bound
variables are chosen to be distinct, a variable capture can by definition never occur. We
recall the notion of weak β-reduction.

10 Simultaneous substitutions coincide with the singleton substitutions from Table 1 in the case |x| = 1.
11We note that these rules correspond to the rules of the safe λ-calculus published in [10] and to the

typing rules for long-safe terms (without constants) listed in [9, Table 3.2].
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▶ Definition 30 (weak λ-reduction [39, Definition 3.1]). A particular occurrence of a redex R
in a λ-term M will be called weak in M iff no variable-occurrence free in R is bound in M .
A weak β-contraction in M is the contraction of a β-redex-occurrence that is weak in M .

The characterisation of the virtual redexes by legal paths is not suitable for the weak
λ-calculus, since they include redexes that are not reduced at all. However, we can infer
from the structure of the unremovable α-paths that α can also be avoided in this calculus.
To this end, we rely on the fact that bound variables are never released, i.e. they do not
change or loose their binder.

▶ Lemma 31. For every λ-term M there exists a λ-term N such that M ≡α N and any
→βw-reduction from N is α-free.

Proof. We prove it by showing that the name-collision characterised by an unremovable
α-paths will not arise. Suppose we have an unremovable α-path in a λ-term M . Such path
has the shape σ+

alb ·c. Assume, that at some point along the reduction sequence of M we reach
a λ-term N , containing a redex R whose contraction leads to the predicted name-collision.
Let q be the position of the variable y occurring free in the argument of R in N . Since the
position q originates from position p in M (p ▶ p′ ▶ . . . ▶ q) and the variable occurrence at
position p in M was bound, we know that also the variable y at position q in N is bound (as
bound variables are never released). So R would be an open redex and thus not contracted.
Any other α-path can be removed by naming each binder distinctly and distinct from the
free variables, as proven in Lemma 16. ◀

In sum, α-avoidance is immediate from the definitions.

▶ Theorem 32. In the weak λ-calculus α can be avoided.

6 Conclusion

We have presented a sound characterisation of α-avoidance, via α-paths, generalising self-
capturing chains [17], studied in the context of the µ-calculus; α-paths exploit the predictive
power of legal paths, characterising virtual redexes of a λ-term M , that is, all redexes
occurring in some reduction sequence starting from M . By reasoning on the structure of
the initial term, we estimated whether α is needed, when contracting these virtual redexes.
Further, we have shown undecidability of α avoidance for (leftmost-outermost reductions in)
the untyped λ-calculus. Moreover, α-paths were instantiated to different restrictive λ-calculi,
where they can be used to show that α can be avoided, namely developments, the affine
λ-calculus, the weak λ-calculus and the safe λ-calculus. In short, forbidding redex creation,
duplication, or the contraction of redexes involving variables bound outside is enough to
allow α-avoidance. For all calculi where we can avoid α, we can infer potential α-conversions
needed to allow α-free computations from the α-paths. This allows to move a dynamic
problem to a static one.

We have shown that α-avoidance is undecidable for the leftmost–outermost strategy in
the untyped λ-calculus. These leaves the question open, whether undecidability holds in
general. We further note that α-paths only overapproximate the need for α. It remains an
open question whether we could tighten the definition of α-paths such that the established
(sound) characterisation becomes precise, that is, complete. These questions are left to future
work.
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